/src/fftw3/dft/scalar/codelets/t1_64.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Oct 13 06:59:13 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 1038 FP additions, 644 FP multiplications, |
32 | | * (or, 520 additions, 126 multiplications, 518 fused multiply/add), |
33 | | * 190 stack variables, 15 constants, and 256 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
40 | | DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
41 | | DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
42 | | DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
43 | | DK(KP098491403, +0.098491403357164253077197521291327432293052451); |
44 | | DK(KP820678790, +0.820678790828660330972281985331011598767386482); |
45 | | DK(KP303346683, +0.303346683607342391675883946941299872384187453); |
46 | | DK(KP534511135, +0.534511135950791641089685961295362908582039528); |
47 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
48 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
49 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
50 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
51 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
52 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
53 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
54 | | { |
55 | | INT m; |
56 | | for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { |
57 | | E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X; |
58 | | E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm; |
59 | | E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B; |
60 | | E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH; |
61 | | E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm; |
62 | | E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV; |
63 | | E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h; |
64 | | E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr; |
65 | | E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu; |
66 | | { |
67 | | E T1, TiT, T7, TiS, Te, T7a, Tk, T7c; |
68 | | T1 = ri[0]; |
69 | | TiT = ii[0]; |
70 | | { |
71 | | E T3, T6, T4, TiR, T2, T5; |
72 | | T3 = ri[WS(rs, 32)]; |
73 | | T6 = ii[WS(rs, 32)]; |
74 | | T2 = W[62]; |
75 | | T4 = T2 * T3; |
76 | | TiR = T2 * T6; |
77 | | T5 = W[63]; |
78 | | T7 = FMA(T5, T6, T4); |
79 | | TiS = FNMS(T5, T3, TiR); |
80 | | } |
81 | | { |
82 | | E Ta, Td, Tb, T79, T9, Tc; |
83 | | Ta = ri[WS(rs, 16)]; |
84 | | Td = ii[WS(rs, 16)]; |
85 | | T9 = W[30]; |
86 | | Tb = T9 * Ta; |
87 | | T79 = T9 * Td; |
88 | | Tc = W[31]; |
89 | | Te = FMA(Tc, Td, Tb); |
90 | | T7a = FNMS(Tc, Ta, T79); |
91 | | } |
92 | | { |
93 | | E Tg, Tj, Th, T7b, Tf, Ti; |
94 | | Tg = ri[WS(rs, 48)]; |
95 | | Tj = ii[WS(rs, 48)]; |
96 | | Tf = W[94]; |
97 | | Th = Tf * Tg; |
98 | | T7b = Tf * Tj; |
99 | | Ti = W[95]; |
100 | | Tk = FMA(Ti, Tj, Th); |
101 | | T7c = FNMS(Ti, Tg, T7b); |
102 | | } |
103 | | { |
104 | | E T8, Tl, TjP, TjQ; |
105 | | T8 = T1 + T7; |
106 | | Tl = Te + Tk; |
107 | | Tm = T8 + Tl; |
108 | | TeM = T8 - Tl; |
109 | | TjP = TiT - TiS; |
110 | | TjQ = Te - Tk; |
111 | | TjR = TjP - TjQ; |
112 | | Tkl = TjQ + TjP; |
113 | | } |
114 | | { |
115 | | E T78, T7d, TiQ, TiU; |
116 | | T78 = T1 - T7; |
117 | | T7d = T7a - T7c; |
118 | | T7e = T78 - T7d; |
119 | | TcA = T78 + T7d; |
120 | | TiQ = T7a + T7c; |
121 | | TiU = TiS + TiT; |
122 | | TiV = TiQ + TiU; |
123 | | Tjm = TiU - TiQ; |
124 | | } |
125 | | } |
126 | | { |
127 | | E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T; |
128 | | { |
129 | | E T1h, T1k, T1i, T7K, T1g, T1j; |
130 | | T1h = ri[WS(rs, 60)]; |
131 | | T1k = ii[WS(rs, 60)]; |
132 | | T1g = W[118]; |
133 | | T1i = T1g * T1h; |
134 | | T7K = T1g * T1k; |
135 | | T1j = W[119]; |
136 | | T1l = FMA(T1j, T1k, T1i); |
137 | | T7L = FNMS(T1j, T1h, T7K); |
138 | | } |
139 | | { |
140 | | E T1A, T1D, T1B, T7U, T1z, T1C; |
141 | | T1A = ri[WS(rs, 44)]; |
142 | | T1D = ii[WS(rs, 44)]; |
143 | | T1z = W[86]; |
144 | | T1B = T1z * T1A; |
145 | | T7U = T1z * T1D; |
146 | | T1C = W[87]; |
147 | | T1E = FMA(T1C, T1D, T1B); |
148 | | T7V = FNMS(T1C, T1A, T7U); |
149 | | } |
150 | | { |
151 | | E T1n, T1q, T1o, T7M, T1m, T1p; |
152 | | T1n = ri[WS(rs, 28)]; |
153 | | T1q = ii[WS(rs, 28)]; |
154 | | T1m = W[54]; |
155 | | T1o = T1m * T1n; |
156 | | T7M = T1m * T1q; |
157 | | T1p = W[55]; |
158 | | T1r = FMA(T1p, T1q, T1o); |
159 | | T7N = FNMS(T1p, T1n, T7M); |
160 | | } |
161 | | { |
162 | | E T1u, T1x, T1v, T7S, T1t, T1w; |
163 | | T1u = ri[WS(rs, 12)]; |
164 | | T1x = ii[WS(rs, 12)]; |
165 | | T1t = W[22]; |
166 | | T1v = T1t * T1u; |
167 | | T7S = T1t * T1x; |
168 | | T1w = W[23]; |
169 | | T1y = FMA(T1w, T1x, T1v); |
170 | | T7T = FNMS(T1w, T1u, T7S); |
171 | | } |
172 | | { |
173 | | E T1s, T1F, TeX, TeY; |
174 | | T1s = T1l + T1r; |
175 | | T1F = T1y + T1E; |
176 | | T1G = T1s + T1F; |
177 | | TeW = T1s - T1F; |
178 | | TeX = T7L + T7N; |
179 | | TeY = T7T + T7V; |
180 | | TeZ = TeX - TeY; |
181 | | Ths = TeX + TeY; |
182 | | } |
183 | | { |
184 | | E T7O, T7P, T7R, T7W; |
185 | | T7O = T7L - T7N; |
186 | | T7P = T1y - T1E; |
187 | | T7Q = T7O + T7P; |
188 | | TcJ = T7O - T7P; |
189 | | T7R = T1l - T1r; |
190 | | T7W = T7T - T7V; |
191 | | T7X = T7R - T7W; |
192 | | TcI = T7R + T7W; |
193 | | } |
194 | | } |
195 | | { |
196 | | E T1O, T82, T27, T8s, T1U, T84, T21, T8q; |
197 | | { |
198 | | E T1K, T1N, T1L, T81, T1J, T1M; |
199 | | T1K = ri[WS(rs, 2)]; |
200 | | T1N = ii[WS(rs, 2)]; |
201 | | T1J = W[2]; |
202 | | T1L = T1J * T1K; |
203 | | T81 = T1J * T1N; |
204 | | T1M = W[3]; |
205 | | T1O = FMA(T1M, T1N, T1L); |
206 | | T82 = FNMS(T1M, T1K, T81); |
207 | | } |
208 | | { |
209 | | E T23, T26, T24, T8r, T22, T25; |
210 | | T23 = ri[WS(rs, 50)]; |
211 | | T26 = ii[WS(rs, 50)]; |
212 | | T22 = W[98]; |
213 | | T24 = T22 * T23; |
214 | | T8r = T22 * T26; |
215 | | T25 = W[99]; |
216 | | T27 = FMA(T25, T26, T24); |
217 | | T8s = FNMS(T25, T23, T8r); |
218 | | } |
219 | | { |
220 | | E T1Q, T1T, T1R, T83, T1P, T1S; |
221 | | T1Q = ri[WS(rs, 34)]; |
222 | | T1T = ii[WS(rs, 34)]; |
223 | | T1P = W[66]; |
224 | | T1R = T1P * T1Q; |
225 | | T83 = T1P * T1T; |
226 | | T1S = W[67]; |
227 | | T1U = FMA(T1S, T1T, T1R); |
228 | | T84 = FNMS(T1S, T1Q, T83); |
229 | | } |
230 | | { |
231 | | E T1X, T20, T1Y, T8p, T1W, T1Z; |
232 | | T1X = ri[WS(rs, 18)]; |
233 | | T20 = ii[WS(rs, 18)]; |
234 | | T1W = W[34]; |
235 | | T1Y = T1W * T1X; |
236 | | T8p = T1W * T20; |
237 | | T1Z = W[35]; |
238 | | T21 = FMA(T1Z, T20, T1Y); |
239 | | T8q = FNMS(T1Z, T1X, T8p); |
240 | | } |
241 | | { |
242 | | E T1V, T28, Tf3, Tf4; |
243 | | T1V = T1O + T1U; |
244 | | T28 = T21 + T27; |
245 | | T29 = T1V + T28; |
246 | | Tf8 = T1V - T28; |
247 | | Tf3 = T82 + T84; |
248 | | Tf4 = T8q + T8s; |
249 | | Tf5 = Tf3 - Tf4; |
250 | | Thv = Tf3 + Tf4; |
251 | | } |
252 | | { |
253 | | E T85, T86, T8o, T8t; |
254 | | T85 = T82 - T84; |
255 | | T86 = T21 - T27; |
256 | | T87 = T85 + T86; |
257 | | TcN = T85 - T86; |
258 | | T8o = T1O - T1U; |
259 | | T8t = T8q - T8s; |
260 | | T8u = T8o - T8t; |
261 | | TcQ = T8o + T8t; |
262 | | } |
263 | | } |
264 | | { |
265 | | E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf; |
266 | | { |
267 | | E T5l, T5o, T5m, Tak, T5k, T5n; |
268 | | T5l = ri[WS(rs, 63)]; |
269 | | T5o = ii[WS(rs, 63)]; |
270 | | T5k = W[124]; |
271 | | T5m = T5k * T5l; |
272 | | Tak = T5k * T5o; |
273 | | T5n = W[125]; |
274 | | T5p = FMA(T5n, T5o, T5m); |
275 | | Tal = FNMS(T5n, T5l, Tak); |
276 | | } |
277 | | { |
278 | | E T5E, T5H, T5F, Tbg, T5D, T5G; |
279 | | T5E = ri[WS(rs, 47)]; |
280 | | T5H = ii[WS(rs, 47)]; |
281 | | T5D = W[92]; |
282 | | T5F = T5D * T5E; |
283 | | Tbg = T5D * T5H; |
284 | | T5G = W[93]; |
285 | | T5I = FMA(T5G, T5H, T5F); |
286 | | Tbh = FNMS(T5G, T5E, Tbg); |
287 | | } |
288 | | { |
289 | | E T5r, T5u, T5s, Tam, T5q, T5t; |
290 | | T5r = ri[WS(rs, 31)]; |
291 | | T5u = ii[WS(rs, 31)]; |
292 | | T5q = W[60]; |
293 | | T5s = T5q * T5r; |
294 | | Tam = T5q * T5u; |
295 | | T5t = W[61]; |
296 | | T5v = FMA(T5t, T5u, T5s); |
297 | | Tan = FNMS(T5t, T5r, Tam); |
298 | | } |
299 | | { |
300 | | E T5y, T5B, T5z, Tbe, T5x, T5A; |
301 | | T5y = ri[WS(rs, 15)]; |
302 | | T5B = ii[WS(rs, 15)]; |
303 | | T5x = W[28]; |
304 | | T5z = T5x * T5y; |
305 | | Tbe = T5x * T5B; |
306 | | T5A = W[29]; |
307 | | T5C = FMA(T5A, T5B, T5z); |
308 | | Tbf = FNMS(T5A, T5y, Tbe); |
309 | | } |
310 | | { |
311 | | E T5w, T5J, TfS, TfT; |
312 | | T5w = T5p + T5v; |
313 | | T5J = T5C + T5I; |
314 | | T5K = T5w + T5J; |
315 | | Tg9 = T5w - T5J; |
316 | | TfS = Tal + Tan; |
317 | | TfT = Tbf + Tbh; |
318 | | TfU = TfS - TfT; |
319 | | ThS = TfS + TfT; |
320 | | } |
321 | | { |
322 | | E Tao, Tap, Tbd, Tbi; |
323 | | Tao = Tal - Tan; |
324 | | Tap = T5C - T5I; |
325 | | Taq = Tao + Tap; |
326 | | Tdm = Tao - Tap; |
327 | | Tbd = T5p - T5v; |
328 | | Tbi = Tbf - Tbh; |
329 | | Tbj = Tbd - Tbi; |
330 | | Tdx = Tbd + Tbi; |
331 | | } |
332 | | } |
333 | | { |
334 | | E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o; |
335 | | { |
336 | | E To, Tr, Tp, T7f, Tn, Tq; |
337 | | To = ri[WS(rs, 8)]; |
338 | | Tr = ii[WS(rs, 8)]; |
339 | | Tn = W[14]; |
340 | | Tp = Tn * To; |
341 | | T7f = Tn * Tr; |
342 | | Tq = W[15]; |
343 | | Ts = FMA(Tq, Tr, Tp); |
344 | | T7g = FNMS(Tq, To, T7f); |
345 | | } |
346 | | { |
347 | | E TH, TK, TI, T7p, TG, TJ; |
348 | | TH = ri[WS(rs, 24)]; |
349 | | TK = ii[WS(rs, 24)]; |
350 | | TG = W[46]; |
351 | | TI = TG * TH; |
352 | | T7p = TG * TK; |
353 | | TJ = W[47]; |
354 | | TL = FMA(TJ, TK, TI); |
355 | | T7q = FNMS(TJ, TH, T7p); |
356 | | } |
357 | | { |
358 | | E Tu, Tx, Tv, T7h, Tt, Tw; |
359 | | Tu = ri[WS(rs, 40)]; |
360 | | Tx = ii[WS(rs, 40)]; |
361 | | Tt = W[78]; |
362 | | Tv = Tt * Tu; |
363 | | T7h = Tt * Tx; |
364 | | Tw = W[79]; |
365 | | Ty = FMA(Tw, Tx, Tv); |
366 | | T7i = FNMS(Tw, Tu, T7h); |
367 | | } |
368 | | { |
369 | | E TB, TE, TC, T7n, TA, TD; |
370 | | TB = ri[WS(rs, 56)]; |
371 | | TE = ii[WS(rs, 56)]; |
372 | | TA = W[110]; |
373 | | TC = TA * TB; |
374 | | T7n = TA * TE; |
375 | | TD = W[111]; |
376 | | TF = FMA(TD, TE, TC); |
377 | | T7o = FNMS(TD, TB, T7n); |
378 | | } |
379 | | { |
380 | | E Tz, TM, TeN, TeO; |
381 | | Tz = Ts + Ty; |
382 | | TM = TF + TL; |
383 | | TN = Tz + TM; |
384 | | Tjl = TM - Tz; |
385 | | TeN = T7g + T7i; |
386 | | TeO = T7o + T7q; |
387 | | TeP = TeN - TeO; |
388 | | TiP = TeN + TeO; |
389 | | } |
390 | | { |
391 | | E T7j, T7k, T7m, T7r; |
392 | | T7j = T7g - T7i; |
393 | | T7k = Ts - Ty; |
394 | | T7l = T7j - T7k; |
395 | | TcB = T7k + T7j; |
396 | | T7m = TF - TL; |
397 | | T7r = T7o - T7q; |
398 | | T7s = T7m + T7r; |
399 | | TcC = T7m - T7r; |
400 | | } |
401 | | } |
402 | | { |
403 | | E TU, T7w, T1d, T7G, T10, T7y, T17, T7E; |
404 | | { |
405 | | E TQ, TT, TR, T7v, TP, TS; |
406 | | TQ = ri[WS(rs, 4)]; |
407 | | TT = ii[WS(rs, 4)]; |
408 | | TP = W[6]; |
409 | | TR = TP * TQ; |
410 | | T7v = TP * TT; |
411 | | TS = W[7]; |
412 | | TU = FMA(TS, TT, TR); |
413 | | T7w = FNMS(TS, TQ, T7v); |
414 | | } |
415 | | { |
416 | | E T19, T1c, T1a, T7F, T18, T1b; |
417 | | T19 = ri[WS(rs, 52)]; |
418 | | T1c = ii[WS(rs, 52)]; |
419 | | T18 = W[102]; |
420 | | T1a = T18 * T19; |
421 | | T7F = T18 * T1c; |
422 | | T1b = W[103]; |
423 | | T1d = FMA(T1b, T1c, T1a); |
424 | | T7G = FNMS(T1b, T19, T7F); |
425 | | } |
426 | | { |
427 | | E TW, TZ, TX, T7x, TV, TY; |
428 | | TW = ri[WS(rs, 36)]; |
429 | | TZ = ii[WS(rs, 36)]; |
430 | | TV = W[70]; |
431 | | TX = TV * TW; |
432 | | T7x = TV * TZ; |
433 | | TY = W[71]; |
434 | | T10 = FMA(TY, TZ, TX); |
435 | | T7y = FNMS(TY, TW, T7x); |
436 | | } |
437 | | { |
438 | | E T13, T16, T14, T7D, T12, T15; |
439 | | T13 = ri[WS(rs, 20)]; |
440 | | T16 = ii[WS(rs, 20)]; |
441 | | T12 = W[38]; |
442 | | T14 = T12 * T13; |
443 | | T7D = T12 * T16; |
444 | | T15 = W[39]; |
445 | | T17 = FMA(T15, T16, T14); |
446 | | T7E = FNMS(T15, T13, T7D); |
447 | | } |
448 | | { |
449 | | E T11, T1e, TeS, TeT; |
450 | | T11 = TU + T10; |
451 | | T1e = T17 + T1d; |
452 | | T1f = T11 + T1e; |
453 | | TeR = T11 - T1e; |
454 | | TeS = T7w + T7y; |
455 | | TeT = T7E + T7G; |
456 | | TeU = TeS - TeT; |
457 | | Thr = TeS + TeT; |
458 | | } |
459 | | { |
460 | | E T7z, T7A, T7C, T7H; |
461 | | T7z = T7w - T7y; |
462 | | T7A = T17 - T1d; |
463 | | T7B = T7z + T7A; |
464 | | TcG = T7z - T7A; |
465 | | T7C = TU - T10; |
466 | | T7H = T7E - T7G; |
467 | | T7I = T7C - T7H; |
468 | | TcF = T7C + T7H; |
469 | | } |
470 | | } |
471 | | { |
472 | | E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z; |
473 | | { |
474 | | E T2D, T2G, T2E, T8A, T2C, T2F; |
475 | | T2D = ri[WS(rs, 62)]; |
476 | | T2G = ii[WS(rs, 62)]; |
477 | | T2C = W[122]; |
478 | | T2E = T2C * T2D; |
479 | | T8A = T2C * T2G; |
480 | | T2F = W[123]; |
481 | | T2H = FMA(T2F, T2G, T2E); |
482 | | T8B = FNMS(T2F, T2D, T8A); |
483 | | } |
484 | | { |
485 | | E T2W, T2Z, T2X, T90, T2V, T2Y; |
486 | | T2W = ri[WS(rs, 46)]; |
487 | | T2Z = ii[WS(rs, 46)]; |
488 | | T2V = W[90]; |
489 | | T2X = T2V * T2W; |
490 | | T90 = T2V * T2Z; |
491 | | T2Y = W[91]; |
492 | | T30 = FMA(T2Y, T2Z, T2X); |
493 | | T91 = FNMS(T2Y, T2W, T90); |
494 | | } |
495 | | { |
496 | | E T2J, T2M, T2K, T8C, T2I, T2L; |
497 | | T2J = ri[WS(rs, 30)]; |
498 | | T2M = ii[WS(rs, 30)]; |
499 | | T2I = W[58]; |
500 | | T2K = T2I * T2J; |
501 | | T8C = T2I * T2M; |
502 | | T2L = W[59]; |
503 | | T2N = FMA(T2L, T2M, T2K); |
504 | | T8D = FNMS(T2L, T2J, T8C); |
505 | | } |
506 | | { |
507 | | E T2Q, T2T, T2R, T8Y, T2P, T2S; |
508 | | T2Q = ri[WS(rs, 14)]; |
509 | | T2T = ii[WS(rs, 14)]; |
510 | | T2P = W[26]; |
511 | | T2R = T2P * T2Q; |
512 | | T8Y = T2P * T2T; |
513 | | T2S = W[27]; |
514 | | T2U = FMA(T2S, T2T, T2R); |
515 | | T8Z = FNMS(T2S, T2Q, T8Y); |
516 | | } |
517 | | { |
518 | | E T2O, T31, Tfe, Tff; |
519 | | T2O = T2H + T2N; |
520 | | T31 = T2U + T30; |
521 | | T32 = T2O + T31; |
522 | | Tfj = T2O - T31; |
523 | | Tfe = T8B + T8D; |
524 | | Tff = T8Z + T91; |
525 | | Tfg = Tfe - Tff; |
526 | | ThB = Tfe + Tff; |
527 | | } |
528 | | { |
529 | | E T8E, T8F, T8X, T92; |
530 | | T8E = T8B - T8D; |
531 | | T8F = T2U - T30; |
532 | | T8G = T8E + T8F; |
533 | | TcU = T8E - T8F; |
534 | | T8X = T2H - T2N; |
535 | | T92 = T8Z - T91; |
536 | | T93 = T8X - T92; |
537 | | TcX = T8X + T92; |
538 | | } |
539 | | } |
540 | | { |
541 | | E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6; |
542 | | { |
543 | | E T3y, T3B, T3z, T9b, T3x, T3A; |
544 | | T3y = ri[WS(rs, 1)]; |
545 | | T3B = ii[WS(rs, 1)]; |
546 | | T3x = W[0]; |
547 | | T3z = T3x * T3y; |
548 | | T9b = T3x * T3B; |
549 | | T3A = W[1]; |
550 | | T3C = FMA(T3A, T3B, T3z); |
551 | | T9c = FNMS(T3A, T3y, T9b); |
552 | | } |
553 | | { |
554 | | E T3R, T3U, T3S, Ta7, T3Q, T3T; |
555 | | T3R = ri[WS(rs, 49)]; |
556 | | T3U = ii[WS(rs, 49)]; |
557 | | T3Q = W[96]; |
558 | | T3S = T3Q * T3R; |
559 | | Ta7 = T3Q * T3U; |
560 | | T3T = W[97]; |
561 | | T3V = FMA(T3T, T3U, T3S); |
562 | | Ta8 = FNMS(T3T, T3R, Ta7); |
563 | | } |
564 | | { |
565 | | E T3E, T3H, T3F, T9d, T3D, T3G; |
566 | | T3E = ri[WS(rs, 33)]; |
567 | | T3H = ii[WS(rs, 33)]; |
568 | | T3D = W[64]; |
569 | | T3F = T3D * T3E; |
570 | | T9d = T3D * T3H; |
571 | | T3G = W[65]; |
572 | | T3I = FMA(T3G, T3H, T3F); |
573 | | T9e = FNMS(T3G, T3E, T9d); |
574 | | } |
575 | | { |
576 | | E T3L, T3O, T3M, Ta5, T3K, T3N; |
577 | | T3L = ri[WS(rs, 17)]; |
578 | | T3O = ii[WS(rs, 17)]; |
579 | | T3K = W[32]; |
580 | | T3M = T3K * T3L; |
581 | | Ta5 = T3K * T3O; |
582 | | T3N = W[33]; |
583 | | T3P = FMA(T3N, T3O, T3M); |
584 | | Ta6 = FNMS(T3N, T3L, Ta5); |
585 | | } |
586 | | { |
587 | | E T3J, T3W, Tfr, Tfs; |
588 | | T3J = T3C + T3I; |
589 | | T3W = T3P + T3V; |
590 | | T3X = T3J + T3W; |
591 | | TfI = T3J - T3W; |
592 | | Tfr = T9c + T9e; |
593 | | Tfs = Ta6 + Ta8; |
594 | | Tft = Tfr - Tfs; |
595 | | ThH = Tfr + Tfs; |
596 | | } |
597 | | { |
598 | | E T9f, T9g, Ta4, Ta9; |
599 | | T9f = T9c - T9e; |
600 | | T9g = T3P - T3V; |
601 | | T9h = T9f + T9g; |
602 | | Td3 = T9f - T9g; |
603 | | Ta4 = T3C - T3I; |
604 | | Ta9 = Ta6 - Ta8; |
605 | | Taa = Ta4 - Ta9; |
606 | | Tde = Ta4 + Ta9; |
607 | | } |
