/src/fftw3/rdft/scalar/r2cb/hc2cbdft_10.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Oct 13 07:02:04 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 122 FP additions, 72 FP multiplications, |
32 | | * (or, 68 additions, 18 multiplications, 54 fused multiply/add), |
33 | | * 91 stack variables, 4 constants, and 40 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { |
46 | | E T3, Tl, Tu, T14, Ti, T13, Ts, Tt, T1p, T23, TZ, T1z, TQ, T1g, TV; |
47 | | E T1l, TT, TU, T1j, T1k, T1c, T1Y, TK, T1u; |
48 | | { |
49 | | E Td, Tp, Tg, Tq, Th, Tr, T6, Tm, T9, Tn, Ta, To, T1, T2; |
50 | | T1 = Rp[0]; |
51 | | T2 = Rm[WS(rs, 4)]; |
52 | | T3 = T1 + T2; |
53 | | Tl = T1 - T2; |
54 | | { |
55 | | E Tb, Tc, Te, Tf; |
56 | | Tb = Rp[WS(rs, 4)]; |
57 | | Tc = Rm[0]; |
58 | | Td = Tb + Tc; |
59 | | Tp = Tb - Tc; |
60 | | Te = Rm[WS(rs, 3)]; |
61 | | Tf = Rp[WS(rs, 1)]; |
62 | | Tg = Te + Tf; |
63 | | Tq = Te - Tf; |
64 | | } |
65 | | Th = Td + Tg; |
66 | | Tr = Tp + Tq; |
67 | | { |
68 | | E T4, T5, T7, T8; |
69 | | T4 = Rp[WS(rs, 2)]; |
70 | | T5 = Rm[WS(rs, 2)]; |
71 | | T6 = T4 + T5; |
72 | | Tm = T4 - T5; |
73 | | T7 = Rm[WS(rs, 1)]; |
74 | | T8 = Rp[WS(rs, 3)]; |
75 | | T9 = T7 + T8; |
76 | | Tn = T7 - T8; |
77 | | } |
78 | | Ta = T6 + T9; |
79 | | To = Tm + Tn; |
80 | | Tu = To - Tr; |
81 | | T14 = Ta - Th; |
82 | | Ti = Ta + Th; |
83 | | T13 = FNMS(KP250000000, Ti, T3); |
84 | | Ts = To + Tr; |
85 | | Tt = FNMS(KP250000000, Ts, Tl); |
86 | | { |
87 | | E T1n, T1o, TX, TY; |
88 | | T1n = Td - Tg; |
89 | | T1o = T6 - T9; |
90 | | T1p = FNMS(KP618033988, T1o, T1n); |
91 | | T23 = FMA(KP618033988, T1n, T1o); |
92 | | TX = Tm - Tn; |
93 | | TY = Tp - Tq; |
94 | | TZ = FMA(KP618033988, TY, TX); |
95 | | T1z = FNMS(KP618033988, TX, TY); |
96 | | } |
97 | | } |
98 | | { |
99 | | E TF, T16, TI, T17, TS, T1i, Ty, T19, TB, T1a, TR, T1h, TO, TP; |
100 | | TO = Ip[0]; |
101 | | TP = Im[WS(rs, 4)]; |
102 | | TQ = TO + TP; |
103 | | T1g = TO - TP; |
104 | | { |
105 | | E TD, TE, TG, TH; |
106 | | TD = Ip[WS(rs, 4)]; |
107 | | TE = Im[0]; |
108 | | TF = TD + TE; |
109 | | T16 = TD - TE; |
110 | | TG = Im[WS(rs, 3)]; |
111 | | TH = Ip[WS(rs, 1)]; |
112 | | TI = TG + TH; |
113 | | T17 = TH - TG; |
114 | | } |
115 | | TS = TF - TI; |
116 | | T1i = T16 + T17; |
117 | | { |
118 | | E Tw, Tx, Tz, TA; |
119 | | Tw = Ip[WS(rs, 2)]; |
120 | | Tx = Im[WS(rs, 2)]; |
121 | | Ty = Tw + Tx; |
122 | | T19 = Tw - Tx; |
123 | | Tz = Im[WS(rs, 1)]; |
124 | | TA = Ip[WS(rs, 3)]; |
125 | | TB = Tz + TA; |
126 | | T1a = TA - Tz; |
127 | | } |
128 | | TR = Ty - TB; |
129 | | T1h = T19 + T1a; |
