Coverage Report

Created: 2025-11-11 06:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/n1_32.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Nov 11 06:16:24 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
29
30
/*
31
 * This function contains 372 FP additions, 136 FP multiplications,
32
 * (or, 236 additions, 0 multiplications, 136 fused multiply/add),
33
 * 100 stack variables, 7 constants, and 128 memory accesses
34
 */
35
#include "dft/scalar/n.h"
36
37
static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
41
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
42
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
45
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
46
     {
47
    INT i;
48
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
49
         E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
50
         E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
51
         E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5k, T2E;
52
         E T3M, T4W, T5j, T2N, T3P, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
53
         E T4G, T5h, T2d, T3F, T4L, T5g, T2m, T3I;
54
         {
55
        E T3, T1x, T14, T2R, T6, T2S, T17, T1y;
56
        {
57
       E T1, T2, T12, T13;
58
       T1 = ri[0];
59
       T2 = ri[WS(is, 16)];
60
       T3 = T1 + T2;
61
       T1x = T1 - T2;
62
       T12 = ii[0];
63
       T13 = ii[WS(is, 16)];
64
       T14 = T12 + T13;
65
       T2R = T12 - T13;
66
        }
67
        {
68
       E T4, T5, T15, T16;
69
       T4 = ri[WS(is, 8)];
70
       T5 = ri[WS(is, 24)];
71
       T6 = T4 + T5;
72
       T2S = T4 - T5;
73
       T15 = ii[WS(is, 8)];
74
       T16 = ii[WS(is, 24)];
75
       T17 = T15 + T16;
76
       T1y = T15 - T16;
77
        }
78
        T7 = T3 + T6;
79
        T4r = T3 - T6;
80
        T4Z = T14 - T17;
81
        T18 = T14 + T17;
82
        T1z = T1x + T1y;
83
        T3t = T1x - T1y;
84
        T3T = T2S + T2R;
85
        T2T = T2R - T2S;
86
         }
87
         {
88
        E Ta, T1A, T1b, T1B, Td, T1D, T1e, T1E;
89
        {
90
       E T8, T9, T19, T1a;
91
       T8 = ri[WS(is, 4)];
92
       T9 = ri[WS(is, 20)];
93
       Ta = T8 + T9;
94
       T1A = T8 - T9;
95
       T19 = ii[WS(is, 4)];
96
       T1a = ii[WS(is, 20)];
97
       T1b = T19 + T1a;
98
       T1B = T19 - T1a;
99
        }
100
        {
101
       E Tb, Tc, T1c, T1d;
102
       Tb = ri[WS(is, 28)];
103
       Tc = ri[WS(is, 12)];
104
       Td = Tb + Tc;
105
       T1D = Tb - Tc;
106
       T1c = ii[WS(is, 28)];
107
       T1d = ii[WS(is, 12)];
108
       T1e = T1c + T1d;
109
       T1E = T1c - T1d;
110
        }
111
        Te = Ta + Td;
112
        T1f = T1b + T1e;
113
        T50 = Td - Ta;
114
        T4s = T1b - T1e;
115
        {
116
       E T2U, T2V, T1C, T1F;
117
       T2U = T1B - T1A;
118
       T2V = T1D + T1E;
119
       T2W = T2U + T2V;
120
       T3u = T2U - T2V;
121
       T1C = T1A + T1B;
122
       T1F = T1D - T1E;
123
       T1G = T1C + T1F;
124
       T3U = T1F - T1C;
125
        }
126
         }
127
         {
128
        E Ti, T1L, T1j, T1I, Tl, T1J, T1m, T1M, T1K, T1N;
129
        {
130
       E Tg, Th, T1h, T1i;
131
       Tg = ri[WS(is, 2)];
132
       Th = ri[WS(is, 18)];
133
       Ti = Tg + Th;
134
       T1L = Tg - Th;
135
       T1h = ii[WS(is, 2)];
136
       T1i = ii[WS(is, 18)];
137
       T1j = T1h + T1i;
138
       T1I = T1h - T1i;
139
        }
140
        {
141
       E Tj, Tk, T1k, T1l;
142
       Tj = ri[WS(is, 10)];
143
       Tk = ri[WS(is, 26)];
144
       Tl = Tj + Tk;
145
       T1J = Tj - Tk;
146
       T1k = ii[WS(is, 10)];
147
       T1l = ii[WS(is, 26)];
148
       T1m = T1k + T1l;
149
       T1M = T1k - T1l;
150
        }
151
        Tm = Ti + Tl;
152
        T1n = T1j + T1m;
153
        T1K = T1I - T1J;
154
        T1N = T1L + T1M;
155
        T1O = FNMS(KP414213562, T1N, T1K);
156
        T2Z = FMA(KP414213562, T1K, T1N);
157
        {
158
       E T3w, T3x, T4u, T4v;
159
       T3w = T1J + T1I;
160
       T3x = T1L - T1M;
161
       T3y = FMA(KP414213562, T3x, T3w);
162
       T3X = FNMS(KP414213562, T3w, T3x);
163
       T4u = T1j - T1m;
164
       T4v = Ti - Tl;
165
       T4w = T4u - T4v;
166
       T53 = T4v + T4u;
167
        }
168
         }
169
         {
170
        E Tp, T1S, T1q, T1P, Ts, T1Q, T1t, T1T, T1R, T1U;
171
        {
172
       E Tn, To, T1o, T1p;
173
       Tn = ri[WS(is, 30)];
174
       To = ri[WS(is, 14)];
175
       Tp = Tn + To;
176
       T1S = Tn - To;
177
       T1o = ii[WS(is, 30)];
178
       T1p = ii[WS(is, 14)];
179
       T1q = T1o + T1p;
180
       T1P = T1o - T1p;
181
        }
182
        {
183
       E Tq, Tr, T1r, T1s;
184
       Tq = ri[WS(is, 6)];
185
       Tr = ri[WS(is, 22)];
186
       Ts = Tq + Tr;
187
       T1Q = Tq - Tr;
188
       T1r = ii[WS(is, 6)];
189
       T1s = ii[WS(is, 22)];
190
       T1t = T1r + T1s;
191
       T1T = T1r - T1s;
192
        }
193
        Tt = Tp + Ts;
194
        T1u = T1q + T1t;
195
        T1R = T1P - T1Q;
196
        T1U = T1S + T1T;
197
        T1V = FMA(KP414213562, T1U, T1R);
198
        T2Y = FNMS(KP414213562, T1R, T1U);
199
        {
200
       E T3z, T3A, T4x, T4y;
201
       T3z = T1Q + T1P;
202
       T3A = T1S - T1T;
203
       T3B = FNMS(KP414213562, T3A, T3z);
204
       T3W = FMA(KP414213562, T3z, T3A);
205
       T4x = Tp - Ts;
