Coverage Report

Created: 2025-10-13 07:02

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/t1_64.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Oct 13 06:59:13 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 1038 FP additions, 644 FP multiplications,
32
 * (or, 520 additions, 126 multiplications, 518 fused multiply/add),
33
 * 190 stack variables, 15 constants, and 256 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
40
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
41
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
42
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
43
     DK(KP098491403, +0.098491403357164253077197521291327432293052451);
44
     DK(KP820678790, +0.820678790828660330972281985331011598767386482);
45
     DK(KP303346683, +0.303346683607342391675883946941299872384187453);
46
     DK(KP534511135, +0.534511135950791641089685961295362908582039528);
47
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
48
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
49
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
50
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
51
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
52
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
53
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
54
     {
55
    INT m;
56
    for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
57
         E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X;
58
         E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm;
59
         E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B;
60
         E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH;
61
         E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm;
62
         E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV;
63
         E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h;
64
         E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr;
65
         E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu;
66
         {
67
        E T1, TiT, T7, TiS, Te, T7a, Tk, T7c;
68
        T1 = ri[0];
69
        TiT = ii[0];
70
        {
71
       E T3, T6, T4, TiR, T2, T5;
72
       T3 = ri[WS(rs, 32)];
73
       T6 = ii[WS(rs, 32)];
74
       T2 = W[62];
75
       T4 = T2 * T3;
76
       TiR = T2 * T6;
77
       T5 = W[63];
78
       T7 = FMA(T5, T6, T4);
79
       TiS = FNMS(T5, T3, TiR);
80
        }
81
        {
82
       E Ta, Td, Tb, T79, T9, Tc;
83
       Ta = ri[WS(rs, 16)];
84
       Td = ii[WS(rs, 16)];
85
       T9 = W[30];
86
       Tb = T9 * Ta;
87
       T79 = T9 * Td;
88
       Tc = W[31];
89
       Te = FMA(Tc, Td, Tb);
90
       T7a = FNMS(Tc, Ta, T79);
91
        }
92
        {
93
       E Tg, Tj, Th, T7b, Tf, Ti;
94
       Tg = ri[WS(rs, 48)];
95
       Tj = ii[WS(rs, 48)];
96
       Tf = W[94];
97
       Th = Tf * Tg;
98
       T7b = Tf * Tj;
99
       Ti = W[95];
100
       Tk = FMA(Ti, Tj, Th);
101
       T7c = FNMS(Ti, Tg, T7b);
102
        }
103
        {
104
       E T8, Tl, TjP, TjQ;
105
       T8 = T1 + T7;
106
       Tl = Te + Tk;
107
       Tm = T8 + Tl;
108
       TeM = T8 - Tl;
109
       TjP = TiT - TiS;
110
       TjQ = Te - Tk;
111
       TjR = TjP - TjQ;
112
       Tkl = TjQ + TjP;
113
        }
114
        {
115
       E T78, T7d, TiQ, TiU;
116
       T78 = T1 - T7;
117
       T7d = T7a - T7c;
118
       T7e = T78 - T7d;
119
       TcA = T78 + T7d;
120
       TiQ = T7a + T7c;
121
       TiU = TiS + TiT;
122
       TiV = TiQ + TiU;
123
       Tjm = TiU - TiQ;
124
        }
125
         }
126
         {
127
        E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T;
128
        {
129
       E T1h, T1k, T1i, T7K, T1g, T1j;
130
       T1h = ri[WS(rs, 60)];
131
       T1k = ii[WS(rs, 60)];
132
       T1g = W[118];
133
       T1i = T1g * T1h;
134
       T7K = T1g * T1k;
135
       T1j = W[119];
136
       T1l = FMA(T1j, T1k, T1i);
137
       T7L = FNMS(T1j, T1h, T7K);
138
        }
139
        {
140
       E T1A, T1D, T1B, T7U, T1z, T1C;
141
       T1A = ri[WS(rs, 44)];
142
       T1D = ii[WS(rs, 44)];
143
       T1z = W[86];
144
       T1B = T1z * T1A;
145
       T7U = T1z * T1D;
146
       T1C = W[87];
147
       T1E = FMA(T1C, T1D, T1B);
148
       T7V = FNMS(T1C, T1A, T7U);
149
        }
150
        {
151
       E T1n, T1q, T1o, T7M, T1m, T1p;
152
       T1n = ri[WS(rs, 28)];
153
       T1q = ii[WS(rs, 28)];
154
       T1m = W[54];
155
       T1o = T1m * T1n;
156
       T7M = T1m * T1q;
157
       T1p = W[55];
158
       T1r = FMA(T1p, T1q, T1o);
159
       T7N = FNMS(T1p, T1n, T7M);
160
        }
161
        {
162
       E T1u, T1x, T1v, T7S, T1t, T1w;
163
       T1u = ri[WS(rs, 12)];
164
       T1x = ii[WS(rs, 12)];
165
       T1t = W[22];
166
       T1v = T1t * T1u;
167
       T7S = T1t * T1x;
168
       T1w = W[23];
169
       T1y = FMA(T1w, T1x, T1v);
170
       T7T = FNMS(T1w, T1u, T7S);
171
        }
172
        {
173
       E T1s, T1F, TeX, TeY;
174
       T1s = T1l + T1r;
175
       T1F = T1y + T1E;
176
       T1G = T1s + T1F;
177
       TeW = T1s - T1F;
178
       TeX = T7L + T7N;
179
       TeY = T7T + T7V;
180
       TeZ = TeX - TeY;
181
       Ths = TeX + TeY;
182
        }
183
        {
184
       E T7O, T7P, T7R, T7W;
185
       T7O = T7L - T7N;
186
       T7P = T1y - T1E;
187
       T7Q = T7O + T7P;
188
       TcJ = T7O - T7P;
189
       T7R = T1l - T1r;
190
       T7W = T7T - T7V;
191
       T7X = T7R - T7W;
192
       TcI = T7R + T7W;
193
        }
194
         }
195
         {
196
        E T1O, T82, T27, T8s, T1U, T84, T21, T8q;
197
        {
198
       E T1K, T1N, T1L, T81, T1J, T1M;
199
       T1K = ri[WS(rs, 2)];
200
       T1N = ii[WS(rs, 2)];
201
       T1J = W[2];
202
       T1L = T1J * T1K;
203
       T81 = T1J * T1N;
204
       T1M = W[3];
205
       T1O = FMA(T1M, T1N, T1L);
206
       T82 = FNMS(T1M, T1K, T81);
207
        }
208
        {
209
       E T23, T26, T24, T8r, T22, T25;
210
       T23 = ri[WS(rs, 50)];
211
       T26 = ii[WS(rs, 50)];
212
       T22 = W[98];
213
       T24 = T22 * T23;
214
       T8r = T22 * T26;
215
       T25 = W[99];
216
       T27 = FMA(T25, T26, T24);
217
       T8s = FNMS(T25, T23, T8r);
218
        }
219
        {
220
       E T1Q, T1T, T1R, T83, T1P, T1S;
221
       T1Q = ri[WS(rs, 34)];
222
       T1T = ii[WS(rs, 34)];
223
       T1P = W[66];
224
       T1R = T1P * T1Q;
225
       T83 = T1P * T1T;
226
       T1S = W[67];
227
       T1U = FMA(T1S, T1T, T1R);
228
       T84 = FNMS(T1S, T1Q, T83);
229
        }
230
        {
231
       E T1X, T20, T1Y, T8p, T1W, T1Z;
232
       T1X = ri[WS(rs, 18)];
233
       T20 = ii[WS(rs, 18)];
234
       T1W = W[34];
235
       T1Y = T1W * T1X;
236
       T8p = T1W * T20;
237
       T1Z = W[35];
238
       T21 = FMA(T1Z, T20, T1Y);
239
       T8q = FNMS(T1Z, T1X, T8p);
240
        }
241
        {
242
       E T1V, T28, Tf3, Tf4;
243
       T1V = T1O + T1U;
244
       T28 = T21 + T27;
245
       T29 = T1V + T28;
246
       Tf8 = T1V - T28;
247
       Tf3 = T82 + T84;
248
       Tf4 = T8q + T8s;
249
       Tf5 = Tf3 - Tf4;
250
       Thv = Tf3 + Tf4;
251
        }
252
        {
253
       E T85, T86, T8o, T8t;
254
       T85 = T82 - T84;
255
       T86 = T21 - T27;
256
       T87 = T85 + T86;
257
       TcN = T85 - T86;
258
       T8o = T1O - T1U;
259
       T8t = T8q - T8s;
260
       T8u = T8o - T8t;
261
       TcQ = T8o + T8t;
262
        }
263
         }
264
         {
265
        E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf;
266
        {
267
       E T5l, T5o, T5m, Tak, T5k, T5n;
268
       T5l = ri[WS(rs, 63)];
269
       T5o = ii[WS(rs, 63)];
270
       T5k = W[124];
271
       T5m = T5k * T5l;
272
       Tak = T5k * T5o;
273
       T5n = W[125];
274
       T5p = FMA(T5n, T5o, T5m);
275
       Tal = FNMS(T5n, T5l, Tak);
276
        }
277
        {
278
       E T5E, T5H, T5F, Tbg, T5D, T5G;
279
       T5E = ri[WS(rs, 47)];
280
       T5H = ii[WS(rs, 47)];
281
       T5D = W[92];
282
       T5F = T5D * T5E;
283
       Tbg = T5D * T5H;
284
       T5G = W[93];
285
       T5I = FMA(T5G, T5H, T5F);
286
       Tbh = FNMS(T5G, T5E, Tbg);
287
        }
288
        {
289
       E T5r, T5u, T5s, Tam, T5q, T5t;
290
       T5r = ri[WS(rs, 31)];
291
       T5u = ii[WS(rs, 31)];
292
       T5q = W[60];
293
       T5s = T5q * T5r;
294
       Tam = T5q * T5u;
295
       T5t = W[61];
296
       T5v = FMA(T5t, T5u, T5s);
297
       Tan = FNMS(T5t, T5r, Tam);
298
        }
299
        {
300
       E T5y, T5B, T5z, Tbe, T5x, T5A;
301
       T5y = ri[WS(rs, 15)];
302
       T5B = ii[WS(rs, 15)];
303
       T5x = W[28];
304
       T5z = T5x * T5y;
305
       Tbe = T5x * T5B;
306
       T5A = W[29];
307
       T5C = FMA(T5A, T5B, T5z);
308
       Tbf = FNMS(T5A, T5y, Tbe);
309
        }
310
        {
311
       E T5w, T5J, TfS, TfT;
312
       T5w = T5p + T5v;
313
       T5J = T5C + T5I;
314
       T5K = T5w + T5J;
315
       Tg9 = T5w - T5J;
316
       TfS = Tal + Tan;
317
       TfT = Tbf + Tbh;
318
       TfU = TfS - TfT;
319
       ThS = TfS + TfT;
320
        }
321
        {
322
       E Tao, Tap, Tbd, Tbi;
323
       Tao = Tal - Tan;
324
       Tap = T5C - T5I;
325
       Taq = Tao + Tap;
326
       Tdm = Tao - Tap;
327
       Tbd = T5p - T5v;
328
       Tbi = Tbf - Tbh;
329
       Tbj = Tbd - Tbi;
330
       Tdx = Tbd + Tbi;
331
        }
332
         }
333
         {
334
        E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o;
335
        {
336
       E To, Tr, Tp, T7f, Tn, Tq;
337
       To = ri[WS(rs, 8)];
338
       Tr = ii[WS(rs, 8)];
339
       Tn = W[14];
340
       Tp = Tn * To;
341
       T7f = Tn * Tr;
342
       Tq = W[15];
343
       Ts = FMA(Tq, Tr, Tp);
344
       T7g = FNMS(Tq, To, T7f);
345
        }
346
        {
347
       E TH, TK, TI, T7p, TG, TJ;
348
       TH = ri[WS(rs, 24)];
349
       TK = ii[WS(rs, 24)];
350
       TG = W[46];
351
       TI = TG * TH;
352
       T7p = TG * TK;
353
       TJ = W[47];
354
       TL = FMA(TJ, TK, TI);
355
       T7q = FNMS(TJ, TH, T7p);
356
        }
357
        {
358
       E Tu, Tx, Tv, T7h, Tt, Tw;
359
       Tu = ri[WS(rs, 40)];
360
       Tx = ii[WS(rs, 40)];
361
       Tt = W[78];
362
       Tv = Tt * Tu;
363
       T7h = Tt * Tx;
364
       Tw = W[79];
365
       Ty = FMA(Tw, Tx, Tv);
366
       T7i = FNMS(Tw, Tu, T7h);
367
        }
368
        {
369
       E TB, TE, TC, T7n, TA, TD;
370
       TB = ri[WS(rs, 56)];
371
       TE = ii[WS(rs, 56)];
372
       TA = W[110];
373
       TC = TA * TB;
374
       T7n = TA * TE;
375
       TD = W[111];
376
       TF = FMA(TD, TE, TC);
377
       T7o = FNMS(TD, TB, T7n);
378
        }
379
        {
380
       E Tz, TM, TeN, TeO;
381
       Tz = Ts + Ty;
382
       TM = TF + TL;
383
       TN = Tz + TM;
384
       Tjl = TM - Tz;
385
       TeN = T7g + T7i;
386
       TeO = T7o + T7q;
387
       TeP = TeN - TeO;
388
       TiP = TeN + TeO;
389
        }
390
        {
391
       E T7j, T7k, T7m, T7r;
392
       T7j = T7g - T7i;
393
       T7k = Ts - Ty;
394
       T7l = T7j - T7k;
395
       TcB = T7k + T7j;
396
       T7m = TF - TL;
397
       T7r = T7o - T7q;
398
       T7s = T7m + T7r;
399
       TcC = T7m - T7r;
400
        }
401
         }
402
         {
403
        E TU, T7w, T1d, T7G, T10, T7y, T17, T7E;
404
        {
405
       E TQ, TT, TR, T7v, TP, TS;
406
       TQ = ri[WS(rs, 4)];
407
       TT = ii[WS(rs, 4)];
408
       TP = W[6];
409
       TR = TP * TQ;
410
       T7v = TP * TT;
411
       TS = W[7];
412
       TU = FMA(TS, TT, TR);
413
       T7w = FNMS(TS, TQ, T7v);
414
        }
415
        {
416
       E T19, T1c, T1a, T7F, T18, T1b;
417
       T19 = ri[WS(rs, 52)];
418
       T1c = ii[WS(rs, 52)];
419
       T18 = W[102];
420
       T1a = T18 * T19;
421
       T7F = T18 * T1c;
422
       T1b = W[103];
423
       T1d = FMA(T1b, T1c, T1a);
424
       T7G = FNMS(T1b, T19, T7F);
425
        }
426
        {
427
       E TW, TZ, TX, T7x, TV, TY;
428
       TW = ri[WS(rs, 36)];
429
       TZ = ii[WS(rs, 36)];
430
       TV = W[70];
431
       TX = TV * TW;
432
       T7x = TV * TZ;
433
       TY = W[71];
434
       T10 = FMA(TY, TZ, TX);
435
       T7y = FNMS(TY, TW, T7x);
436
        }
437
        {
438
       E T13, T16, T14, T7D, T12, T15;
439
       T13 = ri[WS(rs, 20)];
440
       T16 = ii[WS(rs, 20)];
441
       T12 = W[38];
442
       T14 = T12 * T13;
443
       T7D = T12 * T16;
444
       T15 = W[39];
445
       T17 = FMA(T15, T16, T14);
446
       T7E = FNMS(T15, T13, T7D);
447
        }
448
        {
449
       E T11, T1e, TeS, TeT;
450
       T11 = TU + T10;
451
       T1e = T17 + T1d;
452
       T1f = T11 + T1e;
453
       TeR = T11 - T1e;
454
       TeS = T7w + T7y;
455
       TeT = T7E + T7G;
456
       TeU = TeS - TeT;
457
       Thr = TeS + TeT;
458
        }
459
        {
460
       E T7z, T7A, T7C, T7H;
461
       T7z = T7w - T7y;
462
       T7A = T17 - T1d;
463
       T7B = T7z + T7A;
464
       TcG = T7z - T7A;
465
       T7C = TU - T10;
466
       T7H = T7E - T7G;
467
       T7I = T7C - T7H;
468
       TcF = T7C + T7H;
469
        }
470
         }
471
         {
472
        E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z;
473
        {
474
       E T2D, T2G, T2E, T8A, T2C, T2F;
475
       T2D = ri[WS(rs, 62)];
476
       T2G = ii[WS(rs, 62)];
477
       T2C = W[122];
478
       T2E = T2C * T2D;
479
       T8A = T2C * T2G;
480
       T2F = W[123];
481
       T2H = FMA(T2F, T2G, T2E);
482
       T8B = FNMS(T2F, T2D, T8A);
483
        }
484
        {
485
       E T2W, T2Z, T2X, T90, T2V, T2Y;
486
       T2W = ri[WS(rs, 46)];
487
       T2Z = ii[WS(rs, 46)];
488
       T2V = W[90];
489
       T2X = T2V * T2W;
490
       T90 = T2V * T2Z;
491
       T2Y = W[91];
492
       T30 = FMA(T2Y, T2Z, T2X);
493
       T91 = FNMS(T2Y, T2W, T90);
494
        }
495
        {
496
       E T2J, T2M, T2K, T8C, T2I, T2L;
497
       T2J = ri[WS(rs, 30)];
498
       T2M = ii[WS(rs, 30)];
499
       T2I = W[58];
500
       T2K = T2I * T2J;
501
       T8C = T2I * T2M;
502
       T2L = W[59];
503
       T2N = FMA(T2L, T2M, T2K);
504
       T8D = FNMS(T2L, T2J, T8C);
505
        }
506
        {
507
       E T2Q, T2T, T2R, T8Y, T2P, T2S;
508
       T2Q = ri[WS(rs, 14)];
509
       T2T = ii[WS(rs, 14)];
510
       T2P = W[26];
511
       T2R = T2P * T2Q;
512
       T8Y = T2P * T2T;
513
       T2S = W[27];
514
       T2U = FMA(T2S, T2T, T2R);
515
       T8Z = FNMS(T2S, T2Q, T8Y);
516
        }
517
        {
518
       E T2O, T31, Tfe, Tff;
519
       T2O = T2H + T2N;
520
       T31 = T2U + T30;
521
       T32 = T2O + T31;
522
       Tfj = T2O - T31;
523
       Tfe = T8B + T8D;
524
       Tff = T8Z + T91;
525
       Tfg = Tfe - Tff;
526
       ThB = Tfe + Tff;
527
        }
528
        {
529
       E T8E, T8F, T8X, T92;
530
       T8E = T8B - T8D;
531
       T8F = T2U - T30;
532
       T8G = T8E + T8F;
533
       TcU = T8E - T8F;
534
       T8X = T2H - T2N;
535
       T92 = T8Z - T91;
536
       T93 = T8X - T92;
537
       TcX = T8X + T92;
538
        }
539
         }
540
         {
541
        E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6;
542
        {
543
       E T3y, T3B, T3z, T9b, T3x, T3A;
544
       T3y = ri[WS(rs, 1)];
545
       T3B = ii[WS(rs, 1)];
546
       T3x = W[0];
547
       T3z = T3x * T3y;
548
       T9b = T3x * T3B;
549
       T3A = W[1];
550
       T3C = FMA(T3A, T3B, T3z);
551
       T9c = FNMS(T3A, T3y, T9b);
552
        }
553
        {
554
       E T3R, T3U, T3S, Ta7, T3Q, T3T;
555
       T3R = ri[WS(rs, 49)];
556
       T3U = ii[WS(rs, 49)];
557
       T3Q = W[96];
558
       T3S = T3Q * T3R;
559
       Ta7 = T3Q * T3U;
560
       T3T = W[97];
561
       T3V = FMA(T3T, T3U, T3S);
562
       Ta8 = FNMS(T3T, T3R, Ta7);
563
        }
564
        {
565
       E T3E, T3H, T3F, T9d, T3D, T3G;
566
       T3E = ri[WS(rs, 33)];
567
       T3H = ii[WS(rs, 33)];
568
       T3D = W[64];
569
       T3F = T3D * T3E;
570
       T9d = T3D * T3H;
571
       T3G = W[65];
572
       T3I = FMA(T3G, T3H, T3F);
573
       T9e = FNMS(T3G, T3E, T9d);
574
        }
575
        {
576
       E T3L, T3O, T3M, Ta5, T3K, T3N;
577
       T3L = ri[WS(rs, 17)];
578
       T3O = ii[WS(rs, 17)];
579
       T3K = W[32];
580
       T3M = T3K * T3L;
581
       Ta5 = T3K * T3O;
582
       T3N = W[33];
583
       T3P = FMA(T3N, T3O, T3M);
584
       Ta6 = FNMS(T3N, T3L, Ta5);
585
        }
586
        {
587
       E T3J, T3W, Tfr, Tfs;
588
       T3J = T3C + T3I;
589
       T3W = T3P + T3V;
590
       T3X = T3J + T3W;
591
       TfI = T3J - T3W;
592
       Tfr = T9c + T9e;
593
       Tfs = Ta6 + Ta8;
594
       Tft = Tfr - Tfs;
595
       ThH = Tfr + Tfs;
596
        }
597
        {
598
       E T9f, T9g, Ta4, Ta9;
599
       T9f = T9c - T9e;
600
       T9g = T3P - T3V;
601
       T9h = T9f + T9g;
602
       Td3 = T9f - T9g;
603
       Ta4 = T3C - T3I;
604
       Ta9 = Ta6 - Ta8;
605
       Taa = Ta4 - Ta9;
606
       Tde = Ta4 + Ta9;
607
        }
608
         }
609
         {
610
        E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h;
611
        {
612
       E T2b, T2e, T2c, T89, T2a, T2d;
613
       T2b = ri[WS(rs, 10)];
614
       T2e = ii[WS(rs, 10)];
615
       T2a = W[18];
616
       T2c = T2a * T2b;
617
       T89 = T2a * T2e;
618
       T2d = W[19];
