/src/fftw3/dft/scalar/codelets/n1_32.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Nov 11 06:16:24 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 372 FP additions, 136 FP multiplications, |
32 | | * (or, 236 additions, 0 multiplications, 136 fused multiply/add), |
33 | | * 100 stack variables, 7 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
40 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
41 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
42 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
43 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
44 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
45 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
46 | | { |
47 | | INT i; |
48 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) { |
49 | | E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; |
50 | | E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; |
51 | | E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5k, T2E; |
52 | | E T3M, T4W, T5j, T2N, T3P, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; |
53 | | E T4G, T5h, T2d, T3F, T4L, T5g, T2m, T3I; |
54 | | { |
55 | | E T3, T1x, T14, T2R, T6, T2S, T17, T1y; |
56 | | { |
57 | | E T1, T2, T12, T13; |
58 | | T1 = ri[0]; |
59 | | T2 = ri[WS(is, 16)]; |
60 | | T3 = T1 + T2; |
61 | | T1x = T1 - T2; |
62 | | T12 = ii[0]; |
63 | | T13 = ii[WS(is, 16)]; |
64 | | T14 = T12 + T13; |
65 | | T2R = T12 - T13; |
66 | | } |
67 | | { |
68 | | E T4, T5, T15, T16; |
69 | | T4 = ri[WS(is, 8)]; |
70 | | T5 = ri[WS(is, 24)]; |
71 | | T6 = T4 + T5; |
72 | | T2S = T4 - T5; |
73 | | T15 = ii[WS(is, 8)]; |
74 | | T16 = ii[WS(is, 24)]; |
75 | | T17 = T15 + T16; |
76 | | T1y = T15 - T16; |
77 | | } |
78 | | T7 = T3 + T6; |
79 | | T4r = T3 - T6; |
80 | | T4Z = T14 - T17; |
81 | | T18 = T14 + T17; |
82 | | T1z = T1x + T1y; |
83 | | T3t = T1x - T1y; |
84 | | T3T = T2S + T2R; |
85 | | T2T = T2R - T2S; |
86 | | } |
87 | | { |
88 | | E Ta, T1A, T1b, T1B, Td, T1D, T1e, T1E; |
89 | | { |
90 | | E T8, T9, T19, T1a; |
91 | | T8 = ri[WS(is, 4)]; |
92 | | T9 = ri[WS(is, 20)]; |
93 | | Ta = T8 + T9; |
94 | | T1A = T8 - T9; |
95 | | T19 = ii[WS(is, 4)]; |
96 | | T1a = ii[WS(is, 20)]; |
97 | | T1b = T19 + T1a; |
98 | | T1B = T19 - T1a; |
99 | | } |
100 | | { |
101 | | E Tb, Tc, T1c, T1d; |
102 | | Tb = ri[WS(is, 28)]; |
103 | | Tc = ri[WS(is, 12)]; |
104 | | Td = Tb + Tc; |
105 | | T1D = Tb - Tc; |
106 | | T1c = ii[WS(is, 28)]; |
107 | | T1d = ii[WS(is, 12)]; |
108 | | T1e = T1c + T1d; |
109 | | T1E = T1c - T1d; |
110 | | } |
111 | | Te = Ta + Td; |
112 | | T1f = T1b + T1e; |
113 | | T50 = Td - Ta; |
114 | | T4s = T1b - T1e; |
115 | | { |
116 | | E T2U, T2V, T1C, T1F; |
117 | | T2U = T1B - T1A; |
118 | | T2V = T1D + T1E; |
119 | | T2W = T2U + T2V; |
120 | | T3u = T2U - T2V; |
121 | | T1C = T1A + T1B; |
122 | | T1F = T1D - T1E; |
123 | | T1G = T1C + T1F; |
124 | | T3U = T1F - T1C; |
125 | | } |
126 | | } |
127 | | { |
128 | | E Ti, T1L, T1j, T1I, Tl, T1J, T1m, T1M, T1K, T1N; |
129 | | { |
130 | | E Tg, Th, T1h, T1i; |
131 | | Tg = ri[WS(is, 2)]; |
132 | | Th = ri[WS(is, 18)]; |
133 | | Ti = Tg + Th; |
134 | | T1L = Tg - Th; |
135 | | T1h = ii[WS(is, 2)]; |
136 | | T1i = ii[WS(is, 18)]; |
137 | | T1j = T1h + T1i; |
138 | | T1I = T1h - T1i; |
139 | | } |
140 | | { |
141 | | E Tj, Tk, T1k, T1l; |
142 | | Tj = ri[WS(is, 10)]; |
143 | | Tk = ri[WS(is, 26)]; |
144 | | Tl = Tj + Tk; |
145 | | T1J = Tj - Tk; |
146 | | T1k = ii[WS(is, 10)]; |
147 | | T1l = ii[WS(is, 26)]; |
148 | | T1m = T1k + T1l; |
149 | | T1M = T1k - T1l; |
150 | | } |
151 | | Tm = Ti + Tl; |
152 | | T1n = T1j + T1m; |
153 | | T1K = T1I - T1J; |
154 | | T1N = T1L + T1M; |
155 | | T1O = FNMS(KP414213562, T1N, T1K); |
156 | | T2Z = FMA(KP414213562, T1K, T1N); |
157 | | { |
158 | | E T3w, T3x, T4u, T4v; |
159 | | T3w = T1J + T1I; |
160 | | T3x = T1L - T1M; |
161 | | T3y = FMA(KP414213562, T3x, T3w); |
162 | | T3X = FNMS(KP414213562, T3w, T3x); |
163 | | T4u = T1j - T1m; |
164 | | T4v = Ti - Tl; |
165 | | T4w = T4u - T4v; |
166 | | T53 = T4v + T4u; |
167 | | } |
168 | | } |
169 | | { |
170 | | E Tp, T1S, T1q, T1P, Ts, T1Q, T1t, T1T, T1R, T1U; |
171 | | { |
172 | | E Tn, To, T1o, T1p; |
173 | | Tn = ri[WS(is, 30)]; |
174 | | To = ri[WS(is, 14)]; |
175 | | Tp = Tn + To; |
176 | | T1S = Tn - To; |
177 | | T1o = ii[WS(is, 30)]; |
178 | | T1p = ii[WS(is, 14)]; |
179 | | T1q = T1o + T1p; |
180 | | T1P = T1o - T1p; |
181 | | } |
182 | | { |
183 | | E Tq, Tr, T1r, T1s; |
184 | | Tq = ri[WS(is, 6)]; |
185 | | Tr = ri[WS(is, 22)]; |
186 | | Ts = Tq + Tr; |
187 | | T1Q = Tq - Tr; |
188 | | T1r = ii[WS(is, 6)]; |
189 | | T1s = ii[WS(is, 22)]; |
190 | | T1t = T1r + T1s; |
191 | | T1T = T1r - T1s; |
192 | | } |
193 | | Tt = Tp + Ts; |
194 | | T1u = T1q + T1t; |
195 | | T1R = T1P - T1Q; |
196 | | T1U = T1S + T1T; |
197 | | T1V = FMA(KP414213562, T1U, T1R); |
198 | | T2Y = FNMS(KP414213562, T1R, T1U); |
199 | | { |
200 | | E T3z, T3A, T4x, T4y; |
201 | | T3z = T1Q + T1P; |
202 | | T3A = T1S - T1T; |
203 | | T3B = FNMS(KP414213562, T3A, T3z); |
204 | | T3W = FMA(KP414213562, T3z, T3A); |
205 | | T4x = Tp - Ts; |