206
       T4y = T1q - T1t;
207
       T4z = T4x + T4y;
208
       T52 = T4x - T4y;
209
        }
210
         }
211
         {
212
        E TN, T2G, T2r, T4N, TQ, T2s, T2J, T4O, TU, T2x, T2w, T4T, TX, T2z, T2C;
213
        E T4U;
214
        {
215
       E TL, TM, T2p, T2q;
216
       TL = ri[WS(is, 31)];
217
       TM = ri[WS(is, 15)];
218
       TN = TL + TM;
219
       T2G = TL - TM;
220
       T2p = ii[WS(is, 31)];
221
       T2q = ii[WS(is, 15)];
222
       T2r = T2p - T2q;
223
       T4N = T2p + T2q;
224
        }
225
        {
226
       E TO, TP, T2H, T2I;
227
       TO = ri[WS(is, 7)];
228
       TP = ri[WS(is, 23)];
229
       TQ = TO + TP;
230
       T2s = TO - TP;
231
       T2H = ii[WS(is, 7)];
232
       T2I = ii[WS(is, 23)];
233
       T2J = T2H - T2I;
234
       T4O = T2H + T2I;
235
        }
236
        {
237
       E TS, TT, T2u, T2v;
238
       TS = ri[WS(is, 3)];
239
       TT = ri[WS(is, 19)];
240
       TU = TS + TT;
241
       T2x = TS - TT;
242
       T2u = ii[WS(is, 3)];
243
       T2v = ii[WS(is, 19)];
244
       T2w = T2u - T2v;
245
       T4T = T2u + T2v;
246
        }
247
        {
248
       E TV, TW, T2A, T2B;
249
       TV = ri[WS(is, 27)];
250
       TW = ri[WS(is, 11)];
251
       TX = TV + TW;
252
       T2z = TV - TW;
253
       T2A = ii[WS(is, 27)];
254
       T2B = ii[WS(is, 11)];
255
       T2C = T2A - T2B;
256
       T4U = T2A + T2B;
257
        }
258
        T2t = T2r - T2s;
259
        T3L = T2G - T2J;
260
        T3O = T2s + T2r;
261
        T2K = T2G + T2J;
262
        TR = TN + TQ;
263
        TY = TU + TX;
264
        T5F = TR - TY;
265
        {
266
       E T4P, T4Q, T2y, T2D;
267
       T5G = T4N + T4O;
268
       T5H = T4T + T4U;
269
       T5I = T5G - T5H;
270
       T4P = T4N - T4O;
271
       T4Q = TX - TU;
272
       T4R = T4P - T4Q;
273
       T5k = T4Q + T4P;
274
       T2y = T2w - T2x;
275
       T2D = T2z + T2C;
276
       T2E = T2y + T2D;
277
       T3M = T2D - T2y;
278
       {
279
            E T4S, T4V, T2L, T2M;
280
            T4S = TN - TQ;
281
            T4V = T4T - T4U;
282
            T4W = T4S - T4V;
283
            T5j = T4S + T4V;
284
            T2L = T2x + T2w;
285
            T2M = T2z - T2C;
286
            T2N = T2L + T2M;
287
            T3P = T2L - T2M;
288
       }
289
        }
290
         }
291
         {
292
        E Ty, T2f, T20, T4C, TB, T21, T2i, T4D, TF, T26, T25, T4I, TI, T28, T2b;
293
        E T4J;
294
        {
295
       E Tw, Tx, T1Y, T1Z;
296
       Tw = ri[WS(is, 1)];
297
       Tx = ri[WS(is, 17)];
298
       Ty = Tw + Tx;
299
       T2f = Tw - Tx;
300
       T1Y = ii[WS(is, 1)];
301
       T1Z = ii[WS(is, 17)];
302
       T20 = T1Y - T1Z;
303
       T4C = T1Y + T1Z;
304
        }
305
        {
306
       E Tz, TA, T2g, T2h;
307
       Tz = ri[WS(is, 9)];
308
       TA = ri[WS(is, 25)];
309
       TB = Tz + TA;
310
       T21 = Tz - TA;
311
       T2g = ii[WS(is, 9)];
312
       T2h = ii[WS(is, 25)];
313
       T2i = T2g - T2h;
314
       T4D = T2g + T2h;
315
        }
316
        {
317
       E TD, TE, T23, T24;
318
       TD = ri[WS(is, 5)];
319
       TE = ri[WS(is, 21)];
320
       TF = TD + TE;
321
       T26 = TD - TE;
322
       T23 = ii[WS(is, 5)];
323
       T24 = ii[WS(is, 21)];
324
       T25 = T23 - T24;
325
       T4I = T23 + T24;
326
        }
327
        {
328
       E TG, TH, T29, T2a;
329
       TG = ri[WS(is, 29)];
330
       TH = ri[WS(is, 13)];
331
       TI = TG + TH;
332
       T28 = TG - TH;
333
       T29 = ii[WS(is, 29)];
334
       T2a = ii[WS(is, 13)];
335
       T2b = T29 - T2a;
336
       T4J = T29 + T2a;
337
        }
338
        T22 = T20 - T21;
339
        T3E = T2f - T2i;
340
        T3H = T21 + T20;
341
        T2j = T2f + T2i;
342
        TC = Ty + TB;
343
        TJ = TF + TI;
344
        T5A = TC - TJ;
345
        {
346
       E T4E, T4F, T27, T2c;
347
       T5B = T4C + T4D;
348
       T5C = T4I + T4J;
349
       T5D = T5B - T5C;
350
       T4E = T4C - T4D;
351
       T4F = TI - TF;
352
       T4G = T4E - T4F;
353
       T5h = T4F + T4E;
354
       T27 = T25 - T26;
355
       T2c = T28 + T2b;
356
       T2d = T27 + T2c;
357
       T3F = T2c - T27;
358
       {
359
            E T4H, T4K, T2k, T2l;
360
            T4H = Ty - TB;
361
            T4K = T4I - T4J;
362
            T4L = T4H - T4K;
363
            T5g = T4H + T4K;
364
            T2k = T26 + T25;
365
            T2l = T28 - T2b;
366
            T2m = T2k + T2l;
367
            T3I = T2k - T2l;
368
       }
369
        }
370
         }
371
         {
372
        E T4B, T5b, T5a, T5c, T4Y, T56, T55, T57;
373
        {
374
       E T4t, T4A, T58, T59;
375
       T4t = T4r - T4s;
376
       T4A = T4w - T4z;
377
       T4B = FMA(KP707106781, T4A, T4t);
378
       T5b = FNMS(KP707106781, T4A, T4t);
379
       T58 = FMA(KP414213562, T4R, T4W);
380
       T59 = FNMS(KP414213562, T4G, T4L);
381
       T5a = T58 - T59;
382
       T5c = T59 + T58;
383
        }
384
        {
385
       E T4M, T4X, T51, T54;
386
       T4M = FMA(KP414213562, T4L, T4G);
387
       T4X = FNMS(KP414213562, T4W, T4R);
388
       T4Y = T4M - T4X;
389
       T56 = T4M + T4X;
390
       T51 = T4Z - T50;
391
       T54 = T52 - T53;
392
       T55 = FNMS(KP707106781, T54, T51);
393
       T57 = FMA(KP707106781, T54, T51);
394
        }
395
        ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);
