/src/fftw3/rdft/scalar/r2cf/hc2cfdft_20.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Oct 13 07:01:25 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 286 FP additions, 188 FP multiplications, |
32 | | * (or, 176 additions, 78 multiplications, 110 fused multiply/add), |
33 | | * 153 stack variables, 5 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
44 | | { |
45 | | INT m; |
46 | | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
47 | | E T2E, T4W, T3v, T4k, T2M, T4V, T3w, T4j, T2p, T2T, T5a, T5A, T3o, T3D, T4b; |
48 | | E T4B, T1Y, T2S, T57, T5z, T3h, T3C, T44, T4A, TH, T2P, T50, T5x, T32, T3z; |
49 | | E T3P, T4D, T1o, T2Q, T53, T5w, T39, T3A, T3W, T4E; |
50 | | { |
51 | | E T9, T1V, Tu, T2w, T1, T5, T6, T2Y, T1R, T1T, T1U, T40, T10, T2F, TE; |
52 | | E T2C, T1y, T2m, T4g, TX, T33, TS, TW, Tw, TA, TB, T3L, T2y, T2A, T2B; |
53 | | E T3t, T1q, T1u, T1v, T3d, T2i, T2k, T2l, T48, Tm, Tq, Tr, T3J, T2s, T2u; |
54 | | E T2v, T3r, T1g, T20, T1l, T23, T1h, T3S, T21, T3k, TL, T2H, TQ, T2K, TM; |
55 | | E T35, T2I, T4h, T1I, T1D, T2g, T2f, T46, T2c, T2e, T1E, T3b, T16, T1b, T29; |
56 | | E T28, T3i, T25, T27, T17, T3Q, Tj, Te, T1P, T1O, T3Y, T1L, T1N, Tf, T2W; |
57 | | E T2x, T2D; |
58 | | { |
59 | | E T7, T8, Ts, Tt; |
60 | | T7 = Rp[WS(rs, 9)]; |
61 | | T8 = Rm[WS(rs, 9)]; |
62 | | T9 = T7 - T8; |
63 | | T1V = T7 + T8; |
64 | | Ts = Rp[WS(rs, 2)]; |
65 | | Tt = Rm[WS(rs, 2)]; |
66 | | Tu = Ts + Tt; |
67 | | T2w = Ts - Tt; |
68 | | { |
69 | | E T4, T1S, T2, T3; |
70 | | T2 = Ip[WS(rs, 9)]; |
71 | | T3 = Im[WS(rs, 9)]; |
72 | | T4 = T2 + T3; |
73 | | T1S = T2 - T3; |
74 | | T1 = W[36]; |
75 | | T5 = T1 * T4; |
76 | | T6 = W[37]; |
77 | | T2Y = T6 * T4; |
78 | | T1R = W[34]; |
79 | | T1T = T1R * T1S; |
80 | | T1U = W[35]; |
81 | | T40 = T1U * T1S; |
82 | | } |
83 | | } |
84 | | { |
85 | | E TY, TZ, TC, TD; |
86 | | TY = Ip[0]; |
87 | | TZ = Im[0]; |
88 | | T10 = TY + TZ; |
89 | | T2F = TY - TZ; |
90 | | TC = Rp[WS(rs, 7)]; |
91 | | TD = Rm[WS(rs, 7)]; |
92 | | TE = TC + TD; |
93 | | T2C = TC - TD; |
94 | | } |
95 | | { |
96 | | E T1w, T1x, TT, TU, TV; |
97 | | T1w = Rp[WS(rs, 1)]; |
98 | | T1x = Rm[WS(rs, 1)]; |
99 | | T1y = T1w - T1x; |
100 | | T2m = T1w + T1x; |
101 | | TT = Rm[0]; |
102 | | TU = Rp[0]; |
103 | | TV = TT - TU; |
104 | | T4g = TU + TT; |
105 | | TX = W[0]; |
106 | | T33 = TX * TV; |
107 | | TS = W[1]; |
108 | | TW = TS * TV; |
109 | | } |
110 | | { |
111 | | E T1d, T1Z, TI, T2G; |
112 | | { |
113 | | E Tz, T2z, Tx, Ty; |
114 | | Tx = Ip[WS(rs, 7)]; |
115 | | Ty = Im[WS(rs, 7)]; |
116 | | Tz = Tx - Ty; |
117 | | T2z = Tx + Ty; |
118 | | Tw = W[26]; |
119 | | TA = Tw * Tz; |
120 | | TB = W[27]; |
121 | | T3L = TB * Tz; |
122 | | T2y = W[28]; |
123 | | T2A = T2y * T2z; |
124 | | T2B = W[29]; |
125 | | T3t = T2B * T2z; |
126 | | } |
127 | | { |
128 | | E T1t, T2j, T1r, T1s; |
129 | | T1r = Ip[WS(rs, 1)]; |
130 | | T1s = Im[WS(rs, 1)]; |
131 | | T1t = T1r + T1s; |
132 | | T2j = T1r - T1s; |
133 | | T1q = W[4]; |
134 | | T1u = T1q * T1t; |
135 | | T1v = W[5]; |
136 | | T3d = T1v * T1t; |
137 | | T2i = W[2]; |
138 | | T2k = T2i * T2j; |
139 | | T2l = W[3]; |
140 | | T48 = T2l * T2j; |
141 | | } |
142 | | { |
143 | | E Tp, T2t, Tn, To; |
144 | | Tn = Ip[WS(rs, 2)]; |
145 | | To = Im[WS(rs, 2)]; |
146 | | Tp = Tn - To; |
147 | | T2t = Tn + To; |
148 | | Tm = W[6]; |
149 | | Tq = Tm * Tp; |
150 | | Tr = W[7]; |
151 | | T3J = Tr * Tp; |
152 | | T2s = W[8]; |
153 | | T2u = T2s * T2t; |
154 | | T2v = W[9]; |
155 | | T3r = T2v * T2t; |
156 | | } |
157 | | { |
158 | | E T1e, T1f, T1j, T1k; |
159 | | T1e = Ip[WS(rs, 3)]; |
160 | | T1f = Im[WS(rs, 3)]; |
161 | | T1g = T1e - T1f; |
162 | | T20 = T1e + T1f; |
163 | | T1j = Rp[WS(rs, 3)]; |
164 | | T1k = Rm[WS(rs, 3)]; |
165 | | T1l = T1j + T1k; |
166 | | T23 = T1j - T1k; |
167 | | } |
168 | | T1d = W[10]; |
169 | | T1h = T1d * T1g; |
170 | | T3S = T1d * T1l; |
171 | | T1Z = W[12]; |
172 | | T21 = T1Z * T20; |
173 | | T3k = T1Z * T23; |
174 | | { |
175 | | E TJ, TK, TO, TP; |
176 | | TJ = Ip[WS(rs, 5)]; |
177 | | TK = Im[WS(rs, 5)]; |
178 | | TL = TJ + TK; |
179 | | T2H = TJ - TK; |
180 | | TO = Rp[WS(rs, 5)]; |
181 | | TP = Rm[WS(rs, 5)]; |
182 | | TQ = TO - TP; |
183 | | T2K = TO + TP; |
184 | | } |
185 | | TI = W[20]; |
186 | | TM = TI * TL; |
187 | | T35 = TI * TQ; |
188 | | T2G = W[18]; |
189 | | T2I = T2G * T2H; |
190 | | T4h = T2G * T2K; |
191 | | { |