206 | | T4y = T1q - T1t; |
207 | | T4z = T4x + T4y; |
208 | | T52 = T4x - T4y; |
209 | | } |
210 | | } |
211 | | { |
212 | | E TN, T2G, T2r, T4N, TQ, T2s, T2J, T4O, TU, T2x, T2w, T4T, TX, T2z, T2C; |
213 | | E T4U; |
214 | | { |
215 | | E TL, TM, T2p, T2q; |
216 | | TL = ri[WS(is, 31)]; |
217 | | TM = ri[WS(is, 15)]; |
218 | | TN = TL + TM; |
219 | | T2G = TL - TM; |
220 | | T2p = ii[WS(is, 31)]; |
221 | | T2q = ii[WS(is, 15)]; |
222 | | T2r = T2p - T2q; |
223 | | T4N = T2p + T2q; |
224 | | } |
225 | | { |
226 | | E TO, TP, T2H, T2I; |
227 | | TO = ri[WS(is, 7)]; |
228 | | TP = ri[WS(is, 23)]; |
229 | | TQ = TO + TP; |
230 | | T2s = TO - TP; |
231 | | T2H = ii[WS(is, 7)]; |
232 | | T2I = ii[WS(is, 23)]; |
233 | | T2J = T2H - T2I; |
234 | | T4O = T2H + T2I; |
235 | | } |
236 | | { |
237 | | E TS, TT, T2u, T2v; |
238 | | TS = ri[WS(is, 3)]; |
239 | | TT = ri[WS(is, 19)]; |
240 | | TU = TS + TT; |
241 | | T2x = TS - TT; |
242 | | T2u = ii[WS(is, 3)]; |
243 | | T2v = ii[WS(is, 19)]; |
244 | | T2w = T2u - T2v; |
245 | | T4T = T2u + T2v; |
246 | | } |
247 | | { |
248 | | E TV, TW, T2A, T2B; |
249 | | TV = ri[WS(is, 27)]; |
250 | | TW = ri[WS(is, 11)]; |
251 | | TX = TV + TW; |
252 | | T2z = TV - TW; |
253 | | T2A = ii[WS(is, 27)]; |
254 | | T2B = ii[WS(is, 11)]; |
255 | | T2C = T2A - T2B; |
256 | | T4U = T2A + T2B; |
257 | | } |
258 | | T2t = T2r - T2s; |
259 | | T3L = T2G - T2J; |
260 | | T3O = T2s + T2r; |
261 | | T2K = T2G + T2J; |
262 | | TR = TN + TQ; |
263 | | TY = TU + TX; |
264 | | T5F = TR - TY; |
265 | | { |
266 | | E T4P, T4Q, T2y, T2D; |
267 | | T5G = T4N + T4O; |
268 | | T5H = T4T + T4U; |
269 | | T5I = T5G - T5H; |
270 | | T4P = T4N - T4O; |
271 | | T4Q = TX - TU; |
272 | | T4R = T4P - T4Q; |
273 | | T5k = T4Q + T4P; |
274 | | T2y = T2w - T2x; |
275 | | T2D = T2z + T2C; |
276 | | T2E = T2y + T2D; |
277 | | T3M = T2D - T2y; |
278 | | { |
279 | | E T4S, T4V, T2L, T2M; |
280 | | T4S = TN - TQ; |
281 | | T4V = T4T - T4U; |
282 | | T4W = T4S - T4V; |
283 | | T5j = T4S + T4V; |
284 | | T2L = T2x + T2w; |
285 | | T2M = T2z - T2C; |
286 | | T2N = T2L + T2M; |
287 | | T3P = T2L - T2M; |
288 | | } |
289 | | } |
290 | | } |
291 | | { |
292 | | E Ty, T2f, T20, T4C, TB, T21, T2i, T4D, TF, T26, T25, T4I, TI, T28, T2b; |
293 | | E T4J; |
294 | | { |
295 | | E Tw, Tx, T1Y, T1Z; |
296 | | Tw = ri[WS(is, 1)]; |
297 | | Tx = ri[WS(is, 17)]; |
298 | | Ty = Tw + Tx; |
299 | | T2f = Tw - Tx; |
300 | | T1Y = ii[WS(is, 1)]; |
301 | | T1Z = ii[WS(is, 17)]; |
302 | | T20 = T1Y - T1Z; |
303 | | T4C = T1Y + T1Z; |
304 | | } |
305 | | { |
306 | | E Tz, TA, T2g, T2h; |
307 | | Tz = ri[WS(is, 9)]; |
308 | | TA = ri[WS(is, 25)]; |
309 | | TB = Tz + TA; |
310 | | T21 = Tz - TA; |
311 | | T2g = ii[WS(is, 9)]; |
312 | | T2h = ii[WS(is, 25)]; |
313 | | T2i = T2g - T2h; |
314 | | T4D = T2g + T2h; |
315 | | } |
316 | | { |
317 | | E TD, TE, T23, T24; |
318 | | TD = ri[WS(is, 5)]; |
319 | | TE = ri[WS(is, 21)]; |
320 | | TF = TD + TE; |
321 | | T26 = TD - TE; |
322 | | T23 = ii[WS(is, 5)]; |
323 | | T24 = ii[WS(is, 21)]; |
324 | | T25 = T23 - T24; |
325 | | T4I = T23 + T24; |
326 | | } |
327 | | { |
328 | | E TG, TH, T29, T2a; |
329 | | TG = ri[WS(is, 29)]; |
330 | | TH = ri[WS(is, 13)]; |
331 | | TI = TG + TH; |
332 | | T28 = TG - TH; |
333 | | T29 = ii[WS(is, 29)]; |
334 | | T2a = ii[WS(is, 13)]; |
335 | | T2b = T29 - T2a; |
336 | | T4J = T29 + T2a; |
337 | | } |
338 | | T22 = T20 - T21; |
339 | | T3E = T2f - T2i; |
340 | | T3H = T21 + T20; |
341 | | T2j = T2f + T2i; |
342 | | TC = Ty + TB; |
343 | | TJ = TF + TI; |
344 | | T5A = TC - TJ; |
345 | | { |
346 | | E T4E, T4F, T27, T2c; |
347 | | T5B = T4C + T4D; |
348 | | T5C = T4I + T4J; |
349 | | T5D = T5B - T5C; |
350 | | T4E = T4C - T4D; |
351 | | T4F = TI - TF; |
352 | | T4G = T4E - T4F; |
353 | | T5h = T4F + T4E; |
354 | | T27 = T25 - T26; |
355 | | T2c = T28 + T2b; |
356 | | T2d = T27 + T2c; |
357 | | T3F = T2c - T27; |
358 | | { |
359 | | E T4H, T4K, T2k, T2l; |
360 | | T4H = Ty - TB; |
361 | | T4K = T4I - T4J; |
362 | | T4L = T4H - T4K; |
363 | | T5g = T4H + T4K; |
364 | | T2k = T26 + T25; |
365 | | T2l = T28 - T2b; |
366 | | T2m = T2k + T2l; |
367 | | T3I = T2k - T2l; |
368 | | } |
369 | | } |
370 | | } |
371 | | { |
372 | | E T4B, T5b, T5a, T5c, T4Y, T56, T55, T57; |
373 | | { |
374 | | E T4t, T4A, T58, T59; |
375 | | T4t = T4r - T4s; |
376 | | T4A = T4w - T4z; |
377 | | T4B = FMA(KP707106781, T4A, T4t); |
378 | | T5b = FNMS(KP707106781, T4A, T4t); |
379 | | T58 = FMA(KP414213562, T4R, T4W); |
380 | | T59 = FNMS(KP414213562, T4G, T4L); |
381 | | T5a = T58 - T59; |
382 | | T5c = T59 + T58; |
383 | | } |
384 | | { |
385 | | E T4M, T4X, T51, T54; |
386 | | T4M = FMA(KP414213562, T4L, T4G); |
387 | | T4X = FNMS(KP414213562, T4W, T4R); |
388 | | T4Y = T4M - T4X; |
389 | | T56 = T4M + T4X; |
390 | | T51 = T4Z - T50; |
391 | | T54 = T52 - T53; |
392 | | T55 = FNMS(KP707106781, T54, T51); |
393 | | T57 = FMA(KP707106781, T54, T51); |
394 | | } |
395 | | ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B); |
396 | | io[WS(os, 22)] = FNMS(KP923879532, T5a, T57); |