396
        io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);
397
        ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);
398
        io[WS(os, 6)] = FMA(KP923879532, T5a, T57);
399
        io[WS(os, 14)] = FNMS(KP923879532, T56, T55);
400
        ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);
401
        io[WS(os, 30)] = FMA(KP923879532, T56, T55);
402
        ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);
403
         }
404
         {
405
        E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
406
        {
407
       E T5d, T5e, T5s, T5t;
408
       T5d = T4r + T4s;
409
       T5e = T53 + T52;
410
       T5f = FMA(KP707106781, T5e, T5d);
411
       T5r = FNMS(KP707106781, T5e, T5d);
412
       T5s = FNMS(KP414213562, T5g, T5h);
413
       T5t = FMA(KP414213562, T5j, T5k);
414
       T5u = T5s - T5t;
415
       T5w = T5s + T5t;
416
        }
417
        {
418
       E T5i, T5l, T5n, T5o;
419
       T5i = FMA(KP414213562, T5h, T5g);
420
       T5l = FNMS(KP414213562, T5k, T5j);
421
       T5m = T5i + T5l;
422
       T5q = T5l - T5i;
423
       T5n = T50 + T4Z;
424
       T5o = T4w + T4z;
425
       T5p = FNMS(KP707106781, T5o, T5n);
426
       T5v = FMA(KP707106781, T5o, T5n);
427
        }
428
        ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
429
        io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);
430
        ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);
431
        io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);
432
        io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);
433
        ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);
434
        io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);
435
        ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);
436
         }
437
         {
438
        E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
439
        {
440
       E T5x, T5y, T5Q, T5R;
441
       T5x = T7 - Te;
442
       T5y = T1n - T1u;
443
       T5z = T5x + T5y;
444
       T5P = T5x - T5y;
445
       T5Q = T5D - T5A;
446
       T5R = T5F + T5I;
447
       T5S = T5Q - T5R;
448
       T5U = T5Q + T5R;
449
        }
450
        {
451
       E T5E, T5J, T5L, T5M;
452
       T5E = T5A + T5D;
453
       T5J = T5F - T5I;
454
       T5K = T5E + T5J;
455
       T5O = T5J - T5E;
456
       T5L = T18 - T1f;
457
       T5M = Tt - Tm;
458
       T5N = T5L - T5M;
459
       T5T = T5M + T5L;
460
        }
461
        ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);
462
        io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);
463
        ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);
464
        io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);
465
        io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);
466
        ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);
467
        io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);
468
        ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);
469
         }
470
         {
471
        E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
472
        {
473
       E Tf, Tu, T5W, T5X;
474
       Tf = T7 + Te;
475
       Tu = Tm + Tt;
476
       Tv = Tf + Tu;
477
       T5V = Tf - Tu;
478
       T5W = T5B + T5C;
479
       T5X = T5G + T5H;
480
       T5Y = T5W - T5X;
481
       T60 = T5W + T5X;
482
        }
483
        {
484
       E TK, TZ, T1g, T1v;
485
       TK = TC + TJ;
486
       TZ = TR + TY;
487
       T10 = TK + TZ;
488
       T11 = TZ - TK;
489
       T1g = T18 + T1f;
490
       T1v = T1n + T1u;
491
       T1w = T1g - T1v;
492
       T5Z = T1g + T1v;
493
        }
494
        ro[WS(os, 16)] = Tv - T10;
495
        io[WS(os, 16)] = T5Z - T60;
496
        ro[0] = Tv + T10;
497
        io[0] = T5Z + T60;
498
        io[WS(os, 8)] = T11 + T1w;
499
        ro[WS(os, 8)] = T5V + T5Y;
500
        io[WS(os, 24)] = T1w - T11;
501
        ro[WS(os, 24)] = T5V - T5Y;
502
         }
503
         {
504
        E T1X, T37, T31, T33, T2o, T35, T2P, T34;
505
        {
506
       E T1H, T1W, T2X, T30;
507
       T1H = FNMS(KP707106781, T1G, T1z);
508
       T1W = T1O - T1V;
509
       T1X = FMA(KP923879532, T1W, T1H);
510
       T37 = FNMS(KP923879532, T1W, T1H);
511
       T2X = FNMS(KP707106781, T2W, T2T);
512
       T30 = T2Y - T2Z;
513
       T31 = FNMS(KP923879532, T30, T2X);
514
       T33 = FMA(KP923879532, T30, T2X);
515
        }
516
        {
517
       E T2e, T2n, T2F, T2O;
518
       T2e = FNMS(KP707106781, T2d, T22);
519
       T2n = FNMS(KP707106781, T2m, T2j);
520
       T2o = FMA(KP668178637, T2n, T2e);
521
       T35 = FNMS(KP668178637, T2e, T2n);
522
       T2F = FNMS(KP707106781, T2E, T2t);
523
       T2O = FNMS(KP707106781, T2N, T2K);
524
       T2P = FNMS(KP668178637, T2O, T2F);
525
       T34 = FMA(KP668178637, T2F, T2O);
526
        }
527
        {
528
       E T2Q, T36, T32, T38;
529
       T2Q = T2o - T2P;
530
       ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);
531
       ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);
532
       T36 = T34 - T35;
533
       io[WS(os, 21)] = FNMS(KP831469612, T36, T33);
534
       io[WS(os, 5)] = FMA(KP831469612, T36, T33);
535
       T32 = T2o + T2P;
536
       io[WS(os, 13)] = FNMS(KP831469612, T32, T31);
537
       io[WS(os, 29)] = FMA(KP831469612, T32, T31);