192 | | E T1G, T1H, T2d, T1B, T1C, T1A; |
193 | | T1G = Rm[WS(rs, 6)]; |
194 | | T1H = Rp[WS(rs, 6)]; |
195 | | T1I = T1G - T1H; |
196 | | T1B = Ip[WS(rs, 6)]; |
197 | | T1C = Im[WS(rs, 6)]; |
198 | | T1D = T1B + T1C; |
199 | | T2d = T1B - T1C; |
200 | | T2g = T1H + T1G; |
201 | | T2f = W[23]; |
202 | | T46 = T2f * T2d; |
203 | | T2c = W[22]; |
204 | | T2e = T2c * T2d; |
205 | | T1A = W[24]; |
206 | | T1E = T1A * T1D; |
207 | | T3b = T1A * T1I; |
208 | | } |
209 | | { |
210 | | E T14, T15, T26, T19, T1a, T13; |
211 | | T14 = Ip[WS(rs, 8)]; |
212 | | T15 = Im[WS(rs, 8)]; |
213 | | T16 = T14 - T15; |
214 | | T19 = Rp[WS(rs, 8)]; |
215 | | T1a = Rm[WS(rs, 8)]; |
216 | | T1b = T19 + T1a; |
217 | | T26 = T1a - T19; |
218 | | T29 = T14 + T15; |
219 | | T28 = W[32]; |
220 | | T3i = T28 * T26; |
221 | | T25 = W[33]; |
222 | | T27 = T25 * T26; |
223 | | T13 = W[30]; |
224 | | T17 = T13 * T16; |
225 | | T3Q = T13 * T1b; |
226 | | } |
227 | | { |
228 | | E Th, Ti, T1M, Tc, Td, Tb; |
229 | | Th = Rm[WS(rs, 4)]; |
230 | | Ti = Rp[WS(rs, 4)]; |
231 | | Tj = Th - Ti; |
232 | | Tc = Ip[WS(rs, 4)]; |
233 | | Td = Im[WS(rs, 4)]; |
234 | | Te = Tc + Td; |
235 | | T1M = Tc - Td; |
236 | | T1P = Ti + Th; |
237 | | T1O = W[15]; |
238 | | T3Y = T1O * T1M; |
239 | | T1L = W[14]; |
240 | | T1N = T1L * T1M; |
241 | | Tb = W[16]; |
242 | | Tf = Tb * Te; |
243 | | T2W = Tb * Tj; |
244 | | } |
245 | | } |
246 | | T2x = FNMS(T2v, T2w, T2u); |
247 | | T2D = FNMS(T2B, T2C, T2A); |
248 | | T2E = T2x - T2D; |
249 | | T4W = T2x + T2D; |
250 | | { |
251 | | E T3s, T3u, T2L, T4i, T2J; |
252 | | T3s = FMA(T2s, T2w, T3r); |
253 | | T3u = FMA(T2y, T2C, T3t); |
254 | | T3v = T3s + T3u; |
255 | | T4k = T3u - T3s; |
256 | | T2J = W[19]; |
257 | | T2L = FNMS(T2J, T2K, T2I); |
258 | | T4i = FMA(T2J, T2H, T4h); |
259 | | T2M = T2F - T2L; |
260 | | T4V = T4g + T4i; |
261 | | T3w = T2L + T2F; |
262 | | T4j = T4g - T4i; |
263 | | } |
264 | | { |
265 | | E T2a, T3j, T24, T3l, T2o, T3n, T4a, T59, T22; |
266 | | T2a = FMA(T28, T29, T27); |
267 | | T3j = FNMS(T25, T29, T3i); |
268 | | T22 = W[13]; |
269 | | T24 = FNMS(T22, T23, T21); |
270 | | T3l = FMA(T22, T20, T3k); |
271 | | { |
272 | | E T2h, T2n, T47, T49; |
273 | | T2h = FNMS(T2f, T2g, T2e); |
274 | | T2n = FNMS(T2l, T2m, T2k); |
275 | | T2o = T2h - T2n; |
276 | | T3n = T2h + T2n; |
277 | | T47 = FMA(T2c, T2g, T46); |
278 | | T49 = FMA(T2i, T2m, T48); |
279 | | T4a = T47 - T49; |
280 | | T59 = T47 + T49; |
281 | | } |
282 | | { |
283 | | E T2b, T58, T3m, T45; |
284 | | T2b = T24 - T2a; |
285 | | T2p = T2b - T2o; |
286 | | T2T = T2b + T2o; |
287 | | T58 = T2a + T24; |
288 | | T5a = T58 + T59; |
289 | | T5A = T59 - T58; |
290 | | T3m = T3j - T3l; |
291 | | T3o = T3m - T3n; |
292 | | T3D = T3m + T3n; |
293 | | T45 = T3j + T3l; |
294 | | T4b = T45 + T4a; |
295 | | T4B = T4a - T45; |
296 | | } |
297 | | } |
298 | | { |
299 | | E T1z, T3e, T1J, T3c, T1X, T3g, T42, T55, T1F; |
300 | | T1z = FNMS(T1v, T1y, T1u); |
301 | | T3e = FMA(T1q, T1y, T3d); |
302 | | T1F = W[25]; |
303 | | T1J = FMA(T1F, T1I, T1E); |
304 | | T3c = FNMS(T1F, T1D, T3b); |
305 | | { |
306 | | E T1Q, T1W, T3Z, T41; |
307 | | T1Q = FNMS(T1O, T1P, T1N); |
308 | | T1W = FNMS(T1U, T1V, T1T); |
309 | | T1X = T1Q - T1W; |
310 | | T3g = T1Q + T1W; |
311 | | T3Z = FMA(T1L, T1P, T3Y); |
312 | | T41 = FMA(T1R, T1V, T40); |
313 | | T42 = T3Z - T41; |
314 | | T55 = T3Z + T41; |
315 | | } |
316 | | { |
317 | | E T1K, T56, T3f, T43; |
318 | | T1K = T1z - T1J; |
319 | | T1Y = T1K - T1X; |
320 | | T2S = T1X + T1K; |
321 | | T56 = T1J + T1z; |
322 | | T57 = T55 + T56; |
323 | | T5z = T55 - T56; |
324 | | T3f = T3c - T3e; |
325 | | T3h = T3f - T3g; |
326 | | T3C = T3g + T3f; |
327 | | T43 = T3c + T3e; |
328 | | T44 = T42 + T43; |
329 | | T4A = T42 - T43; |
330 | | } |
331 | | } |
332 | | { |
333 | | E Ta, T2Z, Tk, T2X, TG, T31, T3N, T4Y, Tg; |
334 | | Ta = FNMS(T6, T9, T5); |
335 | | T2Z = FMA(T1, T9, T2Y); |
336 | | Tg = W[17]; |
337 | | Tk = FMA(Tg, Tj, Tf); |
338 | | T2X = FNMS(Tg, Te, T2W); |
339 | | { |
340 | | E Tv, TF, T3K, T3M; |
341 | | Tv = FNMS(Tr, Tu, Tq); |
342 | | TF = FNMS(TB, TE, TA); |
343 | | TG = Tv - TF; |
344 | | T31 = Tv + TF; |
345 | | T3K = FMA(Tm, Tu, T3J); |
346 | | T3M = FMA(Tw, TE, T3L); |
347 | | T3N = T3K - T3M; |
348 | | T4Y = T3K + T3M; |
349 | | } |
350 | | { |
351 | | E Tl, T4Z, T30, T3O; |
352 | | Tl = Ta - Tk; |
353 | | TH = Tl - TG; |
354 | | T2P = TG + Tl; |