619
       T2f = FMA(T2d, T2e, T2c);
620
       T8a = FNMS(T2d, T2b, T89);
621
        }
622
        {
623
       E T2u, T2x, T2v, T8i, T2t, T2w;
624
       T2u = ri[WS(rs, 26)];
625
       T2x = ii[WS(rs, 26)];
626
       T2t = W[50];
627
       T2v = T2t * T2u;
628
       T8i = T2t * T2x;
629
       T2w = W[51];
630
       T2y = FMA(T2w, T2x, T2v);
631
       T8j = FNMS(T2w, T2u, T8i);
632
        }
633
        {
634
       E T2h, T2k, T2i, T8b, T2g, T2j;
635
       T2h = ri[WS(rs, 42)];
636
       T2k = ii[WS(rs, 42)];
637
       T2g = W[82];
638
       T2i = T2g * T2h;
639
       T8b = T2g * T2k;
640
       T2j = W[83];
641
       T2l = FMA(T2j, T2k, T2i);
642
       T8c = FNMS(T2j, T2h, T8b);
643
        }
644
        {
645
       E T2o, T2r, T2p, T8g, T2n, T2q;
646
       T2o = ri[WS(rs, 58)];
647
       T2r = ii[WS(rs, 58)];
648
       T2n = W[114];
649
       T2p = T2n * T2o;
650
       T8g = T2n * T2r;
651
       T2q = W[115];
652
       T2s = FMA(T2q, T2r, T2p);
653
       T8h = FNMS(T2q, T2o, T8g);
654
        }
655
        {
656
       E T2m, T2z, Tf9, Tfa;
657
       T2m = T2f + T2l;
658
       T2z = T2s + T2y;
659
       T2A = T2m + T2z;
660
       Tf6 = T2z - T2m;
661
       Tf9 = T8a + T8c;
662
       Tfa = T8h + T8j;
663
       Tfb = Tf9 - Tfa;
664
       Thw = Tf9 + Tfa;
665
       {
666
            E T8e, T8w, T8l, T8v;
667
            {
668
           E T88, T8d, T8f, T8k;
669
           T88 = T2f - T2l;
670
           T8d = T8a - T8c;
671
           T8e = T88 + T8d;
672
           T8w = T8d - T88;
673
           T8f = T2s - T2y;
674
           T8k = T8h - T8j;
675
           T8l = T8f - T8k;
676
           T8v = T8f + T8k;
677
            }
678
            T8m = T8e - T8l;
679
            TcR = T8e + T8l;
680
            T8x = T8v - T8w;
681
            TcO = T8w + T8v;
682
       }
683
        }
684
         }
685
         {
686
        E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q;
687
        {
688
       E T34, T37, T35, T8I, T33, T36;
689
       T34 = ri[WS(rs, 6)];
690
       T37 = ii[WS(rs, 6)];
691
       T33 = W[10];
692
       T35 = T33 * T34;
693
       T8I = T33 * T37;
694
       T36 = W[11];
695
       T38 = FMA(T36, T37, T35);
696
       T8J = FNMS(T36, T34, T8I);
697
        }
698
        {
699
       E T3n, T3q, T3o, T8R, T3m, T3p;
700
       T3n = ri[WS(rs, 22)];
701
       T3q = ii[WS(rs, 22)];
702
       T3m = W[42];
703
       T3o = T3m * T3n;
704
       T8R = T3m * T3q;
705
       T3p = W[43];
706
       T3r = FMA(T3p, T3q, T3o);
707
       T8S = FNMS(T3p, T3n, T8R);
708
        }
709
        {
710
       E T3a, T3d, T3b, T8K, T39, T3c;
711
       T3a = ri[WS(rs, 38)];
712
       T3d = ii[WS(rs, 38)];
713
       T39 = W[74];
714
       T3b = T39 * T3a;
715
       T8K = T39 * T3d;
716
       T3c = W[75];
717
       T3e = FMA(T3c, T3d, T3b);
718
       T8L = FNMS(T3c, T3a, T8K);
719
        }
720
        {
721
       E T3h, T3k, T3i, T8P, T3g, T3j;
722
       T3h = ri[WS(rs, 54)];
723
       T3k = ii[WS(rs, 54)];
724
       T3g = W[106];
725
       T3i = T3g * T3h;
726
       T8P = T3g * T3k;
727
       T3j = W[107];
728
       T3l = FMA(T3j, T3k, T3i);
729
       T8Q = FNMS(T3j, T3h, T8P);
730
        }
731
        {
732
       E T3f, T3s, Tfk, Tfl;
733
       T3f = T38 + T3e;
734
       T3s = T3l + T3r;
735
       T3t = T3f + T3s;
736
       Tfh = T3s - T3f;
737
       Tfk = T8J + T8L;
738
       Tfl = T8Q + T8S;
739
       Tfm = Tfk - Tfl;
740
       ThC = Tfk + Tfl;
741
       {
742
            E T8N, T95, T8U, T94;
743
            {
744
           E T8H, T8M, T8O, T8T;
745
           T8H = T38 - T3e;
746
           T8M = T8J - T8L;
747
           T8N = T8H + T8M;
748
           T95 = T8M - T8H;
749
           T8O = T3l - T3r;
750
           T8T = T8Q - T8S;
751
           T8U = T8O - T8T;
752
           T94 = T8O + T8T;
753
            }
754
            T8V = T8N - T8U;
755
            TcY = T8N + T8U;
756
            T96 = T94 - T95;
757
            TcV = T95 + T94;
758
       }
759
        }
760
         }
761
         {
762
        E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r;
763
        {
764
       E T3Z, T42, T40, T9j, T3Y, T41;
765
       T3Z = ri[WS(rs, 9)];
766
       T42 = ii[WS(rs, 9)];
767
       T3Y = W[16];
768
       T40 = T3Y * T3Z;
769
       T9j = T3Y * T42;
770
       T41 = W[17];
771
       T43 = FMA(T41, T42, T40);
772
       T9k = FNMS(T41, T3Z, T9j);
773
        }
774
        {
775
       E T4i, T4l, T4j, T9s, T4h, T4k;
776
       T4i = ri[WS(rs, 25)];
777
       T4l = ii[WS(rs, 25)];
778
       T4h = W[48];
779
       T4j = T4h * T4i;
780
       T9s = T4h * T4l;
781
       T4k = W[49];
782
       T4m = FMA(T4k, T4l, T4j);
783
       T9t = FNMS(T4k, T4i, T9s);
784
        }
785
        {
786
       E T45, T48, T46, T9l, T44, T47;
787
       T45 = ri[WS(rs, 41)];
788
       T48 = ii[WS(rs, 41)];
789
       T44 = W[80];
790
       T46 = T44 * T45;
791
       T9l = T44 * T48;
792
       T47 = W[81];
793
       T49 = FMA(T47, T48, T46);
794
       T9m = FNMS(T47, T45, T9l);
795
        }
796
        {
797
       E T4c, T4f, T4d, T9q, T4b, T4e;
798
       T4c = ri[WS(rs, 57)];
799
       T4f = ii[WS(rs, 57)];
800
       T4b = W[112];
801
       T4d = T4b * T4c;
802
       T9q = T4b * T4f;
803
       T4e = W[113];
804
       T4g = FMA(T4e, T4f, T4d);
805
       T9r = FNMS(T4e, T4c, T9q);
806
        }
807
        {
808
       E T4a, T4n, TfJ, TfK;
809
       T4a = T43 + T49;
810
       T4n = T4g + T4m;
811
       T4o = T4a + T4n;
812
       Tfu = T4n - T4a;
813
       TfJ = T9k + T9m;
814
       TfK = T9r + T9t;
815
       TfL = TfJ - TfK;
816
       ThI = TfJ + TfK;
817
       {
818
            E T9o, Tac, T9v, Tab;
819
            {
820
           E T9i, T9n, T9p, T9u;
821
           T9i = T43 - T49;
822
           T9n = T9k - T9m;
823
           T9o = T9i + T9n;
824
           Tac = T9n - T9i;
825
           T9p = T4g - T4m;
826
           T9u = T9r - T9t;
827
           T9v = T9p - T9u;
828
           Tab = T9p + T9u;
829
            }
830
            T9w = T9o - T9v;
831
            Tdf = T9o + T9v;
832
            Tad = Tab - Tac;
833
            Td4 = Tac + Tab;
834
       }
835
        }
836
         }
837
         {
838
        E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA;
839
        {
840
       E T5M, T5P, T5N, Tas, T5L, T5O;
841
       T5M = ri[WS(rs, 7)];
842
       T5P = ii[WS(rs, 7)];
843
       T5L = W[12];
844
       T5N = T5L * T5M;
845
       Tas = T5L * T5P;
846
       T5O = W[13];
847
       T5Q = FMA(T5O, T5P, T5N);
848
       Tat = FNMS(T5O, T5M, Tas);
849
        }
850
        {
851
       E T65, T68, T66, TaB, T64, T67;
852
       T65 = ri[WS(rs, 23)];
853
       T68 = ii[WS(rs, 23)];
854
       T64 = W[44];
855
       T66 = T64 * T65;
856
       TaB = T64 * T68;
857
       T67 = W[45];
858
       T69 = FMA(T67, T68, T66);
859
       TaC = FNMS(T67, T65, TaB);
860
        }
861
        {
862
       E T5S, T5V, T5T, Tau, T5R, T5U;
863
       T5S = ri[WS(rs, 39)];
864
       T5V = ii[WS(rs, 39)];
865
       T5R = W[76];
866
       T5T = T5R * T5S;
867
       Tau = T5R * T5V;
868
       T5U = W[77];
869
       T5W = FMA(T5U, T5V, T5T);
870
       Tav = FNMS(T5U, T5S, Tau);
871
        }
872
        {
873
       E T5Z, T62, T60, Taz, T5Y, T61;
874
       T5Z = ri[WS(rs, 55)];
875
       T62 = ii[WS(rs, 55)];
876
       T5Y = W[108];
877
       T60 = T5Y * T5Z;
878
       Taz = T5Y * T62;
879
       T61 = W[109];
880
       T63 = FMA(T61, T62, T60);
881
       TaA = FNMS(T61, T5Z, Taz);
882
        }
883
        {
884
       E T5X, T6a, Tga, Tgb;
885
       T5X = T5Q + T5W;
886
       T6a = T63 + T69;
887
       T6b = T5X + T6a;
888
       TfV = T6a - T5X;
889
       Tga = Tat + Tav;
890
       Tgb = TaA + TaC;
891
       Tgc = Tga - Tgb;
892
       ThT = Tga + Tgb;
893
       {
894
            E Tax, Tbl, TaE, Tbk;
895
            {
896
           E Tar, Taw, Tay, TaD;
897
           Tar = T5Q - T5W;
898
           Taw = Tat - Tav;
899
           Tax = Tar + Taw;
900
           Tbl = Taw - Tar;
901
           Tay = T63 - T69;
902
           TaD = TaA - TaC;
903
           TaE = Tay - TaD;
904
           Tbk = Tay + TaD;
905
            }
906
            TaF = Tax - TaE;
907
            Tdy = Tax + TaE;
908
            Tbm = Tbk - Tbl;
909
            Tdn = Tbl + Tbk;
910
       }
911
        }
912
         }
913
         {
914
        E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P;
915
        {
916
       E T4r, T4u, T4s, T9U, T4q, T4t;
917
       T4r = ri[WS(rs, 5)];
918
       T4u = ii[WS(rs, 5)];
919
       T4q = W[8];
920
       T4s = T4q * T4r;
921
       T9U = T4q * T4u;
922
       T4t = W[9];
923
       T4v = FMA(T4t, T4u, T4s);
924
       T9V = FNMS(T4t, T4r, T9U);
925
        }
926
        {
927
       E T4K, T4N, T4L, T9Q, T4J, T4M;
928
       T4K = ri[WS(rs, 53)];
929
       T4N = ii[WS(rs, 53)];
930
       T4J = W[104];
931
       T4L = T4J * T4K;
932
       T9Q = T4J * T4N;
933
       T4M = W[105];
934
       T4O = FMA(T4M, T4N, T4L);
935
       T9R = FNMS(T4M, T4K, T9Q);
936
        }
937
        {
938
       E T4x, T4A, T4y, T9W, T4w, T4z;
939
       T4x = ri[WS(rs, 37)];
940
       T4A = ii[WS(rs, 37)];
941
       T4w = W[72];
942
       T4y = T4w * T4x;
943
       T9W = T4w * T4A;
944
       T4z = W[73];
945
       T4B = FMA(T4z, T4A, T4y);
946
       T9X = FNMS(T4z, T4x, T9W);
947
        }
948
        {
949
       E T4E, T4H, T4F, T9O, T4D, T4G;
950
       T4E = ri[WS(rs, 21)];
951
       T4H = ii[WS(rs, 21)];
952
       T4D = W[40];
953
       T4F = T4D * T4E;
954
       T9O = T4D * T4H;
955
       T4G = W[41];
956
       T4I = FMA(T4G, T4H, T4F);
957
       T9P = FNMS(T4G, T4E, T9O);
958
        }
959
        {
960
       E T4C, T4P, Tfz, Tfw, Tfx, Tfy;
961
       T4C = T4v + T4B;
962
       T4P = T4I + T4O;
963
       Tfz = T4C - T4P;
964
       Tfw = T9V + T9X;
965
       Tfx = T9P + T9R;
966
       Tfy = Tfw - Tfx;
967
       T4Q = T4C + T4P;
968
       ThN = Tfw + Tfx;
969
       TfA = Tfy - Tfz;
970
       TfN = Tfz + Tfy;
971
        }
972
        {
973
       E T9T, Td7, Ta0, Td6;
974
       {
975
            E T9N, T9S, T9Y, T9Z;
976
            T9N = T4v - T4B;
977
            T9S = T9P - T9R;
978
            T9T = T9N - T9S;
979
            Td7 = T9N + T9S;
980
            T9Y = T9V - T9X;
981
            T9Z = T4I - T4O;
982
            Ta0 = T9Y + T9Z;
983
            Td6 = T9Y - T9Z;
984
       }
985
       Ta1 = FNMS(KP414213562, Ta0, T9T);
986
       Tdh = FMA(KP414213562, Td6, Td7);
987
       Taf = FMA(KP414213562, T9T, Ta0);
988
       Td8 = FNMS(KP414213562, Td7, Td6);
989
        }
990
         }
991
         {
992
        E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A;
993
        {
994
       E T4S, T4V, T4T, T9F, T4R, T4U;
995
       T4S = ri[WS(rs, 61)];
996
       T4V = ii[WS(rs, 61)];
997
       T4R = W[120];
998
       T4T = T4R * T4S;
999
       T9F = T4R * T4V;
1000
       T4U = W[121];
1001
       T4W = FMA(T4U, T4V, T4T);
1002
       T9G = FNMS(T4U, T4S, T9F);
1003
        }
1004
        {
1005
       E T5b, T5e, T5c, T9B, T5a, T5d;
1006
       T5b = ri[WS(rs, 45)];
1007
       T5e = ii[WS(rs, 45)];
1008
       T5a = W[88];
1009
       T5c = T5a * T5b;
1010
       T9B = T5a * T5e;
1011
       T5d = W[89];
1012
       T5f = FMA(T5d, T5e, T5c);
1013
       T9C = FNMS(T5d, T5b, T9B);
1014
        }
1015
        {
1016
       E T4Y, T51, T4Z, T9H, T4X, T50;
1017
       T4Y = ri[WS(rs, 29)];
1018
       T51 = ii[WS(rs, 29)];
1019
       T4X = W[56];
1020
       T4Z = T4X * T4Y;
1021
       T9H = T4X * T51;
1022
       T50 = W[57];
1023
       T52 = FMA(T50, T51, T4Z);
1024
       T9I = FNMS(T50, T4Y, T9H);
1025
        }
1026
        {
1027
       E T55, T58, T56, T9z, T54, T57;
1028
       T55 = ri[WS(rs, 13)];
1029
       T58 = ii[WS(rs, 13)];
1030
       T54 = W[24];
1031
       T56 = T54 * T55;
1032
       T9z = T54 * T58;
1033
       T57 = W[25];
1034
       T59 = FMA(T57, T58, T56);
1035
       T9A = FNMS(T57, T55, T9z);
1036
        }
1037
        {
1038
       E T53, T5g, TfB, TfC, TfD, TfE;
1039
       T53 = T4W + T52;
1040
       T5g = T59 + T5f;
1041
       TfB = T53 - T5g;
1042
       TfC = T9G + T9I;
1043
       TfD = T9A + T9C;
1044
       TfE = TfC - TfD;
1045
       T5h = T53 + T5g;
1046
       ThO = TfC + TfD;
1047
       TfF = TfB + TfE;
1048
       TfO = TfB - TfE;
1049
        }
1050
        {
1051
       E T9E, Tda, T9L, Td9;
1052
       {
1053
            E T9y, T9D, T9J, T9K;
1054
            T9y = T4W - T52;
1055
            T9D = T9A - T9C;
1056
            T9E = T9y - T9D;
1057
            Tda = T9y + T9D;
1058
            T9J = T9G - T9I;
1059
            T9K = T59 - T5f;
1060
            T9L = T9J + T9K;
1061
            Td9 = T9J - T9K;
1062
       }
1063
       T9M = FMA(KP414213562, T9L, T9E);
1064
       Tdi = FNMS(KP414213562, Td9, Tda);
1065
       Tag = FNMS(KP414213562, T9E, T9L);
1066
       Tdb = FMA(KP414213562, Tda, Td9);
1067
        }
1068
         }
1069
         {
1070
        E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY;
1071
        {
1072
       E T6e, T6h, T6f, Tb3, T6d, T6g;
1073
       T6e = ri[WS(rs, 3)];
1074
       T6h = ii[WS(rs, 3)];
1075
       T6d = W[4];
1076
       T6f = T6d * T6e;
1077
       Tb3 = T6d * T6h;
1078
       T6g = W[5];
1079
       T6i = FMA(T6g, T6h, T6f);
1080
       Tb4 = FNMS(T6g, T6e, Tb3);
1081
        }
1082
        {
1083
       E T6x, T6A, T6y, TaZ, T6w, T6z;
1084
       T6x = ri[WS(rs, 51)];
1085
       T6A = ii[WS(rs, 51)];
1086
       T6w = W[100];
1087
       T6y = T6w * T6x;
1088
       TaZ = T6w * T6A;
1089
       T6z = W[101];
1090
       T6B = FMA(T6z, T6A, T6y);
1091
       Tb0 = FNMS(T6z, T6x, TaZ);
1092
        }
1093
        {
1094
       E T6k, T6n, T6l, Tb5, T6j, T6m;
1095
       T6k = ri[WS(rs, 35)];
1096
       T6n = ii[WS(rs, 35)];
1097
       T6j = W[68];
1098
       T6l = T6j * T6k;
1099
       Tb5 = T6j * T6n;
1100
       T6m = W[69];
1101
       T6o = FMA(T6m, T6n, T6l);
1102
       Tb6 = FNMS(T6m, T6k, Tb5);
1103
        }
1104
        {
1105
       E T6r, T6u, T6s, TaX, T6q, T6t;
1106
       T6r = ri[WS(rs, 19)];
1107
       T6u = ii[WS(rs, 19)];
1108
       T6q = W[36];
1109
       T6s = T6q * T6r;
1110
       TaX = T6q * T6u;
1111
       T6t = W[37];
1112
       T6v = FMA(T6t, T6u, T6s);
1113
       TaY = FNMS(T6t, T6r, TaX);
1114
        }
1115
        {
1116
       E T6p, T6C, Tg0, TfX, TfY, TfZ;
1117
       T6p = T6i + T6o;
1118
       T6C = T6v + T6B;
1119
       Tg0 = T6p - T6C;
1120
       TfX = Tb4 + Tb6;
1121
       TfY = TaY + Tb0;
1122
       TfZ = TfX - TfY;
1123
       T6D = T6p + T6C;
1124
       ThY = TfX + TfY;
1125
       Tg1 = TfZ - Tg0;
1126
       Tge = Tg0 + TfZ;
1127
        }
1128
        {
1129
       E Tb2, Tdq, Tb9, Tdp;
1130
       {
1131
            E TaW, Tb1, Tb7, Tb8;
1132
            TaW = T6i - T6o;
1133
            Tb1 = TaY - Tb0;
1134
            Tb2 = TaW - Tb1;
1135
            Tdq = TaW + Tb1;
1136
            Tb7 = Tb4 - Tb6;
1137
            Tb8 = T6v - T6B;
1138
            Tb9 = Tb7 + Tb8;
1139
            Tdp = Tb7 - Tb8;
1140
       }
1141
       Tba = FNMS(KP414213562, Tb9, Tb2);
1142
       TdA = FMA(KP414213562, Tdp, Tdq);
1143
       Tbo = FMA(KP414213562, Tb2, Tb9);
1144
       Tdr = FNMS(KP414213562, Tdq, Tdp);
1145
        }
1146
         }
1147
         {
1148
        E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ;
1149
        {
1150
       E T6F, T6I, T6G, TaO, T6E, T6H;
1151
       T6F = ri[WS(rs, 59)];
1152
       T6I = ii[WS(rs, 59)];
1153
       T6E = W[116];
1154
       T6G = T6E * T6F;
1155
       TaO = T6E * T6I;
1156
       T6H = W[117];
1157
       T6J = FMA(T6H, T6I, T6G);
1158
       TaP = FNMS(T6H, T6F, TaO);
1159
        }
1160
        {
1161
       E T6Y, T71, T6Z, TaK, T6X, T70;
1162
       T6Y = ri[WS(rs, 43)];
1163
       T71 = ii[WS(rs, 43)];
1164
       T6X = W[84];
1165
       T6Z = T6X * T6Y;
1166
       TaK = T6X * T71;
1167
       T70 = W[85];
1168
       T72 = FMA(T70, T71, T6Z);
1169
       TaL = FNMS(T70, T6Y, TaK);
1170
        }
1171
        {
1172
       E T6L, T6O, T6M, TaQ, T6K, T6N;
1173
       T6L = ri[WS(rs, 27)];
1174
       T6O = ii[WS(rs, 27)];
1175
       T6K = W[52];
1176
       T6M = T6K * T6L;
1177
       TaQ = T6K * T6O;
1178
       T6N = W[53];
1179
       T6P = FMA(T6N, T6O, T6M);
1180
       TaR = FNMS(T6N, T6L, TaQ);
1181
        }
1182
        {
1183
       E T6S, T6V, T6T, TaI, T6R, T6U;
1184
       T6S = ri[WS(rs, 11)];
1185
       T6V = ii[WS(rs, 11)];
1186
       T6R = W[20];
1187
       T6T = T6R * T6S;
1188
       TaI = T6R * T6V;
1189
       T6U = W[21];
1190
       T6W = FMA(T6U, T6V, T6T);
1191
       TaJ = FNMS(T6U, T6S, TaI);
1192
        }
1193
        {
1194
       E T6Q, T73, Tg2, Tg3, Tg4, Tg5;
1195
       T6Q = T6J + T6P;
1196
       T73 = T6W + T72;
1197
       Tg2 = T6Q - T73;
1198
       Tg3 = TaP + TaR;
1199
       Tg4 = TaJ + TaL;
1200
       Tg5 = Tg3 - Tg4;
1201
       T74 = T6Q + T73;
1202
       ThZ = Tg3 + Tg4;
1203
       Tg6 = Tg2 + Tg5;
1204
       Tgf = Tg2 - Tg5;
1205
        }
1206
        {
1207
       E TaN, Tdt, TaU, Tds;
1208
       {
1209
            E TaH, TaM, TaS, TaT;