130 | | TV = TR - TS; |
131 | | T1l = T1h - T1i; |
132 | | TT = TR + TS; |
133 | | TU = FNMS(KP250000000, TT, TQ); |
134 | | T1j = T1h + T1i; |
135 | | T1k = FNMS(KP250000000, T1j, T1g); |
136 | | { |
137 | | E T18, T1b, TC, TJ; |
138 | | T18 = T16 - T17; |
139 | | T1b = T19 - T1a; |
140 | | T1c = FNMS(KP618033988, T1b, T18); |
141 | | T1Y = FMA(KP618033988, T18, T1b); |
142 | | TC = Ty + TB; |
143 | | TJ = TF + TI; |
144 | | TK = FMA(KP618033988, TJ, TC); |
145 | | T1u = FNMS(KP618033988, TC, TJ); |
146 | | } |
147 | | } |
148 | | { |
149 | | E Tj, T2y, T2a, T1A, T2q, T10, T1Q, T24, T2k, T1q, T1K, T26, T28, T29, T2c; |
150 | | E Tk, TM, TN, T2w, T1M, T1O, T1P, T1S, T1s, T1w, T1x, T1C, T2m, T2o, T2p; |
151 | | E T2s, T12, T1e, T1f, T1E, T1G, T1I, T1J, T1U, T1W, T20, T21, T2e, T2g, T2i; |
152 | | E T2j, T2u, T1y, TW, T22, T2l, T2r; |
153 | | Tj = T3 + Ti; |
154 | | T2y = T1g + T1j; |
155 | | T2a = TQ + TT; |
156 | | T1y = FNMS(KP559016994, TV, TU); |
157 | | T1A = FMA(KP951056516, T1z, T1y); |
158 | | T2q = FNMS(KP951056516, T1z, T1y); |
159 | | TW = FMA(KP559016994, TV, TU); |
160 | | T10 = FMA(KP951056516, TZ, TW); |
161 | | T1Q = FNMS(KP951056516, TZ, TW); |
162 | | T22 = FMA(KP559016994, T1l, T1k); |
163 | | T24 = FNMS(KP951056516, T23, T22); |
164 | | T2k = FMA(KP951056516, T23, T22); |
165 | | { |
166 | | E T1m, T1v, T2n, T1t; |
167 | | T1m = FNMS(KP559016994, T1l, T1k); |
168 | | T1q = FNMS(KP951056516, T1p, T1m); |
169 | | T1K = FMA(KP951056516, T1p, T1m); |
170 | | { |
171 | | E T27, TL, T1N, Tv; |
172 | | T27 = Tl + Ts; |
173 | | T26 = W[9]; |
174 | | T28 = T26 * T27; |
175 | | T29 = W[8]; |
176 | | T2c = T29 * T27; |
177 | | Tv = FMA(KP559016994, Tu, Tt); |
178 | | TL = FNMS(KP951056516, TK, Tv); |
179 | | T1N = FMA(KP951056516, TK, Tv); |
180 | | Tk = W[1]; |
181 | | TM = Tk * TL; |
182 | | TN = W[0]; |
183 | | T2w = TN * TL; |
184 | | T1M = W[17]; |
185 | | T1O = T1M * T1N; |
186 | | T1P = W[16]; |
187 | | T1S = T1P * T1N; |
188 | | } |
189 | | T1t = FNMS(KP559016994, Tu, Tt); |
190 | | T1v = FNMS(KP951056516, T1u, T1t); |
191 | | T2n = FMA(KP951056516, T1u, T1t); |
192 | | T1s = W[5]; |
193 | | T1w = T1s * T1v; |
194 | | T1x = W[4]; |
195 | | T1C = T1x * T1v; |
196 | | T2m = W[13]; |
197 | | T2o = T2m * T2n; |
198 | | T2p = W[12]; |
199 | | T2s = T2p * T2n; |
200 | | { |
201 | | E T1d, T1H, T15, T1Z, T2h, T1X; |
202 | | T15 = FNMS(KP559016994, T14, T13); |
203 | | T1d = FMA(KP951056516, T1c, T15); |
204 | | T1H = FNMS(KP951056516, T1c, T15); |
205 | | T12 = W[2]; |
206 | | T1e = T12 * T1d; |
207 | | T1f = W[3]; |
208 | | T1E = T1f * T1d; |
