Coverage Report

Created: 2025-10-13 07:02

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/hc2cbdft_10.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Oct 13 07:02:04 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 122 FP additions, 72 FP multiplications,
32
 * (or, 68 additions, 18 multiplications, 54 fused multiply/add),
33
 * 91 stack variables, 4 constants, and 40 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
46
         E T3, Tl, Tu, T14, Ti, T13, Ts, Tt, T1p, T23, TZ, T1z, TQ, T1g, TV;
47
         E T1l, TT, TU, T1j, T1k, T1c, T1Y, TK, T1u;
48
         {
49
        E Td, Tp, Tg, Tq, Th, Tr, T6, Tm, T9, Tn, Ta, To, T1, T2;
50
        T1 = Rp[0];
51
        T2 = Rm[WS(rs, 4)];
52
        T3 = T1 + T2;
53
        Tl = T1 - T2;
54
        {
55
       E Tb, Tc, Te, Tf;
56
       Tb = Rp[WS(rs, 4)];
57
       Tc = Rm[0];
58
       Td = Tb + Tc;
59
       Tp = Tb - Tc;
60
       Te = Rm[WS(rs, 3)];
61
       Tf = Rp[WS(rs, 1)];
62
       Tg = Te + Tf;
63
       Tq = Te - Tf;
64
        }
65
        Th = Td + Tg;
66
        Tr = Tp + Tq;
67
        {
68
       E T4, T5, T7, T8;
69
       T4 = Rp[WS(rs, 2)];
70
       T5 = Rm[WS(rs, 2)];
71
       T6 = T4 + T5;
72
       Tm = T4 - T5;
73
       T7 = Rm[WS(rs, 1)];
74
       T8 = Rp[WS(rs, 3)];
75
       T9 = T7 + T8;
76
       Tn = T7 - T8;
77
        }
78
        Ta = T6 + T9;
79
        To = Tm + Tn;
80
        Tu = To - Tr;
81
        T14 = Ta - Th;
82
        Ti = Ta + Th;
83
        T13 = FNMS(KP250000000, Ti, T3);
84
        Ts = To + Tr;
85
        Tt = FNMS(KP250000000, Ts, Tl);
86
        {
87
       E T1n, T1o, TX, TY;
88
       T1n = Td - Tg;
89
       T1o = T6 - T9;
90
       T1p = FNMS(KP618033988, T1o, T1n);
91
       T23 = FMA(KP618033988, T1n, T1o);
92
       TX = Tm - Tn;
93
       TY = Tp - Tq;
94
       TZ = FMA(KP618033988, TY, TX);
95
       T1z = FNMS(KP618033988, TX, TY);
96
        }
97
         }
98
         {
99
        E TF, T16, TI, T17, TS, T1i, Ty, T19, TB, T1a, TR, T1h, TO, TP;
100
        TO = Ip[0];
101
        TP = Im[WS(rs, 4)];
102
        TQ = TO + TP;
103
        T1g = TO - TP;
104
        {
105
       E TD, TE, TG, TH;
106
       TD = Ip[WS(rs, 4)];
107
       TE = Im[0];
108
       TF = TD + TE;
109
       T16 = TD - TE;
110
       TG = Im[WS(rs, 3)];
111
       TH = Ip[WS(rs, 1)];
112
       TI = TG + TH;
113
       T17 = TH - TG;
114
        }
115
        TS = TF - TI;
116
        T1i = T16 + T17;
117
        {
118
       E Tw, Tx, Tz, TA;
119
       Tw = Ip[WS(rs, 2)];
120
       Tx = Im[WS(rs, 2)];
121
       Ty = Tw + Tx;
122
       T19 = Tw - Tx;
123
       Tz = Im[WS(rs, 1)];
124
       TA = Ip[WS(rs, 3)];
125
       TB = Tz + TA;
126
       T1a = TA - Tz;
127
        }
128
        TR = Ty - TB;
129
        T1h = T19 + T1a;
130
        TV = TR - TS;
131
        T1l = T1h - T1i;
132
        TT = TR + TS;
133
        TU = FNMS(KP250000000, TT, TQ);
134
        T1j = T1h + T1i;
135
        T1k = FNMS(KP250000000, T1j, T1g);
136
        {
137
       E T18, T1b, TC, TJ;
138
       T18 = T16 - T17;
139
       T1b = T19 - T1a;
140
       T1c = FNMS(KP618033988, T1b, T18);
141
       T1Y = FMA(KP618033988, T18, T1b);
142
       TC = Ty + TB;
143
       TJ = TF + TI;
144
       TK = FMA(KP618033988, TJ, TC);
145
       T1u = FNMS(KP618033988, TC, TJ);
