Coverage Report

Created: 2025-10-13 07:02

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/r2cbIII_9.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Oct 13 07:01:50 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include rdft/scalar/r2cbIII.h */
29
30
/*
31
 * This function contains 32 FP additions, 24 FP multiplications,
32
 * (or, 8 additions, 0 multiplications, 24 fused multiply/add),
33
 * 35 stack variables, 12 constants, and 18 memory accesses
34
 */
35
#include "rdft/scalar/r2cbIII.h"
36
37
static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
40
     DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
41
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
42
     DK(KP176326980, +0.176326980708464973471090386868618986121633062);
43
     DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
44
     DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
45
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
46
     DK(KP839099631, +0.839099631177280011763127298123181364687434283);
47
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
50
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
51
     {
52
    INT i;
53
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
54
         E T3, Tr, Th, Td, Tc, T8, Tn, Ts, Tk, Tt, T9, Te;
55
         {
56
        E Tg, T1, T2, Tf;
57
        Tg = Ci[WS(csi, 1)];
58
        T1 = Cr[WS(csr, 4)];
59
        T2 = Cr[WS(csr, 1)];
60
        Tf = T2 - T1;
61
        T3 = FMA(KP2_000000000, T2, T1);
62
        Tr = FMA(KP1_732050807, Tg, Tf);
63
        Th = FNMS(KP1_732050807, Tg, Tf);
64
         }
65
         {
66
        E T4, T7, Tm, Tj, Tl, Ti;
67
        T4 = Cr[WS(csr, 3)];
68
        Td = Ci[WS(csi, 3)];
69
        {
70
       E T5, T6, Ta, Tb;
71
       T5 = Cr[0];
72
       T6 = Cr[WS(csr, 2)];
73
       T7 = T5 + T6;
74
       Tm = T5 - T6;
75
       Ta = Ci[WS(csi, 2)];
76
       Tb = Ci[0];
77
       Tc = Ta - Tb;
78
       Tj = Tb + Ta;
79
        }
80
        T8 = T4 + T7;
81
        Tl = FMA(KP500000000, Tc, Td);
82
        Tn = FNMS(KP866025403, Tm, Tl);
83
        Ts = FMA(KP866025403, Tm, Tl);
84
        Ti = FNMS(KP500000000, T7, T4);
85
        Tk = FMA(KP866025403, Tj, Ti);
86
        Tt = FNMS(KP866025403, Tj, Ti);
87
         }
88
         R0[0] = FMA(KP2_000000000, T8, T3);
89
         T9 = T8 - T3;
90
         Te = Tc - Td;
91
         R1[WS(rs, 1)] = FMA(KP1_732050807, Te, T9);
92
         R0[WS(rs, 3)] = FMS(KP1_732050807, Te, T9);
93
         {
94
        E Tq, To, Tp, Tw, Tu, Tv;
95
        Tq = FNMS(KP839099631, Tk, Tn);
96
        To = FMA(KP839099631, Tn, Tk);
97
        Tp = FMA(KP766044443, To, Th);
98
        R1[0] = FNMS(KP1_532088886, To, Th);
99
        R1[WS(rs, 3)] = FMA(KP1_326827896, Tq, Tp);
100
        R0[WS(rs, 2)] = FMS(KP1_326827896, Tq, Tp);
101
        Tw = FNMS(KP176326980, Ts, Tt);
102
        Tu = FMA(KP176326980, Tt, Ts);
103
        Tv = FMA(KP984807753, Tu, Tr);
104
        R0[WS(rs, 1)] = FMS(KP1_969615506, Tu, Tr);
105
        R1[WS(rs, 2)] = FMA(KP1_705737063, Tw, Tv);
106
        R0[WS(rs, 4)] = FMS(KP1_705737063, Tw, Tv);
107
         }
108
    }
109
     }
110
}
111
112
static const kr2c_desc desc = { 9, "r2cbIII_9", { 8, 0, 24, 0 }, &GENUS };
113
114
void X(codelet_r2cbIII_9) (planner *p) { X(kr2c_register) (p, r2cbIII_9, &desc);
115
}
116
117
#else
118
119
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include rdft/scalar/r2cbIII.h */