397 | | ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B); |
398 | | io[WS(os, 6)] = FMA(KP923879532, T5a, T57); |
399 | | io[WS(os, 14)] = FNMS(KP923879532, T56, T55); |
400 | | ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b); |
401 | | io[WS(os, 30)] = FMA(KP923879532, T56, T55); |
402 | | ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b); |
403 | | } |
404 | | { |
405 | | E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v; |
406 | | { |
407 | | E T5d, T5e, T5s, T5t; |
408 | | T5d = T4r + T4s; |
409 | | T5e = T53 + T52; |
410 | | T5f = FMA(KP707106781, T5e, T5d); |
411 | | T5r = FNMS(KP707106781, T5e, T5d); |
412 | | T5s = FNMS(KP414213562, T5g, T5h); |
413 | | T5t = FMA(KP414213562, T5j, T5k); |
414 | | T5u = T5s - T5t; |
415 | | T5w = T5s + T5t; |
416 | | } |
417 | | { |
418 | | E T5i, T5l, T5n, T5o; |
419 | | T5i = FMA(KP414213562, T5h, T5g); |
420 | | T5l = FNMS(KP414213562, T5k, T5j); |
421 | | T5m = T5i + T5l; |
422 | | T5q = T5l - T5i; |
423 | | T5n = T50 + T4Z; |
424 | | T5o = T4w + T4z; |
425 | | T5p = FNMS(KP707106781, T5o, T5n); |
426 | | T5v = FMA(KP707106781, T5o, T5n); |
427 | | } |
428 | | ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f); |
429 | | io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v); |
430 | | ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f); |
431 | | io[WS(os, 2)] = FMA(KP923879532, T5w, T5v); |
432 | | io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p); |
433 | | ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r); |
434 | | io[WS(os, 10)] = FMA(KP923879532, T5q, T5p); |
435 | | ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r); |
436 | | } |
437 | | { |
438 | | E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T; |
439 | | { |
440 | | E T5x, T5y, T5Q, T5R; |
441 | | T5x = T7 - Te; |
442 | | T5y = T1n - T1u; |
443 | | T5z = T5x + T5y; |
444 | | T5P = T5x - T5y; |
445 | | T5Q = T5D - T5A; |
446 | | T5R = T5F + T5I; |
447 | | T5S = T5Q - T5R; |
448 | | T5U = T5Q + T5R; |
449 | | } |
450 | | { |
451 | | E T5E, T5J, T5L, T5M; |
452 | | T5E = T5A + T5D; |
453 | | T5J = T5F - T5I; |
454 | | T5K = T5E + T5J; |
455 | | T5O = T5J - T5E; |
456 | | T5L = T18 - T1f; |
457 | | T5M = Tt - Tm; |
458 | | T5N = T5L - T5M; |
459 | | T5T = T5M + T5L; |
460 | | } |
461 | | ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z); |
462 | | io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T); |
463 | | ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z); |
464 | | io[WS(os, 4)] = FMA(KP707106781, T5U, T5T); |
465 | | io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N); |
466 | | ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P); |
467 | | io[WS(os, 12)] = FMA(KP707106781, T5O, T5N); |
468 | | ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P); |
469 | | } |
470 | | { |
471 | | E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z; |
472 | | { |
473 | | E Tf, Tu, T5W, T5X; |
474 | | Tf = T7 + Te; |
475 | | Tu = Tm + Tt; |
476 | | Tv = Tf + Tu; |
477 | | T5V = Tf - Tu; |
478 | | T5W = T5B + T5C; |
479 | | T5X = T5G + T5H; |
480 | | T5Y = T5W - T5X; |
481 | | T60 = T5W + T5X; |
482 | | } |
483 | | { |
484 | | E TK, TZ, T1g, T1v; |
485 | | TK = TC + TJ; |
486 | | TZ = TR + TY; |
487 | | T10 = TK + TZ; |
488 | | T11 = TZ - TK; |
489 | | T1g = T18 + T1f; |
490 | | T1v = T1n + T1u; |
491 | | T1w = T1g - T1v; |
492 | | T5Z = T1g + T1v; |
493 | | } |
494 | | ro[WS(os, 16)] = Tv - T10; |
495 | | io[WS(os, 16)] = T5Z - T60; |
496 | | ro[0] = Tv + T10; |
497 | | io[0] = T5Z + T60; |
498 | | io[WS(os, 8)] = T11 + T1w; |
499 | | ro[WS(os, 8)] = T5V + T5Y; |
500 | | io[WS(os, 24)] = T1w - T11; |
501 | | ro[WS(os, 24)] = T5V - T5Y; |
502 | | } |
503 | | { |
504 | | E T1X, T37, T31, T33, T2o, T35, T2P, T34; |
505 | | { |
506 | | E T1H, T1W, T2X, T30; |
507 | | T1H = FNMS(KP707106781, T1G, T1z); |
508 | | T1W = T1O - T1V; |
509 | | T1X = FMA(KP923879532, T1W, T1H); |
510 | | T37 = FNMS(KP923879532, T1W, T1H); |
511 | | T2X = FNMS(KP707106781, T2W, T2T); |
512 | | T30 = T2Y - T2Z; |
513 | | T31 = FNMS(KP923879532, T30, T2X); |
514 | | T33 = FMA(KP923879532, T30, T2X); |
515 | | } |
516 | | { |
517 | | E T2e, T2n, T2F, T2O; |
518 | | T2e = FNMS(KP707106781, T2d, T22); |
519 | | T2n = FNMS(KP707106781, T2m, T2j); |
520 | | T2o = FMA(KP668178637, T2n, T2e); |
521 | | T35 = FNMS(KP668178637, T2e, T2n); |
522 | | T2F = FNMS(KP707106781, T2E, T2t); |
523 | | T2O = FNMS(KP707106781, T2N, T2K); |
524 | | T2P = FNMS(KP668178637, T2O, T2F); |
525 | | T34 = FMA(KP668178637, T2F, T2O); |
526 | | } |
527 | | { |
528 | | E T2Q, T36, T32, T38; |
529 | | T2Q = T2o - T2P; |
530 | | ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X); |
531 | | ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X); |
532 | | T36 = T34 - T35; |
533 | | io[WS(os, 21)] = FNMS(KP831469612, T36, T33); |
534 | | io[WS(os, 5)] = FMA(KP831469612, T36, T33); |
535 | | T32 = T2o + T2P; |
536 | | io[WS(os, 13)] = FNMS(KP831469612, T32, T31); |
537 | | io[WS(os, 29)] = FMA(KP831469612, T32, T31); |
538 | | T38 = T35 + T34; |
539 | | ro[WS(os, 13)] = FNMS(KP831469612, T38, T37); |