1210
            TaH = T6J - T6P;
1211
            TaM = TaJ - TaL;
1212
            TaN = TaH - TaM;
1213
            Tdt = TaH + TaM;
1214
            TaS = TaP - TaR;
1215
            TaT = T6W - T72;
1216
            TaU = TaS + TaT;
1217
            Tds = TaS - TaT;
1218
       }
1219
       TaV = FMA(KP414213562, TaU, TaN);
1220
       TdB = FNMS(KP414213562, Tds, Tdt);
1221
       Tbp = FNMS(KP414213562, TaN, TaU);
1222
       Tdu = FMA(KP414213562, Tdt, Tds);
1223
        }
1224
         }
1225
         {
1226
        E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix;
1227
        E TiF;
1228
        {
1229
       E TO, T1H, Tip, Tiq;
1230
       TO = Tm + TN;
1231
       T1H = T1f + T1G;
1232
       T1I = TO + T1H;
1233
       Tio = TO - T1H;
1234
       {
1235
            E T2B, T3u, TiO, TiW;
1236
            T2B = T29 + T2A;
1237
            T3u = T32 + T3t;
1238
            T3v = T2B + T3u;
1239
            Tj1 = T3u - T2B;
1240
            TiO = Thr + Ths;
1241
            TiW = TiP + TiV;
1242
            TiX = TiO + TiW;
1243
            Tj2 = TiW - TiO;
1244
       }
1245
       Tip = Thv + Thw;
1246
       Tiq = ThB + ThC;
1247
       Tir = Tip - Tiq;
1248
       TiN = Tip + Tiq;
1249
       {
1250
            E T6c, T75, Tiy, Tiz, TiA, TiB;
1251
            T6c = T5K + T6b;
1252
            T75 = T6D + T74;
1253
            Tiy = T6c - T75;
1254
            Tiz = ThS + ThT;
1255
            TiA = ThY + ThZ;
1256
            TiB = Tiz - TiA;
1257
            T76 = T6c + T75;
1258
            TiK = Tiz + TiA;
1259
            TiC = Tiy - TiB;
1260
            TiG = Tiy + TiB;
1261
       }
1262
       {
1263
            E T4p, T5i, Tit, Tiu, Tiv, Tiw;
1264
            T4p = T3X + T4o;
1265
            T5i = T4Q + T5h;
1266
            Tit = T4p - T5i;
1267
            Tiu = ThH + ThI;
1268
            Tiv = ThN + ThO;
1269
            Tiw = Tiu - Tiv;
1270
            T5j = T4p + T5i;
1271
            TiJ = Tiu + Tiv;
1272
            Tix = Tit + Tiw;
1273
            TiF = Tiw - Tit;
1274
       }
1275
        }
1276
        {
1277
       E T3w, T77, TiM, TiY;
1278
       T3w = T1I + T3v;
1279
       T77 = T5j + T76;
1280
       ri[WS(rs, 32)] = T3w - T77;
1281
       ri[0] = T3w + T77;
1282
       TiM = TiJ + TiK;
1283
       TiY = TiN + TiX;
1284
       ii[0] = TiM + TiY;
1285
       ii[WS(rs, 32)] = TiY - TiM;
1286
        }
1287
        {
1288
       E Tis, TiD, Tj3, Tj4;
1289
       Tis = Tio + Tir;
1290
       TiD = Tix + TiC;
1291
       ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);
1292
       ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
1293
       Tj3 = Tj1 + Tj2;
1294
       Tj4 = TiF + TiG;
1295
       ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);
1296
       ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);
1297
        }
1298
        {
1299
       E TiE, TiH, Tj5, Tj6;
1300
       TiE = Tio - Tir;
1301
       TiH = TiF - TiG;
1302
       ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);
1303
       ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);
1304
       Tj5 = Tj2 - Tj1;
1305
       Tj6 = TiC - Tix;
1306
       ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);
1307
       ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);
1308
        }
1309
        {
1310
       E TiI, TiL, TiZ, Tj0;
1311
       TiI = T1I - T3v;
1312
       TiL = TiJ - TiK;
1313
       ri[WS(rs, 48)] = TiI - TiL;
1314
       ri[WS(rs, 16)] = TiI + TiL;
1315
       TiZ = T76 - T5j;
1316
       Tj0 = TiX - TiN;
1317
       ii[WS(rs, 16)] = TiZ + Tj0;
1318
       ii[WS(rs, 48)] = Tj0 - TiZ;
1319
        }
1320
         }
1321
         {
1322
        E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6;
1323
        E Tii;
1324
        {
1325
       E Thq, Tht, Tj7, Tj8;
1326
       Thq = Tm - TN;
1327
       Tht = Thr - Ths;
1328
       Thu = Thq - Tht;
1329
       Ti8 = Thq + Tht;
1330
       Tj7 = T1G - T1f;
1331
       Tj8 = TiV - TiP;
1332
       Tj9 = Tj7 + Tj8;
1333
       Tjf = Tj8 - Tj7;
1334
        }
1335
        {
1336
       E Thz, Ti9, ThE, Tia;
1337
       {
1338
            E Thx, Thy, ThA, ThD;
1339
            Thx = Thv - Thw;
1340
            Thy = T29 - T2A;
1341
            Thz = Thx - Thy;
1342
            Ti9 = Thy + Thx;
1343
            ThA = T32 - T3t;
1344
            ThD = ThB - ThC;
1345
            ThE = ThA + ThD;
1346
            Tia = ThA - ThD;
1347
       }
1348
       ThF = Thz - ThE;
1349
       Tjg = Tia - Ti9;
1350
       Tib = Ti9 + Tia;
1351
       Tja = Thz + ThE;
1352
        }
1353
        {
1354
       E ThL, Tie, ThQ, Tid;
1355
       {
1356
            E ThJ, ThK, ThM, ThP;
1357
            ThJ = ThH - ThI;
1358
            ThK = T5h - T4Q;
1359
            ThL = ThJ - ThK;
1360
            Tie = ThJ + ThK;
1361
            ThM = T3X - T4o;
1362
            ThP = ThN - ThO;
1363
            ThQ = ThM - ThP;
1364
            Tid = ThM + ThP;
1365
       }
1366
       ThR = FMA(KP414213562, ThQ, ThL);
1367
       Til = FNMS(KP414213562, Tid, Tie);
1368
       Ti5 = FNMS(KP414213562, ThL, ThQ);
1369
       Tif = FMA(KP414213562, Tie, Tid);
1370
        }
1371
        {
1372
       E ThW, Tih, Ti1, Tig;
1373
       {
1374
            E ThU, ThV, ThX, Ti0;
1375
            ThU = ThS - ThT;
1376
            ThV = T74 - T6D;
1377
            ThW = ThU - ThV;
1378
            Tih = ThU + ThV;
1379
            ThX = T5K - T6b;
1380
            Ti0 = ThY - ThZ;
1381
            Ti1 = ThX - Ti0;
1382
            Tig = ThX + Ti0;
1383
       }
1384
       Ti2 = FNMS(KP414213562, Ti1, ThW);
1385
       Tim = FMA(KP414213562, Tig, Tih);
1386
       Ti6 = FMA(KP414213562, ThW, Ti1);
1387
       Tii = FNMS(KP414213562, Tih, Tig);
1388
        }
1389
        {
1390
       E ThG, Ti3, Tjh, Tji;
1391
       ThG = FMA(KP707106781, ThF, Thu);
1392
       Ti3 = ThR - Ti2;
1393
       ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);
1394
       ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);
1395
       Tjh = FMA(KP707106781, Tjg, Tjf);
1396
       Tji = Ti6 - Ti5;
1397
       ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);
1398
       ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);
1399
        }
1400
        {
1401
       E Ti4, Ti7, Tjj, Tjk;
1402
       Ti4 = FNMS(KP707106781, ThF, Thu);
1403
       Ti7 = Ti5 + Ti6;
1404
       ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);
1405
       ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);
1406
       Tjj = FNMS(KP707106781, Tjg, Tjf);
1407
       Tjk = ThR + Ti2;
1408
       ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);
1409
       ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);
1410
        }
1411
        {
1412
       E Tic, Tij, Tjb, Tjc;
1413
       Tic = FMA(KP707106781, Tib, Ti8);
1414
       Tij = Tif + Tii;
1415
       ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);
1416
       ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);
1417
       Tjb = FMA(KP707106781, Tja, Tj9);
1418
       Tjc = Til + Tim;
1419
       ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);
1420
       ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);
1421
        }
1422
        {
1423
       E Tik, Tin, Tjd, Tje;
1424
       Tik = FNMS(KP707106781, Tib, Ti8);
1425
       Tin = Til - Tim;
1426
       ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik);
1427
       ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik);
1428
       Tjd = FNMS(KP707106781, Tja, Tj9);
1429
       Tje = Tii - Tif;
1430
       ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd);
1431
       ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd);
1432
        }
1433
         }
1434
         {
1435
        E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8;
1436
        E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC;
1437
        E Tgm, Tgy;
1438
        {
1439
       E TeQ, TjB, Tf1, TjC, TeV, Tf0;
1440
       TeQ = TeM + TeP;
1441
       TjB = Tjm - Tjl;
1442
       TeV = TeR + TeU;
1443
       Tf0 = TeW - TeZ;
1444
       Tf1 = TeV + Tf0;
1445
       TjC = Tf0 - TeV;
1446
       Tf2 = FNMS(KP707106781, Tf1, TeQ);
1447
       TjJ = FNMS(KP707106781, TjC, TjB);
1448
       Tgo = FMA(KP707106781, Tf1, TeQ);
1449
       TjD = FMA(KP707106781, TjC, TjB);
1450
        }
1451
        {
1452
       E TgE, Tjn, TgH, Tjo, TgF, TgG;
1453
       TgE = TeM - TeP;
1454
       Tjn = Tjl + Tjm;
1455
       TgF = TeU - TeR;
1456
       TgG = TeW + TeZ;
1457
       TgH = TgF - TgG;
1458
       Tjo = TgF + TgG;
1459
       TgI = FMA(KP707106781, TgH, TgE);
1460
       Tjv = FNMS(KP707106781, Tjo, Tjn);
1461
       Tha = FNMS(KP707106781, TgH, TgE);
1462
       Tjp = FMA(KP707106781, Tjo, Tjn);
1463
        }
1464
        {
1465
       E Tfd, Tgp, Tfo, Tgq;
1466
       {
1467
            E Tf7, Tfc, Tfi, Tfn;
1468
            Tf7 = Tf5 + Tf6;
1469
            Tfc = Tf8 + Tfb;
1470
            Tfd = FNMS(KP414213562, Tfc, Tf7);
1471
            Tgp = FMA(KP414213562, Tf7, Tfc);
1472
            Tfi = Tfg + Tfh;
1473
            Tfn = Tfj + Tfm;
1474
            Tfo = FMA(KP414213562, Tfn, Tfi);
1475
            Tgq = FNMS(KP414213562, Tfi, Tfn);
1476
       }
1477
       Tfp = Tfd - Tfo;
1478
       Tjw = Tgq - Tgp;
1479
       Tgr = Tgp + Tgq;
1480
       Tjq = Tfd + Tfo;
1481
        }
1482
        {
1483
       E Th0, Thj, Th3, Thi;
1484
       {
1485
            E TgY, TgZ, Th1, Th2;
1486
            TgY = Tg9 - Tgc;
1487
            TgZ = Tg6 - Tg1;
1488
            Th0 = FNMS(KP707106781, TgZ, TgY);
1489
            Thj = FMA(KP707106781, TgZ, TgY);
1490
            Th1 = TfU - TfV;
1491
            Th2 = Tge - Tgf;
1492
            Th3 = FNMS(KP707106781, Th2, Th1);
1493
            Thi = FMA(KP707106781, Th2, Th1);
1494
       }
1495
       Th4 = FNMS(KP668178637, Th3, Th0);
1496
       Tho = FMA(KP198912367, Thi, Thj);
1497
       Th8 = FMA(KP668178637, Th0, Th3);
1498
       Thk = FNMS(KP198912367, Thj, Thi);
1499
        }
1500
        {
1501
       E TfH, Tgu, TfQ, Tgt;
1502
       {
1503
            E Tfv, TfG, TfM, TfP;
1504
            Tfv = Tft + Tfu;
1505
            TfG = TfA + TfF;
1506
            TfH = FNMS(KP707106781, TfG, Tfv);
1507
            Tgu = FMA(KP707106781, TfG, Tfv);
1508
            TfM = TfI + TfL;
1509
            TfP = TfN + TfO;
1510
            TfQ = FNMS(KP707106781, TfP, TfM);
1511
            Tgt = FMA(KP707106781, TfP, TfM);
1512
       }
1513
       TfR = FMA(KP668178637, TfQ, TfH);
1514
       TgB = FNMS(KP198912367, Tgt, Tgu);
1515
       Tgl = FNMS(KP668178637, TfH, TfQ);
1516
       Tgv = FMA(KP198912367, Tgu, Tgt);
1517
        }
1518
        {
1519
       E TgL, Thb, TgO, Thc;
1520
       {
1521
            E TgJ, TgK, TgM, TgN;
1522
            TgJ = Tf5 - Tf6;
1523
            TgK = Tf8 - Tfb;
1524
            TgL = FMA(KP414213562, TgK, TgJ);
1525
            Thb = FNMS(KP414213562, TgJ, TgK);
1526
            TgM = Tfg - Tfh;
1527
            TgN = Tfj - Tfm;
1528
            TgO = FNMS(KP414213562, TgN, TgM);
1529
            Thc = FMA(KP414213562, TgM, TgN);
1530
       }
1531
       TgP = TgL - TgO;
1532
       TjK = TgL + TgO;
1533
       Thd = Thb + Thc;
1534
       TjE = Thc - Thb;
1535
        }
1536
        {
1537
       E TgT, Thg, TgW, Thf;
1538
       {
1539
            E TgR, TgS, TgU, TgV;
1540
            TgR = TfI - TfL;
1541
            TgS = TfF - TfA;
1542
            TgT = FNMS(KP707106781, TgS, TgR);
1543
            Thg = FMA(KP707106781, TgS, TgR);
1544
            TgU = Tft - Tfu;
1545
            TgV = TfN - TfO;
1546
            TgW = FNMS(KP707106781, TgV, TgU);
1547
            Thf = FMA(KP707106781, TgV, TgU);
1548
       }
1549
       TgX = FMA(KP668178637, TgW, TgT);
1550
       Thn = FNMS(KP198912367, Thf, Thg);
1551
       Th7 = FNMS(KP668178637, TgT, TgW);
1552
       Thh = FMA(KP198912367, Thg, Thf);
1553
        }
1554
        {
1555
       E Tg8, Tgx, Tgh, Tgw;
1556
       {
1557
            E TfW, Tg7, Tgd, Tgg;
1558
            TfW = TfU + TfV;
1559
            Tg7 = Tg1 + Tg6;
1560
            Tg8 = FNMS(KP707106781, Tg7, TfW);
1561
            Tgx = FMA(KP707106781, Tg7, TfW);
1562
            Tgd = Tg9 + Tgc;
1563
            Tgg = Tge + Tgf;
1564
            Tgh = FNMS(KP707106781, Tgg, Tgd);
1565
            Tgw = FMA(KP707106781, Tgg, Tgd);
1566
       }
1567
       Tgi = FNMS(KP668178637, Tgh, Tg8);
1568
       TgC = FMA(KP198912367, Tgw, Tgx);
1569
       Tgm = FMA(KP668178637, Tg8, Tgh);
1570
       Tgy = FNMS(KP198912367, Tgx, Tgw);
1571
        }
1572
        {
1573
       E Tfq, Tgj, Tjx, Tjy;
1574
       Tfq = FMA(KP923879532, Tfp, Tf2);
1575
       Tgj = TfR - Tgi;
1576
       ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq);
1577
       ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq);
1578
       Tjx = FMA(KP923879532, Tjw, Tjv);
1579
       Tjy = Tgm - Tgl;
1580
       ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx);
1581
       ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx);
1582
        }
1583
        {
1584
       E Tgk, Tgn, Tjz, TjA;
1585
       Tgk = FNMS(KP923879532, Tfp, Tf2);
1586
       Tgn = Tgl + Tgm;
1587
       ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk);
1588
       ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk);
1589
       Tjz = FNMS(KP923879532, Tjw, Tjv);
1590
       TjA = TfR + Tgi;
1591
       ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz);
1592
       ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz);
1593
        }
1594
        {
1595
       E Tgs, Tgz, Tjr, Tjs;
1596
       Tgs = FMA(KP923879532, Tgr, Tgo);
1597
       Tgz = Tgv + Tgy;
1598
       ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs);
1599
       ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs);
1600
       Tjr = FMA(KP923879532, Tjq, Tjp);
1601
       Tjs = TgB + TgC;
1602
       ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr);
1603
       ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr);
1604
        }
1605
        {
1606
       E TgA, TgD, Tjt, Tju;
1607
       TgA = FNMS(KP923879532, Tgr, Tgo);
1608
       TgD = TgB - TgC;
1609
       ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA);
1610
       ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA);
1611
       Tjt = FNMS(KP923879532, Tjq, Tjp);
1612
       Tju = Tgy - Tgv;
1613
       ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt);
1614
       ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt);
1615
        }
1616
        {
1617
       E TgQ, Th5, TjF, TjG;
1618
       TgQ = FMA(KP923879532, TgP, TgI);
1619
       Th5 = TgX + Th4;
1620
       ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ);
1621
       ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ);
1622
       TjF = FMA(KP923879532, TjE, TjD);
1623
       TjG = Th7 + Th8;
1624
       ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF);
1625
       ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF);
1626
        }
1627
        {
1628
       E Th6, Th9, TjH, TjI;
1629
       Th6 = FNMS(KP923879532, TgP, TgI);
1630
       Th9 = Th7 - Th8;
1631
       ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6);
1632
       ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6);
1633
       TjH = FNMS(KP923879532, TjE, TjD);
1634
       TjI = Th4 - TgX;
1635
       ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH);
1636
       ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH);
1637
        }
1638
        {
1639
       E The, Thl, TjL, TjM;
1640
       The = FNMS(KP923879532, Thd, Tha);
1641
       Thl = Thh - Thk;
1642
       ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The);
1643
       ri[WS(rs, 14)] = FMA(KP980785280, Thl, The);
1644
       TjL = FNMS(KP923879532, TjK, TjJ);
1645
       TjM = Tho - Thn;
1646
       ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL);
1647
       ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL);
1648
        }
1649
        {
1650
       E Thm, Thp, TjN, TjO;
1651
       Thm = FMA(KP923879532, Thd, Tha);
1652
       Thp = Thn + Tho;
1653
       ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm);
1654
       ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm);
1655
       TjN = FMA(KP923879532, TjK, TjJ);
1656
       TjO = Thh + Thk;
1657
       ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN);
1658
       ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN);
1659
        }
1660
         }
1661
         {
1662
        E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch;
1663
        E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp;
1664
        E Tkv, Tck;
1665
        {
1666
       E T8z, Tbz, T98, TbA;
1667
       {
1668
            E T8n, T8y, T8W, T97;
1669
            T8n = FNMS(KP707106781, T8m, T87);
1670
            T8y = FNMS(KP707106781, T8x, T8u);
1671
            T8z = FNMS(KP668178637, T8y, T8n);
1672
            Tbz = FMA(KP668178637, T8n, T8y);
1673
            T8W = FNMS(KP707106781, T8V, T8G);
1674
            T97 = FNMS(KP707106781, T96, T93);
1675
            T98 = FMA(KP668178637, T97, T8W);
1676
            TbA = FNMS(KP668178637, T8W, T97);
1677