209 | | T1G = W[14]; |
210 | | T1I = T1G * T1H; |
211 | | T1J = W[15]; |
212 | | T1U = T1J * T1H; |
213 | | T1X = FMA(KP559016994, T14, T13); |
214 | | T1Z = FMA(KP951056516, T1Y, T1X); |
215 | | T2h = FNMS(KP951056516, T1Y, T1X); |
216 | | T1W = W[6]; |
217 | | T20 = T1W * T1Z; |
218 | | T21 = W[7]; |
219 | | T2e = T21 * T1Z; |
220 | | T2g = W[10]; |
221 | | T2i = T2g * T2h; |
222 | | T2j = W[11]; |
223 | | T2u = T2j * T2h; |
224 | | } |
225 | | } |
226 | | { |
227 | | E T11, T2x, T1r, T1B; |
228 | | T11 = FMA(TN, T10, TM); |
229 | | Rp[0] = Tj - T11; |
230 | | Rm[0] = Tj + T11; |
231 | | T2x = FNMS(Tk, T10, T2w); |
232 | | Im[0] = T2x - T2y; |
233 | | Ip[0] = T2x + T2y; |
234 | | T1r = FNMS(T1f, T1q, T1e); |
235 | | T1B = FMA(T1x, T1A, T1w); |
236 | | Rp[WS(rs, 1)] = T1r - T1B; |
237 | | Rm[WS(rs, 1)] = T1B + T1r; |
238 | | { |
239 | | E T1D, T1F, T1L, T1R; |
240 | | T1D = FNMS(T1s, T1A, T1C); |
241 | | T1F = FMA(T12, T1q, T1E); |
242 | | Im[WS(rs, 1)] = T1D - T1F; |
243 | | Ip[WS(rs, 1)] = T1D + T1F; |
244 | | T1L = FNMS(T1J, T1K, T1I); |
245 | | T1R = FMA(T1P, T1Q, T1O); |
246 | | Rp[WS(rs, 4)] = T1L - T1R; |
247 | | Rm[WS(rs, 4)] = T1R + T1L; |
248 | | } |
249 | | } |
250 | | { |
251 | | E T1T, T1V, T2t, T2v; |
252 | | T1T = FNMS(T1M, T1Q, T1S); |
253 | | T1V = FMA(T1G, T1K, T1U); |
254 | | Im[WS(rs, 4)] = T1T - T1V; |
255 | | Ip[WS(rs, 4)] = T1T + T1V; |
256 | | T2t = FNMS(T2m, T2q, T2s); |
257 | | T2v = FMA(T2g, T2k, T2u); |
258 | | Im[WS(rs, 3)] = T2t - T2v; |
259 | | Ip[WS(rs, 3)] = T2t + T2v; |
260 | | } |
261 | | T2l = FNMS(T2j, T2k, T2i); |
262 | | T2r = FMA(T2p, T2q, T2o); |
263 | | Rp[WS(rs, 3)] = T2l - T2r; |
264 | | Rm[WS(rs, 3)] = T2r + T2l; |
265 | | { |
266 | | E T25, T2b, T2d, T2f; |
267 | | T25 = FNMS(T21, T24, T20); |
268 | | T2b = FMA(T29, T2a, T28); |
269 | | Rp[WS(rs, 2)] = T25 - T2b; |
270 | | Rm[WS(rs, 2)] = T2b + T25; |
271 | | T2d = FNMS(T26, T2a, T2c); |
272 | | T2f = FMA(T1W, T24, T2e); |
273 | | Im[WS(rs, 2)] = T2d - T2f; |
274 | | Ip[WS(rs, 2)] = T2d + T2f; |
275 | | } |
276 | | } |
277 | | } |
278 | | } |
279 | | } |
280 | | |
281 | | static const tw_instr twinstr[] = { |
282 | | { TW_FULL, 1, 10 }, |
283 | | { TW_NEXT, 1, 0 } |
284 | | }; |
285 | | |
286 | | static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 68, 18, 54, 0 } }; |
287 | | |
288 | | void X(codelet_hc2cbdft_10) (planner *p) { |
289 | | X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT); |
290 | | } |
291 | | #else |
292 | | |
293 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */ |
294 | | |
295 | | /* |