120
121
/*
122
 * This function contains 32 FP additions, 18 FP multiplications,
123
 * (or, 22 additions, 8 multiplications, 10 fused multiply/add),
124
 * 35 stack variables, 12 constants, and 18 memory accesses
125
 */
126
#include "rdft/scalar/r2cbIII.h"
127
128
static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
129
0
{
130
0
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
131
0
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
132
0
     DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
133
0
     DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
134
0
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
135
0
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
136
0
     DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
137
0
     DK(KP300767466, +0.300767466360870593278543795225003852144476517);
138
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
139
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
140
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
141
0
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
142
0
     {
143
0
    INT i;
144
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
145
0
         E T3, Ts, Ti, Td, Tc, T8, To, Tu, Tl, Tt, T9, Te;
146
0
         {
147
0
        E Th, T1, T2, Tf, Tg;
148
0
        Tg = Ci[WS(csi, 1)];
149
0
        Th = KP1_732050807 * Tg;
150
0
        T1 = Cr[WS(csr, 4)];
151
0
        T2 = Cr[WS(csr, 1)];
152
0
        Tf = T2 - T1;
153
0
        T3 = FMA(KP2_000000000, T2, T1);
154
0
        Ts = Tf - Th;
155
0
        Ti = Tf + Th;
156
0
         }
157
0
         {
158
0
        E T4, T7, Tm, Tk, Tn, Tj;
159
0
        T4 = Cr[WS(csr, 3)];
160
0
        Td = Ci[WS(csi, 3)];
161
0
        {
162
0
       E T5, T6, Ta, Tb;
163
0
       T5 = Cr[0];
164
0
       T6 = Cr[WS(csr, 2)];
165
0
       T7 = T5 + T6;
166
0
       Tm = KP866025403 * (T6 - T5);
167
0
       Ta = Ci[WS(csi, 2)];
168
0
       Tb = Ci[0];
169
0
       Tc = Ta - Tb;
170
0
       Tk = KP866025403 * (Tb + Ta);
171
0
        }
172
0
        T8 = T4 + T7;
173
0
        Tn = FMA(KP500000000, Tc, Td);
174
0
        To = Tm - Tn;
175
0
        Tu = Tm + Tn;
176
0
        Tj = FMS(KP500000000, T7, T4);
177
0
        Tl = Tj + Tk;
178
0
        Tt = Tj - Tk;
179
0
         }
180
0
         R0[0] = FMA(KP2_000000000, T8, T3);
181
0
         T9 = T8 - T3;
182
0
         Te = KP1_732050807 * (Tc - Td);
183
0
         R1[WS(rs, 1)] = T9 + Te;
184
0
         R0[WS(rs, 3)] = Te - T9;
185
0
         {
186
0
        E Tr, Tp, Tq, Tx, Tv, Tw;
187
0
        Tr = FNMS(KP1_705737063, Tl, KP300767466 * To);
188
0
        Tp = FMA(KP173648177, Tl, KP984807753 * To);
189
0
        Tq = Ti - Tp;
190
0
        R0[WS(rs, 1)] = -(FMA(KP2_000000000, Tp, Ti));
191
0
        R0[WS(rs, 4)] = Tr - Tq;
192
0
        R1[WS(rs, 2)] = Tq + Tr;
193
0
        Tx = FMA(KP1_113340798, Tt, KP1_326827896 * Tu);
194
0
        Tv = FNMS(KP642787609, Tu, KP766044443 * Tt);
195
0
        Tw = Tv - Ts;
196
0
        R1[0] = FMA(KP2_000000000, Tv, Ts);
197
0
        R1[WS(rs, 3)] = Tx - Tw;
198
0
        R0[WS(rs, 2)] = Tw + Tx;
199
0
         }
200
0
    }
201
0
     }
202
0
}
203
204
static const kr2c_desc desc = { 9, "r2cbIII_9", { 22, 8, 10, 0 }, &GENUS };
205
206
1
void X(codelet_r2cbIII_9) (planner *p) { X(kr2c_register) (p, r2cbIII_9, &desc);
207
1
}
208
209
#endif