538
       T38 = T35 + T34;
539
       ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);
540
       ro[WS(os, 29)] = FMA(KP831469612, T38, T37);
541
        }
542
         }
543
         {
544
        E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
545
        {
546
       E T3v, T3C, T3V, T3Y;
547
       T3v = FMA(KP707106781, T3u, T3t);
548
       T3C = T3y - T3B;
549
       T3D = FMA(KP923879532, T3C, T3v);
550
       T41 = FNMS(KP923879532, T3C, T3v);
551
       T3V = FMA(KP707106781, T3U, T3T);
552
       T3Y = T3W - T3X;
553
       T3Z = FNMS(KP923879532, T3Y, T3V);
554
       T45 = FMA(KP923879532, T3Y, T3V);
555
        }
556
        {
557
       E T3G, T3J, T3N, T3Q;
558
       T3G = FNMS(KP707106781, T3F, T3E);
559
       T3J = FNMS(KP707106781, T3I, T3H);
560
       T3K = FMA(KP668178637, T3J, T3G);
561
       T42 = FNMS(KP668178637, T3G, T3J);
562
       T3N = FNMS(KP707106781, T3M, T3L);
563
       T3Q = FNMS(KP707106781, T3P, T3O);
564
       T3R = FNMS(KP668178637, T3Q, T3N);
565
       T43 = FMA(KP668178637, T3N, T3Q);
566
        }
567
        {
568
       E T3S, T46, T40, T44;
569
       T3S = T3K + T3R;
570
       ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);
571
       ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);
572
       T46 = T42 + T43;
573
       io[WS(os, 19)] = FNMS(KP831469612, T46, T45);
574
       io[WS(os, 3)] = FMA(KP831469612, T46, T45);
575
       T40 = T3R - T3K;
576
       io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);
577
       io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);
578
       T44 = T42 - T43;
579
       ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);
580
       ro[WS(os, 11)] = FMA(KP831469612, T44, T41);
581
        }
582
         }
583
         {
584
        E T49, T4p, T4j, T4l, T4c, T4n, T4f, T4m;
585
        {
586
       E T47, T48, T4h, T4i;
587
       T47 = FNMS(KP707106781, T3u, T3t);
588
       T48 = T3X + T3W;
589
       T49 = FNMS(KP923879532, T48, T47);
590
       T4p = FMA(KP923879532, T48, T47);
591
       T4h = FNMS(KP707106781, T3U, T3T);
592
       T4i = T3y + T3B;
593
       T4j = FMA(KP923879532, T4i, T4h);
594
       T4l = FNMS(KP923879532, T4i, T4h);
595
        }
596
        {
597
       E T4a, T4b, T4d, T4e;
598
       T4a = FMA(KP707106781, T3I, T3H);
599
       T4b = FMA(KP707106781, T3F, T3E);
600
       T4c = FMA(KP198912367, T4b, T4a);
601
       T4n = FNMS(KP198912367, T4a, T4b);
602
       T4d = FMA(KP707106781, T3P, T3O);
603
       T4e = FMA(KP707106781, T3M, T3L);
604
       T4f = FNMS(KP198912367, T4e, T4d);
605
       T4m = FMA(KP198912367, T4d, T4e);
606
        }
607
        {
608
       E T4g, T4o, T4k, T4q;
609
       T4g = T4c - T4f;
610
       ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);
611
       ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);
612
       T4o = T4m - T4n;
613
       io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);
614
       io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);
615
       T4k = T4c + T4f;
616
       io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);
617
       io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);
618
       T4q = T4n + T4m;
619
       ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);
620
       ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);
621
        }
622
         }
623
         {
624
        E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
625
        {
626
       E T39, T3a, T3j, T3k;
627
       T39 = FMA(KP707106781, T1G, T1z);
628
       T3a = T2Z + T2Y;
629
       T3b = FMA(KP923879532, T3a, T39);
630
       T3n = FNMS(KP923879532, T3a, T39);
631
       T3j = FMA(KP707106781, T2W, T2T);
632
       T3k = T1O + T1V;
633
       T3l = FNMS(KP923879532, T3k, T3j);
634
       T3r = FMA(KP923879532, T3k, T3j);
635
        }
636
        {
637
       E T3c, T3d, T3f, T3g;
638
       T3c = FMA(KP707106781, T2m, T2j);
639
       T3d = FMA(KP707106781, T2d, T22);
640
       T3e = FMA(KP198912367, T3d, T3c);
641
       T3o = FNMS(KP198912367, T3c, T3d);
642
       T3f = FMA(KP707106781, T2N, T2K);
643
       T3g = FMA(KP707106781, T2E, T2t);
644
       T3h = FNMS(KP198912367, T3g, T3f);
645
       T3p = FMA(KP198912367, T3f, T3g);
646
        }
647
        {
648
       E T3i, T3s, T3m, T3q;
649
       T3i = T3e + T3h;
650
       ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);
651
       ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);
652
       T3s = T3o + T3p;
653
       io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);
654
       io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);
655
       T3m = T3h - T3e;
656
       io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);
657
       io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);
658
       T3q = T3o - T3p;
659
       ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);
660
       ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);
661
        }
662
         }
663
    }
664
     }
665
}
666
667
static const kdft_desc desc = { 32, "n1_32", { 236, 0, 136, 0 }, &GENUS, 0, 0, 0, 0 };
668
669
void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc);
670
}
671
672
#else
673
674
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
675
676
/*
677