355 | | T4Z = Tk + Ta; |
356 | | T50 = T4Y + T4Z; |
357 | | T5x = T4Y - T4Z; |
358 | | T30 = T2X - T2Z; |
359 | | T32 = T30 - T31; |
360 | | T3z = T31 + T30; |
361 | | T3O = T2X + T2Z; |
362 | | T3P = T3N + T3O; |
363 | | T4D = T3N - T3O; |
364 | | } |
365 | | } |
366 | | { |
367 | | E T11, T34, TR, T36, T1c, T3R, T1m, T3T, TN, T18, T1i; |
368 | | T11 = FMA(TX, T10, TW); |
369 | | T34 = FNMS(TS, T10, T33); |
370 | | TN = W[21]; |
371 | | TR = FNMS(TN, TQ, TM); |
372 | | T36 = FMA(TN, TL, T35); |
373 | | T18 = W[31]; |
374 | | T1c = FNMS(T18, T1b, T17); |
375 | | T3R = FMA(T18, T16, T3Q); |
376 | | T1i = W[11]; |
377 | | T1m = FNMS(T1i, T1l, T1h); |
378 | | T3T = FMA(T1i, T1g, T3S); |
379 | | { |
380 | | E T12, T1n, T51, T52; |
381 | | T12 = TR - T11; |
382 | | T1n = T1c - T1m; |
383 | | T1o = T12 - T1n; |
384 | | T2Q = T1n + T12; |
385 | | T51 = T3R + T3T; |
386 | | T52 = TR + T11; |
387 | | T53 = T51 + T52; |
388 | | T5w = T51 - T52; |
389 | | } |
390 | | { |
391 | | E T37, T38, T3U, T3V; |
392 | | T37 = T34 - T36; |
393 | | T38 = T1c + T1m; |
394 | | T39 = T37 - T38; |
395 | | T3A = T38 + T37; |
396 | | T3U = T3R - T3T; |
397 | | T3V = T36 + T34; |
398 | | T3W = T3U + T3V; |
399 | | T4E = T3U - T3V; |
400 | | } |
401 | | } |
402 | | } |
403 | | { |
404 | | E T4G, T4I, T2N, T2r, T4x, T4y, T4H, T4z; |
405 | | { |
406 | | E T4C, T4F, T1p, T2q; |
407 | | T4C = T4A - T4B; |
408 | | T4F = T4D - T4E; |
409 | | T4G = FNMS(KP618033988, T4F, T4C); |
410 | | T4I = FMA(KP618033988, T4C, T4F); |
411 | | T2N = T2E + T2M; |
412 | | T1p = TH + T1o; |
413 | | T2q = T1Y + T2p; |
414 | | T2r = T1p + T2q; |
415 | | T4x = FMA(KP250000000, T2r, T2N); |
416 | | T4y = T1p - T2q; |
417 | | } |
418 | | Im[WS(rs, 4)] = KP500000000 * (T2r - T2N); |
419 | | T4H = FNMS(KP559016994, T4y, T4x); |
420 | | Im[0] = -(KP500000000 * (FMA(KP951056516, T4I, T4H))); |
421 | | Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP951056516, T4I, T4H))); |
422 | | T4z = FMA(KP559016994, T4y, T4x); |
423 | | Ip[WS(rs, 3)] = KP500000000 * (FNMS(KP951056516, T4G, T4z)); |
424 | | Ip[WS(rs, 7)] = KP500000000 * (FMA(KP951056516, T4G, T4z)); |
425 | | } |
426 | | { |
427 | | E T4S, T4U, T4J, T4M, T4N, T4O, T4T, T4P; |
428 | | { |
429 | | E T4Q, T4R, T4K, T4L; |
430 | | T4Q = T2p - T1Y; |
431 | | T4R = T1o - TH; |
432 | | T4S = FNMS(KP618033988, T4R, T4Q); |
433 | | T4U = FMA(KP618033988, T4Q, T4R); |
434 | | T4J = T4j - T4k; |
435 | | T4K = T4D + T4E; |
436 | | T4L = T4A + T4B; |
437 | | T4M = T4K + T4L; |
438 | | T4N = FNMS(KP250000000, T4M, T4J); |
439 | | T4O = T4K - T4L; |
440 | | } |
441 | | Rm[WS(rs, 4)] = KP500000000 * (T4J + T4M); |
442 | | T4T = FMA(KP559016994, T4O, T4N); |
443 | | Rm[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T4U, T4T)); |
444 | | Rm[0] = KP500000000 * (FNMS(KP951056516, T4U, T4T)); |
445 | | T4P = FNMS(KP559016994, T4O, T4N); |
446 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T4S, T4P)); |
447 | | Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T4S, T4P)); |
448 | | } |
449 | | { |
450 | | E T4d, T4f, T2O, T2V, T3G, T3H, T4e, T3I; |
451 | | { |
452 | | E T3X, T4c, T2R, T2U; |
453 | | T3X = T3P - T3W; |
454 | | T4c = T44 - T4b; |
455 | | T4d = FMA(KP618033988, T4c, T3X); |
456 | | T4f = FNMS(KP618033988, T3X, T4c); |
457 | | T2O = T2M - T2E; |
458 | | T2R = T2P + T2Q; |
459 | | T2U = T2S + T2T; |
460 | | T2V = T2R + T2U; |
461 | | T3G = FNMS(KP250000000, T2V, T2O); |
462 | | T3H = T2R - T2U; |
463 | | } |
464 | | Ip[WS(rs, 5)] = KP500000000 * (T2O + T2V); |
465 | | T4e = FNMS(KP559016994, T3H, T3G); |
466 | | Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP951056516, T4f, T4e))); |
467 | | Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP951056516, T4f, T4e))); |
468 | | T3I = FMA(KP559016994, T3H, T3G); |
469 | | Ip[WS(rs, 1)] = KP500000000 * (FNMS(KP951056516, T4d, T3I)); |
470 | | Ip[WS(rs, 9)] = KP500000000 * (FMA(KP951056516, T4d, T3I)); |
471 | | } |
472 | | { |
473 | | E T4u, T4w, T4l, T4o, T4p, T4q, T4v, T4r; |
474 | | { |
475 | | E T4s, T4t, T4m, T4n; |
476 | | T4s = T2P - T2Q; |
477 | | T4t = T2S - T2T; |
478 | | T4u = FMA(KP618033988, T4t, T4s); |
479 | | T4w = FNMS(KP618033988, T4s, T4t); |
480 | | T4l = T4j + T4k; |
481 | | T4m = T3P + T3W; |
482 | | T4n = T44 + T4b; |
483 | | T4o = T4m + T4n; |
484 | | T4p = FNMS(KP250000000, T4o, T4l); |
485 | | T4q = T4m - T4n; |
486 | | } |