540 | | ro[WS(os, 29)] = FMA(KP831469612, T38, T37); |
541 | | } |
542 | | } |
543 | | { |
544 | | E T3D, T41, T3Z, T45, T3K, T42, T3R, T43; |
545 | | { |
546 | | E T3v, T3C, T3V, T3Y; |
547 | | T3v = FMA(KP707106781, T3u, T3t); |
548 | | T3C = T3y - T3B; |
549 | | T3D = FMA(KP923879532, T3C, T3v); |
550 | | T41 = FNMS(KP923879532, T3C, T3v); |
551 | | T3V = FMA(KP707106781, T3U, T3T); |
552 | | T3Y = T3W - T3X; |
553 | | T3Z = FNMS(KP923879532, T3Y, T3V); |
554 | | T45 = FMA(KP923879532, T3Y, T3V); |
555 | | } |
556 | | { |
557 | | E T3G, T3J, T3N, T3Q; |
558 | | T3G = FNMS(KP707106781, T3F, T3E); |
559 | | T3J = FNMS(KP707106781, T3I, T3H); |
560 | | T3K = FMA(KP668178637, T3J, T3G); |
561 | | T42 = FNMS(KP668178637, T3G, T3J); |
562 | | T3N = FNMS(KP707106781, T3M, T3L); |
563 | | T3Q = FNMS(KP707106781, T3P, T3O); |
564 | | T3R = FNMS(KP668178637, T3Q, T3N); |
565 | | T43 = FMA(KP668178637, T3N, T3Q); |
566 | | } |
567 | | { |
568 | | E T3S, T46, T40, T44; |
569 | | T3S = T3K + T3R; |
570 | | ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D); |
571 | | ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D); |
572 | | T46 = T42 + T43; |
573 | | io[WS(os, 19)] = FNMS(KP831469612, T46, T45); |
574 | | io[WS(os, 3)] = FMA(KP831469612, T46, T45); |
575 | | T40 = T3R - T3K; |
576 | | io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z); |
577 | | io[WS(os, 11)] = FMA(KP831469612, T40, T3Z); |
578 | | T44 = T42 - T43; |
579 | | ro[WS(os, 27)] = FNMS(KP831469612, T44, T41); |
580 | | ro[WS(os, 11)] = FMA(KP831469612, T44, T41); |
581 | | } |
582 | | } |
583 | | { |
584 | | E T49, T4p, T4j, T4l, T4c, T4n, T4f, T4m; |
585 | | { |
586 | | E T47, T48, T4h, T4i; |
587 | | T47 = FNMS(KP707106781, T3u, T3t); |
588 | | T48 = T3X + T3W; |
589 | | T49 = FNMS(KP923879532, T48, T47); |
590 | | T4p = FMA(KP923879532, T48, T47); |
591 | | T4h = FNMS(KP707106781, T3U, T3T); |
592 | | T4i = T3y + T3B; |
593 | | T4j = FMA(KP923879532, T4i, T4h); |
594 | | T4l = FNMS(KP923879532, T4i, T4h); |
595 | | } |
596 | | { |
597 | | E T4a, T4b, T4d, T4e; |
598 | | T4a = FMA(KP707106781, T3I, T3H); |
599 | | T4b = FMA(KP707106781, T3F, T3E); |
600 | | T4c = FMA(KP198912367, T4b, T4a); |
601 | | T4n = FNMS(KP198912367, T4a, T4b); |
602 | | T4d = FMA(KP707106781, T3P, T3O); |
603 | | T4e = FMA(KP707106781, T3M, T3L); |
604 | | T4f = FNMS(KP198912367, T4e, T4d); |
605 | | T4m = FMA(KP198912367, T4d, T4e); |
606 | | } |
607 | | { |
608 | | E T4g, T4o, T4k, T4q; |
609 | | T4g = T4c - T4f; |
610 | | ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49); |
611 | | ro[WS(os, 7)] = FMA(KP980785280, T4g, T49); |
612 | | T4o = T4m - T4n; |
613 | | io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l); |
614 | | io[WS(os, 7)] = FMA(KP980785280, T4o, T4l); |
615 | | T4k = T4c + T4f; |
616 | | io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j); |
617 | | io[WS(os, 31)] = FMA(KP980785280, T4k, T4j); |
618 | | T4q = T4n + T4m; |
619 | | ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p); |
620 | | ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p); |
621 | | } |
622 | | } |
623 | | { |
624 | | E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p; |
625 | | { |
626 | | E T39, T3a, T3j, T3k; |
627 | | T39 = FMA(KP707106781, T1G, T1z); |
628 | | T3a = T2Z + T2Y; |
629 | | T3b = FMA(KP923879532, T3a, T39); |
630 | | T3n = FNMS(KP923879532, T3a, T39); |
631 | | T3j = FMA(KP707106781, T2W, T2T); |
632 | | T3k = T1O + T1V; |
633 | | T3l = FNMS(KP923879532, T3k, T3j); |
634 | | T3r = FMA(KP923879532, T3k, T3j); |
635 | | } |
636 | | { |
637 | | E T3c, T3d, T3f, T3g; |
638 | | T3c = FMA(KP707106781, T2m, T2j); |
639 | | T3d = FMA(KP707106781, T2d, T22); |
640 | | T3e = FMA(KP198912367, T3d, T3c); |
641 | | T3o = FNMS(KP198912367, T3c, T3d); |
642 | | T3f = FMA(KP707106781, T2N, T2K); |
643 | | T3g = FMA(KP707106781, T2E, T2t); |
644 | | T3h = FNMS(KP198912367, T3g, T3f); |
645 | | T3p = FMA(KP198912367, T3f, T3g); |
646 | | } |
647 | | { |
648 | | E T3i, T3s, T3m, T3q; |
649 | | T3i = T3e + T3h; |
650 | | ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b); |
651 | | ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b); |
652 | | T3s = T3o + T3p; |
653 | | io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r); |
654 | | io[WS(os, 1)] = FMA(KP980785280, T3s, T3r); |
655 | | T3m = T3h - T3e; |
656 | | io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l); |
657 | | io[WS(os, 9)] = FMA(KP980785280, T3m, T3l); |
658 | | T3q = T3o - T3p; |
659 | | ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n); |
660 | | ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n); |
661 | | } |
662 | | } |
663 | | } |
664 | | } |
665 | | } |
666 | | |
667 | | static const kdft_desc desc = { 32, "n1_32", { 236, 0, 136, 0 }, &GENUS, 0, 0, 0, 0 }; |
668 | | |
669 | | void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc); |
670 | | } |
671 | | |
672 | | #else |
673 | | |
674 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */ |
675 | | |
676 | | /* |
677 | | * This function contains 372 FP additions, 84 FP multiplications, |