 * This function contains 372 FP additions, 84 FP multiplications,
678
 * (or, 340 additions, 52 multiplications, 32 fused multiply/add),
679
 * 100 stack variables, 7 constants, and 128 memory accesses
680
 */
681
#include "dft/scalar/n.h"
682
683
static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
684
2
{
685
2
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
686
2
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
687
2
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
688
2
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
689
2
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
690
2
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
691
2
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
692
2
     {
693
2
    INT i;
694
4
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
695
2
         E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
696
2
         E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
697
2
         E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;
698
2
         E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
699
2
         E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;
700
2
         {
701
2
        E T3, T1x, T14, T2S, T6, T2R, T17, T1y;
702
2
        {
703
2
       E T1, T2, T12, T13;
704
2
       T1 = ri[0];
705
2
       T2 = ri[WS(is, 16)];
706
2
       T3 = T1 + T2;
707
2
       T1x = T1 - T2;
708
2
       T12 = ii[0];
709
2
       T13 = ii[WS(is, 16)];
710
2
       T14 = T12 + T13;
711
2
       T2S = T12 - T13;
712
2
        }
713
2
        {
714
2
       E T4, T5, T15, T16;
715
2
       T4 = ri[WS(is, 8)];
716
2
       T5 = ri[WS(is, 24)];
717
2
       T6 = T4 + T5;
718
2
       T2R = T4 - T5;
719
2
       T15 = ii[WS(is, 8)];
720
2
       T16 = ii[WS(is, 24)];
721
2
       T17 = T15 + T16;
722
2
       T1y = T15 - T16;
723
2
        }
724
2
        T7 = T3 + T6;
725
2
        T4r = T3 - T6;
726
2
        T4Z = T14 - T17;
727
2
        T18 = T14 + T17;
728
2
        T1z = T1x - T1y;
729
2
        T3t = T1x + T1y;
730
2
        T3T = T2S - T2R;
731
2
        T2T = T2R + T2S;
732
2
         }
733
2
         {
734
2
        E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;
735
2
        {
736
2
       E T8, T9, T19, T1a;
737
2
       T8 = ri[WS(is, 4)];
738
2
       T9 = ri[WS(is, 20)];
739
2
       Ta = T8 + T9;
740
2
       T1B = T8 - T9;
741
2
       T19 = ii[WS(is, 4)];
742
2
       T1a = ii[WS(is, 20)];
743
2
       T1b = T19 + T1a;
744
2
       T1A = T19 - T1a;
745
2
        }
746
2
        {
747
2
       E Tb, Tc, T1c, T1d;
748
2
       Tb = ri[WS(is, 28)];
749
2
       Tc = ri[WS(is, 12)];
750
2
       Td = Tb + Tc;
751
2
       T1D = Tb - Tc;
752
2
       T1c = ii[WS(is, 28)];
753
2
       T1d = ii[WS(is, 12)];
754
2
       T1e = T1c + T1d;
755
2
       T1E = T1c - T1d;
756
2
        }
757
2
        Te = Ta + Td;
758
2
        T1f = T1b + T1e;
759
2
        T50 = Td - Ta;
760
2
        T4s = T1b - T1e;
761
2
        {
762
2
       E T2U, T2V, T1C, T1F;
763
2
       T2U = T1D - T1E;
764
2
       T2V = T1B + T1A;
765
2
       T2W = KP707106781 * (T2U - T2V);
766
2
       T3u = KP707106781 * (T2V + T2U);
767
2
       T1C = T1A - T1B;
768
2
       T1F = T1D + T1E;
769
2
       T1G = KP707106781 * (T1C - T1F);
770
2
       T3U = KP707106781 * (T1C + T1F);
771
2
        }
772
2
         }
773
2
         {
774
2
        E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;
775
2
        {
776
2
       E Tg, Th, T1h, T1i;
777
2
       Tg = ri[WS(is, 2)];
778
2
       Th = ri[WS(is, 18)];
779
2
       Ti = Tg + Th;
780
2
       T1L = Tg - Th;
781
2
       T1h = ii[WS(is, 2)];
782
2
       T1i = ii[WS(is, 18)];
783
2
       T1j = T1h + T1i;
784
2
       T1J = T1h - T1i;
785
2
        }
786
2
        {
787
2
       E Tj, Tk, T1k, T1l;
788
2
       Tj = ri[WS(is, 10)];
789
2
       Tk = ri[WS(is, 26)];
790
2
       Tl = Tj + Tk;
791
2
       T1I = Tj - Tk;
792
2
       T1k = ii[WS(is, 10)];
793
2
       T1l = ii[WS(is, 26)];
794
2
       T1m = T1k + T1l;
795
2
       T1M = T1k - T1l;
796
2
        }
797
2
        Tm = Ti + Tl;
798
2
        T1n = T1j + T1m;
799
2
        T1K = T1I + T1J;
800
2
        T1N = T1L - T1M;
801
2
        T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);
802
2
        T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);
803
2
        {
804
2
       E T3w, T3x, T4u, T4v;
805
2
       T3w = T1J - T1I;
806
2
       T3x = T1L + T1M;
807
2
       T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);
808
2
       T3X = FMA(KP382683432, T3w, KP923879532 * T3x);
809
2
       T4u = T1j - T1m;
810
2
       T4v = Ti - Tl;
811
2
       T4w = T4u - T4v;
812
2
       T53 = T4v + T4u;
813
2
        }
814
2
         }
815
2
         {
816
2
        E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;
817
2
        {
818
2
       E Tn, To, T1o, T1p;
819
2
       Tn = ri[WS(is, 30)];
820
2
       To = ri[WS(is, 14)];
821
2
       Tp = Tn + To;
822
2
       T1S = Tn - To;
823
2
       T1o = ii[WS(is, 30)];
824
2
       T1p = ii[WS(is, 14)];
825
2
       T1q = T1o + T1p;
826
2
       T1Q = T1o - T1p;
827
2
        }
828
2
        {
829
2
       E Tq, Tr, T1r, T1s;
830
2
       Tq = ri[WS(is, 6)];
831
2
       Tr = ri[WS(is, 22)];
832
2
       Ts = Tq + Tr;
833
2
       T1P = Tq - Tr;
834
2
       T1r = ii[WS(is, 6)];
835
2
       T1s = ii[WS(is, 22)];