487 | | Rp[WS(rs, 5)] = KP500000000 * (T4l + T4o); |
488 | | T4v = FNMS(KP559016994, T4q, T4p); |
489 | | Rm[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T4w, T4v)); |
490 | | Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T4w, T4v)); |
491 | | T4r = FMA(KP559016994, T4q, T4p); |
492 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T4u, T4r)); |
493 | | Rp[WS(rs, 9)] = KP500000000 * (FNMS(KP951056516, T4u, T4r)); |
494 | | } |
495 | | { |
496 | | E T5C, T5E, T3x, T3q, T5t, T5u, T5D, T5v; |
497 | | { |
498 | | E T5y, T5B, T3a, T3p; |
499 | | T5y = T5w - T5x; |
500 | | T5B = T5z - T5A; |
501 | | T5C = FNMS(KP618033988, T5B, T5y); |
502 | | T5E = FMA(KP618033988, T5y, T5B); |
503 | | T3x = T3v + T3w; |
504 | | T3a = T32 + T39; |
505 | | T3p = T3h + T3o; |
506 | | T3q = T3a + T3p; |
507 | | T5t = FMA(KP250000000, T3q, T3x); |
508 | | T5u = T3p - T3a; |
509 | | } |
510 | | Im[WS(rs, 9)] = KP500000000 * (T3q - T3x); |
511 | | T5D = FNMS(KP559016994, T5u, T5t); |
512 | | Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T5E, T5D)); |
513 | | Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T5E, T5D))); |
514 | | T5v = FMA(KP559016994, T5u, T5t); |
515 | | Ip[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5C, T5v)); |
516 | | Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP951056516, T5C, T5v))); |
517 | | } |
518 | | { |
519 | | E T5O, T5Q, T5F, T5I, T5J, T5K, T5P, T5L; |
520 | | { |
521 | | E T5M, T5N, T5G, T5H; |
522 | | T5M = T3o - T3h; |
523 | | T5N = T39 - T32; |
524 | | T5O = FNMS(KP618033988, T5N, T5M); |
525 | | T5Q = FMA(KP618033988, T5M, T5N); |
526 | | T5F = T4V - T4W; |
527 | | T5G = T5x + T5w; |
528 | | T5H = T5z + T5A; |
529 | | T5I = T5G + T5H; |
530 | | T5J = FNMS(KP250000000, T5I, T5F); |
531 | | T5K = T5G - T5H; |
532 | | } |
533 | | Rm[WS(rs, 9)] = KP500000000 * (T5F + T5I); |
534 | | T5P = FMA(KP559016994, T5K, T5J); |
535 | | Rp[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5Q, T5P)); |
536 | | Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP951056516, T5Q, T5P)); |
537 | | T5L = FNMS(KP559016994, T5K, T5J); |
538 | | Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T5O, T5L)); |
539 | | Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T5O, T5L)); |
540 | | } |
541 | | { |
542 | | E T5q, T5s, T3y, T3F, T5l, T5m, T5r, T5n; |
543 | | { |
544 | | E T5o, T5p, T3B, T3E; |
545 | | T5o = T50 - T53; |
546 | | T5p = T5a - T57; |
547 | | T5q = FNMS(KP618033988, T5p, T5o); |
548 | | T5s = FMA(KP618033988, T5o, T5p); |
549 | | T3y = T3w - T3v; |
550 | | T3B = T3z + T3A; |
551 | | T3E = T3C + T3D; |
552 | | T3F = T3B + T3E; |
553 | | T5l = FNMS(KP250000000, T3F, T3y); |
554 | | T5m = T3B - T3E; |
555 | | } |
556 | | Ip[0] = KP500000000 * (T3y + T3F); |
557 | | T5r = FNMS(KP559016994, T5m, T5l); |
558 | | Ip[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5s, T5r)); |
559 | | Im[WS(rs, 7)] = -(KP500000000 * (FNMS(KP951056516, T5s, T5r))); |
560 | | T5n = FMA(KP559016994, T5m, T5l); |
561 | | Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T5q, T5n)); |
562 | | Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T5q, T5n))); |
563 | | } |
564 | | { |
565 | | E T5i, T5k, T4X, T5c, T5d, T5e, T5j, T5f; |
566 | | { |
567 | | E T5g, T5h, T54, T5b; |
568 | | T5g = T3z - T3A; |
569 | | T5h = T3C - T3D; |
570 | | T5i = FMA(KP618033988, T5h, T5g); |
571 | | T5k = FNMS(KP618033988, T5g, T5h); |
572 | | T4X = T4V + T4W; |
573 | | T54 = T50 + T53; |
574 | | T5b = T57 + T5a; |
575 | | T5c = T54 + T5b; |
576 | | T5d = FNMS(KP250000000, T5c, T4X); |
577 | | T5e = T54 - T5b; |
578 | | } |
579 | | Rp[0] = KP500000000 * (T4X + T5c); |
580 | | T5j = FNMS(KP559016994, T5e, T5d); |
581 | | Rp[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5k, T5j)); |
582 | | Rm[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5k, T5j)); |
583 | | T5f = FMA(KP559016994, T5e, T5d); |
584 | | Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T5i, T5f)); |
585 | | Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5i, T5f)); |
586 | | } |
587 | | } |
588 | | } |
589 | | } |
590 | | |
591 | | static const tw_instr twinstr[] = { |
592 | | { TW_FULL, 1, 20 }, |
593 | | { TW_NEXT, 1, 0 } |
594 | | }; |
595 | | |
596 | | static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, { 176, 78, 110, 0 } }; |
597 | | |
598 | | void X(codelet_hc2cfdft_20) (planner *p) { |
599 | | X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT); |
