/src/fftw3/dft/scalar/codelets/n1_7.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Oct 13 06:59:08 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 60 FP additions, 42 FP multiplications, |
32 | | * (or, 18 additions, 0 multiplications, 42 fused multiply/add), |
33 | | * 41 stack variables, 6 constants, and 28 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
40 | | DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
41 | | DK(KP692021471, +0.692021471630095869627814897002069140197260599); |
42 | | DK(KP801937735, +0.801937735804838252472204639014890102331838324); |
43 | | DK(KP554958132, +0.554958132087371191422194871006410481067288862); |
44 | | DK(KP356895867, +0.356895867892209443894399510021300583399127187); |
45 | | { |
46 | | INT i; |
47 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { |
48 | | E T1, Tz, T4, TI, Ta, TG, T7, TH, Tb, Tp, TT, TO, TJ, Tu, Tg; |
49 | | E TB, Tm, TC, Tj, TA, Tn, Ts, TQ, TL, TD, Tx; |
50 | | T1 = ri[0]; |
51 | | Tz = ii[0]; |
52 | | { |
53 | | E T2, T3, Te, Tf; |
54 | | T2 = ri[WS(is, 1)]; |
55 | | T3 = ri[WS(is, 6)]; |
56 | | T4 = T2 + T3; |
57 | | TI = T3 - T2; |
58 | | { |
59 | | E T8, T9, T5, T6; |
60 | | T8 = ri[WS(is, 3)]; |
61 | | T9 = ri[WS(is, 4)]; |
62 | | Ta = T8 + T9; |
63 | | TG = T9 - T8; |
64 | | T5 = ri[WS(is, 2)]; |
65 | | T6 = ri[WS(is, 5)]; |
66 | | T7 = T5 + T6; |
67 | | TH = T6 - T5; |
68 | | } |
69 | | Tb = FNMS(KP356895867, T7, T4); |
70 | | Tp = FNMS(KP356895867, T4, Ta); |
71 | | TT = FMA(KP554958132, TG, TI); |
72 | | TO = FMA(KP554958132, TH, TG); |
73 | | TJ = FNMS(KP554958132, TI, TH); |
74 | | Tu = FNMS(KP356895867, Ta, T7); |
75 | | Te = ii[WS(is, 2)]; |
76 | | Tf = ii[WS(is, 5)]; |
77 | | Tg = Te - Tf; |
78 | | TB = Te + Tf; |
79 | | { |
80 | | E Tk, Tl, Th, Ti; |
81 | | Tk = ii[WS(is, 3)]; |
82 | | Tl = ii[WS(is, 4)]; |
83 | | Tm = Tk - Tl; |
84 | | TC = Tk + Tl; |
85 | | Th = ii[WS(is, 1)]; |
86 | | Ti = ii[WS(is, 6)]; |
87 | | Tj = Th - Ti; |
88 | | TA = Th + Ti; |
89 | | } |
90 | | Tn = FMA(KP554958132, Tm, Tj); |
91 | | Ts = FMA(KP554958132, Tg, Tm); |
92 | | TQ = FNMS(KP356895867, TB, TA); |
93 | | TL = FNMS(KP356895867, TA, TC); |
94 | | TD = FNMS(KP356895867, TC, TB); |
95 | | Tx = FNMS(KP554958132, Tj, Tg); |
96 | | } |
97 | | ro[0] = T1 + T4 + T7 + Ta; |
98 | | io[0] = Tz + TA + TB + TC; |
99 | | { |
100 | | E To, Td, Tc, TU, TS, TR; |
101 | | To = FMA(KP801937735, Tn, Tg); |
102 | | Tc = FNMS(KP692021471, Tb, Ta); |
103 | | Td = FNMS(KP900968867, Tc, T1); |
104 | | ro[WS(os, 6)] = FNMS(KP974927912, To, Td); |
105 | | ro[WS(os, 1)] = FMA(KP974927912, To, Td); |
106 | | TU = FMA(KP801937735, TT, TH); |
107 | | TR = FNMS(KP692021471, TQ, TC); |
108 | | TS = FNMS(KP900968867, TR, Tz); |
109 | | io[WS(os, 1)] = FMA(KP974927912, TU, TS); |
110 | | io[WS(os, 6)] = FNMS(KP974927912, TU, TS); |
111 | | } |
112 | | { |
113 | | E Tt, Tr, Tq, TP, TN, TM; |
114 | | Tt = FNMS(KP801937735, Ts, Tj); |
115 | | Tq = FNMS(KP692021471, Tp, T7); |
116 | | Tr = FNMS(KP900968867, Tq, T1); |
117 | | ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr); |
118 | | ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr); |
119 | | TP = FNMS(KP801937735, TO, TI); |
120 | | TM = FNMS(KP692021471, TL, TB); |
121 | | TN = FNMS(KP900968867, TM, Tz); |
122 | | io[WS(os, 2)] = FMA(KP974927912, TP, TN); |
123 | | io[WS(os, 5)] = FNMS(KP974927912, TP, TN); |
124 | | } |
125 | | { |
126 | | E Ty, Tw, Tv, TK, TF, TE; |
127 | | Ty = FNMS(KP801937735, Tx, Tm); |
128 | | Tv = FNMS(KP692021471, Tu, T4); |
129 | | Tw = FNMS(KP900968867, Tv, T1); |
130 | | ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw); |
131 | | ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw); |
132 | | TK = FNMS(KP801937735, TJ, TG); |
133 | | TE = FNMS(KP692021471, TD, TA); |
134 | | TF = FNMS(KP900968867, TE, Tz); |
135 | | io[WS(os, 3)] = FMA(KP974927912, TK, TF); |
136 | | io[WS(os, 4)] = FNMS(KP974927912, TK, TF); |
137 | | } |
138 | | } |
139 | | } |
140 | | } |
141 | | |
142 | | static const kdft_desc desc = { 7, "n1_7", { 18, 0, 42, 0 }, &GENUS, 0, 0, 0, 0 }; |
