Coverage Report

Created: 2025-10-13 07:02

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/n1_7.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Oct 13 06:59:08 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */
29
30
/*
31
 * This function contains 60 FP additions, 42 FP multiplications,
32
 * (or, 18 additions, 0 multiplications, 42 fused multiply/add),
33
 * 41 stack variables, 6 constants, and 28 memory accesses
34
 */
35
#include "dft/scalar/n.h"
36
37
static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
40
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
41
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
42
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
43
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
44
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
45
     {
46
    INT i;
47
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
48
         E T1, Tz, T4, TI, Ta, TG, T7, TH, Tb, Tp, TT, TO, TJ, Tu, Tg;
49
         E TB, Tm, TC, Tj, TA, Tn, Ts, TQ, TL, TD, Tx;
50
         T1 = ri[0];
51
         Tz = ii[0];
52
         {
53
        E T2, T3, Te, Tf;
54
        T2 = ri[WS(is, 1)];
55
        T3 = ri[WS(is, 6)];
56
        T4 = T2 + T3;
57
        TI = T3 - T2;
58
        {
59
       E T8, T9, T5, T6;
60
       T8 = ri[WS(is, 3)];
61
       T9 = ri[WS(is, 4)];
62
       Ta = T8 + T9;
63
       TG = T9 - T8;
64
       T5 = ri[WS(is, 2)];
65
       T6 = ri[WS(is, 5)];
66
       T7 = T5 + T6;
67
       TH = T6 - T5;
68
        }
69
        Tb = FNMS(KP356895867, T7, T4);
70
        Tp = FNMS(KP356895867, T4, Ta);
71
        TT = FMA(KP554958132, TG, TI);
72
        TO = FMA(KP554958132, TH, TG);
73
        TJ = FNMS(KP554958132, TI, TH);
74
        Tu = FNMS(KP356895867, Ta, T7);
75
        Te = ii[WS(is, 2)];
76
        Tf = ii[WS(is, 5)];
77
        Tg = Te - Tf;
78
        TB = Te + Tf;
79
        {
80
       E Tk, Tl, Th, Ti;
81
       Tk = ii[WS(is, 3)];
82
       Tl = ii[WS(is, 4)];
83
       Tm = Tk - Tl;
84
       TC = Tk + Tl;
85
       Th = ii[WS(is, 1)];
86
       Ti = ii[WS(is, 6)];
87
       Tj = Th - Ti;
88
       TA = Th + Ti;
89
        }
90
        Tn = FMA(KP554958132, Tm, Tj);
91
        Ts = FMA(KP554958132, Tg, Tm);
92
        TQ = FNMS(KP356895867, TB, TA);
93
        TL = FNMS(KP356895867, TA, TC);
94
        TD = FNMS(KP356895867, TC, TB);
95
        Tx = FNMS(KP554958132, Tj, Tg);
96
         }
97
         ro[0] = T1 + T4 + T7 + Ta;
98
         io[0] = Tz + TA + TB + TC;
99
         {
100
        E To, Td, Tc, TU, TS, TR;
101
        To = FMA(KP801937735, Tn, Tg);
102
        Tc = FNMS(KP692021471, Tb, Ta);
103
        Td = FNMS(KP900968867, Tc, T1);
104
        ro[WS(os, 6)] = FNMS(KP974927912, To, Td);
105
        ro[WS(os, 1)] = FMA(KP974927912, To, Td);
106
        TU = FMA(KP801937735, TT, TH);
107
        TR = FNMS(KP692021471, TQ, TC);
108
        TS = FNMS(KP900968867, TR, Tz);
109
        io[WS(os, 1)] = FMA(KP974927912, TU, TS);
110
        io[WS(os, 6)] = FNMS(KP974927912, TU, TS);
111
         }
112
         {
113
        E Tt, Tr, Tq, TP, TN, TM;
114
        Tt = FNMS(KP801937735, Ts, Tj);
115
        Tq = FNMS(KP692021471, Tp, T7);
116
        Tr = FNMS(KP900968867, Tq, T1);
117
        ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr);
118
        ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr);
119
        TP = FNMS(KP801937735, TO, TI);
120
        TM = FNMS(KP692021471, TL, TB);
121
        TN = FNMS(KP900968867, TM, Tz);
122
        io[WS(os, 2)] = FMA(KP974927912, TP, TN);
123
        io[WS(os, 5)] = FNMS(KP974927912, TP, TN);
124
         }
125
         {
126
        E Ty, Tw, Tv, TK, TF, TE;
127
        Ty = FNMS(KP801937735, Tx, Tm);
128
        Tv = FNMS(KP692021471, Tu, T4);
129
        Tw = FNMS(KP900968867, Tv, T1);
130
        ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw);
131
        ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw);
132
        TK = FNMS(KP801937735, TJ, TG);
133
        TE = FNMS(KP692021471, TD, TA);
134
        TF = FNMS(KP900968867, TE, Tz);
135
        io[WS(os, 3)] = FMA(KP974927912, TK, TF);
136
        io[WS(os, 4)] = FNMS(KP974927912, TK, TF);