678 | | * (or, 340 additions, 52 multiplications, 32 fused multiply/add), |
679 | | * 100 stack variables, 7 constants, and 128 memory accesses |
680 | | */ |
681 | | #include "dft/scalar/n.h" |
682 | | |
683 | | static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
684 | 2 | { |
685 | 2 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
686 | 2 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
687 | 2 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
688 | 2 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
689 | 2 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
690 | 2 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
691 | 2 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
692 | 2 | { |
693 | 2 | INT i; |
694 | 4 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) { |
695 | 2 | E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; |
696 | 2 | E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; |
697 | 2 | E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E; |
698 | 2 | E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; |
699 | 2 | E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I; |
700 | 2 | { |
701 | 2 | E T3, T1x, T14, T2S, T6, T2R, T17, T1y; |
702 | 2 | { |
703 | 2 | E T1, T2, T12, T13; |
704 | 2 | T1 = ri[0]; |
705 | 2 | T2 = ri[WS(is, 16)]; |
706 | 2 | T3 = T1 + T2; |
707 | 2 | T1x = T1 - T2; |
708 | 2 | T12 = ii[0]; |
709 | 2 | T13 = ii[WS(is, 16)]; |
710 | 2 | T14 = T12 + T13; |
711 | 2 | T2S = T12 - T13; |
712 | 2 | } |
713 | 2 | { |
714 | 2 | E T4, T5, T15, T16; |
715 | 2 | T4 = ri[WS(is, 8)]; |
716 | 2 | T5 = ri[WS(is, 24)]; |
717 | 2 | T6 = T4 + T5; |
718 | 2 | T2R = T4 - T5; |
719 | 2 | T15 = ii[WS(is, 8)]; |
720 | 2 | T16 = ii[WS(is, 24)]; |
721 | 2 | T17 = T15 + T16; |
722 | 2 | T1y = T15 - T16; |
723 | 2 | } |
724 | 2 | T7 = T3 + T6; |
725 | 2 | T4r = T3 - T6; |
726 | 2 | T4Z = T14 - T17; |
727 | 2 | T18 = T14 + T17; |
728 | 2 | T1z = T1x - T1y; |
729 | 2 | T3t = T1x + T1y; |
730 | 2 | T3T = T2S - T2R; |
731 | 2 | T2T = T2R + T2S; |
732 | 2 | } |
733 | 2 | { |
734 | 2 | E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E; |
735 | 2 | { |
736 | 2 | E T8, T9, T19, T1a; |
737 | 2 | T8 = ri[WS(is, 4)]; |
738 | 2 | T9 = ri[WS(is, 20)]; |
739 | 2 | Ta = T8 + T9; |
740 | 2 | T1B = T8 - T9; |
741 | 2 | T19 = ii[WS(is, 4)]; |
742 | 2 | T1a = ii[WS(is, 20)]; |
743 | 2 | T1b = T19 + T1a; |
744 | 2 | T1A = T19 - T1a; |
745 | 2 | } |
746 | 2 | { |
747 | 2 | E Tb, Tc, T1c, T1d; |
748 | 2 | Tb = ri[WS(is, 28)]; |
749 | 2 | Tc = ri[WS(is, 12)]; |
750 | 2 | Td = Tb + Tc; |
751 | 2 | T1D = Tb - Tc; |
752 | 2 | T1c = ii[WS(is, 28)]; |
753 | 2 | T1d = ii[WS(is, 12)]; |
754 | 2 | T1e = T1c + T1d; |
755 | 2 | T1E = T1c - T1d; |
756 | 2 | } |
757 | 2 | Te = Ta + Td; |
758 | 2 | T1f = T1b + T1e; |
759 | 2 | T50 = Td - Ta; |
760 | 2 | T4s = T1b - T1e; |
761 | 2 | { |
762 | 2 | E T2U, T2V, T1C, T1F; |
763 | 2 | T2U = T1D - T1E; |
764 | 2 | T2V = T1B + T1A; |
765 | 2 | T2W = KP707106781 * (T2U - T2V); |
766 | 2 | T3u = KP707106781 * (T2V + T2U); |
767 | 2 | T1C = T1A - T1B; |
768 | 2 | T1F = T1D + T1E; |
769 | 2 | T1G = KP707106781 * (T1C - T1F); |
770 | 2 | T3U = KP707106781 * (T1C + T1F); |
771 | 2 | } |
772 | 2 | } |
773 | 2 | { |
774 | 2 | E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N; |
775 | 2 | { |
776 | 2 | E Tg, Th, T1h, T1i; |
777 | 2 | Tg = ri[WS(is, 2)]; |
778 | 2 | Th = ri[WS(is, 18)]; |
779 | 2 | Ti = Tg + Th; |
780 | 2 | T1L = Tg - Th; |
781 | 2 | T1h = ii[WS(is, 2)]; |
782 | 2 | T1i = ii[WS(is, 18)]; |
783 | 2 | T1j = T1h + T1i; |
784 | 2 | T1J = T1h - T1i; |
785 | 2 | } |
786 | 2 | { |
787 | 2 | E Tj, Tk, T1k, T1l; |
788 | 2 | Tj = ri[WS(is, 10)]; |
789 | 2 | Tk = ri[WS(is, 26)]; |
790 | 2 | Tl = Tj + Tk; |
791 | 2 | T1I = Tj - Tk; |
792 | 2 | T1k = ii[WS(is, 10)]; |
793 | 2 | T1l = ii[WS(is, 26)]; |
794 | 2 | T1m = T1k + T1l; |
795 | 2 | T1M = T1k - T1l; |
796 | 2 | } |
797 | 2 | Tm = Ti + Tl; |
798 | 2 | T1n = T1j + T1m; |
799 | 2 | T1K = T1I + T1J; |
800 | 2 | T1N = T1L - T1M; |
801 | 2 | T1O = FNMS(KP923879532, T1N, KP382683432 * T1K); |
802 | 2 | T2Z = FMA(KP923879532, T1K, KP382683432 * T1N); |
803 | 2 | { |
804 | 2 | E T3w, T3x, T4u, T4v; |
805 | 2 | T3w = T1J - T1I; |
806 | 2 | T3x = T1L + T1M; |
807 | 2 | T3y = FNMS(KP382683432, T3x, KP923879532 * T3w); |
808 | 2 | T3X = FMA(KP382683432, T3w, KP923879532 * T3x); |
809 | 2 | T4u = T1j - T1m; |
810 | 2 | T4v = Ti - Tl; |
811 | 2 | T4w = T4u - T4v; |
812 | 2 | T53 = T4v + T4u; |
813 | 2 | } |
814 | 2 | } |
815 | 2 | { |
816 | 2 | E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U; |
817 | 2 | { |
818 | 2 | E Tn, To, T1o, T1p; |
819 | 2 | Tn = ri[WS(is, 30)]; |
820 | 2 | To = ri[WS(is, 14)]; |
821 | 2 | Tp = Tn + To; |
822 | 2 | T1S = Tn - To; |
823 | 2 | T1o = ii[WS(is, 30)]; |
824 | 2 | T1p = ii[WS(is, 14)]; |
825 | 2 | T1q = T1o + T1p; |
826 | 2 | T1Q = T1o - T1p; |
827 | 2 | } |
828 | 2 | { |
829 | 2 | E Tq, Tr, T1r, T1s; |
830 | 2 | Tq = ri[WS(is, 6)]; |
831 | 2 | Tr = ri[WS(is, 22)]; |
832 | 2 | Ts = Tq + Tr; |
833 | 2 | T1P = Tq - Tr; |
834 | 2 | T1r = ii[WS(is, 6)]; |
835 | 2 | T1s = ii[WS(is, 22)]; |