600 | | } |
601 | | #else |
602 | | |
603 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include rdft/scalar/hc2cf.h */ |
604 | | |
605 | | /* |
606 | | * This function contains 286 FP additions, 140 FP multiplications, |
607 | | * (or, 224 additions, 78 multiplications, 62 fused multiply/add), |
608 | | * 98 stack variables, 5 constants, and 80 memory accesses |
609 | | */ |
610 | | #include "rdft/scalar/hc2cf.h" |
611 | | |
612 | | static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
613 | 0 | { |
614 | 0 | DK(KP125000000, +0.125000000000000000000000000000000000000000000); |
615 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
616 | 0 | DK(KP279508497, +0.279508497187473712051146708591409529430077295); |
617 | 0 | DK(KP293892626, +0.293892626146236564584352977319536384298826219); |
618 | 0 | DK(KP475528258, +0.475528258147576786058219666689691071702849317); |
619 | 0 | { |
620 | 0 | INT m; |
621 | 0 | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
622 | 0 | E T12, T2w, T4o, T4V, T2H, T3a, T4y, T4Y, T1z, T2v, T25, T2y, T2s, T2z, T4v; |
623 | 0 | E T4X, T4r, T4U, T3A, T3Z, T2X, T37, T3k, T41, T2M, T39, T3v, T3Y, T2S, T36; |
624 | 0 | E T3p, T42, Td, T4G, T33, T3N, Tw, T4H, T32, T3O; |
625 | 0 | { |
626 | 0 | E T3, T3L, T1x, T2V, Th, Tl, TC, T3g, Tq, Tu, TH, T3h, T7, Tb, T1q; |
627 | 0 | E T2U, TR, T2P, T1F, T3r, T23, T2K, T2f, T3y, T1k, T3m, T2q, T2E, T10, T2Q; |
628 | 0 | E T1K, T3s, T1U, T2J, T2a, T3x, T1b, T3l, T2l, T2D; |
629 | 0 | { |
630 | 0 | E T1, T2, T1s, T1u, T1v, T1w, T1r, T1t; |
631 | 0 | T1 = Ip[0]; |
632 | 0 | T2 = Im[0]; |
633 | 0 | T1s = T1 + T2; |
634 | 0 | T1u = Rp[0]; |
635 | 0 | T1v = Rm[0]; |
636 | 0 | T1w = T1u - T1v; |
637 | 0 | T3 = T1 - T2; |
638 | 0 | T3L = T1u + T1v; |
639 | 0 | T1r = W[0]; |
640 | 0 | T1t = W[1]; |
641 | 0 | T1x = FNMS(T1t, T1w, T1r * T1s); |
642 | 0 | T2V = FMA(T1r, T1w, T1t * T1s); |
643 | 0 | } |
644 | 0 | { |
645 | 0 | E Tf, Tg, Tz, Tj, Tk, TB, Ty, TA; |
646 | 0 | Tf = Ip[WS(rs, 2)]; |
647 | 0 | Tg = Im[WS(rs, 2)]; |
648 | 0 | Tz = Tf - Tg; |
649 | 0 | Tj = Rp[WS(rs, 2)]; |
650 | 0 | Tk = Rm[WS(rs, 2)]; |
651 | 0 | TB = Tj + Tk; |
652 | 0 | Th = Tf + Tg; |
653 | 0 | Tl = Tj - Tk; |
654 | 0 | Ty = W[6]; |
655 | 0 | TA = W[7]; |
656 | 0 | TC = FNMS(TA, TB, Ty * Tz); |
657 | 0 | T3g = FMA(TA, Tz, Ty * TB); |
658 | 0 | } |
659 | 0 | { |
660 | 0 | E To, Tp, TE, Ts, Tt, TG, TD, TF; |
661 | 0 | To = Ip[WS(rs, 7)]; |
662 | 0 | Tp = Im[WS(rs, 7)]; |
663 | 0 | TE = To - Tp; |
664 | 0 | Ts = Rp[WS(rs, 7)]; |
665 | 0 | Tt = Rm[WS(rs, 7)]; |
666 | 0 | TG = Ts + Tt; |
667 | 0 | Tq = To + Tp; |
668 | 0 | Tu = Ts - Tt; |
669 | 0 | TD = W[26]; |
670 | 0 | TF = W[27]; |
671 | 0 | TH = FNMS(TF, TG, TD * TE); |
672 | 0 | T3h = FMA(TF, TE, TD * TG); |
673 | 0 | } |
674 | 0 | { |
675 | 0 | E T5, T6, T1n, T9, Ta, T1p, T1m, T1o; |
676 | 0 | T5 = Ip[WS(rs, 5)]; |
677 | 0 | T6 = Im[WS(rs, 5)]; |
678 | 0 | T1n = T5 + T6; |
679 | 0 | T9 = Rp[WS(rs, 5)]; |
680 | 0 | Ta = Rm[WS(rs, 5)]; |
681 | 0 | T1p = T9 - Ta; |
682 | 0 | T7 = T5 - T6; |
683 | 0 | Tb = T9 + Ta; |
684 | 0 | T1m = W[20]; |
685 | 0 | T1o = W[21]; |
686 | 0 | T1q = FNMS(T1o, T1p, T1m * T1n); |
687 | 0 | T2U = FMA(T1m, T1p, T1o * T1n); |
688 | 0 | } |
689 | 0 | { |
690 | 0 | E TM, T1C, TQ, T1E; |
691 | 0 | { |
692 | 0 | E TK, TL, TO, TP; |
693 | 0 | TK = Ip[WS(rs, 4)]; |
694 | 0 | TL = Im[WS(rs, 4)]; |
695 | 0 | TM = TK + TL; |
696 | 0 | T1C = TK - TL; |
697 | 0 | TO = Rp[WS(rs, 4)]; |
698 | 0 | TP = Rm[WS(rs, 4)]; |
699 | 0 | TQ = TO - TP; |
700 | 0 | T1E = TO + TP; |
701 | 0 | } |
702 | 0 | { |
703 | 0 | E TJ, TN, T1B, T1D; |
704 | 0 | TJ = W[16]; |
705 | 0 | TN = W[17]; |
706 | 0 | TR = FNMS(TN, TQ, TJ * TM); |
707 | 0 | T2P = FMA(TN, TM, TJ * TQ); |
708 | 0 | T1B = W[14]; |
709 | 0 | T1D = W[15]; |
710 | 0 | T1F = FNMS(T1D, T1E, T1B * T1C); |
711 | 0 | T3r = FMA(T1D, T1C, T1B * T1E); |
712 | 0 | } |
713 | 0 | } |
714 | 0 | { |
715 | 0 | E T1Y, T2c, T22, T2e; |
716 | 0 | { |
717 | 0 | E T1W, T1X, T20, T21; |
718 | 0 | T1W = Ip[WS(rs, 1)]; |
719 | 0 | T1X = Im[WS(rs, 1)]; |
720 | 0 | T1Y = T1W + T1X; |
721 | 0 | T2c = T1W - T1X; |
722 | 0 | T20 = Rp[WS(rs, 1)]; |
723 | 0 | T21 = Rm[WS(rs, 1)]; |
724 | 0 | T22 = T20 - T21; |
725 | 0 | T2e = T20 + T21; |
726 | 0 | } |
727 | 0 | { |
728 | 0 | E T1V, T1Z, T2b, T2d; |
729 | 0 | T1V = W[4]; |
730 | 0 | T1Z = W[5]; |
731 | 0 | T23 = FNMS(T1Z, T22, T1V * T1Y); |