608 | | } |
609 | | { |
610 | | E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h; |
611 | | { |
612 | | E T2b, T2e, T2c, T89, T2a, T2d; |
613 | | T2b = ri[WS(rs, 10)]; |
614 | | T2e = ii[WS(rs, 10)]; |
615 | | T2a = W[18]; |
616 | | T2c = T2a * T2b; |
617 | | T89 = T2a * T2e; |
618 | | T2d = W[19]; |
619 | | T2f = FMA(T2d, T2e, T2c); |
620 | | T8a = FNMS(T2d, T2b, T89); |
621 | | } |
622 | | { |
623 | | E T2u, T2x, T2v, T8i, T2t, T2w; |
624 | | T2u = ri[WS(rs, 26)]; |
625 | | T2x = ii[WS(rs, 26)]; |
626 | | T2t = W[50]; |
627 | | T2v = T2t * T2u; |
628 | | T8i = T2t * T2x; |
629 | | T2w = W[51]; |
630 | | T2y = FMA(T2w, T2x, T2v); |
631 | | T8j = FNMS(T2w, T2u, T8i); |
632 | | } |
633 | | { |
634 | | E T2h, T2k, T2i, T8b, T2g, T2j; |
635 | | T2h = ri[WS(rs, 42)]; |
636 | | T2k = ii[WS(rs, 42)]; |
637 | | T2g = W[82]; |
638 | | T2i = T2g * T2h; |
639 | | T8b = T2g * T2k; |
640 | | T2j = W[83]; |
641 | | T2l = FMA(T2j, T2k, T2i); |
642 | | T8c = FNMS(T2j, T2h, T8b); |
643 | | } |
644 | | { |
645 | | E T2o, T2r, T2p, T8g, T2n, T2q; |
646 | | T2o = ri[WS(rs, 58)]; |
647 | | T2r = ii[WS(rs, 58)]; |
648 | | T2n = W[114]; |
649 | | T2p = T2n * T2o; |
650 | | T8g = T2n * T2r; |
651 | | T2q = W[115]; |
652 | | T2s = FMA(T2q, T2r, T2p); |
653 | | T8h = FNMS(T2q, T2o, T8g); |
654 | | } |
655 | | { |
656 | | E T2m, T2z, Tf9, Tfa; |
657 | | T2m = T2f + T2l; |
658 | | T2z = T2s + T2y; |
659 | | T2A = T2m + T2z; |
660 | | Tf6 = T2z - T2m; |
661 | | Tf9 = T8a + T8c; |
662 | | Tfa = T8h + T8j; |
663 | | Tfb = Tf9 - Tfa; |
664 | | Thw = Tf9 + Tfa; |
665 | | { |
666 | | E T8e, T8w, T8l, T8v; |
667 | | { |
668 | | E T88, T8d, T8f, T8k; |
669 | | T88 = T2f - T2l; |
670 | | T8d = T8a - T8c; |
671 | | T8e = T88 + T8d; |
672 | | T8w = T8d - T88; |
673 | | T8f = T2s - T2y; |
674 | | T8k = T8h - T8j; |
675 | | T8l = T8f - T8k; |
676 | | T8v = T8f + T8k; |
677 | | } |
678 | | T8m = T8e - T8l; |
679 | | TcR = T8e + T8l; |
680 | | T8x = T8v - T8w; |
681 | | TcO = T8w + T8v; |
682 | | } |
683 | | } |
684 | | } |
685 | | { |
686 | | E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q; |
687 | | { |
688 | | E T34, T37, T35, T8I, T33, T36; |
689 | | T34 = ri[WS(rs, 6)]; |
690 | | T37 = ii[WS(rs, 6)]; |
691 | | T33 = W[10]; |
692 | | T35 = T33 * T34; |
693 | | T8I = T33 * T37; |
694 | | T36 = W[11]; |
695 | | T38 = FMA(T36, T37, T35); |
696 | | T8J = FNMS(T36, T34, T8I); |
697 | | } |
698 | | { |
699 | | E T3n, T3q, T3o, T8R, T3m, T3p; |
700 | | T3n = ri[WS(rs, 22)]; |
701 | | T3q = ii[WS(rs, 22)]; |
702 | | T3m = W[42]; |
703 | | T3o = T3m * T3n; |
704 | | T8R = T3m * T3q; |
705 | | T3p = W[43]; |
706 | | T3r = FMA(T3p, T3q, T3o); |
707 | | T8S = FNMS(T3p, T3n, T8R); |
708 | | } |
709 | | { |
710 | | E T3a, T3d, T3b, T8K, T39, T3c; |
711 | | T3a = ri[WS(rs, 38)]; |
712 | | T3d = ii[WS(rs, 38)]; |
713 | | T39 = W[74]; |
714 | | T3b = T39 * T3a; |
715 | | T8K = T39 * T3d; |
716 | | T3c = W[75]; |
717 | | T3e = FMA(T3c, T3d, T3b); |
718 | | T8L = FNMS(T3c, T3a, T8K); |
719 | | } |
720 | | { |
721 | | E T3h, T3k, T3i, T8P, T3g, T3j; |
722 | | T3h = ri[WS(rs, 54)]; |
723 | | T3k = ii[WS(rs, 54)]; |
724 | | T3g = W[106]; |
725 | | T3i = T3g * T3h; |
726 | | T8P = T3g * T3k; |
727 | | T3j = W[107]; |
728 | | T3l = FMA(T3j, T3k, T3i); |
729 | | T8Q = FNMS(T3j, T3h, T8P); |
730 | | } |
731 | | { |
732 | | E T3f, T3s, Tfk, Tfl; |
733 | | T3f = T38 + T3e; |
734 | | T3s = T3l + T3r; |
735 | | T3t = T3f + T3s; |
736 | | Tfh = T3s - T3f; |
737 | | Tfk = T8J + T8L; |
738 | | Tfl = T8Q + T8S; |
739 | | Tfm = Tfk - Tfl; |
740 | | ThC = Tfk + Tfl; |
741 | | { |
742 | | E T8N, T95, T8U, T94; |
743 | | { |
744 | | E T8H, T8M, T8O, T8T; |
745 | | T8H = T38 - T3e; |
746 | | T8M = T8J - T8L; |
747 | | T8N = T8H + T8M; |
748 | | T95 = T8M - T8H; |
749 | | T8O = T3l - T3r; |
750 | | T8T = T8Q - T8S; |
751 | | T8U = T8O - T8T; |
752 | | T94 = T8O + T8T; |
753 | | } |
754 | | T8V = T8N - T8U; |
755 | | TcY = T8N + T8U; |
756 | | T96 = T94 - T95; |
757 | | TcV = T95 + T94; |
758 | | } |
759 | | } |
760 | | } |
761 | | { |
762 | | E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r; |
763 | | { |
764 | | E T3Z, T42, T40, T9j, T3Y, T41; |
765 | | T3Z = ri[WS(rs, 9)]; |
766 | | T42 = ii[WS(rs, 9)]; |
767 | | T3Y = W[16]; |
768 | | T40 = T3Y * T3Z; |
769 | | T9j = T3Y * T42; |
770 | | T41 = W[17]; |
771 | | T43 = FMA(T41, T42, T40); |
772 | | T9k = FNMS(T41, T3Z, T9j); |
773 | | } |
774 | | { |
775 | | E T4i, T4l, T4j, T9s, T4h, T4k; |
776 | | T4i = ri[WS(rs, 25)]; |
777 | | T4l = ii[WS(rs, 25)]; |
778 | | T4h = W[48]; |
779 | | T4j = T4h * T4i; |
780 | | T9s = T4h * T4l; |
781 | | T4k = W[49]; |
782 | | T4m = FMA(T4k, T4l, T4j); |
783 | | T9t = FNMS(T4k, T4i, T9s); |
784 | | } |
785 | | { |
786 | | E T45, T48, T46, T9l, T44, T47; |
787 | | T45 = ri[WS(rs, 41)]; |
788 | | T48 = ii[WS(rs, 41)]; |
789 | | T44 = W[80]; |
790 | | T46 = T44 * T45; |
791 | | T9l = T44 * T48; |
792 | | T47 = W[81]; |
793 | | T49 = FMA(T47, T48, T46); |
794 | | T9m = FNMS(T47, T45, T9l); |
795 | | } |
796 | | { |
797 | | E T4c, T4f, T4d, T9q, T4b, T4e; |
798 | | T4c = ri[WS(rs, 57)]; |
799 | | T4f = ii[WS(rs, 57)]; |
800 | | T4b = W[112]; |
801 | | T4d = T4b * T4c; |
802 | | T9q = T4b * T4f; |
803 | | T4e = W[113]; |
804 | | T4g = FMA(T4e, T4f, T4d); |
805 | | T9r = FNMS(T4e, T4c, T9q); |
806 | | } |
807 | | { |
808 | | E T4a, T4n, TfJ, TfK; |
809 | | T4a = T43 + T49; |
810 | | T4n = T4g + T4m; |
811 | | T4o = T4a + T4n; |
812 | | Tfu = T4n - T4a; |
813 | | TfJ = T9k + T9m; |
814 | | TfK = T9r + T9t; |
815 | | TfL = TfJ - TfK; |
816 | | ThI = TfJ + TfK; |
817 | | { |
818 | | E T9o, Tac, T9v, Tab; |
819 | | { |
820 | | E T9i, T9n, T9p, T9u; |
821 | | T9i = T43 - T49; |
822 | | T9n = T9k - T9m; |
823 | | T9o = T9i + T9n; |
824 | | Tac = T9n - T9i; |
825 | | T9p = T4g - T4m; |
826 | | T9u = T9r - T9t; |
827 | | T9v = T9p - T9u; |
828 | | Tab = T9p + T9u; |
829 | | } |
830 | | T9w = T9o - T9v; |
831 | | Tdf = T9o + T9v; |
832 | | Tad = Tab - Tac; |
833 | | Td4 = Tac + Tab; |
834 | | } |
835 | | } |
836 | | } |
837 | | { |
838 | | E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA; |
839 | | { |
840 | | E T5M, T5P, T5N, Tas, T5L, T5O; |
841 | | T5M = ri[WS(rs, 7)]; |
842 | | T5P = ii[WS(rs, 7)]; |
843 | | T5L = W[12]; |
844 | | T5N = T5L * T5M; |
845 | | Tas = T5L * T5P; |
846 | | T5O = W[13]; |
847 | | T5Q = FMA(T5O, T5P, T5N); |
848 | | Tat = FNMS(T5O, T5M, Tas); |
849 | | } |
850 | | { |
851 | | E T65, T68, T66, TaB, T64, T67; |
852 | | T65 = ri[WS(rs, 23)]; |
853 | | T68 = ii[WS(rs, 23)]; |
854 | | T64 = W[44]; |
855 | | T66 = T64 * T65; |
856 | | TaB = T64 * T68; |
857 | | T67 = W[45]; |
858 | | T69 = FMA(T67, T68, T66); |
859 | | TaC = FNMS(T67, T65, TaB); |
860 | | } |
861 | | { |
862 | | E T5S, T5V, T5T, Tau, T5R, T5U; |
863 | | T5S = ri[WS(rs, 39)]; |
864 | | T5V = ii[WS(rs, 39)]; |
865 | | T5R = W[76]; |
866 | | T5T = T5R * T5S; |
867 | | Tau = T5R * T5V; |
868 | | T5U = W[77]; |
869 | | T5W = FMA(T5U, T5V, T5T); |
870 | | Tav = FNMS(T5U, T5S, Tau); |
871 | | } |
872 | | { |
873 | | E T5Z, T62, T60, Taz, T5Y, T61; |
874 | | T5Z = ri[WS(rs, 55)]; |
875 | | T62 = ii[WS(rs, 55)]; |
876 | | T5Y = W[108]; |
877 | | T60 = T5Y * T5Z; |
878 | | Taz = T5Y * T62; |
879 | | T61 = W[109]; |
880 | | T63 = FMA(T61, T62, T60); |
881 | | TaA = FNMS(T61, T5Z, Taz); |
882 | | } |
883 | | { |
884 | | E T5X, T6a, Tga, Tgb; |
885 | | T5X = T5Q + T5W; |
886 | | T6a = T63 + T69; |
887 | | T6b = T5X + T6a; |
888 | | TfV = T6a - T5X; |
889 | | Tga = Tat + Tav; |
890 | | Tgb = TaA + TaC; |
891 | | Tgc = Tga - Tgb; |
892 | | ThT = Tga + Tgb; |
893 | | { |
894 | | E Tax, Tbl, TaE, Tbk; |
895 | | { |
896 | | E Tar, Taw, Tay, TaD; |
897 | | Tar = T5Q - T5W; |
898 | | Taw = Tat - Tav; |
899 | | Tax = Tar + Taw; |
900 | | Tbl = Taw - Tar; |
901 | | Tay = T63 - T69; |
902 | | TaD = TaA - TaC; |
903 | | TaE = Tay - TaD; |
904 | | Tbk = Tay + TaD; |
905 | | } |
906 | | TaF = Tax - TaE; |
907 | | Tdy = Tax + TaE; |
908 | | Tbm = Tbk - Tbl; |
909 | | Tdn = Tbl + Tbk; |
910 | | } |
911 | | } |
912 | | } |
913 | | { |
914 | | E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P; |
915 | | { |
916 | | E T4r, T4u, T4s, T9U, T4q, T4t; |
917 | | T4r = ri[WS(rs, 5)]; |
918 | | T4u = ii[WS(rs, 5)]; |
919 | | T4q = W[8]; |
920 | | T4s = T4q * T4r; |
921 | | T9U = T4q * T4u; |
922 | | T4t = W[9]; |
923 | | T4v = FMA(T4t, T4u, T4s); |
924 | | T9V = FNMS(T4t, T4r, T9U); |
925 | | } |
926 | | { |
927 | | E T4K, T4N, T4L, T9Q, T4J, T4M; |
928 | | T4K = ri[WS(rs, 53)]; |
929 | | T4N = ii[WS(rs, 53)]; |
930 | | T4J = W[104]; |
931 | | T4L = T4J * T4K; |
932 | | T9Q = T4J * T4N; |
933 | | T4M = W[105]; |
934 | | T4O = FMA(T4M, T4N, T4L); |
935 | | T9R = FNMS(T4M, T4K, T9Q); |
936 | | } |
937 | | { |
938 | | E T4x, T4A, T4y, T9W, T4w, T4z; |
939 | | T4x = ri[WS(rs, 37)]; |
940 | | T4A = ii[WS(rs, 37)]; |
941 | | T4w = W[72]; |
942 | | T4y = T4w * T4x; |
943 | | T9W = T4w * T4A; |
944 | | T4z = W[73]; |
945 | | T4B = FMA(T4z, T4A, T4y); |
946 | | T9X = FNMS(T4z, T4x, T9W); |
947 | | } |
948 | | { |
949 | | E T4E, T4H, T4F, T9O, T4D, T4G; |
950 | | T4E = ri[WS(rs, 21)]; |
951 | | T4H = ii[WS(rs, 21)]; |
952 | | T4D = W[40]; |
953 | | T4F = T4D * T4E; |
954 | | T9O = T4D * T4H; |
955 | | T4G = W[41]; |
956 | | T4I = FMA(T4G, T4H, T4F); |
957 | | T9P = FNMS(T4G, T4E, T9O); |
958 | | } |
959 | | { |
960 | | E T4C, T4P, Tfz, Tfw, Tfx, Tfy; |
961 | | T4C = T4v + T4B; |
962 | | T4P = T4I + T4O; |
963 | | Tfz = T4C - T4P; |
964 | | Tfw = T9V + T9X; |
965 | | Tfx = T9P + T9R; |
966 | | Tfy = Tfw - Tfx; |
967 | | T4Q = T4C + T4P; |
968 | | ThN = Tfw + Tfx; |
969 | | TfA = Tfy - Tfz; |
970 | | TfN = Tfz + Tfy; |
971 | | } |
972 | | { |
973 | | E T9T, Td7, Ta0, Td6; |
974 | | { |
975 | | E T9N, T9S, T9Y, T9Z; |
976 | | T9N = T4v - T4B; |
977 | | T9S = T9P - T9R; |
978 | | T9T = T9N - T9S; |
979 | | Td7 = T9N + T9S; |
980 | | T9Y = T9V - T9X; |
981 | | T9Z = T4I - T4O; |
982 | | Ta0 = T9Y + T9Z; |
983 | | Td6 = T9Y - T9Z; |
984 | | } |
985 | | Ta1 = FNMS(KP414213562, Ta0, T9T); |
986 | | Tdh = FMA(KP414213562, Td6, Td7); |
987 | | Taf = FMA(KP414213562, T9T, Ta0); |
988 | | Td8 = FNMS(KP414213562, Td7, Td6); |
989 | | } |
990 | | } |
991 | | { |
992 | | E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A; |
993 | | { |
994 | | E T4S, T4V, T4T, T9F, T4R, T4U; |
995 | | T4S = ri[WS(rs, 61)]; |
996 | | T4V = ii[WS(rs, 61)]; |
997 | | T4R = W[120]; |
998 | | T4T = T4R * T4S; |
999 | | T9F = T4R * T4V; |
1000 | | T4U = W[121]; |
1001 | | T4W = FMA(T4U, T4V, T4T); |
1002 | | T9G = FNMS(T4U, T4S, T9F); |
1003 | | } |
1004 | | { |
1005 | | E T5b, T5e, T5c, T9B, T5a, T5d; |
1006 | | T5b = ri[WS(rs, 45)]; |
1007 | | T5e = ii[WS(rs, 45)]; |
1008 | | T5a = W[88]; |
1009 | | T5c = T5a * T5b; |
1010 | | T9B = T5a * T5e; |
1011 | | T5d = W[89]; |
1012 | | T5f = FMA(T5d, T5e, T5c); |
1013 | | T9C = FNMS(T5d, T5b, T9B); |
1014 | | } |
1015 | | { |
1016 | | E T4Y, T51, T4Z, T9H, T4X, T50; |
1017 | | T4Y = ri[WS(rs, 29)]; |
1018 | | T51 = ii[WS(rs, 29)]; |
1019 | | T4X = W[56]; |
1020 | | T4Z = T4X * T4Y; |
1021 | | T9H = T4X * T51; |
1022 | | T50 = W[57]; |
1023 | | T52 = FMA(T50, T51, T4Z); |
1024 | | T9I = FNMS(T50, T4Y, T9H); |
1025 | | } |
1026 | | { |
1027 | | E T55, T58, T56, T9z, T54, T57; |
1028 | | T55 = ri[WS(rs, 13)]; |
1029 | | T58 = ii[WS(rs, 13)]; |
1030 | | T54 = W[24]; |
1031 | | T56 = T54 * T55; |
1032 | | T9z = T54 * T58; |
1033 | | T57 = W[25]; |
1034 | | T59 = FMA(T57, T58, T56); |
1035 | | T9A = FNMS(T57, T55, T9z); |
1036 | | } |
1037 | | { |
1038 | | E T53, T5g, TfB, TfC, TfD, TfE; |
1039 | | T53 = T4W + T52; |
1040 | | T5g = T59 + T5f; |
1041 | | TfB = T53 - T5g; |
1042 | | TfC = T9G + T9I; |
1043 | | TfD = T9A + T9C; |
1044 | | TfE = TfC - TfD; |
1045 | | T5h = T53 + T5g; |
1046 | | ThO = TfC + TfD; |
1047 | | TfF = TfB + TfE; |
1048 | | TfO = TfB - TfE; |
1049 | | } |
1050 | | { |
1051 | | E T9E, Tda, T9L, Td9; |
1052 | | { |
1053 | | E T9y, T9D, T9J, T9K; |
1054 | | T9y = T4W - T52; |
1055 | | T9D = T9A - T9C; |
1056 | | T9E = T9y - T9D; |
1057 | | Tda = T9y + T9D; |
1058 | | T9J = T9G - T9I; |
1059 | | T9K = T59 - T5f; |
1060 | | T9L = T9J + T9K; |
1061 | | Td9 = T9J - T9K; |
1062 | | } |
1063 | | T9M = FMA(KP414213562, T9L, T9E); |
1064 | | Tdi = FNMS(KP414213562, Td9, Tda); |
1065 | | Tag = FNMS(KP414213562, T9E, T9L); |
1066 | | Tdb = FMA(KP414213562, Tda, Td9); |
1067 | | } |
1068 | | } |
1069 | | { |
1070 | | E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY; |
1071 | | { |
1072 | | E T6e, T6h, T6f, Tb3, T6d, T6g; |
1073 | | T6e = ri[WS(rs, 3)]; |
1074 | | T6h = ii[WS(rs, 3)]; |
1075 | | T6d = W[4]; |
1076 | | T6f = T6d * T6e; |
1077 | | Tb3 = T6d * T6h; |
1078 | | T6g = W[5]; |
1079 | | T6i = FMA(T6g, T6h, T6f); |
1080 | | Tb4 = FNMS(T6g, T6e, Tb3); |
1081 | | } |
1082 | | { |
1083 | | E T6x, T6A, T6y, TaZ, T6w, T6z; |
1084 | | T6x = ri[WS(rs, 51)]; |
1085 | | T6A = ii[WS(rs, 51)]; |
1086 | | T6w = W[100]; |
1087 | | T6y = T6w * T6x; |
1088 | | TaZ = T6w * T6A; |
1089 | | T6z = W[101]; |
1090 | | T6B = FMA(T6z, T6A, T6y); |
1091 | | Tb0 = FNMS(T6z, T6x, TaZ); |
1092 | | } |
1093 | | { |
1094 | | E T6k, T6n, T6l, Tb5, T6j, T6m; |
1095 | | T6k = ri[WS(rs, 35)]; |
1096 | | T6n = ii[WS(rs, 35)]; |
1097 | | T6j = W[68]; |
1098 | | T6l = T6j * T6k; |
1099 | | Tb5 = T6j * T6n; |
1100 | | T6m = W[69]; |
1101 | | T6o = FMA(T6m, T6n, T6l); |
1102 | | Tb6 = FNMS(T6m, T6k, Tb5); |
1103 | | } |
1104 | | { |
1105 | | E T6r, T6u, T6s, TaX, T6q, T6t; |
1106 | | T6r = ri[WS(rs, 19)]; |
1107 | | T6u = ii[WS(rs, 19)]; |
1108 | | T6q = W[36]; |
1109 | | T6s = T6q * T6r; |
1110 | | TaX = T6q * T6u; |
1111 | | T6t = W[37]; |
1112 | | T6v = FMA(T6t, T6u, T6s); |
1113 | | TaY = FNMS(T6t, T6r, TaX); |
1114 | | } |
1115 | | { |
1116 | | E T6p, T6C, Tg0, TfX, TfY, TfZ; |
1117 | | T6p = T6i + T6o; |
1118 | | T6C = T6v + T6B; |
1119 | | Tg0 = T6p - T6C; |
1120 | | TfX = Tb4 + Tb6; |
1121 | | TfY = TaY + Tb0; |
1122 | | TfZ = TfX - TfY; |
1123 | | T6D = T6p + T6C; |
1124 | | ThY = TfX + TfY; |
1125 | | Tg1 = TfZ - Tg0; |
1126 | | Tge = Tg0 + TfZ; |
1127 | | } |
1128 | | { |
1129 | | E Tb2, Tdq, Tb9, Tdp; |
1130 | | { |
1131 | | E TaW, Tb1, Tb7, Tb8; |
1132 | | TaW = T6i - T6o; |
1133 | | Tb1 = TaY - Tb0; |
1134 | | Tb2 = TaW - Tb1; |
1135 | | Tdq = TaW + Tb1; |
1136 | | Tb7 = Tb4 - Tb6; |
1137 | | Tb8 = T6v - T6B; |
1138 | | Tb9 = Tb7 + Tb8; |
1139 | | Tdp = Tb7 - Tb8; |
1140 | | } |
1141 | | Tba = FNMS(KP414213562, Tb9, Tb2); |
1142 | | TdA = FMA(KP414213562, Tdp, Tdq); |
1143 | | Tbo = FMA(KP414213562, Tb2, Tb9); |
1144 | | Tdr = FNMS(KP414213562, Tdq, Tdp); |
1145 | | } |
1146 | | } |
1147 | | { |
1148 | | E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ; |
1149 | | { |
1150 | | E T6F, T6I, T6G, TaO, T6E, T6H; |
1151 | | T6F = ri[WS(rs, 59)]; |
1152 | | T6I = ii[WS(rs, 59)]; |
1153 | | T6E = W[116]; |
1154 | | T6G = T6E * T6F; |
1155 | | TaO = T6E * T6I; |
1156 | | T6H = W[117]; |
1157 | | T6J = FMA(T6H, T6I, T6G); |
1158 | | TaP = FNMS(T6H, T6F, TaO); |
1159 | | } |
1160 | | { |
1161 | | E T6Y, T71, T6Z, TaK, T6X, T70; |
1162 | | T6Y = ri[WS(rs, 43)]; |
1163 | | T71 = ii[WS(rs, 43)]; |
1164 | | T6X = W[84]; |
1165 | | T6Z = T6X * T6Y; |
1166 | | TaK = T6X * T71; |
1167 | | T70 = W[85]; |
1168 | | T72 = FMA(T70, T71, T6Z); |
1169 | | TaL = FNMS(T70, T6Y, TaK); |
1170 | | } |
1171 | | { |
1172 | | E T6L, T6O, T6M, TaQ, T6K, T6N; |
1173 | | T6L = ri[WS(rs, 27)]; |
1174 | | T6O = ii[WS(rs, 27)]; |
1175 | | T6K = W[52]; |
1176 | | T6M = T6K * T6L; |
1177 | | TaQ = T6K * T6O; |
1178 | | T6N = W[53]; |
1179 | | T6P = FMA(T6N, T6O, T6M); |
1180 | | TaR = FNMS(T6N, T6L, TaQ); |
1181 | | } |
1182 | | { |
1183 | | E T6S, T6V, T6T, TaI, T6R, T6U; |
1184 | | T6S = ri[WS(rs, 11)]; |
1185 | | T6V = ii[WS(rs, 11)]; |
1186 | | T6R = W[20]; |
1187 | | T6T = T6R * T6S; |
1188 | | TaI = T6R * T6V; |
1189 | | T6U = W[21]; |
1190 | | T6W = FMA(T6U, T6V, T6T); |
1191 | | TaJ = FNMS(T6U, T6S, TaI); |
1192 | | } |
1193 | | { |
1194 | | E T6Q, T73, Tg2, Tg3, Tg4, Tg5; |
1195 | | T6Q = T6J + T6P; |
1196 | | T73 = T6W + T72; |
1197 | | Tg2 = T6Q - T73; |
1198 | | Tg3 = TaP + TaR; |
1199 | | Tg4 = TaJ + TaL; |