836
2
       T1t = T1r + T1s;
837
2
       T1T = T1r - T1s;
838
2
        }
839
2
        Tt = Tp + Ts;
840
2
        T1u = T1q + T1t;
841
2
        T1R = T1P + T1Q;
842
2
        T1U = T1S - T1T;
843
2
        T1V = FMA(KP382683432, T1R, KP923879532 * T1U);
844
2
        T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);
845
2
        {
846
2
       E T3z, T3A, T4x, T4y;
847
2
       T3z = T1Q - T1P;
848
2
       T3A = T1S + T1T;
849
2
       T3B = FMA(KP923879532, T3z, KP382683432 * T3A);
850
2
       T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);
851
2
       T4x = Tp - Ts;
852
2
       T4y = T1q - T1t;
853
2
       T4z = T4x + T4y;
854
2
       T52 = T4x - T4y;
855
2
        }
856
2
         }
857
2
         {
858
2
        E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;
859
2
        E T4P;
860
2
        {
861
2
       E TL, TM, T2H, T2I;
862
2
       TL = ri[WS(is, 31)];
863
2
       TM = ri[WS(is, 15)];
864
2
       TN = TL + TM;
865
2
       T2p = TL - TM;
866
2
       T2H = ii[WS(is, 31)];
867
2
       T2I = ii[WS(is, 15)];
868
2
       T2J = T2H - T2I;
869
2
       T4S = T2H + T2I;
870
2
        }
871
2
        {
872
2
       E TO, TP, T2q, T2r;
873
2
       TO = ri[WS(is, 7)];
874
2
       TP = ri[WS(is, 23)];
875
2
       TQ = TO + TP;
876
2
       T2G = TO - TP;
877
2
       T2q = ii[WS(is, 7)];
878
2
       T2r = ii[WS(is, 23)];
879
2
       T2s = T2q - T2r;
880
2
       T4T = T2q + T2r;
881
2
        }
882
2
        {
883
2
       E TS, TT, T2u, T2v;
884
2
       TS = ri[WS(is, 3)];
885
2
       TT = ri[WS(is, 19)];
886
2
       TU = TS + TT;
887
2
       T2x = TS - TT;
888
2
       T2u = ii[WS(is, 3)];
889
2
       T2v = ii[WS(is, 19)];
890
2
       T2w = T2u - T2v;
891
2
       T4O = T2u + T2v;
892
2
        }
893
2
        {
894
2
       E TV, TW, T2A, T2B;
895
2
       TV = ri[WS(is, 27)];
896
2
       TW = ri[WS(is, 11)];
897
2
       TX = TV + TW;
898
2
       T2z = TV - TW;
899
2
       T2A = ii[WS(is, 27)];
900
2
       T2B = ii[WS(is, 11)];
901
2
       T2C = T2A - T2B;
902
2
       T4P = T2A + T2B;
903
2
        }
904
2
        T2t = T2p - T2s;
905
2
        T3L = T2p + T2s;
906
2
        T3O = T2J - T2G;
907
2
        T2K = T2G + T2J;
908
2
        TR = TN + TQ;
909
2
        TY = TU + TX;
910
2
        T5F = TR - TY;
911
2
        {
912
2
       E T4N, T4Q, T2y, T2D;
913
2
       T5G = T4S + T4T;
914
2
       T5H = T4O + T4P;
915
2
       T5I = T5G - T5H;
916
2
       T4N = TN - TQ;
917
2
       T4Q = T4O - T4P;
918
2
       T4R = T4N - T4Q;
919
2
       T5j = T4N + T4Q;
920
2
       T2y = T2w - T2x;
921
2
       T2D = T2z + T2C;
922
2
       T2E = KP707106781 * (T2y - T2D);
923
2
       T3P = KP707106781 * (T2y + T2D);
924
2
       {
925
2
            E T4U, T4V, T2L, T2M;
926
2
            T4U = T4S - T4T;
927
2
            T4V = TX - TU;
928
2
            T4W = T4U - T4V;
929
2
            T5k = T4V + T4U;
930
2
            T2L = T2z - T2C;
931
2
            T2M = T2x + T2w;
932
2
            T2N = KP707106781 * (T2L - T2M);
933
2
            T3M = KP707106781 * (T2M + T2L);
934
2
       }
935
2
        }
936
2
         }
937
2
         {
938
2
        E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26;
939
2
        E T4J;
940
2
        {
941
2
       E Tw, Tx, T1Z, T20;
942
2
       Tw = ri[WS(is, 1)];
943
2
       Tx = ri[WS(is, 17)];
944
2
       Ty = Tw + Tx;
945
2
       T2f = Tw - Tx;
946
2
       T1Z = ii[WS(is, 1)];
947
2
       T20 = ii[WS(is, 17)];
948
2
       T21 = T1Z - T20;
949
2
       T4C = T1Z + T20;
950
2
        }
951
2
        {
952
2
       E Tz, TA, T2g, T2h;
953
2
       Tz = ri[WS(is, 9)];
954
2
       TA = ri[WS(is, 25)];
955
2
       TB = Tz + TA;
956
2
       T1Y = Tz - TA;
957
2
       T2g = ii[WS(is, 9)];
958
2
       T2h = ii[WS(is, 25)];
959
2
       T2i = T2g - T2h;
960
2
       T4D = T2g + T2h;
961
2
        }
962
2
        {
963
2
       E TD, TE, T29, T2a;
964
2
       TD = ri[WS(is, 5)];
965
2
       TE = ri[WS(is, 21)];
966
2
       TF = TD + TE;
967
2
       T28 = TD - TE;
968
2
       T29 = ii[WS(is, 5)];
969
2
       T2a = ii[WS(is, 21)];
970
2
       T2b = T29 - T2a;
971
2
       T4I = T29 + T2a;
972
2
        }
973
2
        {
974
2
       E TG, TH, T24, T25;
975
2
       TG = ri[WS(is, 29)];
976
2
       TH = ri[WS(is, 13)];
977
2
       TI = TG + TH;
978
2
       T23 = TG - TH;
979
2
       T24 = ii[WS(is, 29)];
980
2
       T25 = ii[WS(is, 13)];
981
2
       T26 = T24 - T25;
982
2
       T4J = T24 + T25;
983
2
        }
984
2
        T22 = T1Y + T21;
985
2
        T3E = T2f + T2i;
986
2
        T3H = T21 - T1Y;
987
2
        T2j = T2f - T2i;
988
2
        TC = Ty + TB;
989
2
        TJ = TF + TI;
990
2
        T5A = TC - TJ;
991
2
        {
992
2
       E T4E, T4F, T27, T2c;
993
2
       T5B = T4C + T4D;
994
2
       T5C = T4I + T4J;
995
2
       T5D = T5B - T5C;
996
2
       T4E = T4C - T4D;
997
2
       T4F = TI - TF;
998
2
       T4G = T4E - T4F;
999
2
       T5g = T4F + T4E;
1000
2
       T27 = T23 - T26;
1001
2
       T2c = T28 + T2b;
1002
2
       T2d = KP707106781 * (T27 - T2c);
1003
2
       T3F = KP707106781 * (T2c + T27);
1004
2
       {
1005
2
            E T4H, T4K, T2k, T2l;
1006
2
            T4H = Ty - TB;
1007
2
            T4K = T4I - T4J;
1008
2
            T4L = T4H - T4K;
1009
2
            T5h = T4H + T4K;
1010
2