732 | 0 | T2K = FMA(T1Z, T1Y, T1V * T22); |
733 | 0 | T2b = W[2]; |
734 | 0 | T2d = W[3]; |
735 | 0 | T2f = FNMS(T2d, T2e, T2b * T2c); |
736 | 0 | T3y = FMA(T2d, T2c, T2b * T2e); |
737 | 0 | } |
738 | 0 | } |
739 | 0 | { |
740 | 0 | E T1f, T2n, T1j, T2p; |
741 | 0 | { |
742 | 0 | E T1d, T1e, T1h, T1i; |
743 | 0 | T1d = Ip[WS(rs, 3)]; |
744 | 0 | T1e = Im[WS(rs, 3)]; |
745 | 0 | T1f = T1d - T1e; |
746 | 0 | T2n = T1d + T1e; |
747 | 0 | T1h = Rp[WS(rs, 3)]; |
748 | 0 | T1i = Rm[WS(rs, 3)]; |
749 | 0 | T1j = T1h + T1i; |
750 | 0 | T2p = T1h - T1i; |
751 | 0 | } |
752 | 0 | { |
753 | 0 | E T1c, T1g, T2m, T2o; |
754 | 0 | T1c = W[10]; |
755 | 0 | T1g = W[11]; |
756 | 0 | T1k = FNMS(T1g, T1j, T1c * T1f); |
757 | 0 | T3m = FMA(T1c, T1j, T1g * T1f); |
758 | 0 | T2m = W[12]; |
759 | 0 | T2o = W[13]; |
760 | 0 | T2q = FNMS(T2o, T2p, T2m * T2n); |
761 | 0 | T2E = FMA(T2m, T2p, T2o * T2n); |
762 | 0 | } |
763 | 0 | } |
764 | 0 | { |
765 | 0 | E TV, T1H, TZ, T1J; |
766 | 0 | { |
767 | 0 | E TT, TU, TX, TY; |
768 | 0 | TT = Ip[WS(rs, 9)]; |
769 | 0 | TU = Im[WS(rs, 9)]; |
770 | 0 | TV = TT + TU; |
771 | 0 | T1H = TT - TU; |
772 | 0 | TX = Rp[WS(rs, 9)]; |
773 | 0 | TY = Rm[WS(rs, 9)]; |
774 | 0 | TZ = TX - TY; |
775 | 0 | T1J = TX + TY; |
776 | 0 | } |
777 | 0 | { |
778 | 0 | E TS, TW, T1G, T1I; |
779 | 0 | TS = W[36]; |
780 | 0 | TW = W[37]; |
781 | 0 | T10 = FNMS(TW, TZ, TS * TV); |
782 | 0 | T2Q = FMA(TW, TV, TS * TZ); |
783 | 0 | T1G = W[34]; |
784 | 0 | T1I = W[35]; |
785 | 0 | T1K = FNMS(T1I, T1J, T1G * T1H); |
786 | 0 | T3s = FMA(T1I, T1H, T1G * T1J); |
787 | 0 | } |
788 | 0 | } |
789 | 0 | { |
790 | 0 | E T1P, T27, T1T, T29; |
791 | 0 | { |
792 | 0 | E T1N, T1O, T1R, T1S; |
793 | 0 | T1N = Ip[WS(rs, 6)]; |
794 | 0 | T1O = Im[WS(rs, 6)]; |
795 | 0 | T1P = T1N + T1O; |
796 | 0 | T27 = T1N - T1O; |
797 | 0 | T1R = Rp[WS(rs, 6)]; |
798 | 0 | T1S = Rm[WS(rs, 6)]; |
799 | 0 | T1T = T1R - T1S; |
800 | 0 | T29 = T1R + T1S; |
801 | 0 | } |
802 | 0 | { |
803 | 0 | E T1M, T1Q, T26, T28; |
804 | 0 | T1M = W[24]; |
805 | 0 | T1Q = W[25]; |
806 | 0 | T1U = FNMS(T1Q, T1T, T1M * T1P); |
807 | 0 | T2J = FMA(T1Q, T1P, T1M * T1T); |
808 | 0 | T26 = W[22]; |
809 | 0 | T28 = W[23]; |
810 | 0 | T2a = FNMS(T28, T29, T26 * T27); |
811 | 0 | T3x = FMA(T28, T27, T26 * T29); |
812 | 0 | } |
813 | 0 | } |
814 | 0 | { |
815 | 0 | E T16, T2k, T1a, T2i; |
816 | 0 | { |
817 | 0 | E T14, T15, T18, T19; |
818 | 0 | T14 = Ip[WS(rs, 8)]; |
819 | 0 | T15 = Im[WS(rs, 8)]; |
820 | 0 | T16 = T14 - T15; |
821 | 0 | T2k = T14 + T15; |
822 | 0 | T18 = Rp[WS(rs, 8)]; |
823 | 0 | T19 = Rm[WS(rs, 8)]; |
824 | 0 | T1a = T18 + T19; |
825 | 0 | T2i = T19 - T18; |
826 | 0 | } |
827 | 0 | { |
828 | 0 | E T13, T17, T2h, T2j; |
829 | 0 | T13 = W[30]; |
830 | 0 | T17 = W[31]; |
831 | 0 | T1b = FNMS(T17, T1a, T13 * T16); |
832 | 0 | T3l = FMA(T13, T1a, T17 * T16); |
833 | 0 | T2h = W[33]; |
834 | 0 | T2j = W[32]; |
835 | 0 | T2l = FMA(T2h, T2i, T2j * T2k); |
836 | 0 | T2D = FNMS(T2h, T2k, T2j * T2i); |
837 | 0 | } |
838 | 0 | } |
839 | 0 | { |
840 | 0 | E T2g, T2r, T3n, T3o; |
841 | 0 | { |
842 | 0 | E TI, T11, T4m, T4n; |
843 | 0 | TI = TC - TH; |
844 | 0 | T11 = TR - T10; |
845 | 0 | T12 = TI - T11; |
846 | 0 | T2w = TI + T11; |
847 | 0 | T4m = T3g + T3h; |
848 | 0 | T4n = TR + T10; |
849 | 0 | T4o = T4m + T4n; |
850 | 0 | T4V = T4m - T4n; |
851 | 0 | } |
852 | 0 | { |
853 | 0 | E T2F, T2G, T4w, T4x; |
854 | 0 | T2F = T2D - T2E; |
855 | 0 | T2G = T2a + T2f; |
856 | 0 | T2H = T2F - T2G; |
857 | 0 | T3a = T2F + T2G; |
858 | 0 | T4w = T2l + T2q; |
859 | 0 | T4x = T3x + T3y; |
860 | 0 | T4y = T4w + T4x; |
861 | 0 | T4Y = T4x - T4w; |
862 | 0 | } |
863 | 0 | { |
864 | 0 | E T1l, T1y, T1L, T24; |
865 | 0 | T1l = T1b - T1k; |
866 | 0 | T1y = T1q - T1x; |
867 | 0 | T1z = T1l + T1y; |
868 | 0 | T2v = T1y - T1l; |
869 | 0 | T1L = T1F - T1K; |
870 | 0 | T24 = T1U - T23; |
871 | 0 | T25 = T1L - T24; |
872 | 0 | T2y = T1L + T24; |
873 | 0 | } |
874 | 0 | T2g = T2a - T2f; |
875 | 0 | T2r = T2l - T2q; |
876 | 0 | T2s = T2g - T2r; |
877 | 0 | T2z = T2r + T2g; |
878 | 0 | { |
879 | 0 | E T4t, T4u, T4p, T4q; |
880 | 0 | T4t = T3r + T3s; |
881 | 0 | T4u = T1U + T23; |
882 | 0 | T4v = T4t + T4u; |
883 | 0 | T4X = T4t - T4u; |
884 | 0 | T4p = T3l + T3m; |
885 | 0 | T4q = T1q + T1x; |
886 | 0 | T4r = T4p + T4q; |
887 | 0 | T4U = T4p - T4q; |
888 | 0 | } |
889 | 0 | { |
890 | 0 | E T3w, T3z, T2T, T2W; |