836 | 2 | T1t = T1r + T1s; |
837 | 2 | T1T = T1r - T1s; |
838 | 2 | } |
839 | 2 | Tt = Tp + Ts; |
840 | 2 | T1u = T1q + T1t; |
841 | 2 | T1R = T1P + T1Q; |
842 | 2 | T1U = T1S - T1T; |
843 | 2 | T1V = FMA(KP382683432, T1R, KP923879532 * T1U); |
844 | 2 | T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U); |
845 | 2 | { |
846 | 2 | E T3z, T3A, T4x, T4y; |
847 | 2 | T3z = T1Q - T1P; |
848 | 2 | T3A = T1S + T1T; |
849 | 2 | T3B = FMA(KP923879532, T3z, KP382683432 * T3A); |
850 | 2 | T3W = FNMS(KP382683432, T3z, KP923879532 * T3A); |
851 | 2 | T4x = Tp - Ts; |
852 | 2 | T4y = T1q - T1t; |
853 | 2 | T4z = T4x + T4y; |
854 | 2 | T52 = T4x - T4y; |
855 | 2 | } |
856 | 2 | } |
857 | 2 | { |
858 | 2 | E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C; |
859 | 2 | E T4P; |
860 | 2 | { |
861 | 2 | E TL, TM, T2H, T2I; |
862 | 2 | TL = ri[WS(is, 31)]; |
863 | 2 | TM = ri[WS(is, 15)]; |
864 | 2 | TN = TL + TM; |
865 | 2 | T2p = TL - TM; |
866 | 2 | T2H = ii[WS(is, 31)]; |
867 | 2 | T2I = ii[WS(is, 15)]; |
868 | 2 | T2J = T2H - T2I; |
869 | 2 | T4S = T2H + T2I; |
870 | 2 | } |
871 | 2 | { |
872 | 2 | E TO, TP, T2q, T2r; |
873 | 2 | TO = ri[WS(is, 7)]; |
874 | 2 | TP = ri[WS(is, 23)]; |
875 | 2 | TQ = TO + TP; |
876 | 2 | T2G = TO - TP; |
877 | 2 | T2q = ii[WS(is, 7)]; |
878 | 2 | T2r = ii[WS(is, 23)]; |
879 | 2 | T2s = T2q - T2r; |
880 | 2 | T4T = T2q + T2r; |
881 | 2 | } |
882 | 2 | { |
883 | 2 | E TS, TT, T2u, T2v; |
884 | 2 | TS = ri[WS(is, 3)]; |
885 | 2 | TT = ri[WS(is, 19)]; |
886 | 2 | TU = TS + TT; |
887 | 2 | T2x = TS - TT; |
888 | 2 | T2u = ii[WS(is, 3)]; |
889 | 2 | T2v = ii[WS(is, 19)]; |
890 | 2 | T2w = T2u - T2v; |
891 | 2 | T4O = T2u + T2v; |
892 | 2 | } |
893 | 2 | { |
894 | 2 | E TV, TW, T2A, T2B; |
895 | 2 | TV = ri[WS(is, 27)]; |
896 | 2 | TW = ri[WS(is, 11)]; |
897 | 2 | TX = TV + TW; |
898 | 2 | T2z = TV - TW; |
899 | 2 | T2A = ii[WS(is, 27)]; |
900 | 2 | T2B = ii[WS(is, 11)]; |
901 | 2 | T2C = T2A - T2B; |
902 | 2 | T4P = T2A + T2B; |
903 | 2 | } |
904 | 2 | T2t = T2p - T2s; |
905 | 2 | T3L = T2p + T2s; |
906 | 2 | T3O = T2J - T2G; |
907 | 2 | T2K = T2G + T2J; |
908 | 2 | TR = TN + TQ; |
909 | 2 | TY = TU + TX; |
910 | 2 | T5F = TR - TY; |
911 | 2 | { |
912 | 2 | E T4N, T4Q, T2y, T2D; |
913 | 2 | T5G = T4S + T4T; |
914 | 2 | T5H = T4O + T4P; |
915 | 2 | T5I = T5G - T5H; |
916 | 2 | T4N = TN - TQ; |
917 | 2 | T4Q = T4O - T4P; |
918 | 2 | T4R = T4N - T4Q; |
919 | 2 | T5j = T4N + T4Q; |
920 | 2 | T2y = T2w - T2x; |
921 | 2 | T2D = T2z + T2C; |
922 | 2 | T2E = KP707106781 * (T2y - T2D); |
923 | 2 | T3P = KP707106781 * (T2y + T2D); |
924 | 2 | { |
925 | 2 | E T4U, T4V, T2L, T2M; |
926 | 2 | T4U = T4S - T4T; |
927 | 2 | T4V = TX - TU; |
928 | 2 | T4W = T4U - T4V; |
929 | 2 | T5k = T4V + T4U; |
930 | 2 | T2L = T2z - T2C; |
931 | 2 | T2M = T2x + T2w; |
932 | 2 | T2N = KP707106781 * (T2L - T2M); |
933 | 2 | T3M = KP707106781 * (T2M + T2L); |
934 | 2 | } |
935 | 2 | } |
936 | 2 | } |
937 | 2 | { |
938 | 2 | E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26; |
939 | 2 | E T4J; |
940 | 2 | { |
941 | 2 | E Tw, Tx, T1Z, T20; |
942 | 2 | Tw = ri[WS(is, 1)]; |
943 | 2 | Tx = ri[WS(is, 17)]; |
944 | 2 | Ty = Tw + Tx; |
945 | 2 | T2f = Tw - Tx; |
946 | 2 | T1Z = ii[WS(is, 1)]; |
947 | 2 | T20 = ii[WS(is, 17)]; |
948 | 2 | T21 = T1Z - T20; |
949 | 2 | T4C = T1Z + T20; |
950 | 2 | } |
951 | 2 | { |
952 | 2 | E Tz, TA, T2g, T2h; |
953 | 2 | Tz = ri[WS(is, 9)]; |
954 | 2 | TA = ri[WS(is, 25)]; |
955 | 2 | TB = Tz + TA; |
956 | 2 | T1Y = Tz - TA; |
957 | 2 | T2g = ii[WS(is, 9)]; |
958 | 2 | T2h = ii[WS(is, 25)]; |
959 | 2 | T2i = T2g - T2h; |
960 | 2 | T4D = T2g + T2h; |
961 | 2 | } |
962 | 2 | { |
963 | 2 | E TD, TE, T29, T2a; |
964 | 2 | TD = ri[WS(is, 5)]; |
965 | 2 | TE = ri[WS(is, 21)]; |
966 | 2 | TF = TD + TE; |
967 | 2 | T28 = TD - TE; |
968 | 2 | T29 = ii[WS(is, 5)]; |
969 | 2 | T2a = ii[WS(is, 21)]; |
970 | 2 | T2b = T29 - T2a; |
971 | 2 | T4I = T29 + T2a; |
972 | 2 | } |
973 | 2 | { |
974 | 2 | E TG, TH, T24, T25; |
975 | 2 | TG = ri[WS(is, 29)]; |
976 | 2 | TH = ri[WS(is, 13)]; |
977 | 2 | TI = TG + TH; |
978 | 2 | T23 = TG - TH; |
979 | 2 | T24 = ii[WS(is, 29)]; |
980 | 2 | T25 = ii[WS(is, 13)]; |
981 | 2 | T26 = T24 - T25; |
982 | 2 | T4J = T24 + T25; |
983 | 2 | } |
984 | 2 | T22 = T1Y + T21; |
985 | 2 | T3E = T2f + T2i; |
986 | 2 | T3H = T21 - T1Y; |
987 | 2 | T2j = T2f - T2i; |
988 | 2 | TC = Ty + TB; |
989 | 2 | TJ = TF + TI; |
990 | 2 | T5A = TC - TJ; |
991 | 2 | { |
992 | 2 | E T4E, T4F, T27, T2c; |
993 | 2 | T5B = T4C + T4D; |
994 | 2 | T5C = T4I + T4J; |
995 | 2 | T5D = T5B - T5C; |
996 | 2 | T4E = T4C - T4D; |
997 | 2 | T4F = TI - TF; |
998 | 2 | T4G = T4E - T4F; |
999 | 2 | T5g = T4F + T4E; |
1000 | 2 | T27 = T23 - T26; |
1001 | 2 | T2c = T28 + T2b; |
1002 | 2 | T2d = KP707106781 * (T27 - T2c); |
1003 | 2 | T3F = KP707106781 * (T2c + T27); |
1004 | 2 | { |
1005 | 2 | E T4H, T4K, T2k, T2l; |
1006 | 2 | T4H = Ty - TB; |
1007 | 2 | T4K = T4I - T4J; |
1008 | 2 | T4L = T4H - T4K; |
1009 | 2 | T5h = T4H + T4K; |
1010 | 2 | T2k = T2b - T28; |
1011 | 2 | T2l = T23 + T26; |
1012 | 2 | T2m = KP707106781 * (T2k - T2l); |