       }
1678
       T99 = T8z - T98;
1679
       Tkw = TbA - Tbz;
1680
       TbB = Tbz + TbA;
1681
       Tkq = T8z + T98;
1682
        }
1683
        {
1684
       E Ta3, TbE, Tai, TbD;
1685
       {
1686
            E T9x, Ta2, Tae, Tah;
1687
            T9x = FNMS(KP707106781, T9w, T9h);
1688
            Ta2 = T9M - Ta1;
1689
            Ta3 = FNMS(KP923879532, Ta2, T9x);
1690
            TbE = FMA(KP923879532, Ta2, T9x);
1691
            Tae = FNMS(KP707106781, Tad, Taa);
1692
            Tah = Taf - Tag;
1693
            Tai = FNMS(KP923879532, Tah, Tae);
1694
            TbD = FMA(KP923879532, Tah, Tae);
1695
       }
1696
       Taj = FMA(KP534511135, Tai, Ta3);
1697
       TbL = FNMS(KP303346683, TbD, TbE);
1698
       Tbv = FNMS(KP534511135, Ta3, Tai);
1699
       TbF = FMA(KP303346683, TbE, TbD);
1700
        }
1701
        {
1702
       E Tca, Tct, Tcd, Tcs;
1703
       {
1704
            E Tc8, Tc9, Tcb, Tcc;
1705
            Tc8 = FMA(KP707106781, Tbm, Tbj);
1706
            Tc9 = Tba + TaV;
1707
            Tca = FNMS(KP923879532, Tc9, Tc8);
1708
            Tct = FMA(KP923879532, Tc9, Tc8);
1709
            Tcb = FMA(KP707106781, TaF, Taq);
1710
            Tcc = Tbo + Tbp;
1711
            Tcd = FNMS(KP923879532, Tcc, Tcb);
1712
            Tcs = FMA(KP923879532, Tcc, Tcb);
1713
       }
1714
       Tce = FNMS(KP820678790, Tcd, Tca);
1715
       Tcy = FMA(KP098491403, Tcs, Tct);
1716
       Tci = FMA(KP820678790, Tca, Tcd);
1717
       Tcu = FNMS(KP098491403, Tct, Tcs);
1718
        }
1719
        {
1720
       E Tc3, Tcq, Tc6, Tcp;
1721
       {
1722
            E Tc1, Tc2, Tc4, Tc5;
1723
            Tc1 = FMA(KP707106781, Tad, Taa);
1724
            Tc2 = Ta1 + T9M;
1725
            Tc3 = FNMS(KP923879532, Tc2, Tc1);
1726
            Tcq = FMA(KP923879532, Tc2, Tc1);
1727
            Tc4 = FMA(KP707106781, T9w, T9h);
1728
            Tc5 = Taf + Tag;
1729
            Tc6 = FNMS(KP923879532, Tc5, Tc4);
1730
            Tcp = FMA(KP923879532, Tc5, Tc4);
1731
       }
1732
       Tc7 = FMA(KP820678790, Tc6, Tc3);
1733
       Tcx = FNMS(KP098491403, Tcp, Tcq);
1734
       Tch = FNMS(KP820678790, Tc3, Tc6);
1735
       Tcr = FMA(KP098491403, Tcq, Tcp);
1736
        }
1737
        {
1738
       E TbV, Tcl, TbY, Tcm;
1739
       {
1740
            E TbT, TbU, TbW, TbX;
1741
            TbT = FMA(KP707106781, T8m, T87);
1742
            TbU = FMA(KP707106781, T8x, T8u);
1743
            TbV = FMA(KP198912367, TbU, TbT);
1744
            Tcl = FNMS(KP198912367, TbT, TbU);
1745
            TbW = FMA(KP707106781, T8V, T8G);
1746
            TbX = FMA(KP707106781, T96, T93);
1747
            TbY = FNMS(KP198912367, TbX, TbW);
1748
            Tcm = FMA(KP198912367, TbW, TbX);
1749
       }
1750
       TbZ = TbV - TbY;
1751
       TkK = TbV + TbY;
1752
       Tcn = Tcl + Tcm;
1753
       TkE = Tcm - Tcl;
1754
        }
1755
        {
1756
       E Tbc, TbH, Tbr, TbG;
1757
       {
1758
            E TaG, Tbb, Tbn, Tbq;
1759
            TaG = FNMS(KP707106781, TaF, Taq);
1760
            Tbb = TaV - Tba;
1761
            Tbc = FNMS(KP923879532, Tbb, TaG);
1762
            TbH = FMA(KP923879532, Tbb, TaG);
1763
            Tbn = FNMS(KP707106781, Tbm, Tbj);
1764
            Tbq = Tbo - Tbp;
1765
            Tbr = FNMS(KP923879532, Tbq, Tbn);
1766
            TbG = FMA(KP923879532, Tbq, Tbn);
1767
       }
1768
       Tbs = FNMS(KP534511135, Tbr, Tbc);
1769
       TbM = FMA(KP303346683, TbG, TbH);
1770
       Tbw = FMA(KP534511135, Tbc, Tbr);
1771
       TbI = FNMS(KP303346683, TbH, TbG);
1772
        }
1773
        {
1774
       E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm;
1775
       T7t = T7l - T7s;
1776
       T7u = FMA(KP707106781, T7t, T7e);
1777
       TbO = FNMS(KP707106781, T7t, T7e);
1778
       Tkm = TcC - TcB;
1779
       Tkn = FMA(KP707106781, Tkm, Tkl);
1780
       TkB = FNMS(KP707106781, Tkm, Tkl);
1781
       {
1782
            E T7J, T7Y, TbP, TbQ;
1783
            T7J = FMA(KP414213562, T7I, T7B);
1784
            T7Y = FNMS(KP414213562, T7X, T7Q);
1785
            T7Z = T7J - T7Y;
1786
            TkC = T7J + T7Y;
1787
            TbP = FNMS(KP414213562, T7B, T7I);
1788
            TbQ = FMA(KP414213562, T7Q, T7X);
1789
            TbR = TbP + TbQ;
1790
            Tko = TbQ - TbP;
1791
       }
1792
       T80 = FNMS(KP923879532, T7Z, T7u);
1793
       TkD = FNMS(KP923879532, TkC, TkB);
1794
       TkJ = FMA(KP923879532, TkC, TkB);
1795
       Tby = FMA(KP923879532, T7Z, T7u);
1796
       TbS = FNMS(KP923879532, TbR, TbO);
1797
       Tkp = FMA(KP923879532, Tko, Tkn);
1798
       Tkv = FNMS(KP923879532, Tko, Tkn);
1799
       Tck = FMA(KP923879532, TbR, TbO);
1800
        }
1801
        {
1802
       E T9a, Tbt, Tkx, Tky;
1803
       T9a = FMA(KP831469612, T99, T80);
1804
       Tbt = Taj - Tbs;
1805
       ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a);
1806
       ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a);
1807
       Tkx = FMA(KP831469612, Tkw, Tkv);
1808
       Tky = Tbw - Tbv;
1809
       ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx);
1810
       ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx);
1811
        }
1812
        {
1813
       E Tbu, Tbx, Tkz, TkA;
1814
       Tbu = FNMS(KP831469612, T99, T80);
1815
       Tbx = Tbv + Tbw;
1816
       ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu);
1817
       ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu);
1818
       Tkz = FNMS(KP831469612, Tkw, Tkv);
1819
       TkA = Taj + Tbs;
1820
       ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz);
1821
       ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz);
1822
        }
1823
        {
1824
       E TbC, TbJ, Tkr, Tks;
1825
       TbC = FMA(KP831469612, TbB, Tby);
1826
       TbJ = TbF + TbI;
1827
       ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC);
1828
       ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC);
1829
       Tkr = FMA(KP831469612, Tkq, Tkp);
1830
       Tks = TbL + TbM;
1831
       ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr);
1832
       ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr);
1833
        }
1834
        {
1835
       E TbK, TbN, Tkt, Tku;
1836
       TbK = FNMS(KP831469612, TbB, Tby);
1837
       TbN = TbL - TbM;
1838
       ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK);
1839
       ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK);
1840
       Tkt = FNMS(KP831469612, Tkq, Tkp);
1841
       Tku = TbI - TbF;
1842
       ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt);
1843
       ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt);
1844
        }
1845
        {
1846
       E Tc0, Tcf, TkF, TkG;
1847
       Tc0 = FMA(KP980785280, TbZ, TbS);
1848
       Tcf = Tc7 + Tce;
1849
       ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0);
1850
       ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0);
1851
       TkF = FMA(KP980785280, TkE, TkD);
1852
       TkG = Tch + Tci;
1853
       ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF);
1854
       ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF);
1855
        }
1856
        {
1857
       E Tcg, Tcj, TkH, TkI;
1858
       Tcg = FNMS(KP980785280, TbZ, TbS);
1859
       Tcj = Tch - Tci;
1860
       ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg);
1861
       ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg);
1862
       TkH = FNMS(KP980785280, TkE, TkD);
1863
       TkI = Tce - Tc7;
1864
       ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH);
1865
       ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH);
1866
        }
1867
        {
1868
       E Tco, Tcv, TkL, TkM;
1869
       Tco = FNMS(KP980785280, Tcn, Tck);
1870
       Tcv = Tcr - Tcu;
1871
       ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco);
1872
       ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco);
1873
       TkL = FNMS(KP980785280, TkK, TkJ);
1874
       TkM = Tcy - Tcx;
1875
       ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL);
1876
       ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL);
1877
        }
1878
        {
1879
       E Tcw, Tcz, TkN, TkO;
1880
       Tcw = FMA(KP980785280, Tcn, Tck);
1881
       Tcz = Tcx + Tcy;
1882
       ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw);
1883
       ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw);
1884
       TkN = FMA(KP980785280, TkK, TkJ);
1885
       TkO = Tcr + Tcu;
1886
       ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN);
1887
       ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN);
1888
        }
1889
         }
1890
         {
1891
        E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet;
1892
        E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV;
1893
        E Tk1, Tew;
1894
        {
1895
       E TcT, TdL, Td0, TdM;
1896
       {
1897
            E TcP, TcS, TcW, TcZ;
1898
            TcP = FMA(KP707106781, TcO, TcN);
1899
            TcS = FMA(KP707106781, TcR, TcQ);
1900
            TcT = FNMS(KP198912367, TcS, TcP);
1901
            TdL = FMA(KP198912367, TcP, TcS);
1902
            TcW = FMA(KP707106781, TcV, TcU);
1903
            TcZ = FMA(KP707106781, TcY, TcX);
1904
            Td0 = FMA(KP198912367, TcZ, TcW);
1905
            TdM = FNMS(KP198912367, TcW, TcZ);
1906
       }
1907
       Td1 = TcT - Td0;
1908
       Tk2 = TdM - TdL;
1909
       TdN = TdL + TdM;
1910
       TjW = TcT + Td0;
1911
        }
1912
        {
1913
       E Tdd, TdQ, Tdk, TdP;
1914
       {
1915
            E Td5, Tdc, Tdg, Tdj;
1916
            Td5 = FMA(KP707106781, Td4, Td3);
1917
            Tdc = Td8 + Tdb;
1918
            Tdd = FNMS(KP923879532, Tdc, Td5);
1919
            TdQ = FMA(KP923879532, Tdc, Td5);
1920
            Tdg = FMA(KP707106781, Tdf, Tde);
1921
            Tdj = Tdh + Tdi;
1922
            Tdk = FNMS(KP923879532, Tdj, Tdg);
1923
            TdP = FMA(KP923879532, Tdj, Tdg);
1924
       }
1925
       Tdl = FMA(KP820678790, Tdk, Tdd);
1926
       TdX = FNMS(KP098491403, TdP, TdQ);
1927
       TdH = FNMS(KP820678790, Tdd, Tdk);
1928
       TdR = FMA(KP098491403, TdQ, TdP);
1929
        }
1930
        {
1931
       E Tem, TeF, Tep, TeE;
1932
       {
1933
            E Tek, Tel, Ten, Teo;
1934
            Tek = FNMS(KP707106781, Tdy, Tdx);
1935
            Tel = Tdu - Tdr;
1936
            Tem = FNMS(KP923879532, Tel, Tek);
1937
            TeF = FMA(KP923879532, Tel, Tek);
1938
            Ten = FNMS(KP707106781, Tdn, Tdm);
1939
            Teo = TdA - TdB;
1940
            Tep = FNMS(KP923879532, Teo, Ten);
1941
            TeE = FMA(KP923879532, Teo, Ten);
1942
       }
1943
       Teq = FNMS(KP534511135, Tep, Tem);
1944
       TeK = FMA(KP303346683, TeE, TeF);
1945
       Teu = FMA(KP534511135, Tem, Tep);
1946
       TeG = FNMS(KP303346683, TeF, TeE);
1947
        }
1948
        {
1949
       E Tef, TeC, Tei, TeB;
1950
       {
1951
            E Ted, Tee, Teg, Teh;
1952
            Ted = FNMS(KP707106781, Tdf, Tde);
1953
            Tee = Tdb - Td8;
1954
            Tef = FNMS(KP923879532, Tee, Ted);
1955
            TeC = FMA(KP923879532, Tee, Ted);
1956
            Teg = FNMS(KP707106781, Td4, Td3);
1957
            Teh = Tdh - Tdi;
1958
            Tei = FNMS(KP923879532, Teh, Teg);
1959
            TeB = FMA(KP923879532, Teh, Teg);
1960
       }
1961
       Tej = FMA(KP534511135, Tei, Tef);
1962
       TeJ = FNMS(KP303346683, TeB, TeC);
1963
       Tet = FNMS(KP534511135, Tef, Tei);
1964
       TeD = FMA(KP303346683, TeC, TeB);
1965
        }
1966
        {
1967
       E Te7, Tex, Tea, Tey;
1968
       {
1969
            E Te5, Te6, Te8, Te9;
1970
            Te5 = FNMS(KP707106781, TcO, TcN);
1971
            Te6 = FNMS(KP707106781, TcR, TcQ);
1972
            Te7 = FMA(KP668178637, Te6, Te5);
1973
            Tex = FNMS(KP668178637, Te5, Te6);
1974
            Te8 = FNMS(KP707106781, TcV, TcU);
1975
            Te9 = FNMS(KP707106781, TcY, TcX);
1976
            Tea = FNMS(KP668178637, Te9, Te8);
1977
            Tey = FMA(KP668178637, Te8, Te9);
1978
       }
1979
       Teb = Te7 - Tea;
1980
       Tkg = Te7 + Tea;
1981
       Tez = Tex + Tey;
1982
       Tka = Tey - Tex;
1983
        }
1984
        {
1985
       E Tdw, TdT, TdD, TdS;
1986
       {
1987
            E Tdo, Tdv, Tdz, TdC;
1988
            Tdo = FMA(KP707106781, Tdn, Tdm);
1989
            Tdv = Tdr + Tdu;
1990
            Tdw = FNMS(KP923879532, Tdv, Tdo);
1991
            TdT = FMA(KP923879532, Tdv, Tdo);
1992
            Tdz = FMA(KP707106781, Tdy, Tdx);
1993
            TdC = TdA + TdB;
1994
            TdD = FNMS(KP923879532, TdC, Tdz);
1995
            TdS = FMA(KP923879532, TdC, Tdz);
1996
       }
1997
       TdE = FNMS(KP820678790, TdD, Tdw);
1998
       TdY = FMA(KP098491403, TdS, TdT);
1999
       TdI = FMA(KP820678790, Tdw, TdD);
2000
       TdU = FNMS(KP098491403, TdT, TdS);
2001
        }
2002
        {
2003
       E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS;
2004
       TcD = TcB + TcC;
2005
       TcE = FMA(KP707106781, TcD, TcA);
2006
       Te0 = FNMS(KP707106781, TcD, TcA);
2007
       TjS = T7l + T7s;
2008
       TjT = FMA(KP707106781, TjS, TjR);
2009
       Tk7 = FNMS(KP707106781, TjS, TjR);
2010
       {
2011
            E TcH, TcK, Te1, Te2;
2012
            TcH = FMA(KP414213562, TcG, TcF);
2013
            TcK = FNMS(KP414213562, TcJ, TcI);
2014
            TcL = TcH + TcK;
2015
            Tk8 = TcK - TcH;
2016
            Te1 = FNMS(KP414213562, TcF, TcG);
2017
            Te2 = FMA(KP414213562, TcI, TcJ);
2018
            Te3 = Te1 - Te2;
2019
            TjU = Te1 + Te2;
2020
       }
2021
       TcM = FNMS(KP923879532, TcL, TcE);
2022
       Tk9 = FMA(KP923879532, Tk8, Tk7);
2023
       Tkf = FNMS(KP923879532, Tk8, Tk7);
2024
       TdK = FMA(KP923879532, TcL, TcE);
2025
       Te4 = FMA(KP923879532, Te3, Te0);
2026
       TjV = FMA(KP923879532, TjU, TjT);
2027
       Tk1 = FNMS(KP923879532, TjU, TjT);
2028
       Tew = FNMS(KP923879532, Te3, Te0);
2029
        }
2030
        {
2031
       E Td2, TdF, Tk3, Tk4;
2032
       Td2 = FMA(KP980785280, Td1, TcM);
2033
       TdF = Tdl - TdE;
2034
       ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2);
2035
       ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2);
2036
       Tk3 = FMA(KP980785280, Tk2, Tk1);
2037
       Tk4 = TdI - TdH;
2038
       ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3);
2039
       ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3);
2040
        }
2041
        {
2042
       E TdG, TdJ, Tk5, Tk6;
2043
       TdG = FNMS(KP980785280, Td1, TcM);
2044
       TdJ = TdH + TdI;
2045
       ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG);
2046
       ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG);
2047
       Tk5 = FNMS(KP980785280, Tk2, Tk1);
2048
       Tk6 = Tdl + TdE;
2049
       ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5);
2050
       ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5);
2051
        }
2052
        {
2053
       E TdO, TdV, TjX, TjY;
2054
       TdO = FMA(KP980785280, TdN, TdK);
2055
       TdV = TdR + TdU;
2056
       ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO);
2057
       ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO);
2058
       TjX = FMA(KP980785280, TjW, TjV);
2059
       TjY = TdX + TdY;
2060
       ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX);
2061
       ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX);
2062
        }
2063
        {
2064
       E TdW, TdZ, TjZ, Tk0;
2065
       TdW = FNMS(KP980785280, TdN, TdK);
2066
       TdZ = TdX - TdY;
2067
       ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW);
2068
       ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW);
2069
       TjZ = FNMS(KP980785280, TjW, TjV);
2070
       Tk0 = TdU - TdR;
2071
       ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ);
2072
       ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ);
2073
        }
2074
        {
2075
       E Tec, Ter, Tkb, Tkc;
2076
       Tec = FMA(KP831469612, Teb, Te4);
2077
       Ter = Tej + Teq;
2078
       ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec);
2079
       ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
2080
       Tkb = FMA(KP831469612, Tka, Tk9);
2081
       Tkc = Tet + Teu;
2082
       ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb);
2083
       ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb);
2084
        }
2085
        {
2086
       E Tes, Tev, Tkd, Tke;
2087
       Tes = FNMS(KP831469612, Teb, Te4);
2088
       Tev = Tet - Teu;
2089
       ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes);
2090
       ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes);
2091
       Tkd = FNMS(KP831469612, Tka, Tk9);
2092
       Tke = Teq - Tej;
2093
       ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd);
2094
       ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd);
2095
        }
2096
        {
2097
       E TeA, TeH, Tkh, Tki;
2098
       TeA = FNMS(KP831469612, Tez, Tew);
2099
       TeH = TeD - TeG;
2100
       ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA);
2101
       ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA);