891 | 0 | T3w = T2D + T2E; |
892 | 0 | T3z = T3x - T3y; |
893 | 0 | T3A = T3w + T3z; |
894 | 0 | T3Z = T3z - T3w; |
895 | 0 | T2T = T1b + T1k; |
896 | 0 | T2W = T2U + T2V; |
897 | 0 | T2X = T2T + T2W; |
898 | 0 | T37 = T2T - T2W; |
899 | 0 | } |
900 | 0 | { |
901 | 0 | E T3i, T3j, T2I, T2L; |
902 | 0 | T3i = T3g - T3h; |
903 | 0 | T3j = T2Q - T2P; |
904 | 0 | T3k = T3i + T3j; |
905 | 0 | T41 = T3i - T3j; |
906 | 0 | T2I = T1F + T1K; |
907 | 0 | T2L = T2J + T2K; |
908 | 0 | T2M = T2I + T2L; |
909 | 0 | T39 = T2I - T2L; |
910 | 0 | } |
911 | 0 | { |
912 | 0 | E T3t, T3u, T2O, T2R; |
913 | 0 | T3t = T3r - T3s; |
914 | 0 | T3u = T2K - T2J; |
915 | 0 | T3v = T3t + T3u; |
916 | 0 | T3Y = T3t - T3u; |
917 | 0 | T2O = TC + TH; |
918 | 0 | T2R = T2P + T2Q; |
919 | 0 | T2S = T2O + T2R; |
920 | 0 | T36 = T2O - T2R; |
921 | 0 | } |
922 | 0 | T3n = T3l - T3m; |
923 | 0 | T3o = T2U - T2V; |
924 | 0 | T3p = T3n + T3o; |
925 | 0 | T42 = T3n - T3o; |
926 | 0 | { |
927 | 0 | E Tc, T3M, T4, T8; |
928 | 0 | T4 = W[18]; |
929 | 0 | T8 = W[19]; |
930 | 0 | Tc = FNMS(T8, Tb, T4 * T7); |
931 | 0 | T3M = FMA(T4, Tb, T8 * T7); |
932 | 0 | Td = T3 - Tc; |
933 | 0 | T4G = T3L + T3M; |
934 | 0 | T33 = Tc + T3; |
935 | 0 | T3N = T3L - T3M; |
936 | 0 | } |
937 | 0 | { |
938 | 0 | E Tm, T30, Tv, T31; |
939 | 0 | { |
940 | 0 | E Te, Ti, Tn, Tr; |
941 | 0 | Te = W[8]; |
942 | 0 | Ti = W[9]; |
943 | 0 | Tm = FNMS(Ti, Tl, Te * Th); |
944 | 0 | T30 = FMA(Ti, Th, Te * Tl); |
945 | 0 | Tn = W[28]; |
946 | 0 | Tr = W[29]; |
947 | 0 | Tv = FNMS(Tr, Tu, Tn * Tq); |
948 | 0 | T31 = FMA(Tr, Tq, Tn * Tu); |
949 | 0 | } |
950 | 0 | Tw = Tm - Tv; |
951 | 0 | T4H = Tm + Tv; |
952 | 0 | T32 = T30 + T31; |
953 | 0 | T3O = T31 - T30; |
954 | 0 | } |
955 | 0 | } |
956 | 0 | } |
957 | 0 | { |
958 | 0 | E T3C, T3E, Tx, T2u, T3d, T3e, T3D, T3f; |
959 | 0 | { |
960 | 0 | E T3q, T3B, T1A, T2t; |
961 | 0 | T3q = T3k - T3p; |
962 | 0 | T3B = T3v - T3A; |
963 | 0 | T3C = FMA(KP475528258, T3q, KP293892626 * T3B); |
964 | 0 | T3E = FNMS(KP293892626, T3q, KP475528258 * T3B); |
965 | 0 | Tx = Td - Tw; |
966 | 0 | T1A = T12 + T1z; |
967 | 0 | T2t = T25 + T2s; |
968 | 0 | T2u = T1A + T2t; |
969 | 0 | T3d = KP279508497 * (T1A - T2t); |
970 | 0 | T3e = FNMS(KP125000000, T2u, KP500000000 * Tx); |
971 | 0 | } |
972 | 0 | Ip[WS(rs, 5)] = KP500000000 * (Tx + T2u); |
973 | 0 | T3D = T3d - T3e; |
974 | 0 | Im[WS(rs, 2)] = T3D - T3E; |
975 | 0 | Im[WS(rs, 6)] = T3D + T3E; |
976 | 0 | T3f = T3d + T3e; |
977 | 0 | Ip[WS(rs, 1)] = T3f - T3C; |
978 | 0 | Ip[WS(rs, 9)] = T3f + T3C; |
979 | 0 | } |
980 | 0 | { |
981 | 0 | E T3H, T3T, T3P, T3Q, T3K, T3R, T3U, T3S; |
982 | 0 | { |
983 | 0 | E T3F, T3G, T3I, T3J; |
984 | 0 | T3F = T12 - T1z; |
985 | 0 | T3G = T25 - T2s; |
986 | 0 | T3H = FMA(KP475528258, T3F, KP293892626 * T3G); |
987 | 0 | T3T = FNMS(KP293892626, T3F, KP475528258 * T3G); |
988 | 0 | T3P = T3N + T3O; |
989 | 0 | T3I = T3k + T3p; |
990 | 0 | T3J = T3v + T3A; |
991 | 0 | T3Q = T3I + T3J; |
992 | 0 | T3K = KP279508497 * (T3I - T3J); |
993 | 0 | T3R = FNMS(KP125000000, T3Q, KP500000000 * T3P); |
994 | 0 | } |
995 | 0 | Rp[WS(rs, 5)] = KP500000000 * (T3P + T3Q); |
996 | 0 | T3U = T3R - T3K; |
997 | 0 | Rm[WS(rs, 6)] = T3T + T3U; |
998 | 0 | Rm[WS(rs, 2)] = T3U - T3T; |
999 | 0 | T3S = T3K + T3R; |
1000 | 0 | Rp[WS(rs, 1)] = T3H + T3S; |
1001 | 0 | Rp[WS(rs, 9)] = T3S - T3H; |
1002 | 0 | } |
1003 | 0 | { |
1004 | 0 | E T44, T46, T2C, T2B, T3V, T3W, T45, T3X; |
1005 | 0 | { |
1006 | 0 | E T40, T43, T2x, T2A; |
1007 | 0 | T40 = T3Y - T3Z; |
1008 | 0 | T43 = T41 - T42; |
1009 | 0 | T44 = FNMS(KP293892626, T43, KP475528258 * T40); |
1010 | 0 | T46 = FMA(KP475528258, T43, KP293892626 * T40); |
1011 | 0 | T2C = Tw + Td; |
1012 | 0 | T2x = T2v - T2w; |
1013 | 0 | T2A = T2y + T2z; |
1014 | 0 | T2B = T2x - T2A; |
1015 | 0 | T3V = FMA(KP500000000, T2C, KP125000000 * T2B); |
1016 | 0 | T3W = KP279508497 * (T2x + T2A); |
1017 | 0 | } |
1018 | 0 | Im[WS(rs, 4)] = KP500000000 * (T2B - T2C); |
1019 | 0 | T45 = T3W - T3V; |
1020 | 0 | Im[0] = T45 - T46; |
1021 | 0 | Im[WS(rs, 8)] = T45 + T46; |
1022 | 0 | T3X = T3V + T3W; |
1023 | 0 | Ip[WS(rs, 3)] = T3X - T44; |
1024 | 0 | Ip[WS(rs, 7)] = T3X + T44; |
1025 | 0 | } |
1026 | 0 | { |
1027 | 0 | E T49, T4h, T4a, T4d, T4e, T4f, T4i, T4g; |
1028 | 0 | { |
1029 | 0 | E T47, T48, T4b, T4c; |
1030 | 0 | T47 = T2y - T2z; |
1031 | 0 | T48 = T2w + T2v; |