296 | | * This function contains 122 FP additions, 60 FP multiplications, |
297 | | * (or, 92 additions, 30 multiplications, 30 fused multiply/add), |
298 | | * 61 stack variables, 4 constants, and 40 memory accesses |
299 | | */ |
300 | | #include "rdft/scalar/hc2cb.h" |
301 | | |
302 | | static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
303 | 0 | { |
304 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
305 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
306 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
307 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
308 | 0 | { |
309 | 0 | INT m; |
310 | 0 | for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { |
311 | 0 | E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG; |
312 | 0 | E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w; |
313 | 0 | { |
314 | 0 | E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2; |
315 | 0 | T1 = Rp[0]; |
316 | 0 | T2 = Rm[WS(rs, 4)]; |
317 | 0 | T3 = T1 + T2; |
318 | 0 | TS = T1 - T2; |
319 | 0 | { |
320 | 0 | E Tb, Tc, Te, Tf; |
321 | 0 | Tb = Rp[WS(rs, 4)]; |
322 | 0 | Tc = Rm[0]; |
323 | 0 | Td = Tb + Tc; |
324 | 0 | To = Tb - Tc; |
325 | 0 | Te = Rm[WS(rs, 3)]; |
326 | 0 | Tf = Rp[WS(rs, 1)]; |
327 | 0 | Tg = Te + Tf; |
328 | 0 | Tp = Te - Tf; |
329 | 0 | } |
330 | 0 | Th = Td + Tg; |
331 | 0 | TQ = To + Tp; |
332 | 0 | { |
333 | 0 | E T4, T5, T7, T8; |
334 | 0 | T4 = Rp[WS(rs, 2)]; |
335 | 0 | T5 = Rm[WS(rs, 2)]; |
336 | 0 | T6 = T4 + T5; |
337 | 0 | Tl = T4 - T5; |
338 | 0 | T7 = Rm[WS(rs, 1)]; |
339 | 0 | T8 = Rp[WS(rs, 3)]; |
340 | 0 | T9 = T7 + T8; |
341 | 0 | Tm = T7 - T8; |
342 | 0 | } |
343 | 0 | Ta = T6 + T9; |
344 | 0 | TP = Tl + Tm; |
345 | 0 | TR = KP559016994 * (TP - TQ); |
346 | 0 | T13 = KP559016994 * (Ta - Th); |
347 | 0 | Ti = Ta + Th; |
348 | 0 | T12 = FNMS(KP250000000, Ti, T3); |
349 | 0 | TT = TP + TQ; |
350 | 0 | TU = FNMS(KP250000000, TT, TS); |
351 | 0 | { |
352 | 0 | E T1e, T1f, Tn, Tq; |
353 | 0 | T1e = T6 - T9; |
354 | 0 | T1f = Td - Tg; |
355 | 0 | T1g = FNMS(KP951056516, T1f, KP587785252 * T1e); |
356 | 0 | T1T = FMA(KP951056516, T1e, KP587785252 * T1f); |
357 | 0 | Tn = Tl - Tm; |
358 | 0 | Tq = To - Tp; |
359 | 0 | Tr = FMA(KP951056516, Tn, KP587785252 * Tq); |
360 | 0 | T1s = FNMS(KP951056516, Tq, KP587785252 * Tn); |
361 | 0 | } |
362 | 0 | } |
363 | 0 | { |
364 | 0 | E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI; |
365 | 0 | TH = Ip[0]; |
366 | 0 | TI = Im[WS(rs, 4)]; |
367 | 0 | TJ = TH + TI; |
368 | 0 | T1h = TH - TI; |
369 | 0 | { |
370 | 0 | E Tz, TA, TC, TD; |
371 | 0 | Tz = Ip[WS(rs, 4)]; |
372 | 0 | TA = Im[0]; |