2102
       Tkh = FNMS(KP831469612, Tkg, Tkf);
2103
       Tki = TeK - TeJ;
2104
       ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh);
2105
       ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh);
2106
        }
2107
        {
2108
       E TeI, TeL, Tkj, Tkk;
2109
       TeI = FMA(KP831469612, Tez, Tew);
2110
       TeL = TeJ + TeK;
2111
       ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI);
2112
       ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI);
2113
       Tkj = FMA(KP831469612, Tkg, Tkf);
2114
       Tkk = TeD + TeG;
2115
       ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj);
2116
       ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj);
2117
        }
2118
         }
2119
    }
2120
     }
2121
}
2122
2123
static const tw_instr twinstr[] = {
2124
     { TW_FULL, 0, 64 },
2125
     { TW_NEXT, 1, 0 }
2126
};
2127
2128
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 520, 126, 518, 0 }, 0, 0, 0 };
2129
2130
void X(codelet_t1_64) (planner *p) {
2131
     X(kdft_dit_register) (p, t1_64, &desc);
2132
}
2133
#else
2134
2135
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
2136
2137
/*
2138
 * This function contains 1038 FP additions, 500 FP multiplications,
2139
 * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
2140
 * 176 stack variables, 15 constants, and 256 memory accesses
2141
 */
2142
#include "dft/scalar/t.h"
2143
2144
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
2145
0
{
2146
0
     DK(KP471396736, +0.471396736825997648556387625905254377657460319);
2147
0
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
2148
0
     DK(KP290284677, +0.290284677254462367636192375817395274691476278);
2149
0
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
2150
0
     DK(KP634393284, +0.634393284163645498215171613225493370675687095);
2151
0
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
2152
0
     DK(KP098017140, +0.098017140329560601994195563888641845861136673);
2153
0
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
2154
0
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
2155
0
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
2156
0
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
2157
0
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
2158
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
2159
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
2160
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
2161
0
     {
2162
0
    INT m;
2163
0
    for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
2164
0
         E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
2165
0
         E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
2166
0
         E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
2167
0
         E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
2168
0
         E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;
2169
0
         E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;
2170
0
         E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;
2171
0
         E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;
2172
0
         E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;
2173
0
         {
2174
0
        E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
2175
0
        T1 = ri[0];
2176
0
        TgR = ii[0];
2177
0
        {
2178
0
       E T3, T5, T2, T4;
2179
0
       T3 = ri[WS(rs, 32)];
2180
0
       T5 = ii[WS(rs, 32)];
2181
0
       T2 = W[62];
2182
0
       T4 = W[63];
2183
0
       T6 = FMA(T2, T3, T4 * T5);
2184
0
       TgQ = FNMS(T4, T3, T2 * T5);
2185
0
        }
2186
0
        {
2187
0
       E T9, Tb, T8, Ta;
2188
0
       T9 = ri[WS(rs, 16)];
2189
0
       Tb = ii[WS(rs, 16)];
2190
0
       T8 = W[30];
2191
0
       Ta = W[31];
2192
0
       Tc = FMA(T8, T9, Ta * Tb);
2193
0
       T68 = FNMS(Ta, T9, T8 * Tb);
2194
0
        }
2195
0
        {
2196
0
       E Te, Tg, Td, Tf;
2197
0
       Te = ri[WS(rs, 48)];
2198
0
       Tg = ii[WS(rs, 48)];
2199
0
       Td = W[94];
2200
0
       Tf = W[95];
2201
0
       Th = FMA(Td, Te, Tf * Tg);
2202
0
       T69 = FNMS(Tf, Te, Td * Tg);
2203
0
        }
2204
0
        {
2205
0
       E T7, Ti, ThR, ThS;
2206
0
       T7 = T1 + T6;
2207
0
       Ti = Tc + Th;
2208
0
       Tj = T7 + Ti;
2209
0
       TcL = T7 - Ti;
2210
0
       ThR = TgR - TgQ;
2211
0
       ThS = Tc - Th;
2212
0
       ThT = ThR - ThS;
2213
0
       Tin = ThS + ThR;
2214
0
        }
2215
0
        {
2216
0
       E T67, T6a, TgP, TgS;
2217
0
       T67 = T1 - T6;
2218
0
       T6a = T68 - T69;
2219
0
       T6b = T67 - T6a;
2220
0
       Taz = T67 + T6a;
2221
0
       TgP = T68 + T69;
2222
0
       TgS = TgQ + TgR;
2223
0
       TgT = TgP + TgS;
2224
0
       Thn = TgS - TgP;
2225
0
        }
2226
0
         }
2227
0
         {
2228
0
        E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
2229
0
        {
2230
0
       E Tl, Tn, Tk, Tm;
2231
0
       Tl = ri[WS(rs, 8)];
2232
0
       Tn = ii[WS(rs, 8)];
2233
0
       Tk = W[14];
2234
0
       Tm = W[15];
2235
0
       To = FMA(Tk, Tl, Tm * Tn);
2236
0
       T6c = FNMS(Tm, Tl, Tk * Tn);
2237
0
        }
2238
0
        {
2239
0
       E Tq, Ts, Tp, Tr;
2240
0
       Tq = ri[WS(rs, 40)];
2241
0
       Ts = ii[WS(rs, 40)];
2242
0
       Tp = W[78];
2243
0
       Tr = W[79];
2244
0
       Tt = FMA(Tp, Tq, Tr * Ts);
2245
0
       T6d = FNMS(Tr, Tq, Tp * Ts);
2246
0
        }
2247
0
        T6e = T6c - T6d;
2248
0
        T6f = To - Tt;
2249
0
        {
2250
0
       E Tw, Ty, Tv, Tx;
2251
0
       Tw = ri[WS(rs, 56)];
2252
0
       Ty = ii[WS(rs, 56)];
2253
0
       Tv = W[110];
2254
0
       Tx = W[111];
2255
0
       Tz = FMA(Tv, Tw, Tx * Ty);
2256
0
       T6i = FNMS(Tx, Tw, Tv * Ty);
2257
0
        }
2258
0
        {
2259
0
       E TB, TD, TA, TC;
2260
0
       TB = ri[WS(rs, 24)];
2261
0
       TD = ii[WS(rs, 24)];
2262
0
       TA = W[46];
2263
0
       TC = W[47];
2264
0
       TE = FMA(TA, TB, TC * TD);
2265
0
       T6j = FNMS(TC, TB, TA * TD);
2266
0
        }
2267
0
        T6h = Tz - TE;
2268
0
        T6k = T6i - T6j;
2269
0
        {
2270
0
       E Tu, TF, TcM, TcN;
2271
0
       Tu = To + Tt;
2272
0
       TF = Tz + TE;
2273
0
       TG = Tu + TF;
2274
0
       Thm = TF - Tu;
2275
0
       TcM = T6c + T6d;
2276
0
       TcN = T6i + T6j;
2277
0
       TcO = TcM - TcN;
2278
0
       TgO = TcM + TcN;
2279
0
        }
2280
0
        {
2281
0
       E T6g, T6l, TaA, TaB;
2282
0
       T6g = T6e - T6f;
2283
0
       T6l = T6h + T6k;
2284
0
       T6m = KP707106781 * (T6g - T6l);
2285
0
       ThQ = KP707106781 * (T6g + T6l);
2286
0
       TaA = T6f + T6e;
2287
0
       TaB = T6h - T6k;
2288
0
       TaC = KP707106781 * (TaA + TaB);
2289
0
       Tim = KP707106781 * (TaB - TaA);
2290
0
        }
2291
0
         }
2292
0
         {
2293
0
        E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
2294
0
        {
2295
0
       E TM, T6o, TR, T6p;
2296
0
       {
2297
0
            E TJ, TL, TI, TK;
2298
0
            TJ = ri[WS(rs, 4)];
2299
0
            TL = ii[WS(rs, 4)];
2300
0
            TI = W[6];
2301
0
            TK = W[7];
2302
0
            TM = FMA(TI, TJ, TK * TL);
2303
0
            T6o = FNMS(TK, TJ, TI * TL);
2304
0
       }
2305
0
       {
2306
0
            E TO, TQ, TN, TP;
2307
0
            TO = ri[WS(rs, 36)];
2308
0
            TQ = ii[WS(rs, 36)];
2309
0
            TN = W[70];
2310
0
            TP = W[71];
2311
0
            TR = FMA(TN, TO, TP * TQ);
2312
0
            T6p = FNMS(TP, TO, TN * TQ);
2313
0
       }
2314
0
       TS = TM + TR;
2315
0
       TcQ = T6o + T6p;
2316
0
       T6q = T6o - T6p;
2317
0
       T6t = TM - TR;
2318
0
        }
2319
0
        {
2320
0
       E TX, T6u, T12, T6v;
2321
0
       {
2322
0
            E TU, TW, TT, TV;
2323
0
            TU = ri[WS(rs, 20)];
2324
0
            TW = ii[WS(rs, 20)];
2325
0
            TT = W[38];
2326
0
            TV = W[39];
2327
0
            TX = FMA(TT, TU, TV * TW);
2328
0
            T6u = FNMS(TV, TU, TT * TW);
2329
0
       }
2330
0
       {
2331
0
            E TZ, T11, TY, T10;
2332
0
            TZ = ri[WS(rs, 52)];
2333
0
            T11 = ii[WS(rs, 52)];
2334
0
            TY = W[102];
2335
0
            T10 = W[103];
2336
0
            T12 = FMA(TY, TZ, T10 * T11);
2337
0
            T6v = FNMS(T10, TZ, TY * T11);
2338
0
       }
2339
0
       T13 = TX + T12;
2340
0
       TcR = T6u + T6v;
2341
0
       T6r = TX - T12;
2342
0
       T6w = T6u - T6v;
2343
0
        }
2344
0
        T14 = TS + T13;
2345
0
        Tfq = TcQ + TcR;
2346
0
        T6s = T6q + T6r;
2347
0
        T6x = T6t - T6w;
2348
0
        T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
2349
0
        T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
2350
0
        {
2351
0
       E TaE, TaF, TcS, TcT;
2352
0
       TaE = T6q - T6r;
2353
0
       TaF = T6t + T6w;
2354
0
       TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
2355
0
       Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
2356
0
       TcS = TcQ - TcR;
2357
0
       TcT = TS - T13;
2358
0
       TcU = TcS - TcT;
2359
0
       TeE = TcT + TcS;
2360
0
        }
2361
0
         }
2362
0
         {
2363
0
        E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
2364
0
        {
2365
0
       E T19, T6z, T1e, T6A;
2366
0
       {
2367
0
            E T16, T18, T15, T17;
2368
0
            T16 = ri[WS(rs, 60)];
2369
0
            T18 = ii[WS(rs, 60)];
2370
0
            T15 = W[118];
2371
0
            T17 = W[119];
2372
0
            T19 = FMA(T15, T16, T17 * T18);
2373
0
            T6z = FNMS(T17, T16, T15 * T18);
2374
0
       }
2375
0
       {
2376
0
            E T1b, T1d, T1a, T1c;
2377
0
            T1b = ri[WS(rs, 28)];
2378
0
            T1d = ii[WS(rs, 28)];
2379
0
            T1a = W[54];
2380
0
            T1c = W[55];
2381
0
            T1e = FMA(T1a, T1b, T1c * T1d);
2382
0
            T6A = FNMS(T1c, T1b, T1a * T1d);
2383
0
       }
2384
0
       T1f = T19 + T1e;
2385
0
       TcW = T6z + T6A;
2386
0
       T6B = T6z - T6A;
2387
0
       T6E = T19 - T1e;
2388
0
        }
2389
0
        {
2390
0
       E T1k, T6F, T1p, T6G;
2391
0
       {
2392
0
            E T1h, T1j, T1g, T1i;
2393
0
            T1h = ri[WS(rs, 12)];
2394
0
            T1j = ii[WS(rs, 12)];
2395
0
            T1g = W[22];
2396
0
            T1i = W[23];
2397
0
            T1k = FMA(T1g, T1h, T1i * T1j);
2398
0
            T6F = FNMS(T1i, T1h, T1g * T1j);
2399
0
       }
2400
0
       {
2401
0
            E T1m, T1o, T1l, T1n;
2402
0
            T1m = ri[WS(rs, 44)];
2403
0
            T1o = ii[WS(rs, 44)];
2404
0
            T1l = W[86];
2405
0
            T1n = W[87];
2406
0
            T1p = FMA(T1l, T1m, T1n * T1o);
2407
0
            T6G = FNMS(T1n, T1m, T1l * T1o);
2408
0
       }
2409
0
       T1q = T1k + T1p;
2410
0
       TcX = T6F + T6G;
2411
0
       T6C = T1k - T1p;
2412
0
       T6H = T6F - T6G;
2413
0
        }
2414
0
        T1r = T1f + T1q;
2415
0
        Tfr = TcW + TcX;
2416
0
        T6D = T6B + T6C;
2417
0
        T6I = T6E - T6H;
2418
0
        T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
2419
0
        T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
2420
0
        {
2421
0
       E TaH, TaI, TcV, TcY;
2422
0
       TaH = T6B - T6C;
2423
0
       TaI = T6E + T6H;
2424
0
       TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
2425
0
       Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
2426
0
       TcV = T1f - T1q;
2427
0
       TcY = TcW - TcX;
2428
0
       TcZ = TcV + TcY;
2429
0
       TeF = TcV - TcY;
2430
0
        }
2431
0
         }
2432
0
         {
2433
0
        E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
2434
0
        E T6Z, T2c, Td9, T6R, T6U;
2435
0
        {
2436
0
       E T1v, T1x, T1u, T1w;
2437
0
       T1v = ri[WS(rs, 2)];
2438
0
       T1x = ii[WS(rs, 2)];
2439
0
       T1u = W[2];
2440
0
       T1w = W[3];
2441
0
       T1y = FMA(T1u, T1v, T1w * T1x);
2442
0
       T6M = FNMS(T1w, T1v, T1u * T1x);
2443
0
        }
2444
0
        {
2445
0
       E T1A, T1C, T1z, T1B;
2446
0
       T1A = ri[WS(rs, 34)];
2447
0
       T1C = ii[WS(rs, 34)];
2448
0
       T1z = W[66];
2449
0
       T1B = W[67];
2450
0
       T1D = FMA(T1z, T1A, T1B * T1C);
2451
0
       T6N = FNMS(T1B, T1A, T1z * T1C);
2452
0
        }
2453
0
        T1E = T1y + T1D;
2454
0
        Td2 = T6M + T6N;
2455
0
        {
2456
0
       E T1G, T1I, T1F, T1H;
2457
0
       T1G = ri[WS(rs, 18)];
2458
0
       T1I = ii[WS(rs, 18)];
2459
0
       T1F = W[34];
2460
0
       T1H = W[35];
2461
0
       T1J = FMA(T1F, T1G, T1H * T1I);
2462
0
       T74 = FNMS(T1H, T1G, T1F * T1I);
2463
0
        }
2464
0
        {
2465
0
       E T1L, T1N, T1K, T1M;
2466
0
       T1L = ri[WS(rs, 50)];
2467
0
       T1N = ii[WS(rs, 50)];
2468
0
       T1K = W[98];
2469
0
       T1M = W[99];
2470
0
       T1O = FMA(T1K, T1L, T1M * T1N);
2471
0
       T75 = FNMS(T1M, T1L, T1K * T1N);
2472
0
        }
2473
0
        T1P = T1J + T1O;
2474
0
        Td3 = T74 + T75;
2475
0
        {
2476
0
       E T1V, T6X, T20, T6Y;
2477
0
       {
2478
0
            E T1S, T1U, T1R, T1T;
2479
0
            T1S = ri[WS(rs, 10)];
2480
0
            T1U = ii[WS(rs, 10)];
2481
0
            T1R = W[18];
2482
0
            T1T = W[19];
2483
0
            T1V = FMA(T1R, T1S, T1T * T1U);
2484
0
            T6X = FNMS(T1T, T1S, T1R * T1U);
2485
0
       }
2486
0
       {
2487
0
            E T1X, T1Z, T1W, T1Y;
2488
0
            T1X = ri[WS(rs, 42)];
2489
0
            T1Z = ii[WS(rs, 42)];
2490
0
            T1W = W[82];
2491
0
            T1Y = W[83];
2492
0
            T20 = FMA(T1W, T1X, T1Y * T1Z);
2493
0
            T6Y = FNMS(T1Y, T1X, T1W * T1Z);
2494
0
       }
2495
0
       T21 = T1V + T20;
2496
0
       Td8 = T6X + T6Y;
2497
0
       T6W = T1V - T20;
2498
0
       T6Z = T6X - T6Y;
2499
0
        }
2500
0
        {
2501
0
       E T26, T6S, T2b, T6T;
2502
0
       {
2503
0
            E T23, T25, T22, T24;
2504
0
            T23 = ri[WS(rs, 58)];
2505
0
            T25 = ii[WS(rs, 58)];
2506
0
            T22 = W[114];
2507
0
            T24 = W[115];
2508
0
            T26 = FMA(T22, T23, T24 * T25);
2509
0
            T6S = FNMS(T24, T23, T22 * T25);
2510
0
       }
2511
0
       {
2512
0
            E T28, T2a, T27, T29;
2513
0
            T28 = ri[WS(rs, 26)];
2514
0
            T2a = ii[WS(rs, 26)];
2515
0
            T27 = W[50];
2516
0
            T29 = W[51];
2517
0
            T2b = FMA(T27, T28, T29 * T2a);
2518
0
            T6T = FNMS(T29, T28, T27 * T2a);
2519
0
       }
2520
0
       T2c = T26 + T2b;
2521
0
       Td9 = T6S + T6T;
2522
0
       T6R = T26 - T2b;
2523
0
       T6U = T6S - T6T;
2524
0
        }
2525
0
        T1Q = T1E + T1P;
2526
0
        T2d = T21 + T2c;
2527
0
        Tfx = T1Q - T2d;
2528
0
        Tfu = Td2 + Td3;
2529
0
        Tfv = Td8 + Td9;
2530
0
        Tfw = Tfu - Tfv;
2531
0
        {
2532
0
       E T6O, T6P, Td7, Tda;
2533
0
       T6O = T6M - T6N;
2534
0
       T6P = T1J - T1O;
2535
0
       T6Q = T6O + T6P;
2536
0
       TaM = T6O - T6P;
2537
0
       Td7 = T1E - T1P;
2538
0
       Tda = Td8 - Td9;
2539
0
       Tdb = Td7 - Tda;
2540
0
       TeJ = Td7 + Tda;
2541
0
        }
2542
0
        {
2543
0
       E T6V, T70, T78, T79;
2544
0
       T6V = T6R - T6U;
2545
0
       T70 = T6W + T6Z;
2546
0
       T71 = KP707106781 * (T6V - T70);
2547
0
       TaQ = KP707106781 * (T70 + T6V);
2548
0
       T78 = T6Z - T6W;
2549
0
       T79 = T6R + T6U;
2550
0
       T7a = KP707106781 * (T78 - T79);
2551
0
       TaN = KP707106781 * (T78 + T79);
2552
0
        }
2553
0
        {
2554
0
       E Td4, Td5, T73, T76;
2555
0
       Td4 = Td2 - Td3;
2556
0
       Td5 = T2c - T21;
2557
0
       Td6 = Td4 - Td5;
2558
0
       TeI = Td4 + Td5;
2559
0
       T73 = T1y - T1D;
2560
0
       T76 = T74 - T75;
2561
0
       T77 = T73 - T76;
2562
0
       TaP = T73 + T76;
2563
0
        }
2564
0
         }
2565
0
         {
2566
0
        E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
2567
0
        E T7q, T2X, Tdk, T7i, T7l;
2568
0
        {
2569
0
       E T2g, T2i, T2f, T2h;
2570
0
       T2g = ri[WS(rs, 62)];
2571
0
       T2i = ii[WS(rs, 62)];
2572
0
       T2f = W[122];
2573
0
       T2h = W[123];
2574
0
       T2j = FMA(T2f, T2g, T2h * T2i);
2575
0
       T7d = FNMS(T2h, T2g, T2f * T2i);
2576
0
        }
2577
0
        {
2578
0
       E T2l, T2n, T2k, T2m;
2579
0
       T2l = ri[WS(rs, 30)];
2580
0
       T2n = ii[WS(rs, 30)];
2581
0
       T2k = W[58];
2582
0
       T2m = W[59];
2583
0
       T2o = FMA(T2k, T2l, T2m * T2n);
2584
0
       T7e = FNMS(T2m, T2l, T2k * T2n);
2585
0
        }
2586
0
        T2p = T2j + T2o;
2587
0
        Tdd = T7d + T7e;
2588
0
        {
2589
0
       E T2r, T2t, T2q, T2s;
2590
0
       T2r = ri[WS(rs, 14)];
2591
0
       T2t = ii[WS(rs, 14)];
2592
0
       T2q = W[26];
2593
0
       T2s = W[27];
2594
0
       T2u = FMA(T2q, T2r, T2s * T2t);
2595
0
       T7v = FNMS(T2s, T2r, T2q * T2t);
2596
0
        }
2597
0
        {
2598
0
       E T2w, T2y, T2v, T2x;
2599
0
       T2w = ri[WS(rs, 46)];
2600
0
       T2y = ii[WS(rs, 46)];
2601
0
       T2v = W[90];
2602
0
       T2x = W[91];
2603
0
       T2z = FMA(T2v, T2w, T2x * T2y);
