Coverage Report

Created: 2025-11-11 06:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cf/r2cfII_10.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Nov 11 06:18:24 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include rdft/scalar/r2cfII.h */
29
30
/*
31
 * This function contains 32 FP additions, 18 FP multiplications,
32
 * (or, 14 additions, 0 multiplications, 18 fused multiply/add),
33
 * 21 stack variables, 4 constants, and 20 memory accesses
34
 */
35
#include "rdft/scalar/r2cfII.h"
36
37
static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT i;
45
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
46
         E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn;
47
         T1 = R0[0];
48
         To = R1[WS(rs, 2)];
49
         {
50
        E T2, T3, T4, T5, T6, T7;
51
        T2 = R0[WS(rs, 2)];
52
        T3 = R0[WS(rs, 3)];
53
        T4 = T2 - T3;
54
        T5 = R0[WS(rs, 4)];
55
        T6 = R0[WS(rs, 1)];
56
        T7 = T5 - T6;
57
        T8 = T4 + T7;
58
        Tt = T5 + T6;
59
        Ta = T4 - T7;
60
        Ts = T2 + T3;
61
         }
62
         {
63
        E Tc, Td, Tm, Tf, Tg, Tl;
64
        Tc = R1[0];
65
        Td = R1[WS(rs, 4)];
66
        Tm = Tc + Td;
67
        Tf = R1[WS(rs, 1)];
68
        Tg = R1[WS(rs, 3)];
69
        Tl = Tf + Tg;
70
        Te = Tc - Td;
71
        Tq = Tm + Tl;
72
        Th = Tf - Tg;
73
        Tn = Tl - Tm;
74
         }
75
         Cr[WS(csr, 2)] = T1 + T8;
76
         Ci[WS(csi, 2)] = Tn - To;
77
         {
78
        E Ti, Tk, Tb, Tj, T9;
79
        Ti = FMA(KP618033988, Th, Te);
80
        Tk = FNMS(KP618033988, Te, Th);
81
        T9 = FNMS(KP250000000, T8, T1);
82
        Tb = FMA(KP559016994, Ta, T9);
83
        Tj = FNMS(KP559016994, Ta, T9);
84
        Cr[WS(csr, 4)] = FNMS(KP951056516, Ti, Tb);
85
        Cr[WS(csr, 3)] = FMA(KP951056516, Tk, Tj);
86
        Cr[0] = FMA(KP951056516, Ti, Tb);
87
        Cr[WS(csr, 1)] = FNMS(KP951056516, Tk, Tj);
88
         }
89
         {
90
        E Tu, Tw, Tr, Tv, Tp;
91
        Tu = FMA(KP618033988, Tt, Ts);
92
        Tw = FNMS(KP618033988, Ts, Tt);
93
        Tp = FMA(KP250000000, Tn, To);
94
        Tr = FMA(KP559016994, Tq, Tp);
95
        Tv = FNMS(KP559016994, Tq, Tp);
96
        Ci[0] = -(FMA(KP951056516, Tu, Tr));
97
        Ci[WS(csi, 3)] = FMA(KP951056516, Tw, Tv);
98
        Ci[WS(csi, 4)] = FMS(KP951056516, Tu, Tr);
99
        Ci[WS(csi, 1)] = FNMS(KP951056516, Tw, Tv);
100
         }
101
    }
102
     }
103
}
104
105
static const kr2c_desc desc = { 10, "r2cfII_10", { 14, 0, 18, 0 }, &GENUS };
106
107
void X(codelet_r2cfII_10) (planner *p) { X(kr2c_register) (p, r2cfII_10, &desc);
108
}
109
110
#else
111
112
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include rdft/scalar/r2cfII.h */
113
114
/*
115
 * This function contains 32 FP additions, 12 FP multiplications,
116
 * (or, 26 additions, 6 multiplications, 6 fused multiply/add),
117
 * 21 stack variables, 4 constants, and 20 memory accesses
118
 */
119
#include "rdft/scalar/r2cfII.h"
120
121
static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
122
0
{
123
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
124
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
125
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
126
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
127
0
     {
128
0
    INT i;
129
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
130
0
         E T1, To, T8, Tq, T9, Tp, Te, Ts, Th, Tn;
131
0
         T1 = R0[0];
132
0
         To = R1[WS(rs, 2)];
133
0
         {
134
0
        E T2, T3, T4, T5, T6, T7;
135
0
        T2 = R0[WS(rs, 2)];
136
0
        T3 = R0[WS(rs, 3)];
137
0
        T4 = T2 - T3;
138
0
        T5 = R0[WS(rs, 4)];
139
0
        T6 = R0[WS(rs, 1)];
140
0
        T7 = T5 - T6;
141
0
        T8 = T4 + T7;
142
0
        Tq = T5 + T6;
143
0
        T9 = KP559016994 * (T4 - T7);
144
0
        Tp = T2 + T3;
145
0
         }
146
0
         {
147
0
        E Tc, Td, Tm, Tf, Tg, Tl;
148
0
        Tc = R1[0];
149
0
        Td = R1[WS(rs, 4)];
150
0
        Tm = Tc + Td;
151
0
        Tf = R1[WS(rs, 1)];
152
0
        Tg = R1[WS(rs, 3)];
153
0
        Tl = Tf + Tg;
154
0
        Te = Tc - Td;
155
0
        Ts = KP559016994 * (Tm + Tl);
156
0
        Th = Tf - Tg;
157
0
        Tn = Tl - Tm;
158
0
         }
159
0
         Cr[WS(csr, 2)] = T1 + T8;
160
0
         Ci[WS(csi, 2)] = Tn - To;
161
0
         {
162
0
        E Ti, Tk, Tb, Tj, Ta;
163
0
        Ti = FMA(KP951056516, Te, KP587785252 * Th);
164
0
        Tk = FNMS(KP587785252, Te, KP951056516 * Th);
165
0
        Ta = FNMS(KP250000000, T8, T1);
166
0
        Tb = T9 + Ta;
167
0
        Tj = Ta - T9;
168
0
        Cr[WS(csr, 4)] = Tb - Ti;
169
0
        Cr[WS(csr, 3)] = Tj + Tk;
170
0
        Cr[0] = Tb + Ti;
171
0
        Cr[WS(csr, 1)] = Tj - Tk;
172
0
         }
173
0
         {
174
0
        E Tr, Tw, Tu, Tv, Tt;
175
0
        Tr = FMA(KP951056516, Tp, KP587785252 * Tq);
176
0
        Tw = FNMS(KP587785252, Tp, KP951056516 * Tq);
177
0
        Tt = FMA(KP250000000, Tn, To);
178
0
        Tu = Ts + Tt;
179
0
        Tv = Tt - Ts;
180
0
        Ci[0] = -(Tr + Tu);
181
0
        Ci[WS(csi, 3)] = Tw + Tv;
182
0
        Ci[WS(csi, 4)] = Tr - Tu;
183
0
        Ci[WS(csi, 1)] = Tv - Tw;
184
0
         }
185
0
    }
186
0
     }
187
0
}
188
189
static const kr2c_desc desc = { 10, "r2cfII_10", { 26, 6, 6, 0 }, &GENUS };
190
191
1
void X(codelet_r2cfII_10) (planner *p) { X(kr2c_register) (p, r2cfII_10, &desc);
192
1
}
193
194
#endif