1013 | 2 | T3I = KP707106781 * (T2k + T2l); |
1014 | 2 | } |
1015 | 2 | } |
1016 | 2 | } |
1017 | 2 | { |
1018 | 2 | E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b; |
1019 | 2 | { |
1020 | 2 | E T4t, T4A, T58, T59; |
1021 | 2 | T4t = T4r - T4s; |
1022 | 2 | T4A = KP707106781 * (T4w - T4z); |
1023 | 2 | T4B = T4t + T4A; |
1024 | 2 | T57 = T4t - T4A; |
1025 | 2 | T58 = FNMS(KP923879532, T4L, KP382683432 * T4G); |
1026 | 2 | T59 = FMA(KP382683432, T4W, KP923879532 * T4R); |
1027 | 2 | T5a = T58 - T59; |
1028 | 2 | T5c = T58 + T59; |
1029 | 2 | } |
1030 | 2 | { |
1031 | 2 | E T4M, T4X, T51, T54; |
1032 | 2 | T4M = FMA(KP923879532, T4G, KP382683432 * T4L); |
1033 | 2 | T4X = FNMS(KP923879532, T4W, KP382683432 * T4R); |
1034 | 2 | T4Y = T4M + T4X; |
1035 | 2 | T56 = T4X - T4M; |
1036 | 2 | T51 = T4Z - T50; |
1037 | 2 | T54 = KP707106781 * (T52 - T53); |
1038 | 2 | T55 = T51 - T54; |
1039 | 2 | T5b = T51 + T54; |
1040 | 2 | } |
1041 | 2 | ro[WS(os, 22)] = T4B - T4Y; |
1042 | 2 | io[WS(os, 22)] = T5b - T5c; |
1043 | 2 | ro[WS(os, 6)] = T4B + T4Y; |
1044 | 2 | io[WS(os, 6)] = T5b + T5c; |
1045 | 2 | io[WS(os, 30)] = T55 - T56; |
1046 | 2 | ro[WS(os, 30)] = T57 - T5a; |
1047 | 2 | io[WS(os, 14)] = T55 + T56; |
1048 | 2 | ro[WS(os, 14)] = T57 + T5a; |
1049 | 2 | } |
1050 | 2 | { |
1051 | 2 | E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v; |
1052 | 2 | { |
1053 | 2 | E T5d, T5e, T5s, T5t; |
1054 | 2 | T5d = T4r + T4s; |
1055 | 2 | T5e = KP707106781 * (T53 + T52); |
1056 | 2 | T5f = T5d + T5e; |
1057 | 2 | T5r = T5d - T5e; |
1058 | 2 | T5s = FNMS(KP382683432, T5h, KP923879532 * T5g); |
1059 | 2 | T5t = FMA(KP923879532, T5k, KP382683432 * T5j); |
1060 | 2 | T5u = T5s - T5t; |
1061 | 2 | T5w = T5s + T5t; |
1062 | 2 | } |
1063 | 2 | { |
1064 | 2 | E T5i, T5l, T5n, T5o; |
1065 | 2 | T5i = FMA(KP382683432, T5g, KP923879532 * T5h); |
1066 | 2 | T5l = FNMS(KP382683432, T5k, KP923879532 * T5j); |
1067 | 2 | T5m = T5i + T5l; |
1068 | 2 | T5q = T5l - T5i; |
1069 | 2 | T5n = T50 + T4Z; |
1070 | 2 | T5o = KP707106781 * (T4w + T4z); |
1071 | 2 | T5p = T5n - T5o; |
1072 | 2 | T5v = T5n + T5o; |
1073 | 2 | } |
1074 | 2 | ro[WS(os, 18)] = T5f - T5m; |
1075 | 2 | io[WS(os, 18)] = T5v - T5w; |
1076 | 2 | ro[WS(os, 2)] = T5f + T5m; |
1077 | 2 | io[WS(os, 2)] = T5v + T5w; |
1078 | 2 | io[WS(os, 26)] = T5p - T5q; |
1079 | 2 | ro[WS(os, 26)] = T5r - T5u; |
1080 | 2 | io[WS(os, 10)] = T5p + T5q; |
1081 | 2 | ro[WS(os, 10)] = T5r + T5u; |
1082 | 2 | } |
1083 | 2 | { |
1084 | 2 | E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T; |
1085 | 2 | { |
1086 | 2 | E T5x, T5y, T5Q, T5R; |
1087 | 2 | T5x = T7 - Te; |
1088 | 2 | T5y = T1n - T1u; |
1089 | 2 | T5z = T5x + T5y; |
1090 | 2 | T5P = T5x - T5y; |
1091 | 2 | T5Q = T5D - T5A; |
1092 | 2 | T5R = T5F + T5I; |
1093 | 2 | T5S = KP707106781 * (T5Q - T5R); |
1094 | 2 | T5U = KP707106781 * (T5Q + T5R); |
1095 | 2 | } |
1096 | 2 | { |
1097 | 2 | E T5E, T5J, T5L, T5M; |
1098 | 2 | T5E = T5A + T5D; |
1099 | 2 | T5J = T5F - T5I; |
1100 | 2 | T5K = KP707106781 * (T5E + T5J); |
1101 | 2 | T5O = KP707106781 * (T5J - T5E); |
1102 | 2 | T5L = T18 - T1f; |
1103 | 2 | T5M = Tt - Tm; |
1104 | 2 | T5N = T5L - T5M; |
1105 | 2 | T5T = T5M + T5L; |
1106 | 2 | } |
1107 | 2 | ro[WS(os, 20)] = T5z - T5K; |
1108 | 2 | io[WS(os, 20)] = T5T - T5U; |
1109 | 2 | ro[WS(os, 4)] = T5z + T5K; |
1110 | 2 | io[WS(os, 4)] = T5T + T5U; |
1111 | 2 | io[WS(os, 28)] = T5N - T5O; |
1112 | 2 | ro[WS(os, 28)] = T5P - T5S; |
1113 | 2 | io[WS(os, 12)] = T5N + T5O; |
1114 | 2 | ro[WS(os, 12)] = T5P + T5S; |
1115 | 2 | } |
1116 | 2 | { |
1117 | 2 | E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z; |
1118 | 2 | { |
1119 | 2 | E Tf, Tu, T5W, T5X; |
1120 | 2 | Tf = T7 + Te; |
1121 | 2 | Tu = Tm + Tt; |
1122 | 2 | Tv = Tf + Tu; |
1123 | 2 | T5V = Tf - Tu; |
1124 | 2 | T5W = T5B + T5C; |
1125 | 2 | T5X = T5G + T5H; |
1126 | 2 | T5Y = T5W - T5X; |
1127 | 2 | T60 = T5W + T5X; |
1128 | 2 | } |
1129 | 2 | { |
1130 | 2 | E TK, TZ, T1g, T1v; |
1131 | 2 | TK = TC + TJ; |
1132 | 2 | TZ = TR + TY; |
1133 | 2 | T10 = TK + TZ; |
1134 | 2 | T11 = TZ - TK; |
1135 | 2 | T1g = T18 + T1f; |
1136 | 2 | T1v = T1n + T1u; |
1137 | 2 | T1w = T1g - T1v; |
1138 | 2 | T5Z = T1g + T1v; |
1139 | 2 | } |
1140 | 2 | ro[WS(os, 16)] = Tv - T10; |
1141 | 2 | io[WS(os, 16)] = T5Z - T60; |
1142 | 2 | ro[0] = Tv + T10; |
1143 | 2 | io[0] = T5Z + T60; |
1144 | 2 | io[WS(os, 8)] = T11 + T1w; |
1145 | 2 | ro[WS(os, 8)] = T5V + T5Y; |
1146 | 2 | io[WS(os, 24)] = T1w - T11; |
1147 | 2 | ro[WS(os, 24)] = T5V - T5Y; |
1148 | 2 | } |
1149 | 2 | { |
1150 | 2 | E T1X, T33, T31, T37, T2o, T34, T2P, T35; |
1151 | 2 | { |
1152 | 2 | E T1H, T1W, T2X, T30; |
1153 | 2 | T1H = T1z - T1G; |
1154 | 2 | T1W = T1O - T1V; |
1155 | 2 | T1X = T1H + T1W; |
1156 | 2 | T33 = T1H - T1W; |
1157 | 2 | T2X = T2T - T2W; |
1158 | 2 | T30 = T2Y - T2Z; |
1159 | 2 | T31 = T2X - T30; |
1160 | 2 | T37 = T2X + T30; |
1161 | 2 | } |
1162 | 2 | { |
1163 | 2 | E T2e, T2n, T2F, T2O; |
1164 | 2 | T2e = T22 - T2d; |
1165 | 2 | T2n = T2j - T2m; |
1166 | 2 | T2o = FMA(KP980785280, T2e, KP195090322 * T2n); |