146
        }
147
         }
148
         {
149
        E Tj, T2y, T2a, T1A, T2q, T10, T1Q, T24, T2k, T1q, T1K, T26, T28, T29, T2c;
150
        E Tk, TM, TN, T2w, T1M, T1O, T1P, T1S, T1s, T1w, T1x, T1C, T2m, T2o, T2p;
151
        E T2s, T12, T1e, T1f, T1E, T1G, T1I, T1J, T1U, T1W, T20, T21, T2e, T2g, T2i;
152
        E T2j, T2u, T1y, TW, T22, T2l, T2r;
153
        Tj = T3 + Ti;
154
        T2y = T1g + T1j;
155
        T2a = TQ + TT;
156
        T1y = FNMS(KP559016994, TV, TU);
157
        T1A = FMA(KP951056516, T1z, T1y);
158
        T2q = FNMS(KP951056516, T1z, T1y);
159
        TW = FMA(KP559016994, TV, TU);
160
        T10 = FMA(KP951056516, TZ, TW);
161
        T1Q = FNMS(KP951056516, TZ, TW);
162
        T22 = FMA(KP559016994, T1l, T1k);
163
        T24 = FNMS(KP951056516, T23, T22);
164
        T2k = FMA(KP951056516, T23, T22);
165
        {
166
       E T1m, T1v, T2n, T1t;
167
       T1m = FNMS(KP559016994, T1l, T1k);
168
       T1q = FNMS(KP951056516, T1p, T1m);
169
       T1K = FMA(KP951056516, T1p, T1m);
170
       {
171
            E T27, TL, T1N, Tv;
172
            T27 = Tl + Ts;
173
            T26 = W[9];
174
            T28 = T26 * T27;
175
            T29 = W[8];
176
            T2c = T29 * T27;
177
            Tv = FMA(KP559016994, Tu, Tt);
178
            TL = FNMS(KP951056516, TK, Tv);
179
            T1N = FMA(KP951056516, TK, Tv);
180
            Tk = W[1];
181
            TM = Tk * TL;
182
            TN = W[0];
183
            T2w = TN * TL;
184
            T1M = W[17];
185
            T1O = T1M * T1N;
186
            T1P = W[16];
187
            T1S = T1P * T1N;
188
       }
189
       T1t = FNMS(KP559016994, Tu, Tt);
190
       T1v = FNMS(KP951056516, T1u, T1t);
191
       T2n = FMA(KP951056516, T1u, T1t);
192
       T1s = W[5];
193
       T1w = T1s * T1v;
194
       T1x = W[4];
195
       T1C = T1x * T1v;
196
       T2m = W[13];
197
       T2o = T2m * T2n;
198
       T2p = W[12];
199
       T2s = T2p * T2n;
200
       {
201
            E T1d, T1H, T15, T1Z, T2h, T1X;
202
            T15 = FNMS(KP559016994, T14, T13);
203
            T1d = FMA(KP951056516, T1c, T15);
204
            T1H = FNMS(KP951056516, T1c, T15);
205
            T12 = W[2];
206
            T1e = T12 * T1d;
207
            T1f = W[3];
208
            T1E = T1f * T1d;
209
            T1G = W[14];
210
            T1I = T1G * T1H;
211
            T1J = W[15];
212
            T1U = T1J * T1H;
213
            T1X = FMA(KP559016994, T14, T13);
214
            T1Z = FMA(KP951056516, T1Y, T1X);
215
            T2h = FNMS(KP951056516, T1Y, T1X);
216
            T1W = W[6];
217
            T20 = T1W * T1Z;
218
            T21 = W[7];
219
            T2e = T21 * T1Z;
220
            T2g = W[10];
221
            T2i = T2g * T2h;
222
            T2j = W[11];
223
            T2u = T2j * T2h;
224
       }
225
        }
226
        {
227
       E T11, T2x, T1r, T1B;
228
       T11 = FMA(TN, T10, TM);
229
       Rp[0] = Tj - T11;
230
       Rm[0] = Tj + T11;
231
       T2x = FNMS(Tk, T10, T2w);
232
       Im[0] = T2x - T2y;
233
       Ip[0] = T2x + T2y;
234
       T1r = FNMS(T1f, T1q, T1e);
235
       T1B = FMA(T1x, T1A, T1w);
236
       Rp[WS(rs, 1)] = T1r - T1B;
237
       Rm[WS(rs, 1)] = T1B + T1r;
238
       {
239
            E T1D, T1F, T1L, T1R;