1200 | | Tg5 = Tg3 - Tg4; |
1201 | | T74 = T6Q + T73; |
1202 | | ThZ = Tg3 + Tg4; |
1203 | | Tg6 = Tg2 + Tg5; |
1204 | | Tgf = Tg2 - Tg5; |
1205 | | } |
1206 | | { |
1207 | | E TaN, Tdt, TaU, Tds; |
1208 | | { |
1209 | | E TaH, TaM, TaS, TaT; |
1210 | | TaH = T6J - T6P; |
1211 | | TaM = TaJ - TaL; |
1212 | | TaN = TaH - TaM; |
1213 | | Tdt = TaH + TaM; |
1214 | | TaS = TaP - TaR; |
1215 | | TaT = T6W - T72; |
1216 | | TaU = TaS + TaT; |
1217 | | Tds = TaS - TaT; |
1218 | | } |
1219 | | TaV = FMA(KP414213562, TaU, TaN); |
1220 | | TdB = FNMS(KP414213562, Tds, Tdt); |
1221 | | Tbp = FNMS(KP414213562, TaN, TaU); |
1222 | | Tdu = FMA(KP414213562, Tdt, Tds); |
1223 | | } |
1224 | | } |
1225 | | { |
1226 | | E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix; |
1227 | | E TiF; |
1228 | | { |
1229 | | E TO, T1H, Tip, Tiq; |
1230 | | TO = Tm + TN; |
1231 | | T1H = T1f + T1G; |
1232 | | T1I = TO + T1H; |
1233 | | Tio = TO - T1H; |
1234 | | { |
1235 | | E T2B, T3u, TiO, TiW; |
1236 | | T2B = T29 + T2A; |
1237 | | T3u = T32 + T3t; |
1238 | | T3v = T2B + T3u; |
1239 | | Tj1 = T3u - T2B; |
1240 | | TiO = Thr + Ths; |
1241 | | TiW = TiP + TiV; |
1242 | | TiX = TiO + TiW; |
1243 | | Tj2 = TiW - TiO; |
1244 | | } |
1245 | | Tip = Thv + Thw; |
1246 | | Tiq = ThB + ThC; |
1247 | | Tir = Tip - Tiq; |
1248 | | TiN = Tip + Tiq; |
1249 | | { |
1250 | | E T6c, T75, Tiy, Tiz, TiA, TiB; |
1251 | | T6c = T5K + T6b; |
1252 | | T75 = T6D + T74; |
1253 | | Tiy = T6c - T75; |
1254 | | Tiz = ThS + ThT; |
1255 | | TiA = ThY + ThZ; |
1256 | | TiB = Tiz - TiA; |
1257 | | T76 = T6c + T75; |
1258 | | TiK = Tiz + TiA; |
1259 | | TiC = Tiy - TiB; |
1260 | | TiG = Tiy + TiB; |
1261 | | } |
1262 | | { |
1263 | | E T4p, T5i, Tit, Tiu, Tiv, Tiw; |
1264 | | T4p = T3X + T4o; |
1265 | | T5i = T4Q + T5h; |
1266 | | Tit = T4p - T5i; |
1267 | | Tiu = ThH + ThI; |
1268 | | Tiv = ThN + ThO; |
1269 | | Tiw = Tiu - Tiv; |
1270 | | T5j = T4p + T5i; |
1271 | | TiJ = Tiu + Tiv; |
1272 | | Tix = Tit + Tiw; |
1273 | | TiF = Tiw - Tit; |
1274 | | } |
1275 | | } |
1276 | | { |
1277 | | E T3w, T77, TiM, TiY; |
1278 | | T3w = T1I + T3v; |
1279 | | T77 = T5j + T76; |
1280 | | ri[WS(rs, 32)] = T3w - T77; |
1281 | | ri[0] = T3w + T77; |
1282 | | TiM = TiJ + TiK; |
1283 | | TiY = TiN + TiX; |
1284 | | ii[0] = TiM + TiY; |
1285 | | ii[WS(rs, 32)] = TiY - TiM; |
1286 | | } |
1287 | | { |
1288 | | E Tis, TiD, Tj3, Tj4; |
1289 | | Tis = Tio + Tir; |
1290 | | TiD = Tix + TiC; |
1291 | | ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis); |
1292 | | ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); |
1293 | | Tj3 = Tj1 + Tj2; |
1294 | | Tj4 = TiF + TiG; |
1295 | | ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3); |
1296 | | ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3); |
1297 | | } |
1298 | | { |
1299 | | E TiE, TiH, Tj5, Tj6; |
1300 | | TiE = Tio - Tir; |
1301 | | TiH = TiF - TiG; |
1302 | | ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE); |
1303 | | ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE); |
1304 | | Tj5 = Tj2 - Tj1; |
1305 | | Tj6 = TiC - Tix; |
1306 | | ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5); |
1307 | | ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5); |
1308 | | } |
1309 | | { |
1310 | | E TiI, TiL, TiZ, Tj0; |
1311 | | TiI = T1I - T3v; |
1312 | | TiL = TiJ - TiK; |
1313 | | ri[WS(rs, 48)] = TiI - TiL; |
1314 | | ri[WS(rs, 16)] = TiI + TiL; |
1315 | | TiZ = T76 - T5j; |
1316 | | Tj0 = TiX - TiN; |
1317 | | ii[WS(rs, 16)] = TiZ + Tj0; |
1318 | | ii[WS(rs, 48)] = Tj0 - TiZ; |
1319 | | } |
1320 | | } |
1321 | | { |
1322 | | E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6; |
1323 | | E Tii; |
1324 | | { |
1325 | | E Thq, Tht, Tj7, Tj8; |
1326 | | Thq = Tm - TN; |
1327 | | Tht = Thr - Ths; |
1328 | | Thu = Thq - Tht; |
1329 | | Ti8 = Thq + Tht; |
1330 | | Tj7 = T1G - T1f; |
1331 | | Tj8 = TiV - TiP; |
1332 | | Tj9 = Tj7 + Tj8; |
1333 | | Tjf = Tj8 - Tj7; |
1334 | | } |
1335 | | { |
1336 | | E Thz, Ti9, ThE, Tia; |
1337 | | { |
1338 | | E Thx, Thy, ThA, ThD; |
1339 | | Thx = Thv - Thw; |
1340 | | Thy = T29 - T2A; |
1341 | | Thz = Thx - Thy; |
1342 | | Ti9 = Thy + Thx; |
1343 | | ThA = T32 - T3t; |
1344 | | ThD = ThB - ThC; |
1345 | | ThE = ThA + ThD; |
1346 | | Tia = ThA - ThD; |
1347 | | } |
1348 | | ThF = Thz - ThE; |
1349 | | Tjg = Tia - Ti9; |
1350 | | Tib = Ti9 + Tia; |
1351 | | Tja = Thz + ThE; |
1352 | | } |
1353 | | { |
1354 | | E ThL, Tie, ThQ, Tid; |
1355 | | { |
1356 | | E ThJ, ThK, ThM, ThP; |
1357 | | ThJ = ThH - ThI; |
1358 | | ThK = T5h - T4Q; |
1359 | | ThL = ThJ - ThK; |
1360 | | Tie = ThJ + ThK; |
1361 | | ThM = T3X - T4o; |
1362 | | ThP = ThN - ThO; |
1363 | | ThQ = ThM - ThP; |
1364 | | Tid = ThM + ThP; |
1365 | | } |
1366 | | ThR = FMA(KP414213562, ThQ, ThL); |
1367 | | Til = FNMS(KP414213562, Tid, Tie); |
1368 | | Ti5 = FNMS(KP414213562, ThL, ThQ); |
1369 | | Tif = FMA(KP414213562, Tie, Tid); |
1370 | | } |
1371 | | { |
1372 | | E ThW, Tih, Ti1, Tig; |
1373 | | { |
1374 | | E ThU, ThV, ThX, Ti0; |
1375 | | ThU = ThS - ThT; |
1376 | | ThV = T74 - T6D; |
1377 | | ThW = ThU - ThV; |
1378 | | Tih = ThU + ThV; |
1379 | | ThX = T5K - T6b; |
1380 | | Ti0 = ThY - ThZ; |
1381 | | Ti1 = ThX - Ti0; |
1382 | | Tig = ThX + Ti0; |
1383 | | } |
1384 | | Ti2 = FNMS(KP414213562, Ti1, ThW); |
1385 | | Tim = FMA(KP414213562, Tig, Tih); |
1386 | | Ti6 = FMA(KP414213562, ThW, Ti1); |
1387 | | Tii = FNMS(KP414213562, Tih, Tig); |
1388 | | } |
1389 | | { |
1390 | | E ThG, Ti3, Tjh, Tji; |
1391 | | ThG = FMA(KP707106781, ThF, Thu); |
1392 | | Ti3 = ThR - Ti2; |
1393 | | ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG); |
1394 | | ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG); |
1395 | | Tjh = FMA(KP707106781, Tjg, Tjf); |
1396 | | Tji = Ti6 - Ti5; |
1397 | | ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh); |
1398 | | ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh); |
1399 | | } |
1400 | | { |
1401 | | E Ti4, Ti7, Tjj, Tjk; |
1402 | | Ti4 = FNMS(KP707106781, ThF, Thu); |
1403 | | Ti7 = Ti5 + Ti6; |
1404 | | ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4); |
1405 | | ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4); |
1406 | | Tjj = FNMS(KP707106781, Tjg, Tjf); |
1407 | | Tjk = ThR + Ti2; |
1408 | | ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj); |
1409 | | ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj); |
1410 | | } |
1411 | | { |
1412 | | E Tic, Tij, Tjb, Tjc; |
1413 | | Tic = FMA(KP707106781, Tib, Ti8); |
1414 | | Tij = Tif + Tii; |
1415 | | ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic); |
1416 | | ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic); |
1417 | | Tjb = FMA(KP707106781, Tja, Tj9); |
1418 | | Tjc = Til + Tim; |
1419 | | ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb); |
1420 | | ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb); |
1421 | | } |
1422 | | { |
1423 | | E Tik, Tin, Tjd, Tje; |
1424 | | Tik = FNMS(KP707106781, Tib, Ti8); |
1425 | | Tin = Til - Tim; |
1426 | | ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik); |
1427 | | ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik); |
1428 | | Tjd = FNMS(KP707106781, Tja, Tj9); |
1429 | | Tje = Tii - Tif; |
1430 | | ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd); |
1431 | | ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd); |
1432 | | } |
1433 | | } |
1434 | | { |
1435 | | E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8; |
1436 | | E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC; |
1437 | | E Tgm, Tgy; |
1438 | | { |
1439 | | E TeQ, TjB, Tf1, TjC, TeV, Tf0; |
1440 | | TeQ = TeM + TeP; |
1441 | | TjB = Tjm - Tjl; |
1442 | | TeV = TeR + TeU; |
1443 | | Tf0 = TeW - TeZ; |
1444 | | Tf1 = TeV + Tf0; |
1445 | | TjC = Tf0 - TeV; |
1446 | | Tf2 = FNMS(KP707106781, Tf1, TeQ); |
1447 | | TjJ = FNMS(KP707106781, TjC, TjB); |
1448 | | Tgo = FMA(KP707106781, Tf1, TeQ); |
1449 | | TjD = FMA(KP707106781, TjC, TjB); |
1450 | | } |
1451 | | { |
1452 | | E TgE, Tjn, TgH, Tjo, TgF, TgG; |
1453 | | TgE = TeM - TeP; |
1454 | | Tjn = Tjl + Tjm; |
1455 | | TgF = TeU - TeR; |
1456 | | TgG = TeW + TeZ; |
1457 | | TgH = TgF - TgG; |
1458 | | Tjo = TgF + TgG; |
1459 | | TgI = FMA(KP707106781, TgH, TgE); |
1460 | | Tjv = FNMS(KP707106781, Tjo, Tjn); |
1461 | | Tha = FNMS(KP707106781, TgH, TgE); |
1462 | | Tjp = FMA(KP707106781, Tjo, Tjn); |
1463 | | } |
1464 | | { |
1465 | | E Tfd, Tgp, Tfo, Tgq; |
1466 | | { |
1467 | | E Tf7, Tfc, Tfi, Tfn; |
1468 | | Tf7 = Tf5 + Tf6; |
1469 | | Tfc = Tf8 + Tfb; |
1470 | | Tfd = FNMS(KP414213562, Tfc, Tf7); |
1471 | | Tgp = FMA(KP414213562, Tf7, Tfc); |
1472 | | Tfi = Tfg + Tfh; |
1473 | | Tfn = Tfj + Tfm; |
1474 | | Tfo = FMA(KP414213562, Tfn, Tfi); |
1475 | | Tgq = FNMS(KP414213562, Tfi, Tfn); |
1476 | | } |
1477 | | Tfp = Tfd - Tfo; |
1478 | | Tjw = Tgq - Tgp; |
1479 | | Tgr = Tgp + Tgq; |
1480 | | Tjq = Tfd + Tfo; |
1481 | | } |
1482 | | { |
1483 | | E Th0, Thj, Th3, Thi; |
1484 | | { |
1485 | | E TgY, TgZ, Th1, Th2; |
1486 | | TgY = Tg9 - Tgc; |
1487 | | TgZ = Tg6 - Tg1; |
1488 | | Th0 = FNMS(KP707106781, TgZ, TgY); |
1489 | | Thj = FMA(KP707106781, TgZ, TgY); |
1490 | | Th1 = TfU - TfV; |
1491 | | Th2 = Tge - Tgf; |
1492 | | Th3 = FNMS(KP707106781, Th2, Th1); |
1493 | | Thi = FMA(KP707106781, Th2, Th1); |
1494 | | } |
1495 | | Th4 = FNMS(KP668178637, Th3, Th0); |
1496 | | Tho = FMA(KP198912367, Thi, Thj); |
1497 | | Th8 = FMA(KP668178637, Th0, Th3); |
1498 | | Thk = FNMS(KP198912367, Thj, Thi); |
1499 | | } |
1500 | | { |
1501 | | E TfH, Tgu, TfQ, Tgt; |
1502 | | { |
1503 | | E Tfv, TfG, TfM, TfP; |
1504 | | Tfv = Tft + Tfu; |
1505 | | TfG = TfA + TfF; |
1506 | | TfH = FNMS(KP707106781, TfG, Tfv); |
1507 | | Tgu = FMA(KP707106781, TfG, Tfv); |
1508 | | TfM = TfI + TfL; |
1509 | | TfP = TfN + TfO; |
1510 | | TfQ = FNMS(KP707106781, TfP, TfM); |
1511 | | Tgt = FMA(KP707106781, TfP, TfM); |
1512 | | } |
1513 | | TfR = FMA(KP668178637, TfQ, TfH); |
1514 | | TgB = FNMS(KP198912367, Tgt, Tgu); |
1515 | | Tgl = FNMS(KP668178637, TfH, TfQ); |
1516 | | Tgv = FMA(KP198912367, Tgu, Tgt); |
1517 | | } |
1518 | | { |
1519 | | E TgL, Thb, TgO, Thc; |
1520 | | { |
1521 | | E TgJ, TgK, TgM, TgN; |
1522 | | TgJ = Tf5 - Tf6; |
1523 | | TgK = Tf8 - Tfb; |
1524 | | TgL = FMA(KP414213562, TgK, TgJ); |
1525 | | Thb = FNMS(KP414213562, TgJ, TgK); |
1526 | | TgM = Tfg - Tfh; |
1527 | | TgN = Tfj - Tfm; |
1528 | | TgO = FNMS(KP414213562, TgN, TgM); |
1529 | | Thc = FMA(KP414213562, TgM, TgN); |
1530 | | } |
1531 | | TgP = TgL - TgO; |
1532 | | TjK = TgL + TgO; |
1533 | | Thd = Thb + Thc; |
1534 | | TjE = Thc - Thb; |
1535 | | } |
1536 | | { |
1537 | | E TgT, Thg, TgW, Thf; |
1538 | | { |
1539 | | E TgR, TgS, TgU, TgV; |
1540 | | TgR = TfI - TfL; |
1541 | | TgS = TfF - TfA; |
1542 | | TgT = FNMS(KP707106781, TgS, TgR); |
1543 | | Thg = FMA(KP707106781, TgS, TgR); |
1544 | | TgU = Tft - Tfu; |
1545 | | TgV = TfN - TfO; |
1546 | | TgW = FNMS(KP707106781, TgV, TgU); |
1547 | | Thf = FMA(KP707106781, TgV, TgU); |
1548 | | } |
1549 | | TgX = FMA(KP668178637, TgW, TgT); |
1550 | | Thn = FNMS(KP198912367, Thf, Thg); |
1551 | | Th7 = FNMS(KP668178637, TgT, TgW); |
1552 | | Thh = FMA(KP198912367, Thg, Thf); |
1553 | | } |
1554 | | { |
1555 | | E Tg8, Tgx, Tgh, Tgw; |
1556 | | { |
1557 | | E TfW, Tg7, Tgd, Tgg; |
1558 | | TfW = TfU + TfV; |
1559 | | Tg7 = Tg1 + Tg6; |
1560 | | Tg8 = FNMS(KP707106781, Tg7, TfW); |
1561 | | Tgx = FMA(KP707106781, Tg7, TfW); |
1562 | | Tgd = Tg9 + Tgc; |
1563 | | Tgg = Tge + Tgf; |
1564 | | Tgh = FNMS(KP707106781, Tgg, Tgd); |
1565 | | Tgw = FMA(KP707106781, Tgg, Tgd); |
1566 | | } |
1567 | | Tgi = FNMS(KP668178637, Tgh, Tg8); |
1568 | | TgC = FMA(KP198912367, Tgw, Tgx); |
1569 | | Tgm = FMA(KP668178637, Tg8, Tgh); |
1570 | | Tgy = FNMS(KP198912367, Tgx, Tgw); |
1571 | | } |
1572 | | { |
1573 | | E Tfq, Tgj, Tjx, Tjy; |
1574 | | Tfq = FMA(KP923879532, Tfp, Tf2); |
1575 | | Tgj = TfR - Tgi; |
1576 | | ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq); |
1577 | | ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq); |
1578 | | Tjx = FMA(KP923879532, Tjw, Tjv); |
1579 | | Tjy = Tgm - Tgl; |
1580 | | ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx); |
1581 | | ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx); |
1582 | | } |
1583 | | { |
1584 | | E Tgk, Tgn, Tjz, TjA; |
1585 | | Tgk = FNMS(KP923879532, Tfp, Tf2); |
1586 | | Tgn = Tgl + Tgm; |
1587 | | ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk); |
1588 | | ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk); |
1589 | | Tjz = FNMS(KP923879532, Tjw, Tjv); |
1590 | | TjA = TfR + Tgi; |
1591 | | ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz); |
1592 | | ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz); |
1593 | | } |
1594 | | { |
1595 | | E Tgs, Tgz, Tjr, Tjs; |
1596 | | Tgs = FMA(KP923879532, Tgr, Tgo); |
1597 | | Tgz = Tgv + Tgy; |
1598 | | ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs); |
1599 | | ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs); |
1600 | | Tjr = FMA(KP923879532, Tjq, Tjp); |
1601 | | Tjs = TgB + TgC; |
1602 | | ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr); |
1603 | | ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr); |
1604 | | } |
1605 | | { |
1606 | | E TgA, TgD, Tjt, Tju; |
1607 | | TgA = FNMS(KP923879532, Tgr, Tgo); |
1608 | | TgD = TgB - TgC; |
1609 | | ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA); |
1610 | | ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA); |
1611 | | Tjt = FNMS(KP923879532, Tjq, Tjp); |
1612 | | Tju = Tgy - Tgv; |
1613 | | ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt); |
1614 | | ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt); |
1615 | | } |
1616 | | { |
1617 | | E TgQ, Th5, TjF, TjG; |
1618 | | TgQ = FMA(KP923879532, TgP, TgI); |
1619 | | Th5 = TgX + Th4; |
1620 | | ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ); |
1621 | | ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ); |
1622 | | TjF = FMA(KP923879532, TjE, TjD); |
1623 | | TjG = Th7 + Th8; |
1624 | | ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF); |
1625 | | ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF); |
1626 | | } |
1627 | | { |
1628 | | E Th6, Th9, TjH, TjI; |
1629 | | Th6 = FNMS(KP923879532, TgP, TgI); |
1630 | | Th9 = Th7 - Th8; |
1631 | | ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6); |
1632 | | ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6); |
1633 | | TjH = FNMS(KP923879532, TjE, TjD); |
1634 | | TjI = Th4 - TgX; |
1635 | | ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH); |
1636 | | ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH); |
1637 | | } |
1638 | | { |
1639 | | E The, Thl, TjL, TjM; |
1640 | | The = FNMS(KP923879532, Thd, Tha); |
1641 | | Thl = Thh - Thk; |
1642 | | ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The); |
1643 | | ri[WS(rs, 14)] = FMA(KP980785280, Thl, The); |
1644 | | TjL = FNMS(KP923879532, TjK, TjJ); |
1645 | | TjM = Tho - Thn; |
1646 | | ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL); |
1647 | | ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL); |
1648 | | } |
1649 | | { |
1650 | | E Thm, Thp, TjN, TjO; |
1651 | | Thm = FMA(KP923879532, Thd, Tha); |
1652 | | Thp = Thn + Tho; |
1653 | | ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm); |
1654 | | ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm); |
1655 | | TjN = FMA(KP923879532, TjK, TjJ); |
1656 | | TjO = Thh + Thk; |
1657 | | ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN); |
1658 | | ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN); |
1659 | | } |
1660 | | } |
1661 | | { |
1662 | | E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch; |
1663 | | E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp; |
1664 | | E Tkv, Tck; |
1665 | | { |
1666 | | E T8z, Tbz, T98, TbA; |
1667 | | { |
1668 | | E T8n, T8y, T8W, T97; |
1669 | | T8n = FNMS(KP707106781, T8m, T87); |
1670 | | T8y = FNMS(KP707106781, T8x, T8u); |
1671 | | T8z = FNMS(KP668178637, T8y, T8n); |
1672 | | Tbz = FMA(KP668178637, T8n, T8y); |
1673 | | T8W = FNMS(KP707106781, T8V, T8G); |