2604
0
       T7w = FNMS(T2x, T2w, T2v * T2y);
2605
0
        }
2606
0
        T2A = T2u + T2z;
2607
0
        Tde = T7v + T7w;
2608
0
        {
2609
0
       E T2G, T7o, T2L, T7p;
2610
0
       {
2611
0
            E T2D, T2F, T2C, T2E;
2612
0
            T2D = ri[WS(rs, 6)];
2613
0
            T2F = ii[WS(rs, 6)];
2614
0
            T2C = W[10];
2615
0
            T2E = W[11];
2616
0
            T2G = FMA(T2C, T2D, T2E * T2F);
2617
0
            T7o = FNMS(T2E, T2D, T2C * T2F);
2618
0
       }
2619
0
       {
2620
0
            E T2I, T2K, T2H, T2J;
2621
0
            T2I = ri[WS(rs, 38)];
2622
0
            T2K = ii[WS(rs, 38)];
2623
0
            T2H = W[74];
2624
0
            T2J = W[75];
2625
0
            T2L = FMA(T2H, T2I, T2J * T2K);
2626
0
            T7p = FNMS(T2J, T2I, T2H * T2K);
2627
0
       }
2628
0
       T2M = T2G + T2L;
2629
0
       Tdj = T7o + T7p;
2630
0
       T7n = T2G - T2L;
2631
0
       T7q = T7o - T7p;
2632
0
        }
2633
0
        {
2634
0
       E T2R, T7j, T2W, T7k;
2635
0
       {
2636
0
            E T2O, T2Q, T2N, T2P;
2637
0
            T2O = ri[WS(rs, 54)];
2638
0
            T2Q = ii[WS(rs, 54)];
2639
0
            T2N = W[106];
2640
0
            T2P = W[107];
2641
0
            T2R = FMA(T2N, T2O, T2P * T2Q);
2642
0
            T7j = FNMS(T2P, T2O, T2N * T2Q);
2643
0
       }
2644
0
       {
2645
0
            E T2T, T2V, T2S, T2U;
2646
0
            T2T = ri[WS(rs, 22)];
2647
0
            T2V = ii[WS(rs, 22)];
2648
0
            T2S = W[42];
2649
0
            T2U = W[43];
2650
0
            T2W = FMA(T2S, T2T, T2U * T2V);
2651
0
            T7k = FNMS(T2U, T2T, T2S * T2V);
2652
0
       }
2653
0
       T2X = T2R + T2W;
2654
0
       Tdk = T7j + T7k;
2655
0
       T7i = T2R - T2W;
2656
0
       T7l = T7j - T7k;
2657
0
        }
2658
0
        T2B = T2p + T2A;
2659
0
        T2Y = T2M + T2X;
2660
0
        Tfz = T2B - T2Y;
2661
0
        TfA = Tdd + Tde;
2662
0
        TfB = Tdj + Tdk;
2663
0
        TfC = TfA - TfB;
2664
0
        {
2665
0
       E T7f, T7g, Tdi, Tdl;
2666
0
       T7f = T7d - T7e;
2667
0
       T7g = T2u - T2z;
2668
0
       T7h = T7f + T7g;
2669
0
       TaW = T7f - T7g;
2670
0
       Tdi = T2p - T2A;
2671
0
       Tdl = Tdj - Tdk;
2672
0
       Tdm = Tdi - Tdl;
2673
0
       TeM = Tdi + Tdl;
2674
0
        }
2675
0
        {
2676
0
       E T7m, T7r, T7z, T7A;
2677
0
       T7m = T7i - T7l;
2678
0
       T7r = T7n + T7q;
2679
0
       T7s = KP707106781 * (T7m - T7r);
2680
0
       TaU = KP707106781 * (T7r + T7m);
2681
0
       T7z = T7q - T7n;
2682
0
       T7A = T7i + T7l;
2683
0
       T7B = KP707106781 * (T7z - T7A);
2684
0
       TaX = KP707106781 * (T7z + T7A);
2685
0
        }
2686
0
        {
2687
0
       E Tdf, Tdg, T7u, T7x;
2688
0
       Tdf = Tdd - Tde;
2689
0
       Tdg = T2X - T2M;
2690
0
       Tdh = Tdf - Tdg;
2691
0
       TeL = Tdf + Tdg;
2692
0
       T7u = T2j - T2o;
2693
0
       T7x = T7v - T7w;
2694
0
       T7y = T7u - T7x;
2695
0
       TaT = T7u + T7x;
2696
0
        }
2697
0
         }
2698
0
         {
2699
0
        E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
2700
0
        E T8H, T5h, TdT, T8J, T8M;
2701
0
        {
2702
0
       E T4A, T4C, T4z, T4B;
2703
0
       T4A = ri[WS(rs, 63)];
2704
0
       T4C = ii[WS(rs, 63)];
2705
0
       T4z = W[124];
2706
0
       T4B = W[125];
2707
0
       T4D = FMA(T4z, T4A, T4B * T4C);
2708
0
       T9e = FNMS(T4B, T4A, T4z * T4C);
2709
0
        }
2710
0
        {
2711
0
       E T4F, T4H, T4E, T4G;
2712
0
       T4F = ri[WS(rs, 31)];
2713
0
       T4H = ii[WS(rs, 31)];
2714
0
       T4E = W[60];
2715
0
       T4G = W[61];
2716
0
       T4I = FMA(T4E, T4F, T4G * T4H);
2717
0
       T9f = FNMS(T4G, T4F, T4E * T4H);
2718
0
        }
2719
0
        T4J = T4D + T4I;
2720
0
        Te8 = T9e + T9f;
2721
0
        {
2722
0
       E T4L, T4N, T4K, T4M;
2723
0
       T4L = ri[WS(rs, 15)];
2724
0
       T4N = ii[WS(rs, 15)];
2725
0
       T4K = W[28];
2726
0
       T4M = W[29];
2727
0
       T4O = FMA(T4K, T4L, T4M * T4N);
2728
0
       T8A = FNMS(T4M, T4L, T4K * T4N);
2729
0
        }
2730
0
        {
2731
0
       E T4Q, T4S, T4P, T4R;
2732
0
       T4Q = ri[WS(rs, 47)];
2733
0
       T4S = ii[WS(rs, 47)];
2734
0
       T4P = W[92];
2735
0
       T4R = W[93];
2736
0
       T4T = FMA(T4P, T4Q, T4R * T4S);
2737
0
       T8B = FNMS(T4R, T4Q, T4P * T4S);
2738
0
        }
2739
0
        T4U = T4O + T4T;
2740
0
        Te9 = T8A + T8B;
2741
0
        {
2742
0
       E T50, T8E, T55, T8F;
2743
0
       {
2744
0
            E T4X, T4Z, T4W, T4Y;
2745
0
            T4X = ri[WS(rs, 7)];
2746
0
            T4Z = ii[WS(rs, 7)];
2747
0
            T4W = W[12];
2748
0
            T4Y = W[13];
2749
0
            T50 = FMA(T4W, T4X, T4Y * T4Z);
2750
0
            T8E = FNMS(T4Y, T4X, T4W * T4Z);
2751
0
       }
2752
0
       {
2753
0
            E T52, T54, T51, T53;
2754
0
            T52 = ri[WS(rs, 39)];
2755
0
            T54 = ii[WS(rs, 39)];
2756
0
            T51 = W[76];
2757
0
            T53 = W[77];
2758
0
            T55 = FMA(T51, T52, T53 * T54);
2759
0
            T8F = FNMS(T53, T52, T51 * T54);
2760
0
       }
2761
0
       T56 = T50 + T55;
2762
0
       TdS = T8E + T8F;
2763
0
       T8G = T8E - T8F;
2764
0
       T8H = T50 - T55;
2765
0
        }
2766
0
        {
2767
0
       E T5b, T8K, T5g, T8L;
2768
0
       {
2769
0
            E T58, T5a, T57, T59;
2770
0
            T58 = ri[WS(rs, 55)];
2771
0
            T5a = ii[WS(rs, 55)];
2772
0
            T57 = W[108];
2773
0
            T59 = W[109];
2774
0
            T5b = FMA(T57, T58, T59 * T5a);
2775
0
            T8K = FNMS(T59, T58, T57 * T5a);
2776
0
       }
2777
0
       {
2778
0
            E T5d, T5f, T5c, T5e;
2779
0
            T5d = ri[WS(rs, 23)];
2780
0
            T5f = ii[WS(rs, 23)];
2781
0
            T5c = W[44];
2782
0
            T5e = W[45];
2783
0
            T5g = FMA(T5c, T5d, T5e * T5f);
2784
0
            T8L = FNMS(T5e, T5d, T5c * T5f);
2785
0
       }
2786
0
       T5h = T5b + T5g;
2787
0
       TdT = T8K + T8L;
2788
0
       T8J = T5b - T5g;
2789
0
       T8M = T8K - T8L;
2790
0
        }
2791
0
        {
2792
0
       E T4V, T5i, Tea, Teb;
2793
0
       T4V = T4J + T4U;
2794
0
       T5i = T56 + T5h;
2795
0
       T5j = T4V + T5i;
2796
0
       TfR = T4V - T5i;
2797
0
       Tea = Te8 - Te9;
2798
0
       Teb = T5h - T56;
2799
0
       Tec = Tea - Teb;
2800
0
       Tf0 = Tea + Teb;
2801
0
        }
2802
0
        {
2803
0
       E TfW, TfX, T8z, T8C;
2804
0
       TfW = Te8 + Te9;
2805
0
       TfX = TdS + TdT;
2806
0
       TfY = TfW - TfX;
2807
0
       Tgy = TfW + TfX;
2808
0
       T8z = T4D - T4I;
2809
0
       T8C = T8A - T8B;
2810
0
       T8D = T8z - T8C;
2811
0
       Tbl = T8z + T8C;
2812
0
        }
2813
0
        {
2814
0
       E T8I, T8N, T9j, T9k;
2815
0
       T8I = T8G - T8H;
2816
0
       T8N = T8J + T8M;
2817
0
       T8O = KP707106781 * (T8I - T8N);
2818
0
       Tbx = KP707106781 * (T8I + T8N);
2819
0
       T9j = T8J - T8M;
2820
0
       T9k = T8H + T8G;
2821
0
       T9l = KP707106781 * (T9j - T9k);
2822
0
       Tbm = KP707106781 * (T9k + T9j);
2823
0
        }
2824
0
        {
2825
0
       E TdR, TdU, T9g, T9h;
2826
0
       TdR = T4J - T4U;
2827
0
       TdU = TdS - TdT;
2828
0
       TdV = TdR - TdU;
2829
0
       TeX = TdR + TdU;
2830
0
       T9g = T9e - T9f;
2831
0
       T9h = T4O - T4T;
2832
0
       T9i = T9g + T9h;
2833
0
       Tbw = T9g - T9h;
2834
0
        }
2835
0
         }
2836
0
         {
2837
0
        E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
2838
0
        E T7T, T3K, TdJ, T7L, T7O;
2839
0
        {
2840
0
       E T33, T35, T32, T34;
2841
0
       T33 = ri[WS(rs, 1)];
2842
0
       T35 = ii[WS(rs, 1)];
2843
0
       T32 = W[0];
2844
0
       T34 = W[1];
2845
0
       T36 = FMA(T32, T33, T34 * T35);
2846
0
       T7G = FNMS(T34, T33, T32 * T35);
2847
0
        }
2848
0
        {
2849
0
       E T38, T3a, T37, T39;
2850
0
       T38 = ri[WS(rs, 33)];
2851
0
       T3a = ii[WS(rs, 33)];
2852
0
       T37 = W[64];
2853
0
       T39 = W[65];
2854
0
       T3b = FMA(T37, T38, T39 * T3a);
2855
0
       T7H = FNMS(T39, T38, T37 * T3a);
2856
0
        }
2857
0
        T3c = T36 + T3b;
2858
0
        Tdq = T7G + T7H;
2859
0
        {
2860
0
       E T3e, T3g, T3d, T3f;
2861
0
       T3e = ri[WS(rs, 17)];
2862
0
       T3g = ii[WS(rs, 17)];
2863
0
       T3d = W[32];
2864
0
       T3f = W[33];
2865
0
       T3h = FMA(T3d, T3e, T3f * T3g);
2866
0
       T8m = FNMS(T3f, T3e, T3d * T3g);
2867
0
        }
2868
0
        {
2869
0
       E T3j, T3l, T3i, T3k;
2870
0
       T3j = ri[WS(rs, 49)];
2871
0
       T3l = ii[WS(rs, 49)];
2872
0
       T3i = W[96];
2873
0
       T3k = W[97];
2874
0
       T3m = FMA(T3i, T3j, T3k * T3l);
2875
0
       T8n = FNMS(T3k, T3j, T3i * T3l);
2876
0
        }
2877
0
        T3n = T3h + T3m;
2878
0
        Tdr = T8m + T8n;
2879
0
        {
2880
0
       E T3t, T7R, T3y, T7S;
2881
0
       {
2882
0
            E T3q, T3s, T3p, T3r;
2883
0
            T3q = ri[WS(rs, 9)];
2884
0
            T3s = ii[WS(rs, 9)];
2885
0
            T3p = W[16];
2886
0
            T3r = W[17];
2887
0
            T3t = FMA(T3p, T3q, T3r * T3s);
2888
0
            T7R = FNMS(T3r, T3q, T3p * T3s);
2889
0
       }
2890
0
       {
2891
0
            E T3v, T3x, T3u, T3w;
2892
0
            T3v = ri[WS(rs, 41)];
2893
0
            T3x = ii[WS(rs, 41)];
2894
0
            T3u = W[80];
2895
0
            T3w = W[81];
2896
0
            T3y = FMA(T3u, T3v, T3w * T3x);
2897
0
            T7S = FNMS(T3w, T3v, T3u * T3x);
2898
0
       }
2899
0
       T3z = T3t + T3y;
2900
0
       TdI = T7R + T7S;
2901
0
       T7Q = T3t - T3y;
2902
0
       T7T = T7R - T7S;
2903
0
        }
2904
0
        {
2905
0
       E T3E, T7M, T3J, T7N;
2906
0
       {
2907
0
            E T3B, T3D, T3A, T3C;
2908
0
            T3B = ri[WS(rs, 57)];
2909
0
            T3D = ii[WS(rs, 57)];
2910
0
            T3A = W[112];
2911
0
            T3C = W[113];
2912
0
            T3E = FMA(T3A, T3B, T3C * T3D);
2913
0
            T7M = FNMS(T3C, T3B, T3A * T3D);
2914
0
       }
2915
0
       {
2916
0
            E T3G, T3I, T3F, T3H;
2917
0
            T3G = ri[WS(rs, 25)];
2918
0
            T3I = ii[WS(rs, 25)];
2919
0
            T3F = W[48];
2920
0
            T3H = W[49];
2921
0
            T3J = FMA(T3F, T3G, T3H * T3I);
2922
0
            T7N = FNMS(T3H, T3G, T3F * T3I);
2923
0
       }
2924
0
       T3K = T3E + T3J;
2925
0
       TdJ = T7M + T7N;
2926
0
       T7L = T3E - T3J;
2927
0
       T7O = T7M - T7N;
2928
0
        }
2929
0
        {
2930
0
       E T3o, T3L, TdH, TdK;
2931
0
       T3o = T3c + T3n;
2932
0
       T3L = T3z + T3K;
2933
0
       T3M = T3o + T3L;
2934
0
       TfL = T3o - T3L;
2935
0
       TdH = T3c - T3n;
2936
0
       TdK = TdI - TdJ;
2937
0
       TdL = TdH - TdK;
2938
0
       TeQ = TdH + TdK;
2939
0
        }
2940
0
        {
2941
0
       E TfG, TfH, T7I, T7J;
2942
0
       TfG = Tdq + Tdr;
2943
0
       TfH = TdI + TdJ;
2944
0
       TfI = TfG - TfH;
2945
0
       Tgt = TfG + TfH;
2946
0
       T7I = T7G - T7H;
2947
0
       T7J = T3h - T3m;
2948
0
       T7K = T7I + T7J;
2949
0
       Tb2 = T7I - T7J;
2950
0
        }
2951
0
        {
2952
0
       E T7P, T7U, T8q, T8r;
2953
0
       T7P = T7L - T7O;
2954
0
       T7U = T7Q + T7T;
2955
0
       T7V = KP707106781 * (T7P - T7U);
2956
0
       Tbe = KP707106781 * (T7U + T7P);
2957
0
       T8q = T7T - T7Q;
2958
0
       T8r = T7L + T7O;
2959
0
       T8s = KP707106781 * (T8q - T8r);
2960
0
       Tb3 = KP707106781 * (T8q + T8r);
2961
0
        }
2962
0
        {
2963
0
       E Tds, Tdt, T8l, T8o;
2964
0
       Tds = Tdq - Tdr;
2965
0
       Tdt = T3K - T3z;
2966
0
       Tdu = Tds - Tdt;
2967
0
       TeT = Tds + Tdt;
2968
0
       T8l = T36 - T3b;
2969
0
       T8o = T8m - T8n;
2970
0
       T8p = T8l - T8o;
2971
0
       Tbd = T8l + T8o;
2972
0
        }
2973
0
         }
2974
0
         {
2975
0
        E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
2976
0
        E T84;
2977
0
        {
2978
0
       E T3R, T88, T3W, T89;
2979
0
       {
2980
0
            E T3O, T3Q, T3N, T3P;
2981
0
            T3O = ri[WS(rs, 5)];
2982
0
            T3Q = ii[WS(rs, 5)];
2983
0
            T3N = W[8];
2984
0
            T3P = W[9];
2985
0
            T3R = FMA(T3N, T3O, T3P * T3Q);
2986
0
            T88 = FNMS(T3P, T3O, T3N * T3Q);
2987
0
       }
2988
0
       {
2989
0
            E T3T, T3V, T3S, T3U;
2990
0
            T3T = ri[WS(rs, 37)];
2991
0
            T3V = ii[WS(rs, 37)];
2992
0
            T3S = W[72];
2993
0
            T3U = W[73];
2994
0
            T3W = FMA(T3S, T3T, T3U * T3V);
2995
0
            T89 = FNMS(T3U, T3T, T3S * T3V);
2996
0
       }
2997
0
       T3X = T3R + T3W;
2998
0
       TdB = T88 + T89;
2999
0
       T8a = T88 - T89;
3000
0
       T8d = T3R - T3W;
3001
0
        }
3002
0
        {
3003
0
       E T4p, T7Y, T4u, T7Z;
3004
0
       {
3005
0
            E T4m, T4o, T4l, T4n;
3006
0
            T4m = ri[WS(rs, 13)];
3007
0
            T4o = ii[WS(rs, 13)];
3008
0
            T4l = W[24];
3009
0
            T4n = W[25];
3010
0
            T4p = FMA(T4l, T4m, T4n * T4o);
3011
0
            T7Y = FNMS(T4n, T4m, T4l * T4o);
3012
0
       }
3013
0
       {
3014
0
            E T4r, T4t, T4q, T4s;
3015
0
            T4r = ri[WS(rs, 45)];
3016
0
            T4t = ii[WS(rs, 45)];
3017
0
            T4q = W[88];
3018
0
            T4s = W[89];
3019
0
            T4u = FMA(T4q, T4r, T4s * T4t);
3020
0
            T7Z = FNMS(T4s, T4r, T4q * T4t);
3021
0
       }
3022
0
       T4v = T4p + T4u;
3023
0
       Tdx = T7Y + T7Z;
3024
0
       T80 = T7Y - T7Z;
3025
0
       T85 = T4p - T4u;
3026
0
        }
3027
0
        {
3028
0
       E T42, T8e, T47, T8f;
3029
0
       {
3030
0
            E T3Z, T41, T3Y, T40;
3031
0
            T3Z = ri[WS(rs, 21)];
3032
0
            T41 = ii[WS(rs, 21)];
3033
0
            T3Y = W[40];
3034
0
            T40 = W[41];
3035
0
            T42 = FMA(T3Y, T3Z, T40 * T41);
3036
0
            T8e = FNMS(T40, T3Z, T3Y * T41);
3037
0
       }
3038
0
       {
3039
0
            E T44, T46, T43, T45;
3040
0
            T44 = ri[WS(rs, 53)];
3041
0
            T46 = ii[WS(rs, 53)];
3042
0
            T43 = W[104];
3043
0
            T45 = W[105];
3044
0
            T47 = FMA(T43, T44, T45 * T46);
3045
0
            T8f = FNMS(T45, T44, T43 * T46);
3046
0
       }
3047
0
       T48 = T42 + T47;
3048
0
       TdC = T8e + T8f;
3049
0
       T8b = T42 - T47;
3050
0
       T8g = T8e - T8f;
3051
0
        }
3052
0
        {
3053
0
       E T4e, T82, T4j, T83;
3054
0
       {
3055
0
            E T4b, T4d, T4a, T4c;
3056
0
            T4b = ri[WS(rs, 61)];
3057
0
            T4d = ii[WS(rs, 61)];
3058
0
            T4a = W[120];
3059
0
            T4c = W[121];
3060
0
            T4e = FMA(T4a, T4b, T4c * T4d);
3061
0
            T82 = FNMS(T4c, T4b, T4a * T4d);
3062
0
       }
3063
0
       {
3064
0
            E T4g, T4i, T4f, T4h;
3065
0
            T4g = ri[WS(rs, 29)];
3066
0
            T4i = ii[WS(rs, 29)];
3067
0
            T4f = W[56];
3068
0
            T4h = W[57];
3069
0
            T4j = FMA(T4f, T4g, T4h * T4i);
3070
0
            T83 = FNMS(T4h, T4g, T4f * T4i);
3071
0
       }
3072
0
       T4k = T4e + T4j;
3073
0
       Tdw = T82 + T83;
3074
0
       T7X = T4e - T4j;
3075
0
       T84 = T82 - T83;
3076
0
        }
3077
0
        {
3078
0
       E T49, T4w, TdA, TdD;
3079
0
       T49 = T3X + T48;
3080
0
       T4w = T4k + T4v;
3081
0
       T4x = T49 + T4w;
3082
0
       TfJ = T4w - T49;
3083
0
       TdA = T3X - T48;
3084
0
       TdD = TdB - TdC;
3085
0
       TdE = TdA + TdD;
3086
0
       TdM = TdD - TdA;
3087
0
        }
3088
0
        {
3089
0
       E TfM, TfN, T81, T86;
3090
0
       TfM = TdB + TdC;
3091
0
       TfN = Tdw + Tdx;
3092
0
       TfO = TfM - TfN;
3093
0
       Tgu = TfM + TfN;
3094
0
       T81 = T7X - T80;
3095
0
       T86 = T84 + T85;
3096
0
       T87 = FNMS(KP923879532, T86, KP382683432 * T81);
3097
0
       T8v = FMA(KP382683432, T86, KP923879532 * T81);
3098
0
        }
3099
0
        {
3100
0
       E T8c, T8h, Tb8, Tb9;
3101
0
       T8c = T8a + T8b;
3102
0
       T8h = T8d - T8g;
3103
0
       T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
3104
0
       T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
3105
0
       Tb8 = T8a - T8b;
3106
0
       Tb9 = T8d + T8g;
3107
0
       Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
3108
0
       Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
3109
0
        }
3110
0
        {
3111
0
       E Tdv, Tdy, Tb5, Tb6;
3112
0
       Tdv = T4k - T4v;
3113
0
       Tdy = Tdw - Tdx;
3114
0
       Tdz = Tdv - Tdy;
3115
0
       TdN = Tdv + Tdy;
3116
0
       Tb5 = T7X + T80;
3117
0
       Tb6 = T84 - T85;
3118
0
       Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
3119
0
       Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
3120
0
        }
3121
0
         }
3122
0
         {
3123
0
        E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
3124
0
        E T96;
3125
0
        {
3126
0
       E T5o, T8Q, T5t, T8R;
3127
0
       {
3128
0
            E T5l, T5n, T5k, T5m;
3129
0
            T5l = ri[WS(rs, 3)];