137
         }
138
    }
139
     }
140
}
141
142
static const kdft_desc desc = { 7, "n1_7", { 18, 0, 42, 0 }, &GENUS, 0, 0, 0, 0 };
143
144
void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc);
145
}
146
147
#else
148
149
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */
150
151
/*
152
 * This function contains 60 FP additions, 36 FP multiplications,
153
 * (or, 36 additions, 12 multiplications, 24 fused multiply/add),
154
 * 25 stack variables, 6 constants, and 28 memory accesses
155
 */
156
#include "dft/scalar/n.h"
157
158
static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
159
39
{
160
39
     DK(KP222520933, +0.222520933956314404288902564496794759466355569);
161
39
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
162
39
     DK(KP623489801, +0.623489801858733530525004884004239810632274731);
163
39
     DK(KP433883739, +0.433883739117558120475768332848358754609990728);
164
39
     DK(KP781831482, +0.781831482468029808708444526674057750232334519);
165
39
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
166
39
     {
167
39
    INT i;
168
198
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
169
159
         E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw;
170
159
         T1 = ri[0];
171
159
         Tu = ii[0];
172
159
         {
173
159
        E T2, T3, Tc, Td;
174
159
        T2 = ri[WS(is, 1)];
175
159
        T3 = ri[WS(is, 6)];
176
159
        T4 = T2 + T3;
177
159
        Tq = T3 - T2;
178
159
        Tc = ii[WS(is, 1)];
179
159
        Td = ii[WS(is, 6)];
180
159
        Te = Tc - Td;
181
159
        Tx = Tc + Td;
182
159
         }
183
159
         {
184
159
        E T5, T6, Ti, Tj;
185
159
        T5 = ri[WS(is, 2)];
186
159
        T6 = ri[WS(is, 5)];
187
159
        T7 = T5 + T6;
188
159
        Ts = T6 - T5;
189
159
        Ti = ii[WS(is, 2)];
190
159
        Tj = ii[WS(is, 5)];
191
159
        Tk = Ti - Tj;
192
159
        Tv = Ti + Tj;
193
159
         }
194
159
         {
195
159
        E T8, T9, Tf, Tg;
196
159
        T8 = ri[WS(is, 3)];
197
159
        T9 = ri[WS(is, 4)];
198
159
        Ta = T8 + T9;
199
159
        Tr = T9 - T8;
200
159
        Tf = ii[WS(is, 3)];
201
159
        Tg = ii[WS(is, 4)];
202
159
        Th = Tf - Tg;
203
159
        Tw = Tf + Tg;
204
159
         }
205
159
         ro[0] = T1 + T4 + T7 + Ta;
206
159
         io[0] = Tu + Tx + Tv + Tw;
207
159
         {
208
159
        E Tl, Tb, TB, TC;
209
159
        Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk);
210
159
        Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
211
159
        ro[WS(os, 5)] = Tb - Tl;
212
159
        ro[WS(os, 2)] = Tb + Tl;
213
159
        TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts);
214
159
        TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx);
215
159
        io[WS(os, 2)] = TB + TC;
216
159
        io[WS(os, 5)] = TC - TB;
217
159
         }
218
159
         {
219
159
        E Tn, Tm, Tz, TA;
220
159
        Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th);
221
159
        Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
222
159
        ro[WS(os, 6)] = Tm - Tn;
223
159
        ro[WS(os, 1)] = Tm + Tn;
224
159
        Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr);
225
159
        TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv);
226
159
        io[WS(os, 1)] = Tz + TA;
227
159
        io[WS(os, 6)] = TA - Tz;
228
159
         }
229
159
         {
230
159
        E Tp, To, Tt, Ty;
231
159
        Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk);
232
159
        To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
233
159
        ro[WS(os, 4)] = To - Tp;
234
159
        ro[WS(os, 3)] = To + Tp;
235
159
        Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts);
236
159
        Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx);
237
159
        io[WS(os, 3)] = Tt + Ty;
238
159
        io[WS(os, 4)] = Ty - Tt;
239
159
         }
240
159
    }
241
39
     }
242
39
}
243
244
static const kdft_desc desc = { 7, "n1_7", { 36, 12, 24, 0 }, &GENUS, 0, 0, 0, 0 };
245
246
1
void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc);
247
1
}
248
249
#endif