1674 | | T97 = FNMS(KP707106781, T96, T93); |
1675 | | T98 = FMA(KP668178637, T97, T8W); |
1676 | | TbA = FNMS(KP668178637, T8W, T97); |
1677 | | } |
1678 | | T99 = T8z - T98; |
1679 | | Tkw = TbA - Tbz; |
1680 | | TbB = Tbz + TbA; |
1681 | | Tkq = T8z + T98; |
1682 | | } |
1683 | | { |
1684 | | E Ta3, TbE, Tai, TbD; |
1685 | | { |
1686 | | E T9x, Ta2, Tae, Tah; |
1687 | | T9x = FNMS(KP707106781, T9w, T9h); |
1688 | | Ta2 = T9M - Ta1; |
1689 | | Ta3 = FNMS(KP923879532, Ta2, T9x); |
1690 | | TbE = FMA(KP923879532, Ta2, T9x); |
1691 | | Tae = FNMS(KP707106781, Tad, Taa); |
1692 | | Tah = Taf - Tag; |
1693 | | Tai = FNMS(KP923879532, Tah, Tae); |
1694 | | TbD = FMA(KP923879532, Tah, Tae); |
1695 | | } |
1696 | | Taj = FMA(KP534511135, Tai, Ta3); |
1697 | | TbL = FNMS(KP303346683, TbD, TbE); |
1698 | | Tbv = FNMS(KP534511135, Ta3, Tai); |
1699 | | TbF = FMA(KP303346683, TbE, TbD); |
1700 | | } |
1701 | | { |
1702 | | E Tca, Tct, Tcd, Tcs; |
1703 | | { |
1704 | | E Tc8, Tc9, Tcb, Tcc; |
1705 | | Tc8 = FMA(KP707106781, Tbm, Tbj); |
1706 | | Tc9 = Tba + TaV; |
1707 | | Tca = FNMS(KP923879532, Tc9, Tc8); |
1708 | | Tct = FMA(KP923879532, Tc9, Tc8); |
1709 | | Tcb = FMA(KP707106781, TaF, Taq); |
1710 | | Tcc = Tbo + Tbp; |
1711 | | Tcd = FNMS(KP923879532, Tcc, Tcb); |
1712 | | Tcs = FMA(KP923879532, Tcc, Tcb); |
1713 | | } |
1714 | | Tce = FNMS(KP820678790, Tcd, Tca); |
1715 | | Tcy = FMA(KP098491403, Tcs, Tct); |
1716 | | Tci = FMA(KP820678790, Tca, Tcd); |
1717 | | Tcu = FNMS(KP098491403, Tct, Tcs); |
1718 | | } |
1719 | | { |
1720 | | E Tc3, Tcq, Tc6, Tcp; |
1721 | | { |
1722 | | E Tc1, Tc2, Tc4, Tc5; |
1723 | | Tc1 = FMA(KP707106781, Tad, Taa); |
1724 | | Tc2 = Ta1 + T9M; |
1725 | | Tc3 = FNMS(KP923879532, Tc2, Tc1); |
1726 | | Tcq = FMA(KP923879532, Tc2, Tc1); |
1727 | | Tc4 = FMA(KP707106781, T9w, T9h); |
1728 | | Tc5 = Taf + Tag; |
1729 | | Tc6 = FNMS(KP923879532, Tc5, Tc4); |
1730 | | Tcp = FMA(KP923879532, Tc5, Tc4); |
1731 | | } |
1732 | | Tc7 = FMA(KP820678790, Tc6, Tc3); |
1733 | | Tcx = FNMS(KP098491403, Tcp, Tcq); |
1734 | | Tch = FNMS(KP820678790, Tc3, Tc6); |
1735 | | Tcr = FMA(KP098491403, Tcq, Tcp); |
1736 | | } |
1737 | | { |
1738 | | E TbV, Tcl, TbY, Tcm; |
1739 | | { |
1740 | | E TbT, TbU, TbW, TbX; |
1741 | | TbT = FMA(KP707106781, T8m, T87); |
1742 | | TbU = FMA(KP707106781, T8x, T8u); |
1743 | | TbV = FMA(KP198912367, TbU, TbT); |
1744 | | Tcl = FNMS(KP198912367, TbT, TbU); |
1745 | | TbW = FMA(KP707106781, T8V, T8G); |
1746 | | TbX = FMA(KP707106781, T96, T93); |
1747 | | TbY = FNMS(KP198912367, TbX, TbW); |
1748 | | Tcm = FMA(KP198912367, TbW, TbX); |
1749 | | } |
1750 | | TbZ = TbV - TbY; |
1751 | | TkK = TbV + TbY; |
1752 | | Tcn = Tcl + Tcm; |
1753 | | TkE = Tcm - Tcl; |
1754 | | } |
1755 | | { |
1756 | | E Tbc, TbH, Tbr, TbG; |
1757 | | { |
1758 | | E TaG, Tbb, Tbn, Tbq; |
1759 | | TaG = FNMS(KP707106781, TaF, Taq); |
1760 | | Tbb = TaV - Tba; |
1761 | | Tbc = FNMS(KP923879532, Tbb, TaG); |
1762 | | TbH = FMA(KP923879532, Tbb, TaG); |
1763 | | Tbn = FNMS(KP707106781, Tbm, Tbj); |
1764 | | Tbq = Tbo - Tbp; |
1765 | | Tbr = FNMS(KP923879532, Tbq, Tbn); |
1766 | | TbG = FMA(KP923879532, Tbq, Tbn); |
1767 | | } |
1768 | | Tbs = FNMS(KP534511135, Tbr, Tbc); |
1769 | | TbM = FMA(KP303346683, TbG, TbH); |
1770 | | Tbw = FMA(KP534511135, Tbc, Tbr); |
1771 | | TbI = FNMS(KP303346683, TbH, TbG); |
1772 | | } |
1773 | | { |
1774 | | E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm; |
1775 | | T7t = T7l - T7s; |
1776 | | T7u = FMA(KP707106781, T7t, T7e); |
1777 | | TbO = FNMS(KP707106781, T7t, T7e); |
1778 | | Tkm = TcC - TcB; |
1779 | | Tkn = FMA(KP707106781, Tkm, Tkl); |
1780 | | TkB = FNMS(KP707106781, Tkm, Tkl); |
1781 | | { |
1782 | | E T7J, T7Y, TbP, TbQ; |
1783 | | T7J = FMA(KP414213562, T7I, T7B); |
1784 | | T7Y = FNMS(KP414213562, T7X, T7Q); |
1785 | | T7Z = T7J - T7Y; |
1786 | | TkC = T7J + T7Y; |
1787 | | TbP = FNMS(KP414213562, T7B, T7I); |
1788 | | TbQ = FMA(KP414213562, T7Q, T7X); |
1789 | | TbR = TbP + TbQ; |
1790 | | Tko = TbQ - TbP; |
1791 | | } |
1792 | | T80 = FNMS(KP923879532, T7Z, T7u); |
1793 | | TkD = FNMS(KP923879532, TkC, TkB); |
1794 | | TkJ = FMA(KP923879532, TkC, TkB); |
1795 | | Tby = FMA(KP923879532, T7Z, T7u); |
1796 | | TbS = FNMS(KP923879532, TbR, TbO); |
1797 | | Tkp = FMA(KP923879532, Tko, Tkn); |
1798 | | Tkv = FNMS(KP923879532, Tko, Tkn); |
1799 | | Tck = FMA(KP923879532, TbR, TbO); |
1800 | | } |
1801 | | { |
1802 | | E T9a, Tbt, Tkx, Tky; |
1803 | | T9a = FMA(KP831469612, T99, T80); |
1804 | | Tbt = Taj - Tbs; |
1805 | | ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a); |
1806 | | ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a); |
1807 | | Tkx = FMA(KP831469612, Tkw, Tkv); |
1808 | | Tky = Tbw - Tbv; |
1809 | | ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx); |
1810 | | ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx); |
1811 | | } |
1812 | | { |
1813 | | E Tbu, Tbx, Tkz, TkA; |
1814 | | Tbu = FNMS(KP831469612, T99, T80); |
1815 | | Tbx = Tbv + Tbw; |
1816 | | ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu); |
1817 | | ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu); |
1818 | | Tkz = FNMS(KP831469612, Tkw, Tkv); |
1819 | | TkA = Taj + Tbs; |
1820 | | ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz); |
1821 | | ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz); |
1822 | | } |
1823 | | { |
1824 | | E TbC, TbJ, Tkr, Tks; |
1825 | | TbC = FMA(KP831469612, TbB, Tby); |
1826 | | TbJ = TbF + TbI; |
1827 | | ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC); |
1828 | | ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC); |
1829 | | Tkr = FMA(KP831469612, Tkq, Tkp); |
1830 | | Tks = TbL + TbM; |
1831 | | ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr); |
1832 | | ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr); |
1833 | | } |
1834 | | { |
1835 | | E TbK, TbN, Tkt, Tku; |
1836 | | TbK = FNMS(KP831469612, TbB, Tby); |
1837 | | TbN = TbL - TbM; |
1838 | | ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK); |
1839 | | ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK); |
1840 | | Tkt = FNMS(KP831469612, Tkq, Tkp); |
1841 | | Tku = TbI - TbF; |
1842 | | ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt); |
1843 | | ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt); |
1844 | | } |
1845 | | { |
1846 | | E Tc0, Tcf, TkF, TkG; |
1847 | | Tc0 = FMA(KP980785280, TbZ, TbS); |
1848 | | Tcf = Tc7 + Tce; |
1849 | | ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0); |
1850 | | ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0); |
1851 | | TkF = FMA(KP980785280, TkE, TkD); |
1852 | | TkG = Tch + Tci; |
1853 | | ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF); |
1854 | | ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF); |
1855 | | } |
1856 | | { |
1857 | | E Tcg, Tcj, TkH, TkI; |
1858 | | Tcg = FNMS(KP980785280, TbZ, TbS); |
1859 | | Tcj = Tch - Tci; |
1860 | | ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg); |
1861 | | ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg); |
1862 | | TkH = FNMS(KP980785280, TkE, TkD); |
1863 | | TkI = Tce - Tc7; |
1864 | | ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH); |
1865 | | ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH); |
1866 | | } |
1867 | | { |
1868 | | E Tco, Tcv, TkL, TkM; |
1869 | | Tco = FNMS(KP980785280, Tcn, Tck); |
1870 | | Tcv = Tcr - Tcu; |
1871 | | ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco); |
1872 | | ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco); |
1873 | | TkL = FNMS(KP980785280, TkK, TkJ); |
1874 | | TkM = Tcy - Tcx; |
1875 | | ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL); |
1876 | | ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL); |
1877 | | } |
1878 | | { |
1879 | | E Tcw, Tcz, TkN, TkO; |
1880 | | Tcw = FMA(KP980785280, Tcn, Tck); |
1881 | | Tcz = Tcx + Tcy; |
1882 | | ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw); |
1883 | | ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw); |
1884 | | TkN = FMA(KP980785280, TkK, TkJ); |
1885 | | TkO = Tcr + Tcu; |
1886 | | ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN); |
1887 | | ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN); |
1888 | | } |
1889 | | } |
1890 | | { |
1891 | | E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet; |
1892 | | E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV; |
1893 | | E Tk1, Tew; |
1894 | | { |
1895 | | E TcT, TdL, Td0, TdM; |
1896 | | { |
1897 | | E TcP, TcS, TcW, TcZ; |
1898 | | TcP = FMA(KP707106781, TcO, TcN); |
1899 | | TcS = FMA(KP707106781, TcR, TcQ); |
1900 | | TcT = FNMS(KP198912367, TcS, TcP); |
1901 | | TdL = FMA(KP198912367, TcP, TcS); |
1902 | | TcW = FMA(KP707106781, TcV, TcU); |
1903 | | TcZ = FMA(KP707106781, TcY, TcX); |
1904 | | Td0 = FMA(KP198912367, TcZ, TcW); |
1905 | | TdM = FNMS(KP198912367, TcW, TcZ); |
1906 | | } |
1907 | | Td1 = TcT - Td0; |
1908 | | Tk2 = TdM - TdL; |
1909 | | TdN = TdL + TdM; |
1910 | | TjW = TcT + Td0; |
1911 | | } |
1912 | | { |
1913 | | E Tdd, TdQ, Tdk, TdP; |
1914 | | { |
1915 | | E Td5, Tdc, Tdg, Tdj; |
1916 | | Td5 = FMA(KP707106781, Td4, Td3); |
1917 | | Tdc = Td8 + Tdb; |
1918 | | Tdd = FNMS(KP923879532, Tdc, Td5); |
1919 | | TdQ = FMA(KP923879532, Tdc, Td5); |
1920 | | Tdg = FMA(KP707106781, Tdf, Tde); |
1921 | | Tdj = Tdh + Tdi; |
1922 | | Tdk = FNMS(KP923879532, Tdj, Tdg); |
1923 | | TdP = FMA(KP923879532, Tdj, Tdg); |
1924 | | } |
1925 | | Tdl = FMA(KP820678790, Tdk, Tdd); |
1926 | | TdX = FNMS(KP098491403, TdP, TdQ); |
1927 | | TdH = FNMS(KP820678790, Tdd, Tdk); |
1928 | | TdR = FMA(KP098491403, TdQ, TdP); |
1929 | | } |
1930 | | { |
1931 | | E Tem, TeF, Tep, TeE; |
1932 | | { |
1933 | | E Tek, Tel, Ten, Teo; |
1934 | | Tek = FNMS(KP707106781, Tdy, Tdx); |
1935 | | Tel = Tdu - Tdr; |
1936 | | Tem = FNMS(KP923879532, Tel, Tek); |
1937 | | TeF = FMA(KP923879532, Tel, Tek); |
1938 | | Ten = FNMS(KP707106781, Tdn, Tdm); |
1939 | | Teo = TdA - TdB; |
1940 | | Tep = FNMS(KP923879532, Teo, Ten); |
1941 | | TeE = FMA(KP923879532, Teo, Ten); |
1942 | | } |
1943 | | Teq = FNMS(KP534511135, Tep, Tem); |
1944 | | TeK = FMA(KP303346683, TeE, TeF); |
1945 | | Teu = FMA(KP534511135, Tem, Tep); |
1946 | | TeG = FNMS(KP303346683, TeF, TeE); |
1947 | | } |
1948 | | { |
1949 | | E Tef, TeC, Tei, TeB; |
1950 | | { |
1951 | | E Ted, Tee, Teg, Teh; |
1952 | | Ted = FNMS(KP707106781, Tdf, Tde); |
1953 | | Tee = Tdb - Td8; |
1954 | | Tef = FNMS(KP923879532, Tee, Ted); |
1955 | | TeC = FMA(KP923879532, Tee, Ted); |
1956 | | Teg = FNMS(KP707106781, Td4, Td3); |
1957 | | Teh = Tdh - Tdi; |
1958 | | Tei = FNMS(KP923879532, Teh, Teg); |
1959 | | TeB = FMA(KP923879532, Teh, Teg); |
1960 | | } |
1961 | | Tej = FMA(KP534511135, Tei, Tef); |
1962 | | TeJ = FNMS(KP303346683, TeB, TeC); |
1963 | | Tet = FNMS(KP534511135, Tef, Tei); |
1964 | | TeD = FMA(KP303346683, TeC, TeB); |
1965 | | } |
1966 | | { |
1967 | | E Te7, Tex, Tea, Tey; |
1968 | | { |
1969 | | E Te5, Te6, Te8, Te9; |
1970 | | Te5 = FNMS(KP707106781, TcO, TcN); |
1971 | | Te6 = FNMS(KP707106781, TcR, TcQ); |
1972 | | Te7 = FMA(KP668178637, Te6, Te5); |
1973 | | Tex = FNMS(KP668178637, Te5, Te6); |
1974 | | Te8 = FNMS(KP707106781, TcV, TcU); |
1975 | | Te9 = FNMS(KP707106781, TcY, TcX); |
1976 | | Tea = FNMS(KP668178637, Te9, Te8); |
1977 | | Tey = FMA(KP668178637, Te8, Te9); |
1978 | | } |
1979 | | Teb = Te7 - Tea; |
1980 | | Tkg = Te7 + Tea; |
1981 | | Tez = Tex + Tey; |
1982 | | Tka = Tey - Tex; |
1983 | | } |
1984 | | { |
1985 | | E Tdw, TdT, TdD, TdS; |
1986 | | { |
1987 | | E Tdo, Tdv, Tdz, TdC; |
1988 | | Tdo = FMA(KP707106781, Tdn, Tdm); |
1989 | | Tdv = Tdr + Tdu; |
1990 | | Tdw = FNMS(KP923879532, Tdv, Tdo); |
1991 | | TdT = FMA(KP923879532, Tdv, Tdo); |
1992 | | Tdz = FMA(KP707106781, Tdy, Tdx); |
1993 | | TdC = TdA + TdB; |
1994 | | TdD = FNMS(KP923879532, TdC, Tdz); |
1995 | | TdS = FMA(KP923879532, TdC, Tdz); |
1996 | | } |
1997 | | TdE = FNMS(KP820678790, TdD, Tdw); |
1998 | | TdY = FMA(KP098491403, TdS, TdT); |
1999 | | TdI = FMA(KP820678790, Tdw, TdD); |
2000 | | TdU = FNMS(KP098491403, TdT, TdS); |
2001 | | } |
2002 | | { |
2003 | | E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS; |
2004 | | TcD = TcB + TcC; |
2005 | | TcE = FMA(KP707106781, TcD, TcA); |
2006 | | Te0 = FNMS(KP707106781, TcD, TcA); |
2007 | | TjS = T7l + T7s; |
2008 | | TjT = FMA(KP707106781, TjS, TjR); |
2009 | | Tk7 = FNMS(KP707106781, TjS, TjR); |
2010 | | { |
2011 | | E TcH, TcK, Te1, Te2; |
2012 | | TcH = FMA(KP414213562, TcG, TcF); |
2013 | | TcK = FNMS(KP414213562, TcJ, TcI); |
2014 | | TcL = TcH + TcK; |
2015 | | Tk8 = TcK - TcH; |
2016 | | Te1 = FNMS(KP414213562, TcF, TcG); |
2017 | | Te2 = FMA(KP414213562, TcI, TcJ); |
2018 | | Te3 = Te1 - Te2; |
2019 | | TjU = Te1 + Te2; |
2020 | | } |
2021 | | TcM = FNMS(KP923879532, TcL, TcE); |
2022 | | Tk9 = FMA(KP923879532, Tk8, Tk7); |
2023 | | Tkf = FNMS(KP923879532, Tk8, Tk7); |
2024 | | TdK = FMA(KP923879532, TcL, TcE); |
2025 | | Te4 = FMA(KP923879532, Te3, Te0); |
2026 | | TjV = FMA(KP923879532, TjU, TjT); |
2027 | | Tk1 = FNMS(KP923879532, TjU, TjT); |
2028 | | Tew = FNMS(KP923879532, Te3, Te0); |
2029 | | } |
2030 | | { |
2031 | | E Td2, TdF, Tk3, Tk4; |
2032 | | Td2 = FMA(KP980785280, Td1, TcM); |
2033 | | TdF = Tdl - TdE; |
2034 | | ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2); |
2035 | | ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2); |
2036 | | Tk3 = FMA(KP980785280, Tk2, Tk1); |
2037 | | Tk4 = TdI - TdH; |
2038 | | ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3); |
2039 | | ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3); |
2040 | | } |
2041 | | { |
2042 | | E TdG, TdJ, Tk5, Tk6; |
2043 | | TdG = FNMS(KP980785280, Td1, TcM); |
2044 | | TdJ = TdH + TdI; |
2045 | | ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG); |
2046 | | ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG); |
2047 | | Tk5 = FNMS(KP980785280, Tk2, Tk1); |
2048 | | Tk6 = Tdl + TdE; |
2049 | | ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5); |
2050 | | ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5); |
2051 | | } |
2052 | | { |
2053 | | E TdO, TdV, TjX, TjY; |
2054 | | TdO = FMA(KP980785280, TdN, TdK); |
2055 | | TdV = TdR + TdU; |
2056 | | ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO); |
2057 | | ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO); |
2058 | | TjX = FMA(KP980785280, TjW, TjV); |
2059 | | TjY = TdX + TdY; |
2060 | | ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX); |
2061 | | ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX); |
2062 | | } |
2063 | | { |
2064 | | E TdW, TdZ, TjZ, Tk0; |
2065 | | TdW = FNMS(KP980785280, TdN, TdK); |
2066 | | TdZ = TdX - TdY; |
2067 | | ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW); |
2068 | | ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW); |
2069 | | TjZ = FNMS(KP980785280, TjW, TjV); |
2070 | | Tk0 = TdU - TdR; |
2071 | | ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ); |
2072 | | ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ); |
2073 | | } |
2074 | | { |
2075 | | E Tec, Ter, Tkb, Tkc; |
2076 | | Tec = FMA(KP831469612, Teb, Te4); |
2077 | | Ter = Tej + Teq; |
2078 | | ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec); |
2079 | | ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); |
2080 | | Tkb = FMA(KP831469612, Tka, Tk9); |
2081 | | Tkc = Tet + Teu; |
2082 | | ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb); |
2083 | | ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb); |
2084 | | } |
2085 | | { |
2086 | | E Tes, Tev, Tkd, Tke; |
2087 | | Tes = FNMS(KP831469612, Teb, Te4); |
2088 | | Tev = Tet - Teu; |
2089 | | ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes); |
2090 | | ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes); |
2091 | | Tkd = FNMS(KP831469612, Tka, Tk9); |
2092 | | Tke = Teq - Tej; |
2093 | | ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd); |
2094 | | ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd); |
2095 | | } |
2096 | | { |
2097 | | E TeA, TeH, Tkh, Tki; |
2098 | | TeA = FNMS(KP831469612, Tez, Tew); |