1167 | 2 | T34 = FNMS(KP980785280, T2n, KP195090322 * T2e); |
1168 | 2 | T2F = T2t - T2E; |
1169 | 2 | T2O = T2K - T2N; |
1170 | 2 | T2P = FNMS(KP980785280, T2O, KP195090322 * T2F); |
1171 | 2 | T35 = FMA(KP195090322, T2O, KP980785280 * T2F); |
1172 | 2 | } |
1173 | 2 | { |
1174 | 2 | E T2Q, T38, T32, T36; |
1175 | 2 | T2Q = T2o + T2P; |
1176 | 2 | ro[WS(os, 23)] = T1X - T2Q; |
1177 | 2 | ro[WS(os, 7)] = T1X + T2Q; |
1178 | 2 | T38 = T34 + T35; |
1179 | 2 | io[WS(os, 23)] = T37 - T38; |
1180 | 2 | io[WS(os, 7)] = T37 + T38; |
1181 | 2 | T32 = T2P - T2o; |
1182 | 2 | io[WS(os, 31)] = T31 - T32; |
1183 | 2 | io[WS(os, 15)] = T31 + T32; |
1184 | 2 | T36 = T34 - T35; |
1185 | 2 | ro[WS(os, 31)] = T33 - T36; |
1186 | 2 | ro[WS(os, 15)] = T33 + T36; |
1187 | 2 | } |
1188 | 2 | } |
1189 | 2 | { |
1190 | 2 | E T3D, T41, T3Z, T45, T3K, T42, T3R, T43; |
1191 | 2 | { |
1192 | 2 | E T3v, T3C, T3V, T3Y; |
1193 | 2 | T3v = T3t - T3u; |
1194 | 2 | T3C = T3y - T3B; |
1195 | 2 | T3D = T3v + T3C; |
1196 | 2 | T41 = T3v - T3C; |
1197 | 2 | T3V = T3T - T3U; |
1198 | 2 | T3Y = T3W - T3X; |
1199 | 2 | T3Z = T3V - T3Y; |
1200 | 2 | T45 = T3V + T3Y; |
1201 | 2 | } |
1202 | 2 | { |
1203 | 2 | E T3G, T3J, T3N, T3Q; |
1204 | 2 | T3G = T3E - T3F; |
1205 | 2 | T3J = T3H - T3I; |
1206 | 2 | T3K = FMA(KP555570233, T3G, KP831469612 * T3J); |
1207 | 2 | T42 = FNMS(KP831469612, T3G, KP555570233 * T3J); |
1208 | 2 | T3N = T3L - T3M; |
1209 | 2 | T3Q = T3O - T3P; |
1210 | 2 | T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N); |
1211 | 2 | T43 = FMA(KP831469612, T3N, KP555570233 * T3Q); |
1212 | 2 | } |
1213 | 2 | { |
1214 | 2 | E T3S, T46, T40, T44; |
1215 | 2 | T3S = T3K + T3R; |
1216 | 2 | ro[WS(os, 21)] = T3D - T3S; |
1217 | 2 | ro[WS(os, 5)] = T3D + T3S; |
1218 | 2 | T46 = T42 + T43; |
1219 | 2 | io[WS(os, 21)] = T45 - T46; |
1220 | 2 | io[WS(os, 5)] = T45 + T46; |
1221 | 2 | T40 = T3R - T3K; |
1222 | 2 | io[WS(os, 29)] = T3Z - T40; |
1223 | 2 | io[WS(os, 13)] = T3Z + T40; |
1224 | 2 | T44 = T42 - T43; |
1225 | 2 | ro[WS(os, 29)] = T41 - T44; |
1226 | 2 | ro[WS(os, 13)] = T41 + T44; |
1227 | 2 | } |
1228 | 2 | } |
1229 | 2 | { |
1230 | 2 | E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n; |
1231 | 2 | { |
1232 | 2 | E T47, T48, T4h, T4i; |
1233 | 2 | T47 = T3t + T3u; |
1234 | 2 | T48 = T3X + T3W; |
1235 | 2 | T49 = T47 + T48; |
1236 | 2 | T4l = T47 - T48; |
1237 | 2 | T4h = T3T + T3U; |
1238 | 2 | T4i = T3y + T3B; |
1239 | 2 | T4j = T4h - T4i; |
1240 | 2 | T4p = T4h + T4i; |
1241 | 2 | } |
1242 | 2 | { |
1243 | 2 | E T4a, T4b, T4d, T4e; |
1244 | 2 | T4a = T3E + T3F; |
1245 | 2 | T4b = T3H + T3I; |
1246 | 2 | T4c = FMA(KP980785280, T4a, KP195090322 * T4b); |
1247 | 2 | T4m = FNMS(KP195090322, T4a, KP980785280 * T4b); |
1248 | 2 | T4d = T3L + T3M; |
1249 | 2 | T4e = T3O + T3P; |
1250 | 2 | T4f = FNMS(KP195090322, T4e, KP980785280 * T4d); |
1251 | 2 | T4n = FMA(KP195090322, T4d, KP980785280 * T4e); |
1252 | 2 | } |
1253 | 2 | { |
1254 | 2 | E T4g, T4q, T4k, T4o; |
1255 | 2 | T4g = T4c + T4f; |
1256 | 2 | ro[WS(os, 17)] = T49 - T4g; |
1257 | 2 | ro[WS(os, 1)] = T49 + T4g; |
1258 | 2 | T4q = T4m + T4n; |
1259 | 2 | io[WS(os, 17)] = T4p - T4q; |
1260 | 2 | io[WS(os, 1)] = T4p + T4q; |
1261 | 2 | T4k = T4f - T4c; |
1262 | 2 | io[WS(os, 25)] = T4j - T4k; |
1263 | 2 | io[WS(os, 9)] = T4j + T4k; |
1264 | 2 | T4o = T4m - T4n; |
1265 | 2 | ro[WS(os, 25)] = T4l - T4o; |
1266 | 2 | ro[WS(os, 9)] = T4l + T4o; |
1267 | 2 | } |
1268 | 2 | } |
1269 | 2 | { |
1270 | 2 | E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p; |
1271 | 2 | { |
1272 | 2 | E T39, T3a, T3j, T3k; |
1273 | 2 | T39 = T1z + T1G; |
1274 | 2 | T3a = T2Z + T2Y; |
1275 | 2 | T3b = T39 + T3a; |
1276 | 2 | T3n = T39 - T3a; |
1277 | 2 | T3j = T2T + T2W; |
1278 | 2 | T3k = T1O + T1V; |
1279 | 2 | T3l = T3j - T3k; |
1280 | 2 | T3r = T3j + T3k; |
1281 | 2 | } |
1282 | 2 | { |
1283 | 2 | E T3c, T3d, T3f, T3g; |
1284 | 2 | T3c = T22 + T2d; |
1285 | 2 | T3d = T2j + T2m; |
1286 | 2 | T3e = FMA(KP555570233, T3c, KP831469612 * T3d); |
1287 | 2 | T3o = FNMS(KP555570233, T3d, KP831469612 * T3c); |
1288 | 2 | T3f = T2t + T2E; |
1289 | 2 | T3g = T2K + T2N; |
1290 | 2 | T3h = FNMS(KP555570233, T3g, KP831469612 * T3f); |
1291 | 2 | T3p = FMA(KP831469612, T3g, KP555570233 * T3f); |
1292 | 2 | } |
1293 | 2 | { |
1294 | 2 | E T3i, T3s, T3m, T3q; |
1295 | 2 | T3i = T3e + T3h; |
1296 | 2 | ro[WS(os, 19)] = T3b - T3i; |
1297 | 2 | ro[WS(os, 3)] = T3b + T3i; |
1298 | 2 | T3s = T3o + T3p; |
1299 | 2 | io[WS(os, 19)] = T3r - T3s; |
1300 | 2 | io[WS(os, 3)] = T3r + T3s; |
1301 | 2 | T3m = T3h - T3e; |
1302 | 2 | io[WS(os, 27)] = T3l - T3m; |
1303 | 2 | io[WS(os, 11)] = T3l + T3m; |
1304 | 2 | T3q = T3o - T3p; |
1305 | 2 | ro[WS(os, 27)] = T3n - T3q; |
1306 | 2 | ro[WS(os, 11)] = T3n + T3q; |
1307 | 2 | } |
1308 | 2 | } |
1309 | 2 | } |
1310 | 2 | } |
1311 | 2 | } |
1312 | | |
1313 | | static const kdft_desc desc = { 32, "n1_32", { 340, 52, 32, 0 }, &GENUS, 0, 0, 0, 0 }; |
1314 | | |
1315 | 1 | void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc); |
1316 | 1 | } |
1317 | | |
1318 | | #endif |