373 | 0 | TB = Tz + TA; |
374 | 0 | T18 = Tz - TA; |
375 | 0 | TC = Im[WS(rs, 3)]; |
376 | 0 | TD = Ip[WS(rs, 1)]; |
377 | 0 | TE = TC + TD; |
378 | 0 | T19 = TD - TC; |
379 | 0 | } |
380 | 0 | TF = TB - TE; |
381 | 0 | T1j = T18 + T19; |
382 | 0 | { |
383 | 0 | E Ts, Tt, Tv, Tw; |
384 | 0 | Ts = Ip[WS(rs, 2)]; |
385 | 0 | Tt = Im[WS(rs, 2)]; |
386 | 0 | Tu = Ts + Tt; |
387 | 0 | T15 = Ts - Tt; |
388 | 0 | Tv = Im[WS(rs, 1)]; |
389 | 0 | Tw = Ip[WS(rs, 3)]; |
390 | 0 | Tx = Tv + Tw; |
391 | 0 | T16 = Tw - Tv; |
392 | 0 | } |
393 | 0 | Ty = Tu - Tx; |
394 | 0 | T1i = T15 + T16; |
395 | 0 | TG = KP559016994 * (Ty - TF); |
396 | 0 | T1m = KP559016994 * (T1i - T1j); |
397 | 0 | TK = Ty + TF; |
398 | 0 | TL = FNMS(KP250000000, TK, TJ); |
399 | 0 | T1k = T1i + T1j; |
400 | 0 | T1l = FNMS(KP250000000, T1k, T1h); |
401 | 0 | { |
402 | 0 | E T17, T1a, TW, TX; |
403 | 0 | T17 = T15 - T16; |
404 | 0 | T1a = T18 - T19; |
405 | 0 | T1b = FNMS(KP951056516, T1a, KP587785252 * T17); |
406 | 0 | T1P = FMA(KP951056516, T17, KP587785252 * T1a); |
407 | 0 | TW = Tu + Tx; |
408 | 0 | TX = TB + TE; |
409 | 0 | TY = FMA(KP951056516, TW, KP587785252 * TX); |
410 | 0 | T1w = FNMS(KP951056516, TX, KP587785252 * TW); |
411 | 0 | } |
412 | 0 | } |
413 | 0 | { |
414 | 0 | E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o; |
415 | 0 | E T1E, T1x, T2b, T20, T21, TM, T1S, TV; |
416 | 0 | Tj = T3 + Ti; |
417 | 0 | T2g = T1h + T1k; |
418 | 0 | TM = TG + TL; |
419 | 0 | TN = Tr + TM; |
420 | 0 | T1H = TM - Tr; |
421 | 0 | T1S = T1m + T1l; |
422 | 0 | T1U = T1S - T1T; |
423 | 0 | T26 = T1T + T1S; |
424 | 0 | TV = TR + TU; |
425 | 0 | TZ = TV - TY; |
426 | 0 | T1J = TV + TY; |
427 | 0 | { |
428 | 0 | E T1O, T14, T1r, T1n, T1v; |
429 | 0 | T1O = T13 + T12; |
430 | 0 | T1Q = T1O + T1P; |
431 | 0 | T24 = T1O - T1P; |
432 | 0 | T14 = T12 - T13; |
433 | 0 | T1c = T14 - T1b; |
434 | 0 | T1C = T14 + T1b; |
435 | 0 | T1r = TL - TG; |
436 | 0 | T1t = T1r - T1s; |
437 | 0 | T29 = T1s + T1r; |
438 | 0 | T1n = T1l - T1m; |
439 | 0 | T1o = T1g + T1n; |
440 | 0 | T1E = T1n - T1g; |
441 | 0 | T1v = TU - TR; |
442 | 0 | T1x = T1v + T1w; |
443 | 0 | T2b = T1v - T1w; |
444 | 0 | { |
445 | 0 | E T1X, T1Z, T1W, T1Y; |
446 | 0 | T1X = TS + TT; |
447 | 0 | T1Z = TJ + TK; |
448 | 0 | T1W = W[9]; |
449 | 0 | T1Y = W[8]; |
450 | 0 | T20 = FMA(T1W, T1X, T1Y * T1Z); |
451 | 0 | T21 = FNMS(T1W, T1Z, T1Y * T1X); |
452 | 0 | } |
453 | 0 | } |
454 | 0 | { |
455 | 0 | E T10, T2f, Tk, TO; |
456 | 0 | Tk = W[0]; |
457 | 0 | TO = W[1]; |
458 | 0 | T10 = FMA(Tk, TN, TO * TZ); |
459 | 0 | T2f = FNMS(TO, TN, Tk * TZ); |