2099 | | TeH = TeD - TeG; |
2100 | | ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA); |
2101 | | ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA); |
2102 | | Tkh = FNMS(KP831469612, Tkg, Tkf); |
2103 | | Tki = TeK - TeJ; |
2104 | | ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh); |
2105 | | ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh); |
2106 | | } |
2107 | | { |
2108 | | E TeI, TeL, Tkj, Tkk; |
2109 | | TeI = FMA(KP831469612, Tez, Tew); |
2110 | | TeL = TeJ + TeK; |
2111 | | ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI); |
2112 | | ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI); |
2113 | | Tkj = FMA(KP831469612, Tkg, Tkf); |
2114 | | Tkk = TeD + TeG; |
2115 | | ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj); |
2116 | | ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj); |
2117 | | } |
2118 | | } |
2119 | | } |
2120 | | } |
2121 | | } |
2122 | | |
2123 | | static const tw_instr twinstr[] = { |
2124 | | { TW_FULL, 0, 64 }, |
2125 | | { TW_NEXT, 1, 0 } |
2126 | | }; |
2127 | | |
2128 | | static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 520, 126, 518, 0 }, 0, 0, 0 }; |
2129 | | |
2130 | | void X(codelet_t1_64) (planner *p) { |
2131 | | X(kdft_dit_register) (p, t1_64, &desc); |
2132 | | } |
2133 | | #else |
2134 | | |
2135 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */ |
2136 | | |
2137 | | /* |
2138 | | * This function contains 1038 FP additions, 500 FP multiplications, |
2139 | | * (or, 808 additions, 270 multiplications, 230 fused multiply/add), |
2140 | | * 176 stack variables, 15 constants, and 256 memory accesses |
2141 | | */ |
2142 | | #include "dft/scalar/t.h" |
2143 | | |
2144 | | static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
2145 | 0 | { |
2146 | 0 | DK(KP471396736, +0.471396736825997648556387625905254377657460319); |
2147 | 0 | DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
2148 | 0 | DK(KP290284677, +0.290284677254462367636192375817395274691476278); |
2149 | 0 | DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
2150 | 0 | DK(KP634393284, +0.634393284163645498215171613225493370675687095); |
2151 | 0 | DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
2152 | 0 | DK(KP098017140, +0.098017140329560601994195563888641845861136673); |
2153 | 0 | DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
2154 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
2155 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
2156 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
2157 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
2158 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
2159 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
2160 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
2161 | 0 | { |
2162 | 0 | INT m; |
2163 | 0 | for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { |
2164 | 0 | E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; |
2165 | 0 | E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; |
2166 | 0 | E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; |
2167 | 0 | E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; |
2168 | 0 | E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; |
2169 | 0 | E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; |
2170 | 0 | E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; |
2171 | 0 | E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; |
2172 | 0 | E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; |
2173 | 0 | { |
2174 | 0 | E T1, TgR, T6, TgQ, Tc, T68, Th, T69; |
2175 | 0 | T1 = ri[0]; |
2176 | 0 | TgR = ii[0]; |
2177 | 0 | { |
2178 | 0 | E T3, T5, T2, T4; |
2179 | 0 | T3 = ri[WS(rs, 32)]; |
2180 | 0 | T5 = ii[WS(rs, 32)]; |
2181 | 0 | T2 = W[62]; |
2182 | 0 | T4 = W[63]; |
2183 | 0 | T6 = FMA(T2, T3, T4 * T5); |
2184 | 0 | TgQ = FNMS(T4, T3, T2 * T5); |
2185 | 0 | } |
2186 | 0 | { |
2187 | 0 | E T9, Tb, T8, Ta; |
2188 | 0 | T9 = ri[WS(rs, 16)]; |
2189 | 0 | Tb = ii[WS(rs, 16)]; |
2190 | 0 | T8 = W[30]; |
2191 | 0 | Ta = W[31]; |
2192 | 0 | Tc = FMA(T8, T9, Ta * Tb); |
2193 | 0 | T68 = FNMS(Ta, T9, T8 * Tb); |
2194 | 0 | } |
2195 | 0 | { |
2196 | 0 | E Te, Tg, Td, Tf; |
2197 | 0 | Te = ri[WS(rs, 48)]; |
2198 | 0 | Tg = ii[WS(rs, 48)]; |
2199 | 0 | Td = W[94]; |
2200 | 0 | Tf = W[95]; |
2201 | 0 | Th = FMA(Td, Te, Tf * Tg); |
2202 | 0 | T69 = FNMS(Tf, Te, Td * Tg); |
2203 | 0 | } |
2204 | 0 | { |
2205 | 0 | E T7, Ti, ThR, ThS; |
2206 | 0 | T7 = T1 + T6; |
2207 | 0 | Ti = Tc + Th; |
2208 | 0 | Tj = T7 + Ti; |
2209 | 0 | TcL = T7 - Ti; |
2210 | 0 | ThR = TgR - TgQ; |
2211 | 0 | ThS = Tc - Th; |
2212 | 0 | ThT = ThR - ThS; |
2213 | 0 | Tin = ThS + ThR; |
2214 | 0 | } |
2215 | 0 | { |
2216 | 0 | E T67, T6a, TgP, TgS; |
2217 | 0 | T67 = T1 - T6; |
2218 | 0 | T6a = T68 - T69; |
2219 | 0 | T6b = T67 - T6a; |
2220 | 0 | Taz = T67 + T6a; |
2221 | 0 | TgP = T68 + T69; |
2222 | 0 | TgS = TgQ + TgR; |
2223 | 0 | TgT = TgP + TgS; |
2224 | 0 | Thn = TgS - TgP; |
2225 | 0 | } |
2226 | 0 | } |
2227 | 0 | { |
2228 | 0 | E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; |
2229 | 0 | { |
2230 | 0 | E Tl, Tn, Tk, Tm; |
2231 | 0 | Tl = ri[WS(rs, 8)]; |
2232 | 0 | Tn = ii[WS(rs, 8)]; |
2233 | 0 | Tk = W[14]; |
2234 | 0 | Tm = W[15]; |
2235 | 0 | To = FMA(Tk, Tl, Tm * Tn); |
2236 | 0 | T6c = FNMS(Tm, Tl, Tk * Tn); |
2237 | 0 | } |
2238 | 0 | { |
2239 | 0 | E Tq, Ts, Tp, Tr; |
2240 | 0 | Tq = ri[WS(rs, 40)]; |
2241 | 0 | Ts = ii[WS(rs, 40)]; |
2242 | 0 | Tp = W[78]; |
2243 | 0 | Tr = W[79]; |
2244 | 0 | Tt = FMA(Tp, Tq, Tr * Ts); |
2245 | 0 | T6d = FNMS(Tr, Tq, Tp * Ts); |
2246 | 0 | } |
2247 | 0 | T6e = T6c - T6d; |
2248 | 0 | T6f = To - Tt; |
2249 | 0 | { |
2250 | 0 | E Tw, Ty, Tv, Tx; |
2251 | 0 | Tw = ri[WS(rs, 56)]; |
2252 | 0 | Ty = ii[WS(rs, 56)]; |
2253 | 0 | Tv = W[110]; |
2254 | 0 | Tx = W[111]; |
2255 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
2256 | 0 | T6i = FNMS(Tx, Tw, Tv * Ty); |
2257 | 0 | } |
2258 | 0 | { |
2259 | 0 | E TB, TD, TA, TC; |
2260 | 0 | TB = ri[WS(rs, 24)]; |
2261 | 0 | TD = ii[WS(rs, 24)]; |
2262 | 0 | TA = W[46]; |
2263 | 0 | TC = W[47]; |
2264 | 0 | TE = FMA(TA, TB, TC * TD); |
2265 | 0 | T6j = FNMS(TC, TB, TA * TD); |
2266 | 0 | } |
2267 | 0 | T6h = Tz - TE; |
2268 | 0 | T6k = T6i - T6j; |
2269 | 0 | { |
2270 | 0 | E Tu, TF, TcM, TcN; |
2271 | 0 | Tu = To + Tt; |
2272 | 0 | TF = Tz + TE; |
2273 | 0 | TG = Tu + TF; |
2274 | 0 | Thm = TF - Tu; |
2275 | 0 | TcM = T6c + T6d; |
2276 | 0 | TcN = T6i + T6j; |
2277 | 0 | TcO = TcM - TcN; |
2278 | 0 | TgO = TcM + TcN; |
2279 | 0 | } |
2280 | 0 | { |
2281 | 0 | E T6g, T6l, TaA, TaB; |
2282 | 0 | T6g = T6e - T6f; |
2283 | 0 | T6l = T6h + T6k; |
2284 | 0 | T6m = KP707106781 * (T6g - T6l); |
2285 | 0 | ThQ = KP707106781 * (T6g + T6l); |
2286 | 0 | TaA = T6f + T6e; |
2287 | 0 | TaB = T6h - T6k; |
2288 | 0 | TaC = KP707106781 * (TaA + TaB); |
2289 | 0 | Tim = KP707106781 * (TaB - TaA); |
2290 | 0 | } |
2291 | 0 | } |
2292 | 0 | { |
2293 | 0 | E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; |
2294 | 0 | { |
2295 | 0 | E TM, T6o, TR, T6p; |
2296 | 0 | { |
2297 | 0 | E TJ, TL, TI, TK; |
2298 | 0 | TJ = ri[WS(rs, 4)]; |
2299 | 0 | TL = ii[WS(rs, 4)]; |
2300 | 0 | TI = W[6]; |
2301 | 0 | TK = W[7]; |
2302 | 0 | TM = FMA(TI, TJ, TK * TL); |
2303 | 0 | T6o = FNMS(TK, TJ, TI * TL); |
2304 | 0 | } |
2305 | 0 | { |
2306 | 0 | E TO, TQ, TN, TP; |
2307 | 0 | TO = ri[WS(rs, 36)]; |
2308 | 0 | TQ = ii[WS(rs, 36)]; |
2309 | 0 | TN = W[70]; |
2310 | 0 | TP = W[71]; |
2311 | 0 | TR = FMA(TN, TO, TP * TQ); |
2312 | 0 | T6p = FNMS(TP, TO, TN * TQ); |
2313 | 0 | } |
2314 | 0 | TS = TM + TR; |
2315 | 0 | TcQ = T6o + T6p; |
2316 | 0 | T6q = T6o - T6p; |
2317 | 0 | T6t = TM - TR; |
2318 | 0 | } |
2319 | 0 | { |
2320 | 0 | E TX, T6u, T12, T6v; |
2321 | 0 | { |
2322 | 0 | E TU, TW, TT, TV; |
2323 | 0 | TU = ri[WS(rs, 20)]; |
2324 | 0 | TW = ii[WS(rs, 20)]; |
2325 | 0 | TT = W[38]; |
2326 | 0 | TV = W[39]; |
2327 | 0 | TX = FMA(TT, TU, TV * TW); |
2328 | 0 | T6u = FNMS(TV, TU, TT * TW); |
2329 | 0 | } |
2330 | 0 | { |
2331 | 0 | E TZ, T11, TY, T10; |
2332 | 0 | TZ = ri[WS(rs, 52)]; |
2333 | 0 | T11 = ii[WS(rs, 52)]; |
2334 | 0 | TY = W[102]; |
2335 | 0 | T10 = W[103]; |
2336 | 0 | T12 = FMA(TY, TZ, T10 * T11); |
2337 | 0 | T6v = FNMS(T10, TZ, TY * T11); |
2338 | 0 | } |
2339 | 0 | T13 = TX + T12; |
2340 | 0 | TcR = T6u + T6v; |
2341 | 0 | T6r = TX - T12; |
2342 | 0 | T6w = T6u - T6v; |
2343 | 0 | } |
2344 | 0 | T14 = TS + T13; |
2345 | 0 | Tfq = TcQ + TcR; |
2346 | 0 | T6s = T6q + T6r; |
2347 | 0 | T6x = T6t - T6w; |
2348 | 0 | T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); |
2349 | 0 | T9O = FMA(KP923879532, T6s, KP382683432 * T6x); |
2350 | 0 | { |
2351 | 0 | E TaE, TaF, TcS, TcT; |
2352 | 0 | TaE = T6q - T6r; |
2353 | 0 | TaF = T6t + T6w; |
2354 | 0 | TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); |
2355 | 0 | Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); |
2356 | 0 | TcS = TcQ - TcR; |
2357 | 0 | TcT = TS - T13; |
2358 | 0 | TcU = TcS - TcT; |
2359 | 0 | TeE = TcT + TcS; |
2360 | 0 | } |
2361 | 0 | } |
2362 | 0 | { |
2363 | 0 | E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; |
2364 | 0 | { |
2365 | 0 | E T19, T6z, T1e, T6A; |
2366 | 0 | { |
2367 | 0 | E T16, T18, T15, T17; |
2368 | 0 | T16 = ri[WS(rs, 60)]; |
2369 | 0 | T18 = ii[WS(rs, 60)]; |
2370 | 0 | T15 = W[118]; |
2371 | 0 | T17 = W[119]; |
2372 | 0 | T19 = FMA(T15, T16, T17 * T18); |
2373 | 0 | T6z = FNMS(T17, T16, T15 * T18); |
2374 | 0 | } |
2375 | 0 | { |
2376 | 0 | E T1b, T1d, T1a, T1c; |
2377 | 0 | T1b = ri[WS(rs, 28)]; |
2378 | 0 | T1d = ii[WS(rs, 28)]; |
2379 | 0 | T1a = W[54]; |
2380 | 0 | T1c = W[55]; |
2381 | 0 | T1e = FMA(T1a, T1b, T1c * T1d); |
2382 | 0 | T6A = FNMS(T1c, T1b, T1a * T1d); |
2383 | 0 | } |
2384 | 0 | T1f = T19 + T1e; |
2385 | 0 | TcW = T6z + T6A; |
2386 | 0 | T6B = T6z - T6A; |
2387 | 0 | T6E = T19 - T1e; |
2388 | 0 | } |
2389 | 0 | { |
2390 | 0 | E T1k, T6F, T1p, T6G; |
2391 | 0 | { |
2392 | 0 | E T1h, T1j, T1g, T1i; |
2393 | 0 | T1h = ri[WS(rs, 12)]; |
2394 | 0 | T1j = ii[WS(rs, 12)]; |
2395 | 0 | T1g = W[22]; |
2396 | 0 | T1i = W[23]; |
2397 | 0 | T1k = FMA(T1g, T1h, T1i * T1j); |
2398 | 0 | T6F = FNMS(T1i, T1h, T1g * T1j); |
2399 | 0 | } |
2400 | 0 | { |
2401 | 0 | E T1m, T1o, T1l, T1n; |
2402 | 0 | T1m = ri[WS(rs, 44)]; |
2403 | 0 | T1o = ii[WS(rs, 44)]; |
2404 | 0 | T1l = W[86]; |
2405 | 0 | T1n = W[87]; |
2406 | 0 | T1p = FMA(T1l, T1m, T1n * T1o); |
2407 | 0 | T6G = FNMS(T1n, T1m, T1l * T1o); |
2408 | 0 | } |
2409 | 0 | T1q = T1k + T1p; |
2410 | 0 | TcX = T6F + T6G; |
2411 | 0 | T6C = T1k - T1p; |
2412 | 0 | T6H = T6F - T6G; |
2413 | 0 | } |
2414 | 0 | T1r = T1f + T1q; |
2415 | 0 | Tfr = TcW + TcX; |
2416 | 0 | T6D = T6B + T6C; |
2417 | 0 | T6I = T6E - T6H; |
2418 | 0 | T6J = FMA(KP382683432, T6D, KP923879532 * T6I); |
2419 | 0 | T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); |
2420 | 0 | { |
2421 | 0 | E TaH, TaI, TcV, TcY; |
2422 | 0 | TaH = T6B - T6C; |
2423 | 0 | TaI = T6E + T6H; |
2424 | 0 | TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); |
2425 | 0 | Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); |
2426 | 0 | TcV = T1f - T1q; |
2427 | 0 | TcY = TcW - TcX; |
2428 | 0 | TcZ = TcV + TcY; |
2429 | 0 | TeF = TcV - TcY; |
2430 | 0 | } |
2431 | 0 | } |
2432 | 0 | { |
2433 | 0 | E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; |
2434 | 0 | E T6Z, T2c, Td9, T6R, T6U; |
2435 | 0 | { |
2436 | 0 | E T1v, T1x, T1u, T1w; |
2437 | 0 | T1v = ri[WS(rs, 2)]; |
2438 | 0 | T1x = ii[WS(rs, 2)]; |
2439 | 0 | T1u = W[2]; |
2440 | 0 | T1w = W[3]; |
2441 | 0 | T1y = FMA(T1u, T1v, T1w * T1x); |
2442 | 0 | T6M = FNMS(T1w, T1v, T1u * T1x); |
2443 | 0 | } |
2444 | 0 | { |
2445 | 0 | E T1A, T1C, T1z, T1B; |
2446 | 0 | T1A = ri[WS(rs, 34)]; |
2447 | 0 | T1C = ii[WS(rs, 34)]; |
2448 | 0 | T1z = W[66]; |
2449 | 0 | T1B = W[67]; |
2450 | 0 | T1D = FMA(T1z, T1A, T1B * T1C); |
2451 | 0 | T6N = FNMS(T1B, T1A, T1z * T1C); |
2452 | 0 | } |
2453 | 0 | T1E = T1y + T1D; |
2454 | 0 | Td2 = T6M + T6N; |
2455 | 0 | { |
2456 | 0 | E T1G, T1I, T1F, T1H; |
2457 | 0 | T1G = ri[WS(rs, 18)]; |
2458 | 0 | T1I = ii[WS(rs, 18)]; |
2459 | 0 | T1F = W[34]; |
2460 | 0 | T1H = W[35]; |
2461 | 0 | T1J = FMA(T1F, T1G, T1H * T1I); |
2462 | 0 | T74 = FNMS(T1H, T1G, T1F * T1I); |
2463 | 0 | } |
2464 | 0 | { |
2465 | 0 | E T1L, T1N, T1K, T1M; |
2466 | 0 | T1L = ri[WS(rs, 50)]; |
2467 | 0 | T1N = ii[WS(rs, 50)]; |
2468 | 0 | T1K = W[98]; |
2469 | 0 | T1M = W[99]; |
2470 | 0 | T1O = FMA(T1K, T1L, T1M * T1N); |
2471 | 0 | T75 = FNMS(T1M, T1L, T1K * T1N); |
2472 | 0 | } |
2473 | 0 | T1P = T1J + T1O; |
2474 | 0 | Td3 = T74 + T75; |
2475 | 0 | { |
2476 | 0 | E T1V, T6X, T20, T6Y; |
2477 | 0 | { |
2478 | 0 | E T1S, T1U, T1R, T1T; |
2479 | 0 | T1S = ri[WS(rs, 10)]; |
2480 | 0 | T1U = ii[WS(rs, 10)]; |
2481 | 0 | T1R = W[18]; |
2482 | 0 | T1T = W[19]; |
2483 | 0 | T1V = FMA(T1R, T1S, T1T * T1U); |
2484 | 0 | T6X = FNMS(T1T, T1S, T1R * T1U); |
2485 | 0 | } |
2486 | 0 | { |
2487 | 0 | E T1X, T1Z, T1W, T1Y; |
2488 | 0 | T1X = ri[WS(rs, 42)]; |
2489 | 0 | T1Z = ii[WS(rs, 42)]; |
2490 | 0 | T1W = W[82]; |
2491 | 0 | T1Y = W[83]; |
2492 | 0 | T20 = FMA(T1W, T1X, T1Y * T1Z); |
2493 | 0 | T6Y = FNMS(T1Y, T1X, T1W * T1Z); |
2494 | 0 | } |
2495 | 0 | T21 = T1V + T20; |
2496 | 0 | Td8 = T6X + T6Y; |
2497 | 0 | T6W = T1V - T20; |
2498 | 0 | T6Z = T6X - T6Y; |
2499 | 0 | } |
2500 | 0 | { |
2501 | 0 | E T26, T6S, T2b, T6T; |
2502 | 0 | { |
2503 | 0 | E T23, T25, T22, T24; |
2504 | 0 | T23 = ri[WS(rs, 58)]; |
2505 | 0 | T25 = ii[WS(rs, 58)]; |
2506 | 0 | T22 = W[114]; |
2507 | 0 | T24 = W[115]; |
2508 | 0 | T26 = FMA(T22, T23, T24 * T25); |
2509 | 0 | T6S = FNMS(T24, T23, T22 * T25); |
2510 | 0 | } |
2511 | 0 | { |
2512 | 0 | E T28, T2a, T27, T29; |
2513 | 0 | T28 = ri[WS(rs, 26)]; |
2514 | 0 | T2a = ii[WS(rs, 26)]; |
2515 | 0 | T27 = W[50]; |
2516 | 0 | T29 = W[51]; |
2517 | 0 | T2b = FMA(T27, T28, T29 * T2a); |
2518 | 0 | T6T = FNMS(T29, T28, T27 * T2a); |
2519 | 0 | } |
2520 | 0 | T2c = T26 + T2b; |
2521 | 0 | Td9 = T6S + T6T; |
2522 | 0 | T6R = T26 - T2b; |
2523 | 0 | T6U = T6S - T6T; |
2524 | 0 | } |
2525 | 0 | T1Q = T1E + T1P; |
2526 | 0 | T2d = T21 + T2c; |
2527 | 0 | Tfx = T1Q - T2d; |
2528 | 0 | Tfu = Td2 + Td3; |
2529 | 0 | Tfv = Td8 + Td9; |
2530 | 0 | Tfw = Tfu - Tfv; |
2531 | 0 | { |
2532 | 0 | E T6O, T6P, Td7, Tda; |
2533 | 0 | T6O = T6M - T6N; |
2534 | 0 | T6P = T1J - T1O; |
2535 | 0 | T6Q = T6O + T6P; |
2536 | 0 | TaM = T6O - T6P; |
2537 | 0 | Td7 = T1E - T1P; |
2538 | 0 | Tda = Td8 - Td9; |
2539 | 0 | Tdb = Td7 - Tda; |
2540 | 0 | TeJ = Td7 + Tda; |
2541 | 0 | } |
2542 | 0 | { |
2543 | 0 | E T6V, T70, T78, T79; |
2544 | 0 | T6V = T6R - T6U; |
2545 | 0 | T70 = T6W + T6Z; |
2546 | 0 | T71 = KP707106781 * (T6V - T70); |
2547 | 0 | TaQ = KP707106781 * (T70 + T6V); |
2548 | 0 | T78 = T6Z - T6W; |
2549 | 0 | T79 = T6R + T6U; |
2550 | 0 | T7a = KP707106781 * (T78 - T79); |
2551 | 0 | TaN = KP707106781 * (T78 + T79); |
2552 | 0 | } |
2553 | 0 | { |
2554 | 0 | E Td4, Td5, T73, T76; |
2555 | 0 | Td4 = Td2 - Td3; |
2556 | 0 | Td5 = T2c - T21; |
2557 | 0 | Td6 = Td4 - Td5; |
2558 | 0 | TeI = Td4 + Td5; |
2559 | 0 | T73 = T1y - T1D; |
2560 | 0 | T76 = T74 - T75; |
2561 | 0 | T77 = T73 - T76; |
2562 | 0 | TaP = T73 + T76; |
2563 | 0 | } |
2564 | 0 | } |
2565 | 0 | { |
2566 | 0 | E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; |
2567 | 0 | E T7q, T2X, Tdk, T7i, T7l; |
2568 | 0 | { |
2569 | 0 | E T2g, T2i, T2f, T2h; |
2570 | 0 | T2g = ri[WS(rs, 62)]; |
2571 | 0 | T2i = ii[WS(rs, 62)]; |
2572 | 0 | T2f = W[122]; |
2573 | 0 | T2h = W[123]; |
2574 | 0 | T2j = FMA(T2f, T2g, T2h * T2i); |
2575 | 0 | T7d = FNMS(T2h, T2g, T2f * T2i); |
2576 | 0 | } |
2577 | 0 | { |
2578 | 0 | E T2l, T2n, T2k, T2m; |
2579 | 0 | T2l = ri[WS(rs, 30)]; |
2580 | 0 | T2n = ii[WS(rs, 30)]; |
2581 | 0 | T2k = W[58]; |
2582 | 0 | T2m = W[59]; |
2583 | 0 | T2o = FMA(T2k, T2l, T2m * T2n); |
2584 | 0 | T7e = FNMS(T2m, T2l, T2k * T2n); |
2585 | 0 | } |
2586 | 0 | T2p = T2j + T2o; |
2587 | 0 | Tdd = T7d + T7e; |
2588 | 0 | { |
2589 | 0 | E T2r, T2t, T2q, T2s; |
2590 | 0 | T2r = ri[WS(rs, 14)]; |
2591 | 0 | T2t = ii[WS(rs, 14)]; |