            T2k = T2b - T28;
1011
2
            T2l = T23 + T26;
1012
2
            T2m = KP707106781 * (T2k - T2l);
1013
2
            T3I = KP707106781 * (T2k + T2l);
1014
2
       }
1015
2
        }
1016
2
         }
1017
2
         {
1018
2
        E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b;
1019
2
        {
1020
2
       E T4t, T4A, T58, T59;
1021
2
       T4t = T4r - T4s;
1022
2
       T4A = KP707106781 * (T4w - T4z);
1023
2
       T4B = T4t + T4A;
1024
2
       T57 = T4t - T4A;
1025
2
       T58 = FNMS(KP923879532, T4L, KP382683432 * T4G);
1026
2
       T59 = FMA(KP382683432, T4W, KP923879532 * T4R);
1027
2
       T5a = T58 - T59;
1028
2
       T5c = T58 + T59;
1029
2
        }
1030
2
        {
1031
2
       E T4M, T4X, T51, T54;
1032
2
       T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
1033
2
       T4X = FNMS(KP923879532, T4W, KP382683432 * T4R);
1034
2
       T4Y = T4M + T4X;
1035
2
       T56 = T4X - T4M;
1036
2
       T51 = T4Z - T50;
1037
2
       T54 = KP707106781 * (T52 - T53);
1038
2
       T55 = T51 - T54;
1039
2
       T5b = T51 + T54;
1040
2
        }
1041
2
        ro[WS(os, 22)] = T4B - T4Y;
1042
2
        io[WS(os, 22)] = T5b - T5c;
1043
2
        ro[WS(os, 6)] = T4B + T4Y;
1044
2
        io[WS(os, 6)] = T5b + T5c;
1045
2
        io[WS(os, 30)] = T55 - T56;
1046
2
        ro[WS(os, 30)] = T57 - T5a;
1047
2
        io[WS(os, 14)] = T55 + T56;
1048
2
        ro[WS(os, 14)] = T57 + T5a;
1049
2
         }
1050
2
         {
1051
2
        E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
1052
2
        {
1053
2
       E T5d, T5e, T5s, T5t;
1054
2
       T5d = T4r + T4s;
1055
2
       T5e = KP707106781 * (T53 + T52);
1056
2
       T5f = T5d + T5e;
1057
2
       T5r = T5d - T5e;
1058
2
       T5s = FNMS(KP382683432, T5h, KP923879532 * T5g);
1059
2
       T5t = FMA(KP923879532, T5k, KP382683432 * T5j);
1060
2
       T5u = T5s - T5t;
1061
2
       T5w = T5s + T5t;
1062
2
        }
1063
2
        {
1064
2
       E T5i, T5l, T5n, T5o;
1065
2
       T5i = FMA(KP382683432, T5g, KP923879532 * T5h);
1066
2
       T5l = FNMS(KP382683432, T5k, KP923879532 * T5j);
1067
2
       T5m = T5i + T5l;
1068
2
       T5q = T5l - T5i;
1069
2
       T5n = T50 + T4Z;
1070
2
       T5o = KP707106781 * (T4w + T4z);
1071
2
       T5p = T5n - T5o;
1072
2
       T5v = T5n + T5o;
1073
2
        }
1074
2
        ro[WS(os, 18)] = T5f - T5m;
1075
2
        io[WS(os, 18)] = T5v - T5w;
1076
2
        ro[WS(os, 2)] = T5f + T5m;
1077
2
        io[WS(os, 2)] = T5v + T5w;
1078
2
        io[WS(os, 26)] = T5p - T5q;
1079
2
        ro[WS(os, 26)] = T5r - T5u;
1080
2
        io[WS(os, 10)] = T5p + T5q;
1081
2
        ro[WS(os, 10)] = T5r + T5u;
1082
2
         }
1083
2
         {
1084
2
        E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
1085
2
        {
1086
2
       E T5x, T5y, T5Q, T5R;
1087
2
       T5x = T7 - Te;
1088
2
       T5y = T1n - T1u;
1089
2
       T5z = T5x + T5y;
1090
2
       T5P = T5x - T5y;
1091
2
       T5Q = T5D - T5A;
1092
2
       T5R = T5F + T5I;
1093
2
       T5S = KP707106781 * (T5Q - T5R);
1094
2
       T5U = KP707106781 * (T5Q + T5R);
1095
2
        }
1096
2
        {
1097
2
       E T5E, T5J, T5L, T5M;
1098
2
       T5E = T5A + T5D;
1099
2
       T5J = T5F - T5I;
1100
2
       T5K = KP707106781 * (T5E + T5J);
1101
2
       T5O = KP707106781 * (T5J - T5E);
1102
2
       T5L = T18 - T1f;
1103
2
       T5M = Tt - Tm;
1104
2
       T5N = T5L - T5M;
1105
2
       T5T = T5M + T5L;
1106
2
        }
1107
2
        ro[WS(os, 20)] = T5z - T5K;
1108
2
        io[WS(os, 20)] = T5T - T5U;
1109
2
        ro[WS(os, 4)] = T5z + T5K;
1110
2
        io[WS(os, 4)] = T5T + T5U;
1111
2
        io[WS(os, 28)] = T5N - T5O;
1112
2
        ro[WS(os, 28)] = T5P - T5S;
1113
2
        io[WS(os, 12)] = T5N + T5O;
1114
2
        ro[WS(os, 12)] = T5P + T5S;
1115
2
         }
1116
2
         {
1117
2
        E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
1118
2
        {
1119
2
       E Tf, Tu, T5W, T5X;
1120
2
       Tf = T7 + Te;
1121
2
       Tu = Tm + Tt;
1122
2
       Tv = Tf + Tu;
1123
2
       T5V = Tf - Tu;
1124
2
       T5W = T5B + T5C;
1125
2
       T5X = T5G + T5H;
1126
2
       T5Y = T5W - T5X;
1127
2
       T60 = T5W + T5X;
1128
2
        }
1129
2
        {
1130
2
       E TK, TZ, T1g, T1v;
1131
2
       TK = TC + TJ;
1132
2
       TZ = TR + TY;
1133
2
       T10 = TK + TZ;
1134
2
       T11 = TZ - TK;
1135
2
       T1g = T18 + T1f;
1136
2
       T1v = T1n + T1u;
1137
2
       T1w = T1g - T1v;
1138
2
       T5Z = T1g + T1v;
1139
2
        }
1140
2
        ro[WS(os, 16)] = Tv - T10;
1141
2
        io[WS(os, 16)] = T5Z - T60;
1142
2
        ro[0] = Tv + T10;
1143
2
        io[0] = T5Z + T60;
1144
2
        io[WS(os, 8)] = T11 + T1w;
1145
2
        ro[WS(os, 8)] = T5V + T5Y;
1146
2
        io[WS(os, 24)] = T1w - T11;
1147
2
        ro[WS(os, 24)] = T5V - T5Y;
1148
2
         }
1149
2
         {
1150
2
        E T1X, T33, T31, T37, T2o, T34, T2P, T35;
1151
2
        {
1152
2
       E T1H, T1W, T2X, T30;
1153
2
       T1H = T1z - T1G;
1154
2
       T1W = T1O - T1V;
1155
2
       T1X = T1H + T1W;
1156
2
       T33 = T1H - T1W;
1157
2
       T2X = T2T - T2W;
1158
2
       T30 = T2Y - T2Z;
1159
2
       T31 = T2X - T30;
1160
2
       T37 = T2X + T30;
1161
2
        }
1162
2
        {
1163
2
       E T2e, T2n, T2F, T2O;
1164
2