1032 | 0 | T49 = FNMS(KP293892626, T48, KP475528258 * T47); |
1033 | 0 | T4h = FMA(KP475528258, T48, KP293892626 * T47); |
1034 | 0 | T4a = T3N - T3O; |
1035 | 0 | T4b = T41 + T42; |
1036 | 0 | T4c = T3Y + T3Z; |
1037 | 0 | T4d = T4b + T4c; |
1038 | 0 | T4e = FNMS(KP125000000, T4d, KP500000000 * T4a); |
1039 | 0 | T4f = KP279508497 * (T4b - T4c); |
1040 | 0 | } |
1041 | 0 | Rm[WS(rs, 4)] = KP500000000 * (T4a + T4d); |
1042 | 0 | T4i = T4f + T4e; |
1043 | 0 | Rm[WS(rs, 8)] = T4h + T4i; |
1044 | 0 | Rm[0] = T4i - T4h; |
1045 | 0 | T4g = T4e - T4f; |
1046 | 0 | Rp[WS(rs, 3)] = T49 + T4g; |
1047 | 0 | Rp[WS(rs, 7)] = T4g - T49; |
1048 | 0 | } |
1049 | 0 | { |
1050 | 0 | E T50, T52, T34, T2Z, T4R, T4S, T51, T4T; |
1051 | 0 | { |
1052 | 0 | E T4W, T4Z, T2N, T2Y; |
1053 | 0 | T4W = T4U - T4V; |
1054 | 0 | T4Z = T4X - T4Y; |
1055 | 0 | T50 = FNMS(KP293892626, T4Z, KP475528258 * T4W); |
1056 | 0 | T52 = FMA(KP293892626, T4W, KP475528258 * T4Z); |
1057 | 0 | T34 = T32 + T33; |
1058 | 0 | T2N = T2H - T2M; |
1059 | 0 | T2Y = T2S + T2X; |
1060 | 0 | T2Z = T2N - T2Y; |
1061 | 0 | T4R = FMA(KP500000000, T34, KP125000000 * T2Z); |
1062 | 0 | T4S = KP279508497 * (T2Y + T2N); |
1063 | 0 | } |
1064 | 0 | Im[WS(rs, 9)] = KP500000000 * (T2Z - T34); |
1065 | 0 | T51 = T4R - T4S; |
1066 | 0 | Ip[WS(rs, 2)] = T51 + T52; |
1067 | 0 | Im[WS(rs, 1)] = T52 - T51; |
1068 | 0 | T4T = T4R + T4S; |
1069 | 0 | Ip[WS(rs, 6)] = T4T + T50; |
1070 | 0 | Im[WS(rs, 5)] = T50 - T4T; |
1071 | 0 | } |
1072 | 0 | { |
1073 | 0 | E T5c, T5d, T53, T56, T57, T58, T5e, T59; |
1074 | 0 | { |
1075 | 0 | E T5a, T5b, T54, T55; |
1076 | 0 | T5a = T2M + T2H; |
1077 | 0 | T5b = T2S - T2X; |
1078 | 0 | T5c = FNMS(KP293892626, T5b, KP475528258 * T5a); |
1079 | 0 | T5d = FMA(KP475528258, T5b, KP293892626 * T5a); |
1080 | 0 | T53 = T4G - T4H; |
1081 | 0 | T54 = T4V + T4U; |
1082 | 0 | T55 = T4X + T4Y; |
1083 | 0 | T56 = T54 + T55; |
1084 | 0 | T57 = FNMS(KP125000000, T56, KP500000000 * T53); |
1085 | 0 | T58 = KP279508497 * (T54 - T55); |
1086 | 0 | } |
1087 | 0 | Rm[WS(rs, 9)] = KP500000000 * (T53 + T56); |
1088 | 0 | T5e = T58 + T57; |
1089 | 0 | Rp[WS(rs, 6)] = T5d + T5e; |
1090 | 0 | Rm[WS(rs, 5)] = T5e - T5d; |
1091 | 0 | T59 = T57 - T58; |
1092 | 0 | Rp[WS(rs, 2)] = T59 - T5c; |
1093 | 0 | Rm[WS(rs, 1)] = T5c + T59; |
1094 | 0 | } |
1095 | 0 | { |
1096 | 0 | E T4A, T4C, T35, T3c, T4j, T4k, T4B, T4l; |
1097 | 0 | { |
1098 | 0 | E T4s, T4z, T38, T3b; |
1099 | 0 | T4s = T4o - T4r; |
1100 | 0 | T4z = T4v - T4y; |
1101 | 0 | T4A = FNMS(KP475528258, T4z, KP293892626 * T4s); |
1102 | 0 | T4C = FMA(KP475528258, T4s, KP293892626 * T4z); |
1103 | 0 | T35 = T33 - T32; |
1104 | 0 | T38 = T36 + T37; |
1105 | 0 | T3b = T39 + T3a; |
1106 | 0 | T3c = T38 + T3b; |
1107 | 0 | T4j = FNMS(KP125000000, T3c, KP500000000 * T35); |
1108 | 0 | T4k = KP279508497 * (T38 - T3b); |
1109 | 0 | } |
1110 | 0 | Ip[0] = KP500000000 * (T35 + T3c); |
1111 | 0 | T4B = T4k + T4j; |
1112 | 0 | Ip[WS(rs, 4)] = T4B + T4C; |
1113 | 0 | Im[WS(rs, 3)] = T4C - T4B; |
1114 | 0 | T4l = T4j - T4k; |
1115 | 0 | Ip[WS(rs, 8)] = T4l + T4A; |
1116 | 0 | Im[WS(rs, 7)] = T4A - T4l; |
1117 | 0 | } |
1118 | 0 | { |
1119 | 0 | E T4O, T4P, T4I, T4J, T4F, T4K, T4Q, T4L; |
1120 | 0 | { |
1121 | 0 | E T4M, T4N, T4D, T4E; |
1122 | 0 | T4M = T36 - T37; |
1123 | 0 | T4N = T39 - T3a; |
1124 | 0 | T4O = FMA(KP475528258, T4M, KP293892626 * T4N); |
1125 | 0 | T4P = FNMS(KP293892626, T4M, KP475528258 * T4N); |
1126 | 0 | T4I = T4G + T4H; |
1127 | 0 | T4D = T4o + T4r; |
1128 | 0 | T4E = T4v + T4y; |
1129 | 0 | T4J = T4D + T4E; |
1130 | 0 | T4F = KP279508497 * (T4D - T4E); |
1131 | 0 | T4K = FNMS(KP125000000, T4J, KP500000000 * T4I); |
1132 | 0 | } |
1133 | 0 | Rp[0] = KP500000000 * (T4I + T4J); |
1134 | 0 | T4Q = T4K - T4F; |
1135 | 0 | Rp[WS(rs, 8)] = T4P + T4Q; |
1136 | 0 | Rm[WS(rs, 7)] = T4Q - T4P; |
1137 | 0 | T4L = T4F + T4K; |
1138 | 0 | Rp[WS(rs, 4)] = T4L - T4O; |
1139 | 0 | Rm[WS(rs, 3)] = T4O + T4L; |
1140 | 0 | } |
1141 | 0 | } |
1142 | 0 | } |
1143 | 0 | } |
1144 | | |
1145 | | static const tw_instr twinstr[] = { |
1146 | | { TW_FULL, 1, 20 }, |
1147 | | { TW_NEXT, 1, 0 } |
1148 | | }; |
1149 | | |
1150 | | static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, { 224, 78, 62, 0 } }; |
1151 | | |
1152 | 1 | void X(codelet_hc2cfdft_20) (planner *p) { |
1153 | 1 | X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT); |
1154 | 1 | } |
1155 | | #endif |