3130
0
            T5n = ii[WS(rs, 3)];
3131
0
            T5k = W[4];
3132
0
            T5m = W[5];
3133
0
            T5o = FMA(T5k, T5l, T5m * T5n);
3134
0
            T8Q = FNMS(T5m, T5l, T5k * T5n);
3135
0
       }
3136
0
       {
3137
0
            E T5q, T5s, T5p, T5r;
3138
0
            T5q = ri[WS(rs, 35)];
3139
0
            T5s = ii[WS(rs, 35)];
3140
0
            T5p = W[68];
3141
0
            T5r = W[69];
3142
0
            T5t = FMA(T5p, T5q, T5r * T5s);
3143
0
            T8R = FNMS(T5r, T5q, T5p * T5s);
3144
0
       }
3145
0
       T5u = T5o + T5t;
3146
0
       TdW = T8Q + T8R;
3147
0
       T8S = T8Q - T8R;
3148
0
       T8V = T5o - T5t;
3149
0
        }
3150
0
        {
3151
0
       E T5W, T97, T61, T98;
3152
0
       {
3153
0
            E T5T, T5V, T5S, T5U;
3154
0
            T5T = ri[WS(rs, 11)];
3155
0
            T5V = ii[WS(rs, 11)];
3156
0
            T5S = W[20];
3157
0
            T5U = W[21];
3158
0
            T5W = FMA(T5S, T5T, T5U * T5V);
3159
0
            T97 = FNMS(T5U, T5T, T5S * T5V);
3160
0
       }
3161
0
       {
3162
0
            E T5Y, T60, T5X, T5Z;
3163
0
            T5Y = ri[WS(rs, 43)];
3164
0
            T60 = ii[WS(rs, 43)];
3165
0
            T5X = W[84];
3166
0
            T5Z = W[85];
3167
0
            T61 = FMA(T5X, T5Y, T5Z * T60);
3168
0
            T98 = FNMS(T5Z, T5Y, T5X * T60);
3169
0
       }
3170
0
       T62 = T5W + T61;
3171
0
       Te3 = T97 + T98;
3172
0
       T94 = T5W - T61;
3173
0
       T99 = T97 - T98;
3174
0
        }
3175
0
        {
3176
0
       E T5z, T8W, T5E, T8X;
3177
0
       {
3178
0
            E T5w, T5y, T5v, T5x;
3179
0
            T5w = ri[WS(rs, 19)];
3180
0
            T5y = ii[WS(rs, 19)];
3181
0
            T5v = W[36];
3182
0
            T5x = W[37];
3183
0
            T5z = FMA(T5v, T5w, T5x * T5y);
3184
0
            T8W = FNMS(T5x, T5w, T5v * T5y);
3185
0
       }
3186
0
       {
3187
0
            E T5B, T5D, T5A, T5C;
3188
0
            T5B = ri[WS(rs, 51)];
3189
0
            T5D = ii[WS(rs, 51)];
3190
0
            T5A = W[100];
3191
0
            T5C = W[101];
3192
0
            T5E = FMA(T5A, T5B, T5C * T5D);
3193
0
            T8X = FNMS(T5C, T5B, T5A * T5D);
3194
0
       }
3195
0
       T5F = T5z + T5E;
3196
0
       TdX = T8W + T8X;
3197
0
       T8T = T5z - T5E;
3198
0
       T8Y = T8W - T8X;
3199
0
        }
3200
0
        {
3201
0
       E T5L, T91, T5Q, T92;
3202
0
       {
3203
0
            E T5I, T5K, T5H, T5J;
3204
0
            T5I = ri[WS(rs, 59)];
3205
0
            T5K = ii[WS(rs, 59)];
3206
0
            T5H = W[116];
3207
0
            T5J = W[117];
3208
0
            T5L = FMA(T5H, T5I, T5J * T5K);
3209
0
            T91 = FNMS(T5J, T5I, T5H * T5K);
3210
0
       }
3211
0
       {
3212
0
            E T5N, T5P, T5M, T5O;
3213
0
            T5N = ri[WS(rs, 27)];
3214
0
            T5P = ii[WS(rs, 27)];
3215
0
            T5M = W[52];
3216
0
            T5O = W[53];
3217
0
            T5Q = FMA(T5M, T5N, T5O * T5P);
3218
0
            T92 = FNMS(T5O, T5N, T5M * T5P);
3219
0
       }
3220
0
       T5R = T5L + T5Q;
3221
0
       Te2 = T91 + T92;
3222
0
       T93 = T91 - T92;
3223
0
       T96 = T5L - T5Q;
3224
0
        }
3225
0
        {
3226
0
       E T5G, T63, Te1, Te4;
3227
0
       T5G = T5u + T5F;
3228
0
       T63 = T5R + T62;
3229
0
       T64 = T5G + T63;
3230
0
       TfZ = T63 - T5G;
3231
0
       Te1 = T5R - T62;
3232
0
       Te4 = Te2 - Te3;
3233
0
       Te5 = Te1 + Te4;
3234
0
       Ted = Te1 - Te4;
3235
0
        }
3236
0
        {
3237
0
       E TfS, TfT, T8U, T8Z;
3238
0
       TfS = TdW + TdX;
3239
0
       TfT = Te2 + Te3;
3240
0
       TfU = TfS - TfT;
3241
0
       Tgz = TfS + TfT;
3242
0
       T8U = T8S + T8T;
3243
0
       T8Z = T8V - T8Y;
3244
0
       T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
3245
0
       T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
3246
0
        }
3247
0
        {
3248
0
       E T95, T9a, Tbr, Tbs;
3249
0
       T95 = T93 + T94;
3250
0
       T9a = T96 - T99;
3251
0
       T9b = FMA(KP382683432, T95, KP923879532 * T9a);
3252
0
       T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
3253
0
       Tbr = T93 - T94;
3254
0
       Tbs = T96 + T99;
3255
0
       Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
3256
0
       Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
3257
0
        }
3258
0
        {
3259
0
       E TdY, TdZ, Tbo, Tbp;
3260
0
       TdY = TdW - TdX;
3261
0
       TdZ = T5u - T5F;
3262
0
       Te0 = TdY - TdZ;
3263
0
       Tee = TdZ + TdY;
3264
0
       Tbo = T8S - T8T;
3265
0
       Tbp = T8V + T8Y;
3266
0
       Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
3267
0
       TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
3268
0
        }
3269
0
         }
3270
0
         {
3271
0
        E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
3272
0
        E TgM;
3273
0
        {
3274
0
       E TH, T1s, TgI, TgJ;
3275
0
       TH = Tj + TG;
3276
0
       T1s = T14 + T1r;
3277
0
       T1t = TH + T1s;
3278
0
       Tgn = TH - T1s;
3279
0
       TgI = Tgt + Tgu;
3280
0
       TgJ = Tgy + Tgz;
3281
0
       TgK = TgI - TgJ;
3282
0
       TgL = TgI + TgJ;
3283
0
        }
3284
0
        {
3285
0
       E TgN, TgU, T2e, T2Z;
3286
0
       TgN = Tfq + Tfr;
3287
0
       TgU = TgO + TgT;
3288
0
       TgV = TgN + TgU;
3289
0
       Th1 = TgU - TgN;
3290
0
       T2e = T1Q + T2d;
3291
0
       T2Z = T2B + T2Y;
3292
0
       T30 = T2e + T2Z;
3293
0
       Th0 = T2Z - T2e;
3294
0
        }
3295
0
        {
3296
0
       E T4y, T65, Tgs, Tgv;
3297
0
       T4y = T3M + T4x;
3298
0
       T65 = T5j + T64;
3299
0
       T66 = T4y + T65;
3300
0
       TgX = T65 - T4y;
3301
0
       Tgs = T3M - T4x;
3302
0
       Tgv = Tgt - Tgu;
3303
0
       Tgw = Tgs + Tgv;
3304
0
       TgE = Tgv - Tgs;
3305
0
        }
3306
0
        {
3307
0
       E Tgx, TgA, Tgo, Tgp;
3308
0
       Tgx = T5j - T64;
3309
0
       TgA = Tgy - Tgz;
3310
0
       TgB = Tgx - TgA;
3311
0
       TgF = Tgx + TgA;
3312
0
       Tgo = Tfu + Tfv;
3313
0
       Tgp = TfA + TfB;
3314
0
       Tgq = Tgo - Tgp;
3315
0
       TgM = Tgo + Tgp;
3316
0
        }
3317
0
        {
3318
0
       E T31, TgW, TgH, TgY;
3319
0
       T31 = T1t + T30;
3320
0
       ri[WS(rs, 32)] = T31 - T66;
3321
0
       ri[0] = T31 + T66;
3322
0
       TgW = TgM + TgV;
3323
0
       ii[0] = TgL + TgW;
3324
0
       ii[WS(rs, 32)] = TgW - TgL;
3325
0
       TgH = T1t - T30;
3326
0
       ri[WS(rs, 48)] = TgH - TgK;
3327
0
       ri[WS(rs, 16)] = TgH + TgK;
3328
0
       TgY = TgV - TgM;
3329
0
       ii[WS(rs, 16)] = TgX + TgY;
3330
0
       ii[WS(rs, 48)] = TgY - TgX;
3331
0
        }
3332
0
        {
3333
0
       E Tgr, TgC, TgZ, Th2;
3334
0
       Tgr = Tgn + Tgq;
3335
0
       TgC = KP707106781 * (Tgw + TgB);
3336
0
       ri[WS(rs, 40)] = Tgr - TgC;
3337
0
       ri[WS(rs, 8)] = Tgr + TgC;
3338
0
       TgZ = KP707106781 * (TgE + TgF);
3339
0
       Th2 = Th0 + Th1;
3340
0
       ii[WS(rs, 8)] = TgZ + Th2;
3341
0
       ii[WS(rs, 40)] = Th2 - TgZ;
3342
0
        }
3343
0
        {
3344
0
       E TgD, TgG, Th3, Th4;
3345
0
       TgD = Tgn - Tgq;
3346
0
       TgG = KP707106781 * (TgE - TgF);
3347
0
       ri[WS(rs, 56)] = TgD - TgG;
3348
0
       ri[WS(rs, 24)] = TgD + TgG;
3349
0
       Th3 = KP707106781 * (TgB - Tgw);
3350
0
       Th4 = Th1 - Th0;
3351
0
       ii[WS(rs, 24)] = Th3 + Th4;
3352
0
       ii[WS(rs, 56)] = Th4 - Th3;
3353
0
        }
3354
0
         }
3355
0
         {
3356
0
        E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
3357
0
        E Tg5;
3358
0
        {
3359
0
       E Tfp, Tfs, Tgf, Tgg;
3360
0
       Tfp = Tj - TG;
3361
0
       Tfs = Tfq - Tfr;
3362
0
       Tft = Tfp - Tfs;
3363
0
       Tg7 = Tfp + Tfs;
3364
0
       Tgf = TfR + TfU;
3365
0
       Tgg = TfY + TfZ;
3366
0
       Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
3367
0
       Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
3368
0
        }
3369
0
        {
3370
0
       E Th7, Th8, Tfy, TfD;
3371
0
       Th7 = T1r - T14;
3372
0
       Th8 = TgT - TgO;
3373
0
       Th9 = Th7 + Th8;
3374
0
       Thf = Th8 - Th7;
3375
0
       Tfy = Tfw - Tfx;
3376
0
       TfD = Tfz + TfC;
3377
0
       TfE = KP707106781 * (Tfy - TfD);
3378
0
       Th6 = KP707106781 * (Tfy + TfD);
3379
0
        }
3380
0
        {
3381
0
       E TfK, TfP, Tg8, Tg9;
3382
0
       TfK = TfI - TfJ;
3383
0
       TfP = TfL - TfO;
3384
0
       TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
3385
0
       Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
3386
0
       Tg8 = Tfx + Tfw;
3387
0
       Tg9 = Tfz - TfC;
3388
0
       Tga = KP707106781 * (Tg8 + Tg9);
3389
0
       The = KP707106781 * (Tg9 - Tg8);
3390
0
        }
3391
0
        {
3392
0
       E Tgc, Tgd, TfV, Tg0;
3393
0
       Tgc = TfI + TfJ;
3394
0
       Tgd = TfL + TfO;
3395
0
       Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
3396
0
       Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
3397
0
       TfV = TfR - TfU;
3398
0
       Tg0 = TfY - TfZ;
3399
0
       Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
3400
0
       Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
3401
0
        }
3402
0
        {
3403
0
       E TfF, Tg2, Thd, Thg;
3404
0
       TfF = Tft + TfE;
3405
0
       Tg2 = TfQ + Tg1;
3406
0
       ri[WS(rs, 44)] = TfF - Tg2;
3407
0
       ri[WS(rs, 12)] = TfF + Tg2;
3408
0
       Thd = Tg4 + Tg5;
3409
0
       Thg = The + Thf;
3410
0
       ii[WS(rs, 12)] = Thd + Thg;
3411
0
       ii[WS(rs, 44)] = Thg - Thd;
3412
0
        }
3413
0
        {
3414
0
       E Tg3, Tg6, Thh, Thi;
3415
0
       Tg3 = Tft - TfE;
3416
0
       Tg6 = Tg4 - Tg5;
3417
0
       ri[WS(rs, 60)] = Tg3 - Tg6;
3418
0
       ri[WS(rs, 28)] = Tg3 + Tg6;
3419
0
       Thh = Tg1 - TfQ;
3420
0
       Thi = Thf - The;
3421
0
       ii[WS(rs, 28)] = Thh + Thi;
3422
0
       ii[WS(rs, 60)] = Thi - Thh;
3423
0
        }
3424
0
        {
3425
0
       E Tgb, Tgi, Th5, Tha;
3426
0
       Tgb = Tg7 + Tga;
3427
0
       Tgi = Tge + Tgh;
3428
0
       ri[WS(rs, 36)] = Tgb - Tgi;
3429
0
       ri[WS(rs, 4)] = Tgb + Tgi;
3430
0
       Th5 = Tgk + Tgl;
3431
0
       Tha = Th6 + Th9;
3432
0
       ii[WS(rs, 4)] = Th5 + Tha;
3433
0
       ii[WS(rs, 36)] = Tha - Th5;
3434
0
        }
3435
0
        {
3436
0
       E Tgj, Tgm, Thb, Thc;
3437
0
       Tgj = Tg7 - Tga;
3438
0
       Tgm = Tgk - Tgl;
3439
0
       ri[WS(rs, 52)] = Tgj - Tgm;
3440
0
       ri[WS(rs, 20)] = Tgj + Tgm;
3441
0
       Thb = Tgh - Tge;
3442
0
       Thc = Th9 - Th6;
3443
0
       ii[WS(rs, 20)] = Thb + Thc;
3444
0
       ii[WS(rs, 52)] = Thc - Thb;
3445
0
        }
3446
0
         }
3447
0
         {
3448
0
        E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
3449
0
        E Teu;
3450
0
        {
3451
0
       E TcP, Td0, Teo, Tep;
3452
0
       TcP = TcL - TcO;
3453
0
       Td0 = KP707106781 * (TcU - TcZ);
3454
0
       Td1 = TcP - Td0;
3455
0
       Ten = TcP + Td0;
3456
0
       {
3457
0
            E Tdc, Tdn, ThB, ThC;
3458
0
            Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
3459
0
            Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
3460
0
            Tdo = Tdc - Tdn;
3461
0
            ThA = Tdc + Tdn;
3462
0
            ThB = KP707106781 * (TeF - TeE);
3463
0
            ThC = Thn - Thm;
3464
0
            ThD = ThB + ThC;
3465
0
            ThJ = ThC - ThB;
3466
0
       }
3467
0
       Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
3468
0
       Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
3469
0
       Teq = Teo + Tep;
3470
0
       ThI = Tep - Teo;
3471
0
       {
3472
0
            E Te7, Tev, Teg, Tew, Te6, Tef;
3473
0
            Te6 = KP707106781 * (Te0 - Te5);
3474
0
            Te7 = TdV - Te6;
3475
0
            Tev = TdV + Te6;
3476
0
            Tef = KP707106781 * (Ted - Tee);
3477
0
            Teg = Tec - Tef;
3478
0
            Tew = Tec + Tef;
3479
0
            Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
3480
0
            TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
3481
0
            Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
3482
0
            Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
3483
0
       }
3484
0
       {
3485
0
            E TdG, Tes, TdP, Tet, TdF, TdO;
3486
0
            TdF = KP707106781 * (Tdz - TdE);
3487
0
            TdG = Tdu - TdF;
3488
0
            Tes = Tdu + TdF;
3489
0
            TdO = KP707106781 * (TdM - TdN);
3490
0
            TdP = TdL - TdO;
3491
0
            Tet = TdL + TdO;
3492
0
            TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
3493
0
            TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
3494
0
            Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
3495
0
            Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
3496
0
       }
3497
0
        }
3498
0
        {
3499
0
       E Tdp, Tei, ThH, ThK;
3500
0
       Tdp = Td1 + Tdo;
3501
0
       Tei = TdQ + Teh;
3502
0
       ri[WS(rs, 46)] = Tdp - Tei;
3503
0
       ri[WS(rs, 14)] = Tdp + Tei;
3504
0
       ThH = Tek + Tel;
3505
0
       ThK = ThI + ThJ;
3506
0
       ii[WS(rs, 14)] = ThH + ThK;
3507
0
       ii[WS(rs, 46)] = ThK - ThH;
3508
0
        }
3509
0
        {
3510
0
       E Tej, Tem, ThL, ThM;
3511
0
       Tej = Td1 - Tdo;
3512
0
       Tem = Tek - Tel;
3513
0
       ri[WS(rs, 62)] = Tej - Tem;
3514
0
       ri[WS(rs, 30)] = Tej + Tem;
3515
0
       ThL = Teh - TdQ;
3516
0
       ThM = ThJ - ThI;
3517
0
       ii[WS(rs, 30)] = ThL + ThM;
3518
0
       ii[WS(rs, 62)] = ThM - ThL;
3519
0
        }
3520
0
        {
3521
0
       E Ter, Tey, Thz, ThE;
3522
0
       Ter = Ten + Teq;
3523
0
       Tey = Teu + Tex;
3524
0
       ri[WS(rs, 38)] = Ter - Tey;
3525
0
       ri[WS(rs, 6)] = Ter + Tey;
3526
0
       Thz = TeA + TeB;
3527
0
       ThE = ThA + ThD;
3528
0
       ii[WS(rs, 6)] = Thz + ThE;
3529
0
       ii[WS(rs, 38)] = ThE - Thz;
3530
0
        }
3531
0
        {
3532
0
       E Tez, TeC, ThF, ThG;
3533
0
       Tez = Ten - Teq;
3534
0
       TeC = TeA - TeB;
3535
0
       ri[WS(rs, 54)] = Tez - TeC;
3536
0
       ri[WS(rs, 22)] = Tez + TeC;
3537
0
       ThF = Tex - Teu;
3538
0
       ThG = ThD - ThA;
3539
0
       ii[WS(rs, 22)] = ThF + ThG;
3540
0
       ii[WS(rs, 54)] = ThG - ThF;
3541
0
        }
3542
0
         }
3543
0
         {
3544
0
        E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
3545
0
        E Tfg;
3546
0
        {
3547
0
       E TeD, TeG, Tfa, Tfb;
3548
0
       TeD = TcL + TcO;
3549
0
       TeG = KP707106781 * (TeE + TeF);
3550
0
       TeH = TeD - TeG;
3551
0
       Tf9 = TeD + TeG;
3552
0
       {
3553
0
            E TeK, TeN, Thl, Tho;
3554
0
            TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
3555
0
            TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
3556
0
            TeO = TeK - TeN;
3557
0
            Thk = TeK + TeN;
3558
0
            Thl = KP707106781 * (TcU + TcZ);
3559
0
            Tho = Thm + Thn;
3560
0
            Thp = Thl + Tho;
3561
0
            Thv = Tho - Thl;
3562
0
       }
3563
0
       Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
3564
0
       Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
3565
0
       Tfc = Tfa + Tfb;
3566
0
       Thu = Tfb - Tfa;
3567
0
       {
3568
0
            E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
3569
0
            TeY = KP707106781 * (Tee + Ted);
3570
0
            TeZ = TeX - TeY;
3571
0
            Tfh = TeX + TeY;
3572
0
            Tf1 = KP707106781 * (Te0 + Te5);
3573
0
            Tf2 = Tf0 - Tf1;
3574
0
            Tfi = Tf0 + Tf1;
3575
0
            Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
3576
0
            Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
3577
0
            Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
3578
0
            Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
3579
0
       }
3580
0
       {
3581
0
            E TeS, Tfe, TeV, Tff, TeR, TeU;
3582
0
            TeR = KP707106781 * (TdE + Tdz);
3583
0
            TeS = TeQ - TeR;
3584
0
            Tfe = TeQ + TeR;
3585
0
            TeU = KP707106781 * (TdM + TdN);
3586
0
            TeV = TeT - TeU;
3587
0
            Tff = TeT + TeU;
3588
0
            TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
3589
0
            Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
3590
0
            Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
3591
0
            Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
3592
0
       }
3593
0
        }
3594
0
        {
3595
0
       E TeP, Tf4, Tht, Thw;
3596
0
       TeP = TeH + TeO;
3597
0
       Tf4 = TeW + Tf3;
3598
0
       ri[WS(rs, 42)] = TeP - Tf4;
3599
0
       ri[WS(rs, 10)] = TeP + Tf4;
3600
0
       Tht = Tf6 + Tf7;
3601
0
       Thw = Thu + Thv;
3602
0
       ii[WS(rs, 10)] = Tht + Thw;
3603
0
       ii[WS(rs, 42)] = Thw - Tht;
3604
0
        }
3605
0
        {
3606
0
       E Tf5, Tf8, Thx, Thy;
3607
0
       Tf5 = TeH - TeO;
3608
0
       Tf8 = Tf6 - Tf7;
3609
0
       ri[WS(rs, 58)] = Tf5 - Tf8;
3610
0
       ri[WS(rs, 26)] = Tf5 + Tf8;
3611
0
       Thx = Tf3 - TeW;
3612
0
       Thy = Thv - Thu;