2592 | 0 | T2q = W[26]; |
2593 | 0 | T2s = W[27]; |
2594 | 0 | T2u = FMA(T2q, T2r, T2s * T2t); |
2595 | 0 | T7v = FNMS(T2s, T2r, T2q * T2t); |
2596 | 0 | } |
2597 | 0 | { |
2598 | 0 | E T2w, T2y, T2v, T2x; |
2599 | 0 | T2w = ri[WS(rs, 46)]; |
2600 | 0 | T2y = ii[WS(rs, 46)]; |
2601 | 0 | T2v = W[90]; |
2602 | 0 | T2x = W[91]; |
2603 | 0 | T2z = FMA(T2v, T2w, T2x * T2y); |
2604 | 0 | T7w = FNMS(T2x, T2w, T2v * T2y); |
2605 | 0 | } |
2606 | 0 | T2A = T2u + T2z; |
2607 | 0 | Tde = T7v + T7w; |
2608 | 0 | { |
2609 | 0 | E T2G, T7o, T2L, T7p; |
2610 | 0 | { |
2611 | 0 | E T2D, T2F, T2C, T2E; |
2612 | 0 | T2D = ri[WS(rs, 6)]; |
2613 | 0 | T2F = ii[WS(rs, 6)]; |
2614 | 0 | T2C = W[10]; |
2615 | 0 | T2E = W[11]; |
2616 | 0 | T2G = FMA(T2C, T2D, T2E * T2F); |
2617 | 0 | T7o = FNMS(T2E, T2D, T2C * T2F); |
2618 | 0 | } |
2619 | 0 | { |
2620 | 0 | E T2I, T2K, T2H, T2J; |
2621 | 0 | T2I = ri[WS(rs, 38)]; |
2622 | 0 | T2K = ii[WS(rs, 38)]; |
2623 | 0 | T2H = W[74]; |
2624 | 0 | T2J = W[75]; |
2625 | 0 | T2L = FMA(T2H, T2I, T2J * T2K); |
2626 | 0 | T7p = FNMS(T2J, T2I, T2H * T2K); |
2627 | 0 | } |
2628 | 0 | T2M = T2G + T2L; |
2629 | 0 | Tdj = T7o + T7p; |
2630 | 0 | T7n = T2G - T2L; |
2631 | 0 | T7q = T7o - T7p; |
2632 | 0 | } |
2633 | 0 | { |
2634 | 0 | E T2R, T7j, T2W, T7k; |
2635 | 0 | { |
2636 | 0 | E T2O, T2Q, T2N, T2P; |
2637 | 0 | T2O = ri[WS(rs, 54)]; |
2638 | 0 | T2Q = ii[WS(rs, 54)]; |
2639 | 0 | T2N = W[106]; |
2640 | 0 | T2P = W[107]; |
2641 | 0 | T2R = FMA(T2N, T2O, T2P * T2Q); |
2642 | 0 | T7j = FNMS(T2P, T2O, T2N * T2Q); |
2643 | 0 | } |
2644 | 0 | { |
2645 | 0 | E T2T, T2V, T2S, T2U; |
2646 | 0 | T2T = ri[WS(rs, 22)]; |
2647 | 0 | T2V = ii[WS(rs, 22)]; |
2648 | 0 | T2S = W[42]; |
2649 | 0 | T2U = W[43]; |
2650 | 0 | T2W = FMA(T2S, T2T, T2U * T2V); |
2651 | 0 | T7k = FNMS(T2U, T2T, T2S * T2V); |
2652 | 0 | } |
2653 | 0 | T2X = T2R + T2W; |
2654 | 0 | Tdk = T7j + T7k; |
2655 | 0 | T7i = T2R - T2W; |
2656 | 0 | T7l = T7j - T7k; |
2657 | 0 | } |
2658 | 0 | T2B = T2p + T2A; |
2659 | 0 | T2Y = T2M + T2X; |
2660 | 0 | Tfz = T2B - T2Y; |
2661 | 0 | TfA = Tdd + Tde; |
2662 | 0 | TfB = Tdj + Tdk; |
2663 | 0 | TfC = TfA - TfB; |
2664 | 0 | { |
2665 | 0 | E T7f, T7g, Tdi, Tdl; |
2666 | 0 | T7f = T7d - T7e; |
2667 | 0 | T7g = T2u - T2z; |
2668 | 0 | T7h = T7f + T7g; |
2669 | 0 | TaW = T7f - T7g; |
2670 | 0 | Tdi = T2p - T2A; |
2671 | 0 | Tdl = Tdj - Tdk; |
2672 | 0 | Tdm = Tdi - Tdl; |
2673 | 0 | TeM = Tdi + Tdl; |
2674 | 0 | } |
2675 | 0 | { |
2676 | 0 | E T7m, T7r, T7z, T7A; |
2677 | 0 | T7m = T7i - T7l; |
2678 | 0 | T7r = T7n + T7q; |
2679 | 0 | T7s = KP707106781 * (T7m - T7r); |
2680 | 0 | TaU = KP707106781 * (T7r + T7m); |
2681 | 0 | T7z = T7q - T7n; |
2682 | 0 | T7A = T7i + T7l; |
2683 | 0 | T7B = KP707106781 * (T7z - T7A); |
2684 | 0 | TaX = KP707106781 * (T7z + T7A); |
2685 | 0 | } |
2686 | 0 | { |
2687 | 0 | E Tdf, Tdg, T7u, T7x; |
2688 | 0 | Tdf = Tdd - Tde; |
2689 | 0 | Tdg = T2X - T2M; |
2690 | 0 | Tdh = Tdf - Tdg; |
2691 | 0 | TeL = Tdf + Tdg; |
2692 | 0 | T7u = T2j - T2o; |
2693 | 0 | T7x = T7v - T7w; |
2694 | 0 | T7y = T7u - T7x; |
2695 | 0 | TaT = T7u + T7x; |
2696 | 0 | } |
2697 | 0 | } |
2698 | 0 | { |
2699 | 0 | E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; |
2700 | 0 | E T8H, T5h, TdT, T8J, T8M; |
2701 | 0 | { |
2702 | 0 | E T4A, T4C, T4z, T4B; |
2703 | 0 | T4A = ri[WS(rs, 63)]; |
2704 | 0 | T4C = ii[WS(rs, 63)]; |
2705 | 0 | T4z = W[124]; |
2706 | 0 | T4B = W[125]; |
2707 | 0 | T4D = FMA(T4z, T4A, T4B * T4C); |
2708 | 0 | T9e = FNMS(T4B, T4A, T4z * T4C); |
2709 | 0 | } |
2710 | 0 | { |
2711 | 0 | E T4F, T4H, T4E, T4G; |
2712 | 0 | T4F = ri[WS(rs, 31)]; |
2713 | 0 | T4H = ii[WS(rs, 31)]; |
2714 | 0 | T4E = W[60]; |
2715 | 0 | T4G = W[61]; |
2716 | 0 | T4I = FMA(T4E, T4F, T4G * T4H); |
2717 | 0 | T9f = FNMS(T4G, T4F, T4E * T4H); |
2718 | 0 | } |
2719 | 0 | T4J = T4D + T4I; |
2720 | 0 | Te8 = T9e + T9f; |
2721 | 0 | { |
2722 | 0 | E T4L, T4N, T4K, T4M; |
2723 | 0 | T4L = ri[WS(rs, 15)]; |
2724 | 0 | T4N = ii[WS(rs, 15)]; |
2725 | 0 | T4K = W[28]; |
2726 | 0 | T4M = W[29]; |
2727 | 0 | T4O = FMA(T4K, T4L, T4M * T4N); |
2728 | 0 | T8A = FNMS(T4M, T4L, T4K * T4N); |
2729 | 0 | } |
2730 | 0 | { |
2731 | 0 | E T4Q, T4S, T4P, T4R; |
2732 | 0 | T4Q = ri[WS(rs, 47)]; |
2733 | 0 | T4S = ii[WS(rs, 47)]; |
2734 | 0 | T4P = W[92]; |
2735 | 0 | T4R = W[93]; |
2736 | 0 | T4T = FMA(T4P, T4Q, T4R * T4S); |
2737 | 0 | T8B = FNMS(T4R, T4Q, T4P * T4S); |
2738 | 0 | } |
2739 | 0 | T4U = T4O + T4T; |
2740 | 0 | Te9 = T8A + T8B; |
2741 | 0 | { |
2742 | 0 | E T50, T8E, T55, T8F; |
2743 | 0 | { |
2744 | 0 | E T4X, T4Z, T4W, T4Y; |
2745 | 0 | T4X = ri[WS(rs, 7)]; |
2746 | 0 | T4Z = ii[WS(rs, 7)]; |
2747 | 0 | T4W = W[12]; |
2748 | 0 | T4Y = W[13]; |
2749 | 0 | T50 = FMA(T4W, T4X, T4Y * T4Z); |
2750 | 0 | T8E = FNMS(T4Y, T4X, T4W * T4Z); |
2751 | 0 | } |
2752 | 0 | { |
2753 | 0 | E T52, T54, T51, T53; |
2754 | 0 | T52 = ri[WS(rs, 39)]; |
2755 | 0 | T54 = ii[WS(rs, 39)]; |
2756 | 0 | T51 = W[76]; |
2757 | 0 | T53 = W[77]; |
2758 | 0 | T55 = FMA(T51, T52, T53 * T54); |
2759 | 0 | T8F = FNMS(T53, T52, T51 * T54); |
2760 | 0 | } |
2761 | 0 | T56 = T50 + T55; |
2762 | 0 | TdS = T8E + T8F; |
2763 | 0 | T8G = T8E - T8F; |
2764 | 0 | T8H = T50 - T55; |
2765 | 0 | } |
2766 | 0 | { |
2767 | 0 | E T5b, T8K, T5g, T8L; |
2768 | 0 | { |
2769 | 0 | E T58, T5a, T57, T59; |
2770 | 0 | T58 = ri[WS(rs, 55)]; |
2771 | 0 | T5a = ii[WS(rs, 55)]; |
2772 | 0 | T57 = W[108]; |
2773 | 0 | T59 = W[109]; |
2774 | 0 | T5b = FMA(T57, T58, T59 * T5a); |
2775 | 0 | T8K = FNMS(T59, T58, T57 * T5a); |
2776 | 0 | } |
2777 | 0 | { |
2778 | 0 | E T5d, T5f, T5c, T5e; |
2779 | 0 | T5d = ri[WS(rs, 23)]; |
2780 | 0 | T5f = ii[WS(rs, 23)]; |
2781 | 0 | T5c = W[44]; |
2782 | 0 | T5e = W[45]; |
2783 | 0 | T5g = FMA(T5c, T5d, T5e * T5f); |
2784 | 0 | T8L = FNMS(T5e, T5d, T5c * T5f); |
2785 | 0 | } |
2786 | 0 | T5h = T5b + T5g; |
2787 | 0 | TdT = T8K + T8L; |
2788 | 0 | T8J = T5b - T5g; |
2789 | 0 | T8M = T8K - T8L; |
2790 | 0 | } |
2791 | 0 | { |
2792 | 0 | E T4V, T5i, Tea, Teb; |
2793 | 0 | T4V = T4J + T4U; |
2794 | 0 | T5i = T56 + T5h; |
2795 | 0 | T5j = T4V + T5i; |
2796 | 0 | TfR = T4V - T5i; |
2797 | 0 | Tea = Te8 - Te9; |
2798 | 0 | Teb = T5h - T56; |
2799 | 0 | Tec = Tea - Teb; |
2800 | 0 | Tf0 = Tea + Teb; |
2801 | 0 | } |
2802 | 0 | { |
2803 | 0 | E TfW, TfX, T8z, T8C; |
2804 | 0 | TfW = Te8 + Te9; |
2805 | 0 | TfX = TdS + TdT; |
2806 | 0 | TfY = TfW - TfX; |
2807 | 0 | Tgy = TfW + TfX; |
2808 | 0 | T8z = T4D - T4I; |
2809 | 0 | T8C = T8A - T8B; |
2810 | 0 | T8D = T8z - T8C; |
2811 | 0 | Tbl = T8z + T8C; |
2812 | 0 | } |
2813 | 0 | { |
2814 | 0 | E T8I, T8N, T9j, T9k; |
2815 | 0 | T8I = T8G - T8H; |
2816 | 0 | T8N = T8J + T8M; |
2817 | 0 | T8O = KP707106781 * (T8I - T8N); |
2818 | 0 | Tbx = KP707106781 * (T8I + T8N); |
2819 | 0 | T9j = T8J - T8M; |
2820 | 0 | T9k = T8H + T8G; |
2821 | 0 | T9l = KP707106781 * (T9j - T9k); |
2822 | 0 | Tbm = KP707106781 * (T9k + T9j); |
2823 | 0 | } |
2824 | 0 | { |
2825 | 0 | E TdR, TdU, T9g, T9h; |
2826 | 0 | TdR = T4J - T4U; |
2827 | 0 | TdU = TdS - TdT; |
2828 | 0 | TdV = TdR - TdU; |
2829 | 0 | TeX = TdR + TdU; |
2830 | 0 | T9g = T9e - T9f; |
2831 | 0 | T9h = T4O - T4T; |
2832 | 0 | T9i = T9g + T9h; |
2833 | 0 | Tbw = T9g - T9h; |
2834 | 0 | } |
2835 | 0 | } |
2836 | 0 | { |
2837 | 0 | E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; |
2838 | 0 | E T7T, T3K, TdJ, T7L, T7O; |
2839 | 0 | { |
2840 | 0 | E T33, T35, T32, T34; |
2841 | 0 | T33 = ri[WS(rs, 1)]; |
2842 | 0 | T35 = ii[WS(rs, 1)]; |
2843 | 0 | T32 = W[0]; |
2844 | 0 | T34 = W[1]; |
2845 | 0 | T36 = FMA(T32, T33, T34 * T35); |
2846 | 0 | T7G = FNMS(T34, T33, T32 * T35); |
2847 | 0 | } |
2848 | 0 | { |
2849 | 0 | E T38, T3a, T37, T39; |
2850 | 0 | T38 = ri[WS(rs, 33)]; |
2851 | 0 | T3a = ii[WS(rs, 33)]; |
2852 | 0 | T37 = W[64]; |
2853 | 0 | T39 = W[65]; |
2854 | 0 | T3b = FMA(T37, T38, T39 * T3a); |
2855 | 0 | T7H = FNMS(T39, T38, T37 * T3a); |
2856 | 0 | } |
2857 | 0 | T3c = T36 + T3b; |
2858 | 0 | Tdq = T7G + T7H; |
2859 | 0 | { |
2860 | 0 | E T3e, T3g, T3d, T3f; |
2861 | 0 | T3e = ri[WS(rs, 17)]; |
2862 | 0 | T3g = ii[WS(rs, 17)]; |
2863 | 0 | T3d = W[32]; |
2864 | 0 | T3f = W[33]; |
2865 | 0 | T3h = FMA(T3d, T3e, T3f * T3g); |
2866 | 0 | T8m = FNMS(T3f, T3e, T3d * T3g); |
2867 | 0 | } |
2868 | 0 | { |
2869 | 0 | E T3j, T3l, T3i, T3k; |
2870 | 0 | T3j = ri[WS(rs, 49)]; |
2871 | 0 | T3l = ii[WS(rs, 49)]; |
2872 | 0 | T3i = W[96]; |
2873 | 0 | T3k = W[97]; |
2874 | 0 | T3m = FMA(T3i, T3j, T3k * T3l); |
2875 | 0 | T8n = FNMS(T3k, T3j, T3i * T3l); |
2876 | 0 | } |
2877 | 0 | T3n = T3h + T3m; |
2878 | 0 | Tdr = T8m + T8n; |
2879 | 0 | { |
2880 | 0 | E T3t, T7R, T3y, T7S; |
2881 | 0 | { |
2882 | 0 | E T3q, T3s, T3p, T3r; |
2883 | 0 | T3q = ri[WS(rs, 9)]; |
2884 | 0 | T3s = ii[WS(rs, 9)]; |
2885 | 0 | T3p = W[16]; |
2886 | 0 | T3r = W[17]; |
2887 | 0 | T3t = FMA(T3p, T3q, T3r * T3s); |
2888 | 0 | T7R = FNMS(T3r, T3q, T3p * T3s); |
2889 | 0 | } |
2890 | 0 | { |
2891 | 0 | E T3v, T3x, T3u, T3w; |
2892 | 0 | T3v = ri[WS(rs, 41)]; |
2893 | 0 | T3x = ii[WS(rs, 41)]; |
2894 | 0 | T3u = W[80]; |
2895 | 0 | T3w = W[81]; |
2896 | 0 | T3y = FMA(T3u, T3v, T3w * T3x); |
2897 | 0 | T7S = FNMS(T3w, T3v, T3u * T3x); |
2898 | 0 | } |
2899 | 0 | T3z = T3t + T3y; |
2900 | 0 | TdI = T7R + T7S; |
2901 | 0 | T7Q = T3t - T3y; |
2902 | 0 | T7T = T7R - T7S; |
2903 | 0 | } |
2904 | 0 | { |
2905 | 0 | E T3E, T7M, T3J, T7N; |
2906 | 0 | { |
2907 | 0 | E T3B, T3D, T3A, T3C; |
2908 | 0 | T3B = ri[WS(rs, 57)]; |
2909 | 0 | T3D = ii[WS(rs, 57)]; |
2910 | 0 | T3A = W[112]; |
2911 | 0 | T3C = W[113]; |
2912 | 0 | T3E = FMA(T3A, T3B, T3C * T3D); |
2913 | 0 | T7M = FNMS(T3C, T3B, T3A * T3D); |
2914 | 0 | } |
2915 | 0 | { |
2916 | 0 | E T3G, T3I, T3F, T3H; |
2917 | 0 | T3G = ri[WS(rs, 25)]; |
2918 | 0 | T3I = ii[WS(rs, 25)]; |
2919 | 0 | T3F = W[48]; |
2920 | 0 | T3H = W[49]; |
2921 | 0 | T3J = FMA(T3F, T3G, T3H * T3I); |
2922 | 0 | T7N = FNMS(T3H, T3G, T3F * T3I); |
2923 | 0 | } |
2924 | 0 | T3K = T3E + T3J; |
2925 | 0 | TdJ = T7M + T7N; |
2926 | 0 | T7L = T3E - T3J; |
2927 | 0 | T7O = T7M - T7N; |
2928 | 0 | } |
2929 | 0 | { |
2930 | 0 | E T3o, T3L, TdH, TdK; |
2931 | 0 | T3o = T3c + T3n; |
2932 | 0 | T3L = T3z + T3K; |
2933 | 0 | T3M = T3o + T3L; |
2934 | 0 | TfL = T3o - T3L; |
2935 | 0 | TdH = T3c - T3n; |
2936 | 0 | TdK = TdI - TdJ; |
2937 | 0 | TdL = TdH - TdK; |
2938 | 0 | TeQ = TdH + TdK; |
2939 | 0 | } |
2940 | 0 | { |
2941 | 0 | E TfG, TfH, T7I, T7J; |
2942 | 0 | TfG = Tdq + Tdr; |
2943 | 0 | TfH = TdI + TdJ; |
2944 | 0 | TfI = TfG - TfH; |
2945 | 0 | Tgt = TfG + TfH; |
2946 | 0 | T7I = T7G - T7H; |
2947 | 0 | T7J = T3h - T3m; |
2948 | 0 | T7K = T7I + T7J; |
2949 | 0 | Tb2 = T7I - T7J; |
2950 | 0 | } |
2951 | 0 | { |
2952 | 0 | E T7P, T7U, T8q, T8r; |
2953 | 0 | T7P = T7L - T7O; |
2954 | 0 | T7U = T7Q + T7T; |
2955 | 0 | T7V = KP707106781 * (T7P - T7U); |
2956 | 0 | Tbe = KP707106781 * (T7U + T7P); |
2957 | 0 | T8q = T7T - T7Q; |
2958 | 0 | T8r = T7L + T7O; |
2959 | 0 | T8s = KP707106781 * (T8q - T8r); |
2960 | 0 | Tb3 = KP707106781 * (T8q + T8r); |
2961 | 0 | } |
2962 | 0 | { |
2963 | 0 | E Tds, Tdt, T8l, T8o; |
2964 | 0 | Tds = Tdq - Tdr; |
2965 | 0 | Tdt = T3K - T3z; |
2966 | 0 | Tdu = Tds - Tdt; |
2967 | 0 | TeT = Tds + Tdt; |
2968 | 0 | T8l = T36 - T3b; |
2969 | 0 | T8o = T8m - T8n; |
2970 | 0 | T8p = T8l - T8o; |
2971 | 0 | Tbd = T8l + T8o; |
2972 | 0 | } |
2973 | 0 | } |
2974 | 0 | { |
2975 | 0 | E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; |
2976 | 0 | E T84; |
2977 | 0 | { |
2978 | 0 | E T3R, T88, T3W, T89; |
2979 | 0 | { |
2980 | 0 | E T3O, T3Q, T3N, T3P; |
2981 | 0 | T3O = ri[WS(rs, 5)]; |
2982 | 0 | T3Q = ii[WS(rs, 5)]; |
2983 | 0 | T3N = W[8]; |
2984 | 0 | T3P = W[9]; |
2985 | 0 | T3R = FMA(T3N, T3O, T3P * T3Q); |
2986 | 0 | T88 = FNMS(T3P, T3O, T3N * T3Q); |
2987 | 0 | } |
2988 | 0 | { |
2989 | 0 | E T3T, T3V, T3S, T3U; |
2990 | 0 | T3T = ri[WS(rs, 37)]; |
2991 | 0 | T3V = ii[WS(rs, 37)]; |
2992 | 0 | T3S = W[72]; |
2993 | 0 | T3U = W[73]; |
2994 | 0 | T3W = FMA(T3S, T3T, T3U * T3V); |
2995 | 0 | T89 = FNMS(T3U, T3T, T3S * T3V); |
2996 | 0 | } |
2997 | 0 | T3X = T3R + T3W; |
2998 | 0 | TdB = T88 + T89; |
2999 | 0 | T8a = T88 - T89; |
3000 | 0 | T8d = T3R - T3W; |
3001 | 0 | } |
3002 | 0 | { |
3003 | 0 | E T4p, T7Y, T4u, T7Z; |
3004 | 0 | { |
3005 | 0 | E T4m, T4o, T4l, T4n; |
3006 | 0 | T4m = ri[WS(rs, 13)]; |
3007 | 0 | T4o = ii[WS(rs, 13)]; |
3008 | 0 | T4l = W[24]; |
3009 | 0 | T4n = W[25]; |
3010 | 0 | T4p = FMA(T4l, T4m, T4n * T4o); |
3011 | 0 | T7Y = FNMS(T4n, T4m, T4l * T4o); |
3012 | 0 | } |
3013 | 0 | { |
3014 | 0 | E T4r, T4t, T4q, T4s; |
3015 | 0 | T4r = ri[WS(rs, 45)]; |
3016 | 0 | T4t = ii[WS(rs, 45)]; |
3017 | 0 | T4q = W[88]; |
3018 | 0 | T4s = W[89]; |
3019 | 0 | T4u = FMA(T4q, T4r, T4s * T4t); |
3020 | 0 | T7Z = FNMS(T4s, T4r, T4q * T4t); |
3021 | 0 | } |
3022 | 0 | T4v = T4p + T4u; |
3023 | 0 | Tdx = T7Y + T7Z; |
3024 | 0 | T80 = T7Y - T7Z; |
3025 | 0 | T85 = T4p - T4u; |
3026 | 0 | } |
3027 | 0 | { |
3028 | 0 | E T42, T8e, T47, T8f; |
3029 | 0 | { |
3030 | 0 | E T3Z, T41, T3Y, T40; |
3031 | 0 | T3Z = ri[WS(rs, 21)]; |
3032 | 0 | T41 = ii[WS(rs, 21)]; |
3033 | 0 | T3Y = W[40]; |
3034 | 0 | T40 = W[41]; |
3035 | 0 | T42 = FMA(T3Y, T3Z, T40 * T41); |
3036 | 0 | T8e = FNMS(T40, T3Z, T3Y * T41); |
3037 | 0 | } |
3038 | 0 | { |
3039 | 0 | E T44, T46, T43, T45; |
3040 | 0 | T44 = ri[WS(rs, 53)]; |
3041 | 0 | T46 = ii[WS(rs, 53)]; |
3042 | 0 | T43 = W[104]; |
3043 | 0 | T45 = W[105]; |
3044 | 0 | T47 = FMA(T43, T44, T45 * T46); |
3045 | 0 | T8f = FNMS(T45, T44, T43 * T46); |
3046 | 0 | } |
3047 | 0 | T48 = T42 + T47; |
3048 | 0 | TdC = T8e + T8f; |
3049 | 0 | T8b = T42 - T47; |
3050 | 0 | T8g = T8e - T8f; |
3051 | 0 | } |
3052 | 0 | { |
3053 | 0 | E T4e, T82, T4j, T83; |
3054 | 0 | { |
3055 | 0 | E T4b, T4d, T4a, T4c; |
3056 | 0 | T4b = ri[WS(rs, 61)]; |
3057 | 0 | T4d = ii[WS(rs, 61)]; |
3058 | 0 | T4a = W[120]; |
3059 | 0 | T4c = W[121]; |
3060 | 0 | T4e = FMA(T4a, T4b, T4c * T4d); |
3061 | 0 | T82 = FNMS(T4c, T4b, T4a * T4d); |
3062 | 0 | } |
3063 | 0 | { |
3064 | 0 | E T4g, T4i, T4f, T4h; |
3065 | 0 | T4g = ri[WS(rs, 29)]; |
3066 | 0 | T4i = ii[WS(rs, 29)]; |
3067 | 0 | T4f = W[56]; |
3068 | 0 | T4h = W[57]; |
3069 | 0 | T4j = FMA(T4f, T4g, T4h * T4i); |
3070 | 0 | T83 = FNMS(T4h, T4g, T4f * T4i); |
3071 | 0 | } |
3072 | 0 | T4k = T4e + T4j; |
3073 | 0 | Tdw = T82 + T83; |
3074 | 0 | T7X = T4e - T4j; |
3075 | 0 | T84 = T82 - T83; |
3076 | 0 | } |
3077 | 0 | { |
3078 | 0 | E T49, T4w, TdA, TdD; |
3079 | 0 | T49 = T3X + T48; |
3080 | 0 | T4w = T4k + T4v; |
3081 | 0 | T4x = T49 + T4w; |
3082 | 0 | TfJ = T4w - T49; |
3083 | 0 | TdA = T3X - T48; |
3084 | 0 | TdD = TdB - TdC; |
3085 | 0 | TdE = TdA + TdD; |
3086 | 0 | TdM = TdD - TdA; |
3087 | 0 | } |
3088 | 0 | { |
3089 | 0 | E TfM, TfN, T81, T86; |
3090 | 0 | TfM = TdB + TdC; |
3091 | 0 | TfN = Tdw + Tdx; |
3092 | 0 | TfO = TfM - TfN; |
3093 | 0 | Tgu = TfM + TfN; |
3094 | 0 | T81 = T7X - T80; |
3095 | 0 | T86 = T84 + T85; |
3096 | 0 | T87 = FNMS(KP923879532, T86, KP382683432 * T81); |
3097 | 0 | T8v = FMA(KP382683432, T86, KP923879532 * T81); |
3098 | 0 | } |
3099 | 0 | { |
3100 | 0 | E T8c, T8h, Tb8, Tb9; |
3101 | 0 | T8c = T8a + T8b; |
3102 | 0 | T8h = T8d - T8g; |
3103 | 0 | T8i = FMA(KP923879532, T8c, KP382683432 * T8h); |
3104 | 0 | T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); |
3105 | 0 | Tb8 = T8a - T8b; |
3106 | 0 | Tb9 = T8d + T8g; |
3107 | 0 | Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); |
3108 | 0 | Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); |
3109 | 0 | } |
3110 | 0 | { |
3111 | 0 | E Tdv, Tdy, Tb5, Tb6; |
3112 | 0 | Tdv = T4k - T4v; |
3113 | 0 | Tdy = Tdw - Tdx; |
3114 | 0 | Tdz = Tdv - Tdy; |
3115 | 0 | TdN = Tdv + Tdy; |
3116 | 0 | Tb5 = T7X + T80; |
3117 | 0 | Tb6 = T84 - T85; |
3118 | 0 | Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); |
3119 | 0 | Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); |
3120 | 0 | } |
3121 | 0 | } |
3122 | 0 | { |
3123 | 0 | E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; |
3124 | 0 | E T96; |
3125 | 0 | { |
3126 | 0 | E T5o, T8Q, T5t, T8R; |