240
            T1D = FNMS(T1s, T1A, T1C);
241
            T1F = FMA(T12, T1q, T1E);
242
            Im[WS(rs, 1)] = T1D - T1F;
243
            Ip[WS(rs, 1)] = T1D + T1F;
244
            T1L = FNMS(T1J, T1K, T1I);
245
            T1R = FMA(T1P, T1Q, T1O);
246
            Rp[WS(rs, 4)] = T1L - T1R;
247
            Rm[WS(rs, 4)] = T1R + T1L;
248
       }
249
        }
250
        {
251
       E T1T, T1V, T2t, T2v;
252
       T1T = FNMS(T1M, T1Q, T1S);
253
       T1V = FMA(T1G, T1K, T1U);
254
       Im[WS(rs, 4)] = T1T - T1V;
255
       Ip[WS(rs, 4)] = T1T + T1V;
256
       T2t = FNMS(T2m, T2q, T2s);
257
       T2v = FMA(T2g, T2k, T2u);
258
       Im[WS(rs, 3)] = T2t - T2v;
259
       Ip[WS(rs, 3)] = T2t + T2v;
260
        }
261
        T2l = FNMS(T2j, T2k, T2i);
262
        T2r = FMA(T2p, T2q, T2o);
263
        Rp[WS(rs, 3)] = T2l - T2r;
264
        Rm[WS(rs, 3)] = T2r + T2l;
265
        {
266
       E T25, T2b, T2d, T2f;
267
       T25 = FNMS(T21, T24, T20);
268
       T2b = FMA(T29, T2a, T28);
269
       Rp[WS(rs, 2)] = T25 - T2b;
270
       Rm[WS(rs, 2)] = T2b + T25;
271
       T2d = FNMS(T26, T2a, T2c);
272
       T2f = FMA(T1W, T24, T2e);
273
       Im[WS(rs, 2)] = T2d - T2f;
274
       Ip[WS(rs, 2)] = T2d + T2f;
275
        }
276
         }
277
    }
278
     }
279
}
280
281
static const tw_instr twinstr[] = {
282
     { TW_FULL, 1, 10 },
283
     { TW_NEXT, 1, 0 }
284
};
285
286
static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 68, 18, 54, 0 } };
287
288
void X(codelet_hc2cbdft_10) (planner *p) {
289
     X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
290
}
291
#else
292
293
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
294
295
/*
296
 * This function contains 122 FP additions, 60 FP multiplications,
297
 * (or, 92 additions, 30 multiplications, 30 fused multiply/add),
298
 * 61 stack variables, 4 constants, and 40 memory accesses
299
 */
300
#include "rdft/scalar/hc2cb.h"
301
302
static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
303
0
{
304
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
305
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
306
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
307
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
308
0
     {
309
0
    INT m;
310
0
    for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
311
0
         E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;
312
0
         E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;
313
0
         {
314
0
        E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;
315
0
        T1 = Rp[0];
316
0
        T2 = Rm[WS(rs, 4)];
317
0
        T3 = T1 + T2;
318
0
        TS = T1 - T2;
319
0
        {
320
0
       E Tb, Tc, Te, Tf;
321
0
       Tb = Rp[WS(rs, 4)];
322
0
       Tc = Rm[0];
323
0
       Td = Tb + Tc;
324
0
       To = Tb - Tc;
325
0
       Te = Rm[WS(rs, 3)];
326
0
       Tf = Rp[WS(rs, 1)];
327
0
       Tg = Te + Tf;
328
0
       Tp = Te - Tf;
329
0
        }
330
0
        Th = Td + Tg;
331
0
        TQ = To + Tp;
332
0
        {
333
0
       E T4, T5, T7, T8;
334
0
       T4 = Rp[WS(rs, 2)];
335
0
       T5 = Rm[WS(rs, 2)];
336
0
       T6 = T4 + T5;
337
0
       Tl = T4 - T5;
338
0
       T7 = Rm[WS(rs, 1)];
339
0
       T8 = Rp[WS(rs, 3)];
340
0
       T9 = T7 + T8;