       T2e = T22 - T2d;
1165
2
       T2n = T2j - T2m;
1166
2
       T2o = FMA(KP980785280, T2e, KP195090322 * T2n);
1167
2
       T34 = FNMS(KP980785280, T2n, KP195090322 * T2e);
1168
2
       T2F = T2t - T2E;
1169
2
       T2O = T2K - T2N;
1170
2
       T2P = FNMS(KP980785280, T2O, KP195090322 * T2F);
1171
2
       T35 = FMA(KP195090322, T2O, KP980785280 * T2F);
1172
2
        }
1173
2
        {
1174
2
       E T2Q, T38, T32, T36;
1175
2
       T2Q = T2o + T2P;
1176
2
       ro[WS(os, 23)] = T1X - T2Q;
1177
2
       ro[WS(os, 7)] = T1X + T2Q;
1178
2
       T38 = T34 + T35;
1179
2
       io[WS(os, 23)] = T37 - T38;
1180
2
       io[WS(os, 7)] = T37 + T38;
1181
2
       T32 = T2P - T2o;
1182
2
       io[WS(os, 31)] = T31 - T32;
1183
2
       io[WS(os, 15)] = T31 + T32;
1184
2
       T36 = T34 - T35;
1185
2
       ro[WS(os, 31)] = T33 - T36;
1186
2
       ro[WS(os, 15)] = T33 + T36;
1187
2
        }
1188
2
         }
1189
2
         {
1190
2
        E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
1191
2
        {
1192
2
       E T3v, T3C, T3V, T3Y;
1193
2
       T3v = T3t - T3u;
1194
2
       T3C = T3y - T3B;
1195
2
       T3D = T3v + T3C;
1196
2
       T41 = T3v - T3C;
1197
2
       T3V = T3T - T3U;
1198
2
       T3Y = T3W - T3X;
1199
2
       T3Z = T3V - T3Y;
1200
2
       T45 = T3V + T3Y;
1201
2
        }
1202
2
        {
1203
2
       E T3G, T3J, T3N, T3Q;
1204
2
       T3G = T3E - T3F;
1205
2
       T3J = T3H - T3I;
1206
2
       T3K = FMA(KP555570233, T3G, KP831469612 * T3J);
1207
2
       T42 = FNMS(KP831469612, T3G, KP555570233 * T3J);
1208
2
       T3N = T3L - T3M;
1209
2
       T3Q = T3O - T3P;
1210
2
       T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N);
1211
2
       T43 = FMA(KP831469612, T3N, KP555570233 * T3Q);
1212
2
        }
1213
2
        {
1214
2
       E T3S, T46, T40, T44;
1215
2
       T3S = T3K + T3R;
1216
2
       ro[WS(os, 21)] = T3D - T3S;
1217
2
       ro[WS(os, 5)] = T3D + T3S;
1218
2
       T46 = T42 + T43;
1219
2
       io[WS(os, 21)] = T45 - T46;
1220
2
       io[WS(os, 5)] = T45 + T46;
1221
2
       T40 = T3R - T3K;
1222
2
       io[WS(os, 29)] = T3Z - T40;
1223
2
       io[WS(os, 13)] = T3Z + T40;
1224
2
       T44 = T42 - T43;
1225
2
       ro[WS(os, 29)] = T41 - T44;
1226
2
       ro[WS(os, 13)] = T41 + T44;
1227
2
        }
1228
2
         }
1229
2
         {
1230
2
        E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n;
1231
2
        {
1232
2
       E T47, T48, T4h, T4i;
1233
2
       T47 = T3t + T3u;
1234
2
       T48 = T3X + T3W;
1235
2
       T49 = T47 + T48;
1236
2
       T4l = T47 - T48;
1237
2
       T4h = T3T + T3U;
1238
2
       T4i = T3y + T3B;
1239
2
       T4j = T4h - T4i;
1240
2
       T4p = T4h + T4i;
1241
2
        }
1242
2
        {
1243
2
       E T4a, T4b, T4d, T4e;
1244
2
       T4a = T3E + T3F;
1245
2
       T4b = T3H + T3I;
1246
2
       T4c = FMA(KP980785280, T4a, KP195090322 * T4b);
1247
2
       T4m = FNMS(KP195090322, T4a, KP980785280 * T4b);
1248
2
       T4d = T3L + T3M;
1249
2
       T4e = T3O + T3P;
1250
2
       T4f = FNMS(KP195090322, T4e, KP980785280 * T4d);
1251
2
       T4n = FMA(KP195090322, T4d, KP980785280 * T4e);
1252
2
        }
1253
2
        {
1254
2
       E T4g, T4q, T4k, T4o;
1255
2
       T4g = T4c + T4f;
1256
2
       ro[WS(os, 17)] = T49 - T4g;
1257
2
       ro[WS(os, 1)] = T49 + T4g;
1258
2
       T4q = T4m + T4n;
1259
2
       io[WS(os, 17)] = T4p - T4q;
1260
2
       io[WS(os, 1)] = T4p + T4q;
1261
2
       T4k = T4f - T4c;
1262
2
       io[WS(os, 25)] = T4j - T4k;
1263
2
       io[WS(os, 9)] = T4j + T4k;
1264
2
       T4o = T4m - T4n;
1265
2
       ro[WS(os, 25)] = T4l - T4o;
1266
2
       ro[WS(os, 9)] = T4l + T4o;
1267
2
        }
1268
2
         }
1269
2
         {
1270
2
        E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
1271
2
        {
1272
2
       E T39, T3a, T3j, T3k;
1273
2
       T39 = T1z + T1G;
1274
2
       T3a = T2Z + T2Y;
1275
2
       T3b = T39 + T3a;
1276
2
       T3n = T39 - T3a;
1277
2
       T3j = T2T + T2W;
1278
2
       T3k = T1O + T1V;
1279
2
       T3l = T3j - T3k;
1280
2
       T3r = T3j + T3k;
1281
2
        }
1282
2
        {
1283
2
       E T3c, T3d, T3f, T3g;
1284
2
       T3c = T22 + T2d;
1285
2
       T3d = T2j + T2m;
1286
2
       T3e = FMA(KP555570233, T3c, KP831469612 * T3d);
1287
2
       T3o = FNMS(KP555570233, T3d, KP831469612 * T3c);
1288
2
       T3f = T2t + T2E;
1289
2
       T3g = T2K + T2N;
1290
2
       T3h = FNMS(KP555570233, T3g, KP831469612 * T3f);
1291
2
       T3p = FMA(KP831469612, T3g, KP555570233 * T3f);
1292
2
        }
1293
2
        {
1294
2
       E T3i, T3s, T3m, T3q;
1295
2
       T3i = T3e + T3h;
1296
2
       ro[WS(os, 19)] = T3b - T3i;
1297
2
       ro[WS(os, 3)] = T3b + T3i;
1298
2
       T3s = T3o + T3p;
1299
2
       io[WS(os, 19)] = T3r - T3s;
1300
2
       io[WS(os, 3)] = T3r + T3s;
1301
2
       T3m = T3h - T3e;
1302
2
       io[WS(os, 27)] = T3l - T3m;
1303
2
       io[WS(os, 11)] = T3l + T3m;
1304
2
       T3q = T3o - T3p;
1305
2
       ro[WS(os, 27)] = T3n - T3q;
1306
2
       ro[WS(os, 11)] = T3n + T3q;
1307
2
        }
1308
2
         }
1309
2
    }
1310
2
     }
1311
2
}
1312
1313
static const kdft_desc desc = { 32, "n1_32", { 340, 52, 32, 0 }, &GENUS, 0, 0, 0, 0 };
1314
1315
1
void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc);
1316
1
}
1317
1318
#endif