3613
0
       ii[WS(rs, 26)] = Thx + Thy;
3614
0
       ii[WS(rs, 58)] = Thy - Thx;
3615
0
        }
3616
0
        {
3617
0
       E Tfd, Tfk, Thj, Thq;
3618
0
       Tfd = Tf9 + Tfc;
3619
0
       Tfk = Tfg + Tfj;
3620
0
       ri[WS(rs, 34)] = Tfd - Tfk;
3621
0
       ri[WS(rs, 2)] = Tfd + Tfk;
3622
0
       Thj = Tfm + Tfn;
3623
0
       Thq = Thk + Thp;
3624
0
       ii[WS(rs, 2)] = Thj + Thq;
3625
0
       ii[WS(rs, 34)] = Thq - Thj;
3626
0
        }
3627
0
        {
3628
0
       E Tfl, Tfo, Thr, Ths;
3629
0
       Tfl = Tf9 - Tfc;
3630
0
       Tfo = Tfm - Tfn;
3631
0
       ri[WS(rs, 50)] = Tfl - Tfo;
3632
0
       ri[WS(rs, 18)] = Tfl + Tfo;
3633
0
       Thr = Tfj - Tfg;
3634
0
       Ths = Thp - Thk;
3635
0
       ii[WS(rs, 18)] = Thr + Ths;
3636
0
       ii[WS(rs, 50)] = Ths - Thr;
3637
0
        }
3638
0
         }
3639
0
         {
3640
0
        E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
3641
0
        E T9H;
3642
0
        {
3643
0
       E T6n, T6K, TiB, TiC;
3644
0
       T6n = T6b - T6m;
3645
0
       T6K = T6y - T6J;
3646
0
       T6L = T6n - T6K;
3647
0
       T9x = T6n + T6K;
3648
0
       TiB = T9P - T9O;
3649
0
       TiC = Tin - Tim;
3650
0
       TiD = TiB + TiC;
3651
0
       TiJ = TiC - TiB;
3652
0
        }
3653
0
        {
3654
0
       E T7c, T9y, T7D, T9z;
3655
0
       {
3656
0
            E T72, T7b, T7t, T7C;
3657
0
            T72 = T6Q - T71;
3658
0
            T7b = T77 - T7a;
3659
0
            T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
3660
0
            T9y = FMA(KP980785280, T72, KP195090322 * T7b);
3661
0
            T7t = T7h - T7s;
3662
0
            T7C = T7y - T7B;
3663
0
            T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
3664
0
            T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
3665
0
       }
3666
0
       T7E = T7c - T7D;
3667
0
       TiI = T9z - T9y;
3668
0
       T9A = T9y + T9z;
3669
0
       TiA = T7c + T7D;
3670
0
        }
3671
0
        {
3672
0
       E T8k, T9C, T8x, T9D;
3673
0
       {
3674
0
            E T7W, T8j, T8t, T8w;
3675
0
            T7W = T7K - T7V;
3676
0
            T8j = T87 - T8i;
3677
0
            T8k = T7W - T8j;
3678
0
            T9C = T7W + T8j;
3679
0
            T8t = T8p - T8s;
3680
0
            T8w = T8u - T8v;
3681
0
            T8x = T8t - T8w;
3682
0
            T9D = T8t + T8w;
3683
0
       }
3684
0
       T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
3685
0
       T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
3686
0
       T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
3687
0
       T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
3688
0
        }
3689
0
        {
3690
0
       E T9d, T9F, T9q, T9G;
3691
0
       {
3692
0
            E T8P, T9c, T9m, T9p;
3693
0
            T8P = T8D - T8O;
3694
0
            T9c = T90 - T9b;
3695
0
            T9d = T8P - T9c;
3696
0
            T9F = T8P + T9c;
3697
0
            T9m = T9i - T9l;
3698
0
            T9p = T9n - T9o;
3699
0
            T9q = T9m - T9p;
3700
0
            T9G = T9m + T9p;
3701
0
       }
3702
0
       T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
3703
0
       T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
3704
0
       T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
3705
0
       T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
3706
0
        }
3707
0
        {
3708
0
       E T7F, T9s, TiH, TiK;
3709
0
       T7F = T6L + T7E;
3710
0
       T9s = T8y + T9r;
3711
0
       ri[WS(rs, 47)] = T7F - T9s;
3712
0
       ri[WS(rs, 15)] = T7F + T9s;
3713
0
       TiH = T9u + T9v;
3714
0
       TiK = TiI + TiJ;
3715
0
       ii[WS(rs, 15)] = TiH + TiK;
3716
0
       ii[WS(rs, 47)] = TiK - TiH;
3717
0
        }
3718
0
        {
3719
0
       E T9t, T9w, TiL, TiM;
3720
0
       T9t = T6L - T7E;
3721
0
       T9w = T9u - T9v;
3722
0
       ri[WS(rs, 63)] = T9t - T9w;
3723
0
       ri[WS(rs, 31)] = T9t + T9w;
3724
0
       TiL = T9r - T8y;
3725
0
       TiM = TiJ - TiI;
3726
0
       ii[WS(rs, 31)] = TiL + TiM;
3727
0
       ii[WS(rs, 63)] = TiM - TiL;
3728
0
        }
3729
0
        {
3730
0
       E T9B, T9I, Tiz, TiE;
3731
0
       T9B = T9x + T9A;
3732
0
       T9I = T9E + T9H;
3733
0
       ri[WS(rs, 39)] = T9B - T9I;
3734
0
       ri[WS(rs, 7)] = T9B + T9I;
3735
0
       Tiz = T9K + T9L;
3736
0
       TiE = TiA + TiD;
3737
0
       ii[WS(rs, 7)] = Tiz + TiE;
3738
0
       ii[WS(rs, 39)] = TiE - Tiz;
3739
0
        }
3740
0
        {
3741
0
       E T9J, T9M, TiF, TiG;
3742
0
       T9J = T9x - T9A;
3743
0
       T9M = T9K - T9L;
3744
0
       ri[WS(rs, 55)] = T9J - T9M;
3745
0
       ri[WS(rs, 23)] = T9J + T9M;
3746
0
       TiF = T9H - T9E;
3747
0
       TiG = TiD - TiA;
3748
0
       ii[WS(rs, 23)] = TiF + TiG;
3749
0
       ii[WS(rs, 55)] = TiG - TiF;
3750
0
        }
3751
0
         }
3752
0
         {
3753
0
        E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
3754
0
        E TbT;
3755
0
        {
3756
0
       E TaD, TaK, Ti7, Ti8;
3757
0
       TaD = Taz - TaC;
3758
0
       TaK = TaG - TaJ;
3759
0
       TaL = TaD - TaK;
3760
0
       TbJ = TaD + TaK;
3761
0
       Ti7 = Tc1 - Tc0;
3762
0
       Ti8 = ThT - ThQ;
3763
0
       Ti9 = Ti7 + Ti8;
3764
0
       Tif = Ti8 - Ti7;
3765
0
        }
3766
0
        {
3767
0
       E TaS, TbK, TaZ, TbL;
3768
0
       {
3769
0
            E TaO, TaR, TaV, TaY;
3770
0
            TaO = TaM - TaN;
3771
0
            TaR = TaP - TaQ;
3772
0
            TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
3773
0
            TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
3774
0
            TaV = TaT - TaU;
3775
0
            TaY = TaW - TaX;
3776
0
            TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
3777
0
            TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
3778
0
       }
3779
0
       Tb0 = TaS - TaZ;
3780
0
       Tie = TbL - TbK;
3781
0
       TbM = TbK + TbL;
3782
0
       Ti6 = TaS + TaZ;
3783
0
        }
3784
0
        {
3785
0
       E Tbc, TbO, Tbj, TbP;
3786
0
       {
3787
0
            E Tb4, Tbb, Tbf, Tbi;
3788
0
            Tb4 = Tb2 - Tb3;
3789
0
            Tbb = Tb7 - Tba;
3790
0
            Tbc = Tb4 - Tbb;
3791
0
            TbO = Tb4 + Tbb;
3792
0
            Tbf = Tbd - Tbe;
3793
0
            Tbi = Tbg - Tbh;
3794
0
            Tbj = Tbf - Tbi;
3795
0
            TbP = Tbf + Tbi;
3796
0
       }
3797
0
       Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
3798
0
       TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
3799
0
       TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
3800
0
       TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
3801
0
        }
3802
0
        {
3803
0
       E Tbv, TbR, TbC, TbS;
3804
0
       {
3805
0
            E Tbn, Tbu, Tby, TbB;
3806
0
            Tbn = Tbl - Tbm;
3807
0
            Tbu = Tbq - Tbt;
3808
0
            Tbv = Tbn - Tbu;
3809
0
            TbR = Tbn + Tbu;
3810
0
            Tby = Tbw - Tbx;
3811
0
            TbB = Tbz - TbA;
3812
0
            TbC = Tby - TbB;
3813
0
            TbS = Tby + TbB;
3814
0
       }
3815
0
       TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
3816
0
       TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
3817
0
       TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
3818
0
       TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
3819
0
        }
3820
0
        {
3821
0
       E Tb1, TbE, Tid, Tig;
3822
0
       Tb1 = TaL + Tb0;
3823
0
       TbE = Tbk + TbD;
3824
0
       ri[WS(rs, 45)] = Tb1 - TbE;
3825
0
       ri[WS(rs, 13)] = Tb1 + TbE;
3826
0
       Tid = TbG + TbH;
3827
0
       Tig = Tie + Tif;
3828
0
       ii[WS(rs, 13)] = Tid + Tig;
3829
0
       ii[WS(rs, 45)] = Tig - Tid;
3830
0
        }
3831
0
        {
3832
0
       E TbF, TbI, Tih, Tii;
3833
0
       TbF = TaL - Tb0;
3834
0
       TbI = TbG - TbH;
3835
0
       ri[WS(rs, 61)] = TbF - TbI;
3836
0
       ri[WS(rs, 29)] = TbF + TbI;
3837
0
       Tih = TbD - Tbk;
3838
0
       Tii = Tif - Tie;
3839
0
       ii[WS(rs, 29)] = Tih + Tii;
3840
0
       ii[WS(rs, 61)] = Tii - Tih;
3841
0
        }
3842
0
        {
3843
0
       E TbN, TbU, Ti5, Tia;
3844
0
       TbN = TbJ + TbM;
3845
0
       TbU = TbQ + TbT;
3846
0
       ri[WS(rs, 37)] = TbN - TbU;
3847
0
       ri[WS(rs, 5)] = TbN + TbU;
3848
0
       Ti5 = TbW + TbX;
3849
0
       Tia = Ti6 + Ti9;
3850
0
       ii[WS(rs, 5)] = Ti5 + Tia;
3851
0
       ii[WS(rs, 37)] = Tia - Ti5;
3852
0
        }
3853
0
        {
3854
0
       E TbV, TbY, Tib, Tic;
3855
0
       TbV = TbJ - TbM;
3856
0
       TbY = TbW - TbX;
3857
0
       ri[WS(rs, 53)] = TbV - TbY;
3858
0
       ri[WS(rs, 21)] = TbV + TbY;
3859
0
       Tib = TbT - TbQ;
3860
0
       Tic = Ti9 - Ti6;
3861
0
       ii[WS(rs, 21)] = Tib + Tic;
3862
0
       ii[WS(rs, 53)] = Tic - Tib;
3863
0
        }
3864
0
         }
3865
0
         {
3866
0
        E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
3867
0
        E TcF;
3868
0
        {
3869
0
       E TbZ, Tc2, ThP, ThU;
3870
0
       TbZ = Taz + TaC;
3871
0
       Tc2 = Tc0 + Tc1;
3872
0
       Tc3 = TbZ - Tc2;
3873
0
       Tcv = TbZ + Tc2;
3874
0
       ThP = TaG + TaJ;
3875
0
       ThU = ThQ + ThT;
3876
0
       ThV = ThP + ThU;
3877
0
       Ti1 = ThU - ThP;
3878
0
        }
3879
0
        {
3880
0
       E Tc6, Tcw, Tc9, Tcx;
3881
0
       {
3882
0
            E Tc4, Tc5, Tc7, Tc8;
3883
0
            Tc4 = TaM + TaN;
3884
0
            Tc5 = TaP + TaQ;
3885
0
            Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
3886
0
            Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
3887
0
            Tc7 = TaT + TaU;
3888
0
            Tc8 = TaW + TaX;
3889
0
            Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
3890
0
            Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
3891
0
       }
3892
0
       Tca = Tc6 - Tc9;
3893
0
       Ti0 = Tcx - Tcw;
3894
0
       Tcy = Tcw + Tcx;
3895
0
       ThO = Tc6 + Tc9;
3896
0
        }
3897
0
        {
3898
0
       E Tce, TcA, Tch, TcB;
3899
0
       {
3900
0
            E Tcc, Tcd, Tcf, Tcg;
3901
0
            Tcc = Tbd + Tbe;
3902
0
            Tcd = Tba + Tb7;
3903
0
            Tce = Tcc - Tcd;
3904
0
            TcA = Tcc + Tcd;
3905
0
            Tcf = Tb2 + Tb3;
3906
0
            Tcg = Tbg + Tbh;
3907
0
            Tch = Tcf - Tcg;
3908
0
            TcB = Tcf + Tcg;
3909
0
       }
3910
0
       Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
3911
0
       TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
3912
0
       Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
3913
0
       TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
3914
0
        }
3915
0
        {
3916
0
       E Tcl, TcD, Tco, TcE;
3917
0
       {
3918
0
            E Tcj, Tck, Tcm, Tcn;
3919
0
            Tcj = Tbl + Tbm;
3920
0
            Tck = TbA + Tbz;
3921
0
            Tcl = Tcj - Tck;
3922
0
            TcD = Tcj + Tck;
3923
0
            Tcm = Tbw + Tbx;
3924
0
            Tcn = Tbq + Tbt;
3925
0
            Tco = Tcm - Tcn;
3926
0
            TcE = Tcm + Tcn;
3927
0
       }
3928
0
       Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
3929
0
       TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
3930
0
       Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
3931
0
       TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
3932
0
        }
3933
0
        {
3934
0
       E Tcb, Tcq, ThZ, Ti2;
3935
0
       Tcb = Tc3 + Tca;
3936
0
       Tcq = Tci + Tcp;
3937
0
       ri[WS(rs, 41)] = Tcb - Tcq;
3938
0
       ri[WS(rs, 9)] = Tcb + Tcq;
3939
0
       ThZ = Tcs + Tct;
3940
0
       Ti2 = Ti0 + Ti1;
3941
0
       ii[WS(rs, 9)] = ThZ + Ti2;
3942
0
       ii[WS(rs, 41)] = Ti2 - ThZ;
3943
0
        }
3944
0
        {
3945
0
       E Tcr, Tcu, Ti3, Ti4;
3946
0
       Tcr = Tc3 - Tca;
3947
0
       Tcu = Tcs - Tct;
3948
0
       ri[WS(rs, 57)] = Tcr - Tcu;
3949
0
       ri[WS(rs, 25)] = Tcr + Tcu;
3950
0
       Ti3 = Tcp - Tci;
3951
0
       Ti4 = Ti1 - Ti0;
3952
0
       ii[WS(rs, 25)] = Ti3 + Ti4;
3953
0
       ii[WS(rs, 57)] = Ti4 - Ti3;
3954
0
        }
3955
0
        {
3956
0
       E Tcz, TcG, ThN, ThW;
3957
0
       Tcz = Tcv + Tcy;
3958
0
       TcG = TcC + TcF;
3959
0
       ri[WS(rs, 33)] = Tcz - TcG;
3960
0
       ri[WS(rs, 1)] = Tcz + TcG;
3961
0
       ThN = TcI + TcJ;
3962
0
       ThW = ThO + ThV;
3963
0
       ii[WS(rs, 1)] = ThN + ThW;
3964
0
       ii[WS(rs, 33)] = ThW - ThN;
3965
0
        }
3966
0
        {
3967
0
       E TcH, TcK, ThX, ThY;
3968
0
       TcH = Tcv - Tcy;
3969
0
       TcK = TcI - TcJ;
3970
0
       ri[WS(rs, 49)] = TcH - TcK;
3971
0
       ri[WS(rs, 17)] = TcH + TcK;
3972
0
       ThX = TcF - TcC;
3973
0
       ThY = ThV - ThO;
3974
0
       ii[WS(rs, 17)] = ThX + ThY;
3975
0
       ii[WS(rs, 49)] = ThY - ThX;
3976
0
        }
3977
0
         }
3978
0
         {
3979
0
        E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
3980
0
        E Tat;
3981
0
        {
3982
0
       E T9N, T9Q, Til, Tio;
3983
0
       T9N = T6b + T6m;
3984
0
       T9Q = T9O + T9P;
3985
0
       T9R = T9N - T9Q;
3986
0
       Taj = T9N + T9Q;
3987
0
       Til = T6y + T6J;
3988
0
       Tio = Tim + Tin;
3989
0
       Tip = Til + Tio;
3990
0
       Tiv = Tio - Til;
3991
0
        }
3992
0
        {
3993
0
       E T9U, Tak, T9X, Tal;
3994
0
       {
3995
0
            E T9S, T9T, T9V, T9W;
3996
0
            T9S = T6Q + T71;
3997
0
            T9T = T77 + T7a;
3998
0
            T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
3999
0
            Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
4000
0
            T9V = T7h + T7s;
4001
0
            T9W = T7y + T7B;
4002
0
            T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
4003
0
            Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
4004
0
       }
4005
0
       T9Y = T9U - T9X;
4006
0
       Tiu = Tal - Tak;
4007
0
       Tam = Tak + Tal;
4008
0
       Tik = T9U + T9X;
4009
0
        }
4010
0
        {
4011
0
       E Ta2, Tao, Ta5, Tap;
4012
0
       {
4013
0
            E Ta0, Ta1, Ta3, Ta4;
4014
0
            Ta0 = T8p + T8s;
4015
0
            Ta1 = T8i + T87;
4016
0
            Ta2 = Ta0 - Ta1;
4017
0
            Tao = Ta0 + Ta1;
4018
0
            Ta3 = T7K + T7V;
4019
0
            Ta4 = T8u + T8v;
4020
0
            Ta5 = Ta3 - Ta4;
4021
0
            Tap = Ta3 + Ta4;
4022
0
       }
4023
0
       Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
4024
0
       Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
4025
0
       Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
4026
0
       Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
4027
0
        }
4028
0
        {
4029
0
       E Ta9, Tar, Tac, Tas;
4030
0
       {
4031
0
            E Ta7, Ta8, Taa, Tab;
4032
0
            Ta7 = T8D + T8O;
4033
0
            Ta8 = T9o + T9n;
4034
0
            Ta9 = Ta7 - Ta8;
4035
0
            Tar = Ta7 + Ta8;
4036
0
            Taa = T9i + T9l;
4037
0
            Tab = T90 + T9b;
4038
0
            Tac = Taa - Tab;
4039
0
            Tas = Taa + Tab;
4040
0
       }
4041
0
       Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
4042
0
       Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
4043
0
       Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
4044
0
       Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
4045
0
        }
4046
0
        {
4047
0
       E T9Z, Tae, Tit, Tiw;
4048
0
       T9Z = T9R + T9Y;
4049
0
       Tae = Ta6 + Tad;
4050
0
       ri[WS(rs, 43)] = T9Z - Tae;
4051
0
       ri[WS(rs, 11)] = T9Z + Tae;
4052
0
       Tit = Tag + Tah;
4053
0
       Tiw = Tiu + Tiv;
4054
0
       ii[WS(rs, 11)] = Tit + Tiw;
4055
0
       ii[WS(rs, 43)] = Tiw - Tit;
4056
0
        }
4057
0
        {
4058
0
       E Taf, Tai, Tix, Tiy;
4059
0
       Taf = T9R - T9Y;
4060
0
       Tai = Tag - Tah;
4061
0
       ri[WS(rs, 59)] = Taf - Tai;
4062
0
       ri[WS(rs, 27)] = Taf + Tai;
4063
0
       Tix = Tad - Ta6;
4064
0
       Tiy = Tiv - Tiu;
4065
0
       ii[WS(rs, 27)] = Tix + Tiy;
4066
0
       ii[WS(rs, 59)] = Tiy - Tix;
4067
0
        }
4068
0
        {
4069
0
       E Tan, Tau, Tij, Tiq;
4070
0
       Tan = Taj + Tam;
4071
0
       Tau = Taq + Tat;
4072
0
       ri[WS(rs, 35)] = Tan - Tau;
4073
0
       ri[WS(rs, 3)] = Tan + Tau;
4074
0
       Tij = Taw + Tax;
4075
0
       Tiq = Tik + Tip;
4076
0
       ii[WS(rs, 3)] = Tij + Tiq;
4077
0
       ii[WS(rs, 35)] = Tiq - Tij;
4078
0
        }
4079
0
        {
4080
0
       E Tav, Tay, Tir, Tis;
4081
0
       Tav = Taj - Tam;
4082
0
       Tay = Taw - Tax;
4083
0
       ri[WS(rs, 51)] = Tav - Tay;
4084
0
       ri[WS(rs, 19)] = Tav + Tay;
4085
0
       Tir = Tat - Taq;
4086
0
       Tis = Tip - Tik;
4087
0
       ii[WS(rs, 19)] = Tir + Tis;
4088
0
       ii[WS(rs, 51)] = Tis - Tir;
4089
0
        }
4090
0
         }
4091
0
    }
4092
0
     }
4093
0
}
4094
4095
static const tw_instr twinstr[] = {
4096
     { TW_FULL, 0, 64 },
4097
     { TW_NEXT, 1, 0 }
4098
};
4099
4100
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 808, 270, 230, 0 }, 0, 0, 0 };
4101
4102
1
void X(codelet_t1_64) (planner *p) {
4103
1
     X(kdft_dit_register) (p, t1_64, &desc);
4104
1
}
4105
#endif