341
0
       Tm = T7 - T8;
342
0
        }
343
0
        Ta = T6 + T9;
344
0
        TP = Tl + Tm;
345
0
        TR = KP559016994 * (TP - TQ);
346
0
        T13 = KP559016994 * (Ta - Th);
347
0
        Ti = Ta + Th;
348
0
        T12 = FNMS(KP250000000, Ti, T3);
349
0
        TT = TP + TQ;
350
0
        TU = FNMS(KP250000000, TT, TS);
351
0
        {
352
0
       E T1e, T1f, Tn, Tq;
353
0
       T1e = T6 - T9;
354
0
       T1f = Td - Tg;
355
0
       T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);
356
0
       T1T = FMA(KP951056516, T1e, KP587785252 * T1f);
357
0
       Tn = Tl - Tm;
358
0
       Tq = To - Tp;
359
0
       Tr = FMA(KP951056516, Tn, KP587785252 * Tq);
360
0
       T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);
361
0
        }
362
0
         }
363
0
         {
364
0
        E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;
365
0
        TH = Ip[0];
366
0
        TI = Im[WS(rs, 4)];
367
0
        TJ = TH + TI;
368
0
        T1h = TH - TI;
369
0
        {
370
0
       E Tz, TA, TC, TD;
371
0
       Tz = Ip[WS(rs, 4)];
372
0
       TA = Im[0];
373
0
       TB = Tz + TA;
374
0
       T18 = Tz - TA;
375
0
       TC = Im[WS(rs, 3)];
376
0
       TD = Ip[WS(rs, 1)];
377
0
       TE = TC + TD;
378
0
       T19 = TD - TC;
379
0
        }
380
0
        TF = TB - TE;
381
0
        T1j = T18 + T19;
382
0
        {
383
0
       E Ts, Tt, Tv, Tw;
384
0
       Ts = Ip[WS(rs, 2)];
385
0
       Tt = Im[WS(rs, 2)];
386
0
       Tu = Ts + Tt;
387
0
       T15 = Ts - Tt;
388
0
       Tv = Im[WS(rs, 1)];
389
0
       Tw = Ip[WS(rs, 3)];
390
0
       Tx = Tv + Tw;
391
0
       T16 = Tw - Tv;
392
0
        }
393
0
        Ty = Tu - Tx;
394
0
        T1i = T15 + T16;
395
0
        TG = KP559016994 * (Ty - TF);
396
0
        T1m = KP559016994 * (T1i - T1j);
397
0
        TK = Ty + TF;
398
0
        TL = FNMS(KP250000000, TK, TJ);
399
0
        T1k = T1i + T1j;
400
0
        T1l = FNMS(KP250000000, T1k, T1h);
401
0
        {
402
0
       E T17, T1a, TW, TX;
403
0
       T17 = T15 - T16;
404
0
       T1a = T18 - T19;
405
0
       T1b = FNMS(KP951056516, T1a, KP587785252 * T17);
406
0
       T1P = FMA(KP951056516, T17, KP587785252 * T1a);
407
0
       TW = Tu + Tx;
408
0
       TX = TB + TE;
409
0
       TY = FMA(KP951056516, TW, KP587785252 * TX);
410
0
       T1w = FNMS(KP951056516, TX, KP587785252 * TW);
411
0
        }
412
0
         }
413
0
         {
414
0
        E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;
415
0
        E T1E, T1x, T2b, T20, T21, TM, T1S, TV;
416
0
        Tj = T3 + Ti;
417
0
        T2g = T1h + T1k;
418
0
        TM = TG + TL;
419
0
        TN = Tr + TM;
420
0
        T1H = TM - Tr;
421
0
        T1S = T1m + T1l;
422
0
        T1U = T1S - T1T;
423
0
        T26 = T1T + T1S;
424
0
        TV = TR + TU;
425
0
        TZ = TV - TY;
426
0
        T1J = TV + TY;
427
0
        {
428
0
       E T1O, T14, T1r, T1n, T1v;
429
0
       T1O = T13 + T12;
430
0
       T1Q = T1O + T1P;
431
0
       T24 = T1O - T1P;
432
0
       T14 = T12 - T13;
433
0
       T1c = T14 - T1b;
434
0
       T1C = T14 + T1b;
435
0
       T1r = TL - TG;
436
0
       T1t = T1r - T1s;
437
0
       T29 = T1s + T1r;
438
0
       T1n = T1l - T1m;
439
0
       T1o = T1g + T1n;
440
0
       T1E = T1n - T1g;
441
0
       T1v = TU - TR;
442
0