460 | 0 | Rp[0] = Tj - T10; |
461 | 0 | Ip[0] = T2f + T2g; |
462 | 0 | Rm[0] = Tj + T10; |
463 | 0 | Im[0] = T2f - T2g; |
464 | 0 | } |
465 | 0 | { |
466 | 0 | E T1V, T22, T1N, T1R; |
467 | 0 | T1N = W[6]; |
468 | 0 | T1R = W[7]; |
469 | 0 | T1V = FNMS(T1R, T1U, T1N * T1Q); |
470 | 0 | T22 = FMA(T1R, T1Q, T1N * T1U); |
471 | 0 | Rp[WS(rs, 2)] = T1V - T20; |
472 | 0 | Ip[WS(rs, 2)] = T21 + T22; |
473 | 0 | Rm[WS(rs, 2)] = T20 + T1V; |
474 | 0 | Im[WS(rs, 2)] = T21 - T22; |
475 | 0 | } |
476 | 0 | { |
477 | 0 | E T1p, T1A, T1y, T1z; |
478 | 0 | { |
479 | 0 | E T11, T1d, T1q, T1u; |
480 | 0 | T11 = W[2]; |
481 | 0 | T1d = W[3]; |
482 | 0 | T1p = FNMS(T1d, T1o, T11 * T1c); |
483 | 0 | T1A = FMA(T1d, T1c, T11 * T1o); |
484 | 0 | T1q = W[4]; |
485 | 0 | T1u = W[5]; |
486 | 0 | T1y = FMA(T1q, T1t, T1u * T1x); |
487 | 0 | T1z = FNMS(T1u, T1t, T1q * T1x); |
488 | 0 | } |
489 | 0 | Rp[WS(rs, 1)] = T1p - T1y; |
490 | 0 | Ip[WS(rs, 1)] = T1z + T1A; |
491 | 0 | Rm[WS(rs, 1)] = T1y + T1p; |
492 | 0 | Im[WS(rs, 1)] = T1z - T1A; |
493 | 0 | } |
494 | 0 | { |
495 | 0 | E T1F, T1M, T1K, T1L; |
496 | 0 | { |
497 | 0 | E T1B, T1D, T1G, T1I; |
498 | 0 | T1B = W[14]; |
499 | 0 | T1D = W[15]; |
500 | 0 | T1F = FNMS(T1D, T1E, T1B * T1C); |
501 | 0 | T1M = FMA(T1D, T1C, T1B * T1E); |
502 | 0 | T1G = W[16]; |
503 | 0 | T1I = W[17]; |
504 | 0 | T1K = FMA(T1G, T1H, T1I * T1J); |
505 | 0 | T1L = FNMS(T1I, T1H, T1G * T1J); |
506 | 0 | } |
507 | 0 | Rp[WS(rs, 4)] = T1F - T1K; |
508 | 0 | Ip[WS(rs, 4)] = T1L + T1M; |
509 | 0 | Rm[WS(rs, 4)] = T1K + T1F; |
510 | 0 | Im[WS(rs, 4)] = T1L - T1M; |
511 | 0 | } |
512 | 0 | { |
513 | 0 | E T27, T2e, T2c, T2d; |
514 | 0 | { |
515 | 0 | E T23, T25, T28, T2a; |
516 | 0 | T23 = W[10]; |
517 | 0 | T25 = W[11]; |
518 | 0 | T27 = FNMS(T25, T26, T23 * T24); |
519 | 0 | T2e = FMA(T25, T24, T23 * T26); |
520 | 0 | T28 = W[12]; |
521 | 0 | T2a = W[13]; |
522 | 0 | T2c = FMA(T28, T29, T2a * T2b); |
523 | 0 | T2d = FNMS(T2a, T29, T28 * T2b); |
524 | 0 | } |
525 | 0 | Rp[WS(rs, 3)] = T27 - T2c; |
526 | 0 | Ip[WS(rs, 3)] = T2d + T2e; |
527 | 0 | Rm[WS(rs, 3)] = T2c + T27; |
528 | 0 | Im[WS(rs, 3)] = T2d - T2e; |
529 | 0 | } |
530 | 0 | } |
531 | 0 | } |
532 | 0 | } |
533 | 0 | } |
534 | | |
535 | | static const tw_instr twinstr[] = { |
536 | | { TW_FULL, 1, 10 }, |
537 | | { TW_NEXT, 1, 0 } |
538 | | }; |
539 | | |
540 | | static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 92, 30, 30, 0 } }; |
541 | | |
542 | 1 | void X(codelet_hc2cbdft_10) (planner *p) { |
543 | 1 | X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT); |
544 | 1 | } |
545 | | #endif |