3127 | 0 | { |
3128 | 0 | E T5l, T5n, T5k, T5m; |
3129 | 0 | T5l = ri[WS(rs, 3)]; |
3130 | 0 | T5n = ii[WS(rs, 3)]; |
3131 | 0 | T5k = W[4]; |
3132 | 0 | T5m = W[5]; |
3133 | 0 | T5o = FMA(T5k, T5l, T5m * T5n); |
3134 | 0 | T8Q = FNMS(T5m, T5l, T5k * T5n); |
3135 | 0 | } |
3136 | 0 | { |
3137 | 0 | E T5q, T5s, T5p, T5r; |
3138 | 0 | T5q = ri[WS(rs, 35)]; |
3139 | 0 | T5s = ii[WS(rs, 35)]; |
3140 | 0 | T5p = W[68]; |
3141 | 0 | T5r = W[69]; |
3142 | 0 | T5t = FMA(T5p, T5q, T5r * T5s); |
3143 | 0 | T8R = FNMS(T5r, T5q, T5p * T5s); |
3144 | 0 | } |
3145 | 0 | T5u = T5o + T5t; |
3146 | 0 | TdW = T8Q + T8R; |
3147 | 0 | T8S = T8Q - T8R; |
3148 | 0 | T8V = T5o - T5t; |
3149 | 0 | } |
3150 | 0 | { |
3151 | 0 | E T5W, T97, T61, T98; |
3152 | 0 | { |
3153 | 0 | E T5T, T5V, T5S, T5U; |
3154 | 0 | T5T = ri[WS(rs, 11)]; |
3155 | 0 | T5V = ii[WS(rs, 11)]; |
3156 | 0 | T5S = W[20]; |
3157 | 0 | T5U = W[21]; |
3158 | 0 | T5W = FMA(T5S, T5T, T5U * T5V); |
3159 | 0 | T97 = FNMS(T5U, T5T, T5S * T5V); |
3160 | 0 | } |
3161 | 0 | { |
3162 | 0 | E T5Y, T60, T5X, T5Z; |
3163 | 0 | T5Y = ri[WS(rs, 43)]; |
3164 | 0 | T60 = ii[WS(rs, 43)]; |
3165 | 0 | T5X = W[84]; |
3166 | 0 | T5Z = W[85]; |
3167 | 0 | T61 = FMA(T5X, T5Y, T5Z * T60); |
3168 | 0 | T98 = FNMS(T5Z, T5Y, T5X * T60); |
3169 | 0 | } |
3170 | 0 | T62 = T5W + T61; |
3171 | 0 | Te3 = T97 + T98; |
3172 | 0 | T94 = T5W - T61; |
3173 | 0 | T99 = T97 - T98; |
3174 | 0 | } |
3175 | 0 | { |
3176 | 0 | E T5z, T8W, T5E, T8X; |
3177 | 0 | { |
3178 | 0 | E T5w, T5y, T5v, T5x; |
3179 | 0 | T5w = ri[WS(rs, 19)]; |
3180 | 0 | T5y = ii[WS(rs, 19)]; |
3181 | 0 | T5v = W[36]; |
3182 | 0 | T5x = W[37]; |
3183 | 0 | T5z = FMA(T5v, T5w, T5x * T5y); |
3184 | 0 | T8W = FNMS(T5x, T5w, T5v * T5y); |
3185 | 0 | } |
3186 | 0 | { |
3187 | 0 | E T5B, T5D, T5A, T5C; |
3188 | 0 | T5B = ri[WS(rs, 51)]; |
3189 | 0 | T5D = ii[WS(rs, 51)]; |
3190 | 0 | T5A = W[100]; |
3191 | 0 | T5C = W[101]; |
3192 | 0 | T5E = FMA(T5A, T5B, T5C * T5D); |
3193 | 0 | T8X = FNMS(T5C, T5B, T5A * T5D); |
3194 | 0 | } |
3195 | 0 | T5F = T5z + T5E; |
3196 | 0 | TdX = T8W + T8X; |
3197 | 0 | T8T = T5z - T5E; |
3198 | 0 | T8Y = T8W - T8X; |
3199 | 0 | } |
3200 | 0 | { |
3201 | 0 | E T5L, T91, T5Q, T92; |
3202 | 0 | { |
3203 | 0 | E T5I, T5K, T5H, T5J; |
3204 | 0 | T5I = ri[WS(rs, 59)]; |
3205 | 0 | T5K = ii[WS(rs, 59)]; |
3206 | 0 | T5H = W[116]; |
3207 | 0 | T5J = W[117]; |
3208 | 0 | T5L = FMA(T5H, T5I, T5J * T5K); |
3209 | 0 | T91 = FNMS(T5J, T5I, T5H * T5K); |
3210 | 0 | } |
3211 | 0 | { |
3212 | 0 | E T5N, T5P, T5M, T5O; |
3213 | 0 | T5N = ri[WS(rs, 27)]; |
3214 | 0 | T5P = ii[WS(rs, 27)]; |
3215 | 0 | T5M = W[52]; |
3216 | 0 | T5O = W[53]; |
3217 | 0 | T5Q = FMA(T5M, T5N, T5O * T5P); |
3218 | 0 | T92 = FNMS(T5O, T5N, T5M * T5P); |
3219 | 0 | } |
3220 | 0 | T5R = T5L + T5Q; |
3221 | 0 | Te2 = T91 + T92; |
3222 | 0 | T93 = T91 - T92; |
3223 | 0 | T96 = T5L - T5Q; |
3224 | 0 | } |
3225 | 0 | { |
3226 | 0 | E T5G, T63, Te1, Te4; |
3227 | 0 | T5G = T5u + T5F; |
3228 | 0 | T63 = T5R + T62; |
3229 | 0 | T64 = T5G + T63; |
3230 | 0 | TfZ = T63 - T5G; |
3231 | 0 | Te1 = T5R - T62; |
3232 | 0 | Te4 = Te2 - Te3; |
3233 | 0 | Te5 = Te1 + Te4; |
3234 | 0 | Ted = Te1 - Te4; |
3235 | 0 | } |
3236 | 0 | { |
3237 | 0 | E TfS, TfT, T8U, T8Z; |
3238 | 0 | TfS = TdW + TdX; |
3239 | 0 | TfT = Te2 + Te3; |
3240 | 0 | TfU = TfS - TfT; |
3241 | 0 | Tgz = TfS + TfT; |
3242 | 0 | T8U = T8S + T8T; |
3243 | 0 | T8Z = T8V - T8Y; |
3244 | 0 | T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); |
3245 | 0 | T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); |
3246 | 0 | } |
3247 | 0 | { |
3248 | 0 | E T95, T9a, Tbr, Tbs; |
3249 | 0 | T95 = T93 + T94; |
3250 | 0 | T9a = T96 - T99; |
3251 | 0 | T9b = FMA(KP382683432, T95, KP923879532 * T9a); |
3252 | 0 | T9n = FNMS(KP923879532, T95, KP382683432 * T9a); |
3253 | 0 | Tbr = T93 - T94; |
3254 | 0 | Tbs = T96 + T99; |
3255 | 0 | Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); |
3256 | 0 | Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); |
3257 | 0 | } |
3258 | 0 | { |
3259 | 0 | E TdY, TdZ, Tbo, Tbp; |
3260 | 0 | TdY = TdW - TdX; |
3261 | 0 | TdZ = T5u - T5F; |
3262 | 0 | Te0 = TdY - TdZ; |
3263 | 0 | Tee = TdZ + TdY; |
3264 | 0 | Tbo = T8S - T8T; |
3265 | 0 | Tbp = T8V + T8Y; |
3266 | 0 | Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); |
3267 | 0 | TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); |
3268 | 0 | } |
3269 | 0 | } |
3270 | 0 | { |
3271 | 0 | E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; |
3272 | 0 | E TgM; |
3273 | 0 | { |
3274 | 0 | E TH, T1s, TgI, TgJ; |
3275 | 0 | TH = Tj + TG; |
3276 | 0 | T1s = T14 + T1r; |
3277 | 0 | T1t = TH + T1s; |
3278 | 0 | Tgn = TH - T1s; |
3279 | 0 | TgI = Tgt + Tgu; |
3280 | 0 | TgJ = Tgy + Tgz; |
3281 | 0 | TgK = TgI - TgJ; |
3282 | 0 | TgL = TgI + TgJ; |
3283 | 0 | } |
3284 | 0 | { |
3285 | 0 | E TgN, TgU, T2e, T2Z; |
3286 | 0 | TgN = Tfq + Tfr; |
3287 | 0 | TgU = TgO + TgT; |
3288 | 0 | TgV = TgN + TgU; |
3289 | 0 | Th1 = TgU - TgN; |
3290 | 0 | T2e = T1Q + T2d; |
3291 | 0 | T2Z = T2B + T2Y; |
3292 | 0 | T30 = T2e + T2Z; |
3293 | 0 | Th0 = T2Z - T2e; |
3294 | 0 | } |
3295 | 0 | { |
3296 | 0 | E T4y, T65, Tgs, Tgv; |
3297 | 0 | T4y = T3M + T4x; |
3298 | 0 | T65 = T5j + T64; |
3299 | 0 | T66 = T4y + T65; |
3300 | 0 | TgX = T65 - T4y; |
3301 | 0 | Tgs = T3M - T4x; |
3302 | 0 | Tgv = Tgt - Tgu; |
3303 | 0 | Tgw = Tgs + Tgv; |
3304 | 0 | TgE = Tgv - Tgs; |
3305 | 0 | } |
3306 | 0 | { |
3307 | 0 | E Tgx, TgA, Tgo, Tgp; |
3308 | 0 | Tgx = T5j - T64; |
3309 | 0 | TgA = Tgy - Tgz; |
3310 | 0 | TgB = Tgx - TgA; |
3311 | 0 | TgF = Tgx + TgA; |
3312 | 0 | Tgo = Tfu + Tfv; |
3313 | 0 | Tgp = TfA + TfB; |
3314 | 0 | Tgq = Tgo - Tgp; |
3315 | 0 | TgM = Tgo + Tgp; |
3316 | 0 | } |
3317 | 0 | { |
3318 | 0 | E T31, TgW, TgH, TgY; |
3319 | 0 | T31 = T1t + T30; |
3320 | 0 | ri[WS(rs, 32)] = T31 - T66; |
3321 | 0 | ri[0] = T31 + T66; |
3322 | 0 | TgW = TgM + TgV; |
3323 | 0 | ii[0] = TgL + TgW; |
3324 | 0 | ii[WS(rs, 32)] = TgW - TgL; |
3325 | 0 | TgH = T1t - T30; |
3326 | 0 | ri[WS(rs, 48)] = TgH - TgK; |
3327 | 0 | ri[WS(rs, 16)] = TgH + TgK; |
3328 | 0 | TgY = TgV - TgM; |
3329 | 0 | ii[WS(rs, 16)] = TgX + TgY; |
3330 | 0 | ii[WS(rs, 48)] = TgY - TgX; |
3331 | 0 | } |
3332 | 0 | { |
3333 | 0 | E Tgr, TgC, TgZ, Th2; |
3334 | 0 | Tgr = Tgn + Tgq; |
3335 | 0 | TgC = KP707106781 * (Tgw + TgB); |
3336 | 0 | ri[WS(rs, 40)] = Tgr - TgC; |
3337 | 0 | ri[WS(rs, 8)] = Tgr + TgC; |
3338 | 0 | TgZ = KP707106781 * (TgE + TgF); |
3339 | 0 | Th2 = Th0 + Th1; |
3340 | 0 | ii[WS(rs, 8)] = TgZ + Th2; |
3341 | 0 | ii[WS(rs, 40)] = Th2 - TgZ; |
3342 | 0 | } |
3343 | 0 | { |
3344 | 0 | E TgD, TgG, Th3, Th4; |
3345 | 0 | TgD = Tgn - Tgq; |
3346 | 0 | TgG = KP707106781 * (TgE - TgF); |
3347 | 0 | ri[WS(rs, 56)] = TgD - TgG; |
3348 | 0 | ri[WS(rs, 24)] = TgD + TgG; |
3349 | 0 | Th3 = KP707106781 * (TgB - Tgw); |
3350 | 0 | Th4 = Th1 - Th0; |
3351 | 0 | ii[WS(rs, 24)] = Th3 + Th4; |
3352 | 0 | ii[WS(rs, 56)] = Th4 - Th3; |
3353 | 0 | } |
3354 | 0 | } |
3355 | 0 | { |
3356 | 0 | E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; |
3357 | 0 | E Tg5; |
3358 | 0 | { |
3359 | 0 | E Tfp, Tfs, Tgf, Tgg; |
3360 | 0 | Tfp = Tj - TG; |
3361 | 0 | Tfs = Tfq - Tfr; |
3362 | 0 | Tft = Tfp - Tfs; |
3363 | 0 | Tg7 = Tfp + Tfs; |
3364 | 0 | Tgf = TfR + TfU; |
3365 | 0 | Tgg = TfY + TfZ; |
3366 | 0 | Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); |
3367 | 0 | Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); |
3368 | 0 | } |
3369 | 0 | { |
3370 | 0 | E Th7, Th8, Tfy, TfD; |
3371 | 0 | Th7 = T1r - T14; |
3372 | 0 | Th8 = TgT - TgO; |
3373 | 0 | Th9 = Th7 + Th8; |
3374 | 0 | Thf = Th8 - Th7; |
3375 | 0 | Tfy = Tfw - Tfx; |
3376 | 0 | TfD = Tfz + TfC; |
3377 | 0 | TfE = KP707106781 * (Tfy - TfD); |
3378 | 0 | Th6 = KP707106781 * (Tfy + TfD); |
3379 | 0 | } |
3380 | 0 | { |
3381 | 0 | E TfK, TfP, Tg8, Tg9; |
3382 | 0 | TfK = TfI - TfJ; |
3383 | 0 | TfP = TfL - TfO; |
3384 | 0 | TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); |
3385 | 0 | Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); |
3386 | 0 | Tg8 = Tfx + Tfw; |
3387 | 0 | Tg9 = Tfz - TfC; |
3388 | 0 | Tga = KP707106781 * (Tg8 + Tg9); |
3389 | 0 | The = KP707106781 * (Tg9 - Tg8); |
3390 | 0 | } |
3391 | 0 | { |
3392 | 0 | E Tgc, Tgd, TfV, Tg0; |
3393 | 0 | Tgc = TfI + TfJ; |
3394 | 0 | Tgd = TfL + TfO; |
3395 | 0 | Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); |
3396 | 0 | Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); |
3397 | 0 | TfV = TfR - TfU; |
3398 | 0 | Tg0 = TfY - TfZ; |
3399 | 0 | Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); |
3400 | 0 | Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); |
3401 | 0 | } |
3402 | 0 | { |
3403 | 0 | E TfF, Tg2, Thd, Thg; |
3404 | 0 | TfF = Tft + TfE; |
3405 | 0 | Tg2 = TfQ + Tg1; |
3406 | 0 | ri[WS(rs, 44)] = TfF - Tg2; |
3407 | 0 | ri[WS(rs, 12)] = TfF + Tg2; |
3408 | 0 | Thd = Tg4 + Tg5; |
3409 | 0 | Thg = The + Thf; |
3410 | 0 | ii[WS(rs, 12)] = Thd + Thg; |
3411 | 0 | ii[WS(rs, 44)] = Thg - Thd; |
3412 | 0 | } |
3413 | 0 | { |
3414 | 0 | E Tg3, Tg6, Thh, Thi; |
3415 | 0 | Tg3 = Tft - TfE; |
3416 | 0 | Tg6 = Tg4 - Tg5; |
3417 | 0 | ri[WS(rs, 60)] = Tg3 - Tg6; |
3418 | 0 | ri[WS(rs, 28)] = Tg3 + Tg6; |
3419 | 0 | Thh = Tg1 - TfQ; |
3420 | 0 | Thi = Thf - The; |
3421 | 0 | ii[WS(rs, 28)] = Thh + Thi; |
3422 | 0 | ii[WS(rs, 60)] = Thi - Thh; |
3423 | 0 | } |
3424 | 0 | { |
3425 | 0 | E Tgb, Tgi, Th5, Tha; |
3426 | 0 | Tgb = Tg7 + Tga; |
3427 | 0 | Tgi = Tge + Tgh; |
3428 | 0 | ri[WS(rs, 36)] = Tgb - Tgi; |
3429 | 0 | ri[WS(rs, 4)] = Tgb + Tgi; |
3430 | 0 | Th5 = Tgk + Tgl; |
3431 | 0 | Tha = Th6 + Th9; |
3432 | 0 | ii[WS(rs, 4)] = Th5 + Tha; |
3433 | 0 | ii[WS(rs, 36)] = Tha - Th5; |
3434 | 0 | } |
3435 | 0 | { |
3436 | 0 | E Tgj, Tgm, Thb, Thc; |
3437 | 0 | Tgj = Tg7 - Tga; |
3438 | 0 | Tgm = Tgk - Tgl; |
3439 | 0 | ri[WS(rs, 52)] = Tgj - Tgm; |
3440 | 0 | ri[WS(rs, 20)] = Tgj + Tgm; |
3441 | 0 | Thb = Tgh - Tge; |
3442 | 0 | Thc = Th9 - Th6; |
3443 | 0 | ii[WS(rs, 20)] = Thb + Thc; |
3444 | 0 | ii[WS(rs, 52)] = Thc - Thb; |
3445 | 0 | } |
3446 | 0 | } |
3447 | 0 | { |
3448 | 0 | E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; |
3449 | 0 | E Teu; |
3450 | 0 | { |
3451 | 0 | E TcP, Td0, Teo, Tep; |
3452 | 0 | TcP = TcL - TcO; |
3453 | 0 | Td0 = KP707106781 * (TcU - TcZ); |
3454 | 0 | Td1 = TcP - Td0; |
3455 | 0 | Ten = TcP + Td0; |
3456 | 0 | { |
3457 | 0 | E Tdc, Tdn, ThB, ThC; |
3458 | 0 | Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); |
3459 | 0 | Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); |
3460 | 0 | Tdo = Tdc - Tdn; |
3461 | 0 | ThA = Tdc + Tdn; |
3462 | 0 | ThB = KP707106781 * (TeF - TeE); |
3463 | 0 | ThC = Thn - Thm; |
3464 | 0 | ThD = ThB + ThC; |
3465 | 0 | ThJ = ThC - ThB; |
3466 | 0 | } |
3467 | 0 | Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); |
3468 | 0 | Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); |
3469 | 0 | Teq = Teo + Tep; |
3470 | 0 | ThI = Tep - Teo; |
3471 | 0 | { |
3472 | 0 | E Te7, Tev, Teg, Tew, Te6, Tef; |
3473 | 0 | Te6 = KP707106781 * (Te0 - Te5); |
3474 | 0 | Te7 = TdV - Te6; |
3475 | 0 | Tev = TdV + Te6; |
3476 | 0 | Tef = KP707106781 * (Ted - Tee); |
3477 | 0 | Teg = Tec - Tef; |
3478 | 0 | Tew = Tec + Tef; |
3479 | 0 | Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); |
3480 | 0 | TeB = FMA(KP831469612, Tew, KP555570233 * Tev); |
3481 | 0 | Tel = FMA(KP195090322, Teg, KP980785280 * Te7); |
3482 | 0 | Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); |
3483 | 0 | } |
3484 | 0 | { |
3485 | 0 | E TdG, Tes, TdP, Tet, TdF, TdO; |
3486 | 0 | TdF = KP707106781 * (Tdz - TdE); |
3487 | 0 | TdG = Tdu - TdF; |
3488 | 0 | Tes = Tdu + TdF; |
3489 | 0 | TdO = KP707106781 * (TdM - TdN); |
3490 | 0 | TdP = TdL - TdO; |
3491 | 0 | Tet = TdL + TdO; |
3492 | 0 | TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); |
3493 | 0 | TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); |
3494 | 0 | Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); |
3495 | 0 | Teu = FMA(KP555570233, Tes, KP831469612 * Tet); |
3496 | 0 | } |
3497 | 0 | } |
3498 | 0 | { |
3499 | 0 | E Tdp, Tei, ThH, ThK; |
3500 | 0 | Tdp = Td1 + Tdo; |
3501 | 0 | Tei = TdQ + Teh; |
3502 | 0 | ri[WS(rs, 46)] = Tdp - Tei; |
3503 | 0 | ri[WS(rs, 14)] = Tdp + Tei; |
3504 | 0 | ThH = Tek + Tel; |
3505 | 0 | ThK = ThI + ThJ; |
3506 | 0 | ii[WS(rs, 14)] = ThH + ThK; |
3507 | 0 | ii[WS(rs, 46)] = ThK - ThH; |
3508 | 0 | } |
3509 | 0 | { |
3510 | 0 | E Tej, Tem, ThL, ThM; |
3511 | 0 | Tej = Td1 - Tdo; |
3512 | 0 | Tem = Tek - Tel; |
3513 | 0 | ri[WS(rs, 62)] = Tej - Tem; |
3514 | 0 | ri[WS(rs, 30)] = Tej + Tem; |
3515 | 0 | ThL = Teh - TdQ; |
3516 | 0 | ThM = ThJ - ThI; |
3517 | 0 | ii[WS(rs, 30)] = ThL + ThM; |
3518 | 0 | ii[WS(rs, 62)] = ThM - ThL; |
3519 | 0 | } |
3520 | 0 | { |
3521 | 0 | E Ter, Tey, Thz, ThE; |
3522 | 0 | Ter = Ten + Teq; |
3523 | 0 | Tey = Teu + Tex; |
3524 | 0 | ri[WS(rs, 38)] = Ter - Tey; |
3525 | 0 | ri[WS(rs, 6)] = Ter + Tey; |
3526 | 0 | Thz = TeA + TeB; |
3527 | 0 | ThE = ThA + ThD; |
3528 | 0 | ii[WS(rs, 6)] = Thz + ThE; |
3529 | 0 | ii[WS(rs, 38)] = ThE - Thz; |
3530 | 0 | } |
3531 | 0 | { |
3532 | 0 | E Tez, TeC, ThF, ThG; |
3533 | 0 | Tez = Ten - Teq; |
3534 | 0 | TeC = TeA - TeB; |
3535 | 0 | ri[WS(rs, 54)] = Tez - TeC; |
3536 | 0 | ri[WS(rs, 22)] = Tez + TeC; |
3537 | 0 | ThF = Tex - Teu; |
3538 | 0 | ThG = ThD - ThA; |
3539 | 0 | ii[WS(rs, 22)] = ThF + ThG; |
3540 | 0 | ii[WS(rs, 54)] = ThG - ThF; |
3541 | 0 | } |
3542 | 0 | } |
3543 | 0 | { |
3544 | 0 | E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; |
3545 | 0 | E Tfg; |
3546 | 0 | { |
3547 | 0 | E TeD, TeG, Tfa, Tfb; |
3548 | 0 | TeD = TcL + TcO; |
3549 | 0 | TeG = KP707106781 * (TeE + TeF); |
3550 | 0 | TeH = TeD - TeG; |
3551 | 0 | Tf9 = TeD + TeG; |
3552 | 0 | { |
3553 | 0 | E TeK, TeN, Thl, Tho; |
3554 | 0 | TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); |
3555 | 0 | TeN = FMA(KP923879532, TeL, KP382683432 * TeM); |
3556 | 0 | TeO = TeK - TeN; |
3557 | 0 | Thk = TeK + TeN; |
3558 | 0 | Thl = KP707106781 * (TcU + TcZ); |
3559 | 0 | Tho = Thm + Thn; |
3560 | 0 | Thp = Thl + Tho; |
3561 | 0 | Thv = Tho - Thl; |
3562 | 0 | } |
3563 | 0 | Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); |
3564 | 0 | Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); |
3565 | 0 | Tfc = Tfa + Tfb; |
3566 | 0 | Thu = Tfb - Tfa; |
3567 | 0 | { |
3568 | 0 | E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; |
3569 | 0 | TeY = KP707106781 * (Tee + Ted); |
3570 | 0 | TeZ = TeX - TeY; |
3571 | 0 | Tfh = TeX + TeY; |
3572 | 0 | Tf1 = KP707106781 * (Te0 + Te5); |
3573 | 0 | Tf2 = Tf0 - Tf1; |
3574 | 0 | Tfi = Tf0 + Tf1; |
3575 | 0 | Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); |
3576 | 0 | Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); |
3577 | 0 | Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); |
3578 | 0 | Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); |
3579 | 0 | } |
3580 | 0 | { |
3581 | 0 | E TeS, Tfe, TeV, Tff, TeR, TeU; |
3582 | 0 | TeR = KP707106781 * (TdE + Tdz); |
3583 | 0 | TeS = TeQ - TeR; |
3584 | 0 | Tfe = TeQ + TeR; |
3585 | 0 | TeU = KP707106781 * (TdM + TdN); |
3586 | 0 | TeV = TeT - TeU; |
3587 | 0 | Tff = TeT + TeU; |
3588 | 0 | TeW = FMA(KP555570233, TeS, KP831469612 * TeV); |
3589 | 0 | Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); |
3590 | 0 | Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); |
3591 | 0 | Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); |
3592 | 0 | } |
3593 | 0 | } |
3594 | 0 | { |
3595 | 0 | E TeP, Tf4, Tht, Thw; |
3596 | 0 | TeP = TeH + TeO; |
3597 | 0 | Tf4 = TeW + Tf3; |
3598 | 0 | ri[WS(rs, 42)] = TeP - Tf4; |
3599 | 0 | ri[WS(rs, 10)] = TeP + Tf4; |
3600 | 0 | Tht = Tf6 + Tf7; |
3601 | 0 | Thw = Thu + Thv; |
3602 | 0 | ii[WS(rs, 10)] = Tht + Thw; |
3603 | 0 | ii[WS(rs, 42)] = Thw - Tht; |
3604 | 0 | } |
3605 | 0 | { |
3606 | 0 | E Tf5, Tf8, Thx, Thy; |
3607 | 0 | Tf5 = TeH - TeO; |
3608 | 0 | Tf8 = Tf6 - Tf7; |
3609 | 0 | ri[WS(rs, 58)] = Tf5 - Tf8; |
3610 | 0 | ri[WS(rs, 26)] = Tf5 + Tf8; |
3611 | 0 | Thx = Tf3 - TeW; |
3612 | 0 | Thy = Thv - Thu; |