       T1x = T1v + T1w;
443
0
       T2b = T1v - T1w;
444
0
       {
445
0
            E T1X, T1Z, T1W, T1Y;
446
0
            T1X = TS + TT;
447
0
            T1Z = TJ + TK;
448
0
            T1W = W[9];
449
0
            T1Y = W[8];
450
0
            T20 = FMA(T1W, T1X, T1Y * T1Z);
451
0
            T21 = FNMS(T1W, T1Z, T1Y * T1X);
452
0
       }
453
0
        }
454
0
        {
455
0
       E T10, T2f, Tk, TO;
456
0
       Tk = W[0];
457
0
       TO = W[1];
458
0
       T10 = FMA(Tk, TN, TO * TZ);
459
0
       T2f = FNMS(TO, TN, Tk * TZ);
460
0
       Rp[0] = Tj - T10;
461
0
       Ip[0] = T2f + T2g;
462
0
       Rm[0] = Tj + T10;
463
0
       Im[0] = T2f - T2g;
464
0
        }
465
0
        {
466
0
       E T1V, T22, T1N, T1R;
467
0
       T1N = W[6];
468
0
       T1R = W[7];
469
0
       T1V = FNMS(T1R, T1U, T1N * T1Q);
470
0
       T22 = FMA(T1R, T1Q, T1N * T1U);
471
0
       Rp[WS(rs, 2)] = T1V - T20;
472
0
       Ip[WS(rs, 2)] = T21 + T22;
473
0
       Rm[WS(rs, 2)] = T20 + T1V;
474
0
       Im[WS(rs, 2)] = T21 - T22;
475
0
        }
476
0
        {
477
0
       E T1p, T1A, T1y, T1z;
478
0
       {
479
0
            E T11, T1d, T1q, T1u;
480
0
            T11 = W[2];
481
0
            T1d = W[3];
482
0
            T1p = FNMS(T1d, T1o, T11 * T1c);
483
0
            T1A = FMA(T1d, T1c, T11 * T1o);
484
0
            T1q = W[4];
485
0
            T1u = W[5];
486
0
            T1y = FMA(T1q, T1t, T1u * T1x);
487
0
            T1z = FNMS(T1u, T1t, T1q * T1x);
488
0
       }
489
0
       Rp[WS(rs, 1)] = T1p - T1y;
490
0
       Ip[WS(rs, 1)] = T1z + T1A;
491
0
       Rm[WS(rs, 1)] = T1y + T1p;
492
0
       Im[WS(rs, 1)] = T1z - T1A;
493
0
        }
494
0
        {
495
0
       E T1F, T1M, T1K, T1L;
496
0
       {
497
0
            E T1B, T1D, T1G, T1I;
498
0
            T1B = W[14];
499
0
            T1D = W[15];
500
0
            T1F = FNMS(T1D, T1E, T1B * T1C);
501
0
            T1M = FMA(T1D, T1C, T1B * T1E);
502
0
            T1G = W[16];
503
0
            T1I = W[17];
504
0
            T1K = FMA(T1G, T1H, T1I * T1J);
505
0
            T1L = FNMS(T1I, T1H, T1G * T1J);
506
0
       }
507
0
       Rp[WS(rs, 4)] = T1F - T1K;
508
0
       Ip[WS(rs, 4)] = T1L + T1M;
509
0
       Rm[WS(rs, 4)] = T1K + T1F;
510
0
       Im[WS(rs, 4)] = T1L - T1M;
511
0
        }
512
0
        {
513
0
       E T27, T2e, T2c, T2d;
514
0
       {
515
0
            E T23, T25, T28, T2a;
516
0
            T23 = W[10];
517
0
            T25 = W[11];
518
0
            T27 = FNMS(T25, T26, T23 * T24);
519
0
            T2e = FMA(T25, T24, T23 * T26);
520
0
            T28 = W[12];
521
0
            T2a = W[13];
522
0
            T2c = FMA(T28, T29, T2a * T2b);
523
0
            T2d = FNMS(T2a, T29, T28 * T2b);
524
0
       }
525
0
       Rp[WS(rs, 3)] = T27 - T2c;
526
0
       Ip[WS(rs, 3)] = T2d + T2e;
527
0
       Rm[WS(rs, 3)] = T2c + T27;
528
0
       Im[WS(rs, 3)] = T2d - T2e;
529
0
        }
530
0
         }
531
0
    }
532
0
     }
533
0
}
534
535
static const tw_instr twinstr[] = {
536
     { TW_FULL, 1, 10 },
537
     { TW_NEXT, 1, 0 }
538
};
539
540
static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 92, 30, 30, 0 } };
541
542
1
void X(codelet_hc2cbdft_10) (planner *p) {
543
1
     X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
544
1
}
545
#endif