143 | | |
144 | | void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc); |
145 | | } |
146 | | |
147 | | #else |
148 | | |
149 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */ |
150 | | |
151 | | /* |
152 | | * This function contains 60 FP additions, 36 FP multiplications, |
153 | | * (or, 36 additions, 12 multiplications, 24 fused multiply/add), |
154 | | * 25 stack variables, 6 constants, and 28 memory accesses |
155 | | */ |
156 | | #include "dft/scalar/n.h" |
157 | | |
158 | | static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
159 | 39 | { |
160 | 39 | DK(KP222520933, +0.222520933956314404288902564496794759466355569); |
161 | 39 | DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
162 | 39 | DK(KP623489801, +0.623489801858733530525004884004239810632274731); |
163 | 39 | DK(KP433883739, +0.433883739117558120475768332848358754609990728); |
164 | 39 | DK(KP781831482, +0.781831482468029808708444526674057750232334519); |
165 | 39 | DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
166 | 39 | { |
167 | 39 | INT i; |
168 | 198 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { |
169 | 159 | E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw; |
170 | 159 | T1 = ri[0]; |
171 | 159 | Tu = ii[0]; |
172 | 159 | { |
173 | 159 | E T2, T3, Tc, Td; |
174 | 159 | T2 = ri[WS(is, 1)]; |
175 | 159 | T3 = ri[WS(is, 6)]; |
176 | 159 | T4 = T2 + T3; |
177 | 159 | Tq = T3 - T2; |
178 | 159 | Tc = ii[WS(is, 1)]; |
179 | 159 | Td = ii[WS(is, 6)]; |
180 | 159 | Te = Tc - Td; |
181 | 159 | Tx = Tc + Td; |
182 | 159 | } |
183 | 159 | { |
184 | 159 | E T5, T6, Ti, Tj; |
185 | 159 | T5 = ri[WS(is, 2)]; |
186 | 159 | T6 = ri[WS(is, 5)]; |
187 | 159 | T7 = T5 + T6; |
188 | 159 | Ts = T6 - T5; |
189 | 159 | Ti = ii[WS(is, 2)]; |
190 | 159 | Tj = ii[WS(is, 5)]; |
191 | 159 | Tk = Ti - Tj; |
192 | 159 | Tv = Ti + Tj; |
193 | 159 | } |
194 | 159 | { |
195 | 159 | E T8, T9, Tf, Tg; |
196 | 159 | T8 = ri[WS(is, 3)]; |
197 | 159 | T9 = ri[WS(is, 4)]; |
198 | 159 | Ta = T8 + T9; |
199 | 159 | Tr = T9 - T8; |
200 | 159 | Tf = ii[WS(is, 3)]; |
201 | 159 | Tg = ii[WS(is, 4)]; |
202 | 159 | Th = Tf - Tg; |
203 | 159 | Tw = Tf + Tg; |
204 | 159 | } |
205 | 159 | ro[0] = T1 + T4 + T7 + Ta; |
206 | 159 | io[0] = Tu + Tx + Tv + Tw; |
207 | 159 | { |
208 | 159 | E Tl, Tb, TB, TC; |
209 | 159 | Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk); |
210 | 159 | Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); |
211 | 159 | ro[WS(os, 5)] = Tb - Tl; |
212 | 159 | ro[WS(os, 2)] = Tb + Tl; |
213 | 159 | TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts); |
214 | 159 | TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx); |
215 | 159 | io[WS(os, 2)] = TB + TC; |
216 | 159 | io[WS(os, 5)] = TC - TB; |
217 | 159 | } |
218 | 159 | { |
219 | 159 | E Tn, Tm, Tz, TA; |
220 | 159 | Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th); |
221 | 159 | Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); |
222 | 159 | ro[WS(os, 6)] = Tm - Tn; |
223 | 159 | ro[WS(os, 1)] = Tm + Tn; |
224 | 159 | Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr); |
225 | 159 | TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv); |
226 | 159 | io[WS(os, 1)] = Tz + TA; |
227 | 159 | io[WS(os, 6)] = TA - Tz; |
228 | 159 | } |
229 | 159 | { |
230 | 159 | E Tp, To, Tt, Ty; |
231 | 159 | Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk); |
232 | 159 | To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); |
233 | 159 | ro[WS(os, 4)] = To - Tp; |
234 | 159 | ro[WS(os, 3)] = To + Tp; |
235 | 159 | Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts); |
236 | 159 | Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx); |
237 | 159 | io[WS(os, 3)] = Tt + Ty; |
238 | 159 | io[WS(os, 4)] = Ty - Tt; |
239 | 159 | } |
240 | 159 | } |
241 | 39 | } |
242 | 39 | } |
243 | | |
244 | | static const kdft_desc desc = { 7, "n1_7", { 36, 12, 24, 0 }, &GENUS, 0, 0, 0, 0 }; |
245 | | |
246 | 1 | void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc); |
247 | 1 | } |
248 | | |
249 | | #endif |