3613 | 0 | ii[WS(rs, 26)] = Thx + Thy; |
3614 | 0 | ii[WS(rs, 58)] = Thy - Thx; |
3615 | 0 | } |
3616 | 0 | { |
3617 | 0 | E Tfd, Tfk, Thj, Thq; |
3618 | 0 | Tfd = Tf9 + Tfc; |
3619 | 0 | Tfk = Tfg + Tfj; |
3620 | 0 | ri[WS(rs, 34)] = Tfd - Tfk; |
3621 | 0 | ri[WS(rs, 2)] = Tfd + Tfk; |
3622 | 0 | Thj = Tfm + Tfn; |
3623 | 0 | Thq = Thk + Thp; |
3624 | 0 | ii[WS(rs, 2)] = Thj + Thq; |
3625 | 0 | ii[WS(rs, 34)] = Thq - Thj; |
3626 | 0 | } |
3627 | 0 | { |
3628 | 0 | E Tfl, Tfo, Thr, Ths; |
3629 | 0 | Tfl = Tf9 - Tfc; |
3630 | 0 | Tfo = Tfm - Tfn; |
3631 | 0 | ri[WS(rs, 50)] = Tfl - Tfo; |
3632 | 0 | ri[WS(rs, 18)] = Tfl + Tfo; |
3633 | 0 | Thr = Tfj - Tfg; |
3634 | 0 | Ths = Thp - Thk; |
3635 | 0 | ii[WS(rs, 18)] = Thr + Ths; |
3636 | 0 | ii[WS(rs, 50)] = Ths - Thr; |
3637 | 0 | } |
3638 | 0 | } |
3639 | 0 | { |
3640 | 0 | E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; |
3641 | 0 | E T9H; |
3642 | 0 | { |
3643 | 0 | E T6n, T6K, TiB, TiC; |
3644 | 0 | T6n = T6b - T6m; |
3645 | 0 | T6K = T6y - T6J; |
3646 | 0 | T6L = T6n - T6K; |
3647 | 0 | T9x = T6n + T6K; |
3648 | 0 | TiB = T9P - T9O; |
3649 | 0 | TiC = Tin - Tim; |
3650 | 0 | TiD = TiB + TiC; |
3651 | 0 | TiJ = TiC - TiB; |
3652 | 0 | } |
3653 | 0 | { |
3654 | 0 | E T7c, T9y, T7D, T9z; |
3655 | 0 | { |
3656 | 0 | E T72, T7b, T7t, T7C; |
3657 | 0 | T72 = T6Q - T71; |
3658 | 0 | T7b = T77 - T7a; |
3659 | 0 | T7c = FNMS(KP980785280, T7b, KP195090322 * T72); |
3660 | 0 | T9y = FMA(KP980785280, T72, KP195090322 * T7b); |
3661 | 0 | T7t = T7h - T7s; |
3662 | 0 | T7C = T7y - T7B; |
3663 | 0 | T7D = FMA(KP195090322, T7t, KP980785280 * T7C); |
3664 | 0 | T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); |
3665 | 0 | } |
3666 | 0 | T7E = T7c - T7D; |
3667 | 0 | TiI = T9z - T9y; |
3668 | 0 | T9A = T9y + T9z; |
3669 | 0 | TiA = T7c + T7D; |
3670 | 0 | } |
3671 | 0 | { |
3672 | 0 | E T8k, T9C, T8x, T9D; |
3673 | 0 | { |
3674 | 0 | E T7W, T8j, T8t, T8w; |
3675 | 0 | T7W = T7K - T7V; |
3676 | 0 | T8j = T87 - T8i; |
3677 | 0 | T8k = T7W - T8j; |
3678 | 0 | T9C = T7W + T8j; |
3679 | 0 | T8t = T8p - T8s; |
3680 | 0 | T8w = T8u - T8v; |
3681 | 0 | T8x = T8t - T8w; |
3682 | 0 | T9D = T8t + T8w; |
3683 | 0 | } |
3684 | 0 | T8y = FMA(KP995184726, T8k, KP098017140 * T8x); |
3685 | 0 | T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); |
3686 | 0 | T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); |
3687 | 0 | T9E = FMA(KP634393284, T9C, KP773010453 * T9D); |
3688 | 0 | } |
3689 | 0 | { |
3690 | 0 | E T9d, T9F, T9q, T9G; |
3691 | 0 | { |
3692 | 0 | E T8P, T9c, T9m, T9p; |
3693 | 0 | T8P = T8D - T8O; |
3694 | 0 | T9c = T90 - T9b; |
3695 | 0 | T9d = T8P - T9c; |
3696 | 0 | T9F = T8P + T9c; |
3697 | 0 | T9m = T9i - T9l; |
3698 | 0 | T9p = T9n - T9o; |
3699 | 0 | T9q = T9m - T9p; |
3700 | 0 | T9G = T9m + T9p; |
3701 | 0 | } |
3702 | 0 | T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); |
3703 | 0 | T9L = FMA(KP773010453, T9G, KP634393284 * T9F); |
3704 | 0 | T9v = FMA(KP098017140, T9q, KP995184726 * T9d); |
3705 | 0 | T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); |
3706 | 0 | } |
3707 | 0 | { |
3708 | 0 | E T7F, T9s, TiH, TiK; |
3709 | 0 | T7F = T6L + T7E; |
3710 | 0 | T9s = T8y + T9r; |
3711 | 0 | ri[WS(rs, 47)] = T7F - T9s; |
3712 | 0 | ri[WS(rs, 15)] = T7F + T9s; |
3713 | 0 | TiH = T9u + T9v; |
3714 | 0 | TiK = TiI + TiJ; |
3715 | 0 | ii[WS(rs, 15)] = TiH + TiK; |
3716 | 0 | ii[WS(rs, 47)] = TiK - TiH; |
3717 | 0 | } |
3718 | 0 | { |
3719 | 0 | E T9t, T9w, TiL, TiM; |
3720 | 0 | T9t = T6L - T7E; |
3721 | 0 | T9w = T9u - T9v; |
3722 | 0 | ri[WS(rs, 63)] = T9t - T9w; |
3723 | 0 | ri[WS(rs, 31)] = T9t + T9w; |
3724 | 0 | TiL = T9r - T8y; |
3725 | 0 | TiM = TiJ - TiI; |
3726 | 0 | ii[WS(rs, 31)] = TiL + TiM; |
3727 | 0 | ii[WS(rs, 63)] = TiM - TiL; |
3728 | 0 | } |
3729 | 0 | { |
3730 | 0 | E T9B, T9I, Tiz, TiE; |
3731 | 0 | T9B = T9x + T9A; |
3732 | 0 | T9I = T9E + T9H; |
3733 | 0 | ri[WS(rs, 39)] = T9B - T9I; |
3734 | 0 | ri[WS(rs, 7)] = T9B + T9I; |
3735 | 0 | Tiz = T9K + T9L; |
3736 | 0 | TiE = TiA + TiD; |
3737 | 0 | ii[WS(rs, 7)] = Tiz + TiE; |
3738 | 0 | ii[WS(rs, 39)] = TiE - Tiz; |
3739 | 0 | } |
3740 | 0 | { |
3741 | 0 | E T9J, T9M, TiF, TiG; |
3742 | 0 | T9J = T9x - T9A; |
3743 | 0 | T9M = T9K - T9L; |
3744 | 0 | ri[WS(rs, 55)] = T9J - T9M; |
3745 | 0 | ri[WS(rs, 23)] = T9J + T9M; |
3746 | 0 | TiF = T9H - T9E; |
3747 | 0 | TiG = TiD - TiA; |
3748 | 0 | ii[WS(rs, 23)] = TiF + TiG; |
3749 | 0 | ii[WS(rs, 55)] = TiG - TiF; |
3750 | 0 | } |
3751 | 0 | } |
3752 | 0 | { |
3753 | 0 | E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; |
3754 | 0 | E TbT; |
3755 | 0 | { |
3756 | 0 | E TaD, TaK, Ti7, Ti8; |
3757 | 0 | TaD = Taz - TaC; |
3758 | 0 | TaK = TaG - TaJ; |
3759 | 0 | TaL = TaD - TaK; |
3760 | 0 | TbJ = TaD + TaK; |
3761 | 0 | Ti7 = Tc1 - Tc0; |
3762 | 0 | Ti8 = ThT - ThQ; |
3763 | 0 | Ti9 = Ti7 + Ti8; |
3764 | 0 | Tif = Ti8 - Ti7; |
3765 | 0 | } |
3766 | 0 | { |
3767 | 0 | E TaS, TbK, TaZ, TbL; |
3768 | 0 | { |
3769 | 0 | E TaO, TaR, TaV, TaY; |
3770 | 0 | TaO = TaM - TaN; |
3771 | 0 | TaR = TaP - TaQ; |
3772 | 0 | TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); |
3773 | 0 | TbK = FMA(KP555570233, TaR, KP831469612 * TaO); |
3774 | 0 | TaV = TaT - TaU; |
3775 | 0 | TaY = TaW - TaX; |
3776 | 0 | TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); |
3777 | 0 | TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); |
3778 | 0 | } |
3779 | 0 | Tb0 = TaS - TaZ; |
3780 | 0 | Tie = TbL - TbK; |
3781 | 0 | TbM = TbK + TbL; |
3782 | 0 | Ti6 = TaS + TaZ; |
3783 | 0 | } |
3784 | 0 | { |
3785 | 0 | E Tbc, TbO, Tbj, TbP; |
3786 | 0 | { |
3787 | 0 | E Tb4, Tbb, Tbf, Tbi; |
3788 | 0 | Tb4 = Tb2 - Tb3; |
3789 | 0 | Tbb = Tb7 - Tba; |
3790 | 0 | Tbc = Tb4 - Tbb; |
3791 | 0 | TbO = Tb4 + Tbb; |
3792 | 0 | Tbf = Tbd - Tbe; |
3793 | 0 | Tbi = Tbg - Tbh; |
3794 | 0 | Tbj = Tbf - Tbi; |
3795 | 0 | TbP = Tbf + Tbi; |
3796 | 0 | } |
3797 | 0 | Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); |
3798 | 0 | TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); |
3799 | 0 | TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); |
3800 | 0 | TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); |
3801 | 0 | } |
3802 | 0 | { |
3803 | 0 | E Tbv, TbR, TbC, TbS; |
3804 | 0 | { |
3805 | 0 | E Tbn, Tbu, Tby, TbB; |
3806 | 0 | Tbn = Tbl - Tbm; |
3807 | 0 | Tbu = Tbq - Tbt; |
3808 | 0 | Tbv = Tbn - Tbu; |
3809 | 0 | TbR = Tbn + Tbu; |
3810 | 0 | Tby = Tbw - Tbx; |
3811 | 0 | TbB = Tbz - TbA; |
3812 | 0 | TbC = Tby - TbB; |
3813 | 0 | TbS = Tby + TbB; |
3814 | 0 | } |
3815 | 0 | TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); |
3816 | 0 | TbX = FMA(KP881921264, TbS, KP471396736 * TbR); |
3817 | 0 | TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); |
3818 | 0 | TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); |
3819 | 0 | } |
3820 | 0 | { |
3821 | 0 | E Tb1, TbE, Tid, Tig; |
3822 | 0 | Tb1 = TaL + Tb0; |
3823 | 0 | TbE = Tbk + TbD; |
3824 | 0 | ri[WS(rs, 45)] = Tb1 - TbE; |
3825 | 0 | ri[WS(rs, 13)] = Tb1 + TbE; |
3826 | 0 | Tid = TbG + TbH; |
3827 | 0 | Tig = Tie + Tif; |
3828 | 0 | ii[WS(rs, 13)] = Tid + Tig; |
3829 | 0 | ii[WS(rs, 45)] = Tig - Tid; |
3830 | 0 | } |
3831 | 0 | { |
3832 | 0 | E TbF, TbI, Tih, Tii; |
3833 | 0 | TbF = TaL - Tb0; |
3834 | 0 | TbI = TbG - TbH; |
3835 | 0 | ri[WS(rs, 61)] = TbF - TbI; |
3836 | 0 | ri[WS(rs, 29)] = TbF + TbI; |
3837 | 0 | Tih = TbD - Tbk; |
3838 | 0 | Tii = Tif - Tie; |
3839 | 0 | ii[WS(rs, 29)] = Tih + Tii; |
3840 | 0 | ii[WS(rs, 61)] = Tii - Tih; |
3841 | 0 | } |
3842 | 0 | { |
3843 | 0 | E TbN, TbU, Ti5, Tia; |
3844 | 0 | TbN = TbJ + TbM; |
3845 | 0 | TbU = TbQ + TbT; |
3846 | 0 | ri[WS(rs, 37)] = TbN - TbU; |
3847 | 0 | ri[WS(rs, 5)] = TbN + TbU; |
3848 | 0 | Ti5 = TbW + TbX; |
3849 | 0 | Tia = Ti6 + Ti9; |
3850 | 0 | ii[WS(rs, 5)] = Ti5 + Tia; |
3851 | 0 | ii[WS(rs, 37)] = Tia - Ti5; |
3852 | 0 | } |
3853 | 0 | { |
3854 | 0 | E TbV, TbY, Tib, Tic; |
3855 | 0 | TbV = TbJ - TbM; |
3856 | 0 | TbY = TbW - TbX; |
3857 | 0 | ri[WS(rs, 53)] = TbV - TbY; |
3858 | 0 | ri[WS(rs, 21)] = TbV + TbY; |
3859 | 0 | Tib = TbT - TbQ; |
3860 | 0 | Tic = Ti9 - Ti6; |
3861 | 0 | ii[WS(rs, 21)] = Tib + Tic; |
3862 | 0 | ii[WS(rs, 53)] = Tic - Tib; |
3863 | 0 | } |
3864 | 0 | } |
3865 | 0 | { |
3866 | 0 | E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; |
3867 | 0 | E TcF; |
3868 | 0 | { |
3869 | 0 | E TbZ, Tc2, ThP, ThU; |
3870 | 0 | TbZ = Taz + TaC; |
3871 | 0 | Tc2 = Tc0 + Tc1; |
3872 | 0 | Tc3 = TbZ - Tc2; |
3873 | 0 | Tcv = TbZ + Tc2; |
3874 | 0 | ThP = TaG + TaJ; |
3875 | 0 | ThU = ThQ + ThT; |
3876 | 0 | ThV = ThP + ThU; |
3877 | 0 | Ti1 = ThU - ThP; |
3878 | 0 | } |
3879 | 0 | { |
3880 | 0 | E Tc6, Tcw, Tc9, Tcx; |
3881 | 0 | { |
3882 | 0 | E Tc4, Tc5, Tc7, Tc8; |
3883 | 0 | Tc4 = TaM + TaN; |
3884 | 0 | Tc5 = TaP + TaQ; |
3885 | 0 | Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); |
3886 | 0 | Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); |
3887 | 0 | Tc7 = TaT + TaU; |
3888 | 0 | Tc8 = TaW + TaX; |
3889 | 0 | Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); |
3890 | 0 | Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); |
3891 | 0 | } |
3892 | 0 | Tca = Tc6 - Tc9; |
3893 | 0 | Ti0 = Tcx - Tcw; |
3894 | 0 | Tcy = Tcw + Tcx; |
3895 | 0 | ThO = Tc6 + Tc9; |
3896 | 0 | } |
3897 | 0 | { |
3898 | 0 | E Tce, TcA, Tch, TcB; |
3899 | 0 | { |
3900 | 0 | E Tcc, Tcd, Tcf, Tcg; |
3901 | 0 | Tcc = Tbd + Tbe; |
3902 | 0 | Tcd = Tba + Tb7; |
3903 | 0 | Tce = Tcc - Tcd; |
3904 | 0 | TcA = Tcc + Tcd; |
3905 | 0 | Tcf = Tb2 + Tb3; |
3906 | 0 | Tcg = Tbg + Tbh; |
3907 | 0 | Tch = Tcf - Tcg; |
3908 | 0 | TcB = Tcf + Tcg; |
3909 | 0 | } |
3910 | 0 | Tci = FMA(KP634393284, Tce, KP773010453 * Tch); |
3911 | 0 | TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); |
3912 | 0 | Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); |
3913 | 0 | TcC = FMA(KP995184726, TcA, KP098017140 * TcB); |
3914 | 0 | } |
3915 | 0 | { |
3916 | 0 | E Tcl, TcD, Tco, TcE; |
3917 | 0 | { |
3918 | 0 | E Tcj, Tck, Tcm, Tcn; |
3919 | 0 | Tcj = Tbl + Tbm; |
3920 | 0 | Tck = TbA + Tbz; |
3921 | 0 | Tcl = Tcj - Tck; |
3922 | 0 | TcD = Tcj + Tck; |
3923 | 0 | Tcm = Tbw + Tbx; |
3924 | 0 | Tcn = Tbq + Tbt; |
3925 | 0 | Tco = Tcm - Tcn; |
3926 | 0 | TcE = Tcm + Tcn; |
3927 | 0 | } |
3928 | 0 | Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); |
3929 | 0 | TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); |
3930 | 0 | Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); |
3931 | 0 | TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); |
3932 | 0 | } |
3933 | 0 | { |
3934 | 0 | E Tcb, Tcq, ThZ, Ti2; |
3935 | 0 | Tcb = Tc3 + Tca; |
3936 | 0 | Tcq = Tci + Tcp; |
3937 | 0 | ri[WS(rs, 41)] = Tcb - Tcq; |
3938 | 0 | ri[WS(rs, 9)] = Tcb + Tcq; |
3939 | 0 | ThZ = Tcs + Tct; |
3940 | 0 | Ti2 = Ti0 + Ti1; |
3941 | 0 | ii[WS(rs, 9)] = ThZ + Ti2; |
3942 | 0 | ii[WS(rs, 41)] = Ti2 - ThZ; |
3943 | 0 | } |
3944 | 0 | { |
3945 | 0 | E Tcr, Tcu, Ti3, Ti4; |
3946 | 0 | Tcr = Tc3 - Tca; |
3947 | 0 | Tcu = Tcs - Tct; |
3948 | 0 | ri[WS(rs, 57)] = Tcr - Tcu; |
3949 | 0 | ri[WS(rs, 25)] = Tcr + Tcu; |
3950 | 0 | Ti3 = Tcp - Tci; |
3951 | 0 | Ti4 = Ti1 - Ti0; |
3952 | 0 | ii[WS(rs, 25)] = Ti3 + Ti4; |
3953 | 0 | ii[WS(rs, 57)] = Ti4 - Ti3; |
3954 | 0 | } |
3955 | 0 | { |
3956 | 0 | E Tcz, TcG, ThN, ThW; |
3957 | 0 | Tcz = Tcv + Tcy; |
3958 | 0 | TcG = TcC + TcF; |
3959 | 0 | ri[WS(rs, 33)] = Tcz - TcG; |
3960 | 0 | ri[WS(rs, 1)] = Tcz + TcG; |
3961 | 0 | ThN = TcI + TcJ; |
3962 | 0 | ThW = ThO + ThV; |
3963 | 0 | ii[WS(rs, 1)] = ThN + ThW; |
3964 | 0 | ii[WS(rs, 33)] = ThW - ThN; |
3965 | 0 | } |
3966 | 0 | { |
3967 | 0 | E TcH, TcK, ThX, ThY; |
3968 | 0 | TcH = Tcv - Tcy; |
3969 | 0 | TcK = TcI - TcJ; |
3970 | 0 | ri[WS(rs, 49)] = TcH - TcK; |
3971 | 0 | ri[WS(rs, 17)] = TcH + TcK; |
3972 | 0 | ThX = TcF - TcC; |
3973 | 0 | ThY = ThV - ThO; |
3974 | 0 | ii[WS(rs, 17)] = ThX + ThY; |
3975 | 0 | ii[WS(rs, 49)] = ThY - ThX; |
3976 | 0 | } |
3977 | 0 | } |
3978 | 0 | { |
3979 | 0 | E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; |
3980 | 0 | E Tat; |
3981 | 0 | { |
3982 | 0 | E T9N, T9Q, Til, Tio; |
3983 | 0 | T9N = T6b + T6m; |
3984 | 0 | T9Q = T9O + T9P; |
3985 | 0 | T9R = T9N - T9Q; |
3986 | 0 | Taj = T9N + T9Q; |
3987 | 0 | Til = T6y + T6J; |
3988 | 0 | Tio = Tim + Tin; |
3989 | 0 | Tip = Til + Tio; |
3990 | 0 | Tiv = Tio - Til; |
3991 | 0 | } |
3992 | 0 | { |
3993 | 0 | E T9U, Tak, T9X, Tal; |
3994 | 0 | { |
3995 | 0 | E T9S, T9T, T9V, T9W; |
3996 | 0 | T9S = T6Q + T71; |
3997 | 0 | T9T = T77 + T7a; |
3998 | 0 | T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); |
3999 | 0 | Tak = FMA(KP555570233, T9S, KP831469612 * T9T); |
4000 | 0 | T9V = T7h + T7s; |
4001 | 0 | T9W = T7y + T7B; |
4002 | 0 | T9X = FMA(KP831469612, T9V, KP555570233 * T9W); |
4003 | 0 | Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); |
4004 | 0 | } |
4005 | 0 | T9Y = T9U - T9X; |
4006 | 0 | Tiu = Tal - Tak; |
4007 | 0 | Tam = Tak + Tal; |
4008 | 0 | Tik = T9U + T9X; |
4009 | 0 | } |
4010 | 0 | { |
4011 | 0 | E Ta2, Tao, Ta5, Tap; |
4012 | 0 | { |
4013 | 0 | E Ta0, Ta1, Ta3, Ta4; |
4014 | 0 | Ta0 = T8p + T8s; |
4015 | 0 | Ta1 = T8i + T87; |
4016 | 0 | Ta2 = Ta0 - Ta1; |
4017 | 0 | Tao = Ta0 + Ta1; |
4018 | 0 | Ta3 = T7K + T7V; |
4019 | 0 | Ta4 = T8u + T8v; |
4020 | 0 | Ta5 = Ta3 - Ta4; |
4021 | 0 | Tap = Ta3 + Ta4; |
4022 | 0 | } |
4023 | 0 | Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); |
4024 | 0 | Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); |
4025 | 0 | Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); |
4026 | 0 | Taq = FMA(KP956940335, Tao, KP290284677 * Tap); |
4027 | 0 | } |
4028 | 0 | { |
4029 | 0 | E Ta9, Tar, Tac, Tas; |
4030 | 0 | { |
4031 | 0 | E Ta7, Ta8, Taa, Tab; |
4032 | 0 | Ta7 = T8D + T8O; |
4033 | 0 | Ta8 = T9o + T9n; |
4034 | 0 | Ta9 = Ta7 - Ta8; |
4035 | 0 | Tar = Ta7 + Ta8; |
4036 | 0 | Taa = T9i + T9l; |
4037 | 0 | Tab = T90 + T9b; |
4038 | 0 | Tac = Taa - Tab; |
4039 | 0 | Tas = Taa + Tab; |
4040 | 0 | } |
4041 | 0 | Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); |
4042 | 0 | Tax = FMA(KP290284677, Tar, KP956940335 * Tas); |
4043 | 0 | Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); |
4044 | 0 | Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); |
4045 | 0 | } |
4046 | 0 | { |
4047 | 0 | E T9Z, Tae, Tit, Tiw; |
4048 | 0 | T9Z = T9R + T9Y; |
4049 | 0 | Tae = Ta6 + Tad; |
4050 | 0 | ri[WS(rs, 43)] = T9Z - Tae; |
4051 | 0 | ri[WS(rs, 11)] = T9Z + Tae; |
4052 | 0 | Tit = Tag + Tah; |
4053 | 0 | Tiw = Tiu + Tiv; |
4054 | 0 | ii[WS(rs, 11)] = Tit + Tiw; |
4055 | 0 | ii[WS(rs, 43)] = Tiw - Tit; |
4056 | 0 | } |
4057 | 0 | { |
4058 | 0 | E Taf, Tai, Tix, Tiy; |
4059 | 0 | Taf = T9R - T9Y; |
4060 | 0 | Tai = Tag - Tah; |
4061 | 0 | ri[WS(rs, 59)] = Taf - Tai; |
4062 | 0 | ri[WS(rs, 27)] = Taf + Tai; |
4063 | 0 | Tix = Tad - Ta6; |
4064 | 0 | Tiy = Tiv - Tiu; |
4065 | 0 | ii[WS(rs, 27)] = Tix + Tiy; |
4066 | 0 | ii[WS(rs, 59)] = Tiy - Tix; |
4067 | 0 | } |
4068 | 0 | { |
4069 | 0 | E Tan, Tau, Tij, Tiq; |
4070 | 0 | Tan = Taj + Tam; |
4071 | 0 | Tau = Taq + Tat; |
4072 | 0 | ri[WS(rs, 35)] = Tan - Tau; |
4073 | 0 | ri[WS(rs, 3)] = Tan + Tau; |
4074 | 0 | Tij = Taw + Tax; |
4075 | 0 | Tiq = Tik + Tip; |
4076 | 0 | ii[WS(rs, 3)] = Tij + Tiq; |
4077 | 0 | ii[WS(rs, 35)] = Tiq - Tij; |
4078 | 0 | } |
4079 | 0 | { |
4080 | 0 | E Tav, Tay, Tir, Tis; |
4081 | 0 | Tav = Taj - Tam; |
4082 | 0 | Tay = Taw - Tax; |
4083 | 0 | ri[WS(rs, 51)] = Tav - Tay; |
4084 | 0 | ri[WS(rs, 19)] = Tav + Tay; |
4085 | 0 | Tir = Tat - Taq; |
4086 | 0 | Tis = Tip - Tik; |
4087 | 0 | ii[WS(rs, 19)] = Tir + Tis; |
4088 | 0 | ii[WS(rs, 51)] = Tis - Tir; |
4089 | 0 | } |
4090 | 0 | } |
4091 | 0 | } |
4092 | 0 | } |
4093 | 0 | } |
4094 | | |
4095 | | static const tw_instr twinstr[] = { |
4096 | | { TW_FULL, 0, 64 }, |
4097 | | { TW_NEXT, 1, 0 } |
4098 | | }; |
4099 | | |
4100 | | static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 808, 270, 230, 0 }, 0, 0, 0 }; |
4101 | | |
4102 | 1 | void X(codelet_t1_64) (planner *p) { |
4103 | 1 | X(kdft_dit_register) (p, t1_64, &desc); |
4104 | 1 | } |
4105 | | #endif |