/src/fftw3/rdft/scalar/r2cf/r2cf_15.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Nov 11 06:18:10 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 64 FP additions, 35 FP multiplications, |
32 | | * (or, 36 additions, 7 multiplications, 28 fused multiply/add), |
33 | | * 45 stack variables, 8 constants, and 30 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP910592997, +0.910592997310029334643087372129977886038870291); |
40 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
41 | | DK(KP823639103, +0.823639103546331925877420039278190003029660514); |
42 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
43 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
44 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
45 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
46 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
47 | | { |
48 | | INT i; |
49 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { |
50 | | E Ti, TR, TF, TM, TN, T7, Te, Tf, TV, TW, TX, Ts, Tv, TH, Tl; |
51 | | E To, TG, TS, TT, TU; |
52 | | { |
53 | | E TD, Tg, Th, TE; |
54 | | TD = R0[0]; |
55 | | Tg = R0[WS(rs, 5)]; |
56 | | Th = R1[WS(rs, 2)]; |
57 | | TE = Th + Tg; |
58 | | Ti = Tg - Th; |
59 | | TR = TD + TE; |
60 | | TF = FNMS(KP500000000, TE, TD); |
61 | | } |
62 | | { |
63 | | E Tj, Tq, Tt, Tm, T3, Tk, Ta, Tr, Td, Tu, T6, Tn; |
64 | | Tj = R1[WS(rs, 1)]; |
65 | | Tq = R0[WS(rs, 3)]; |
66 | | Tt = R1[WS(rs, 4)]; |
67 | | Tm = R0[WS(rs, 6)]; |
68 | | { |
69 | | E T1, T2, T8, T9; |
70 | | T1 = R0[WS(rs, 4)]; |
71 | | T2 = R1[WS(rs, 6)]; |
72 | | T3 = T1 - T2; |
73 | | Tk = T1 + T2; |
74 | | T8 = R1[WS(rs, 5)]; |
75 | | T9 = R1[0]; |
76 | | Ta = T8 - T9; |
77 | | Tr = T8 + T9; |
78 | | } |
79 | | { |
80 | | E Tb, Tc, T4, T5; |
81 | | Tb = R0[WS(rs, 7)]; |
82 | | Tc = R0[WS(rs, 2)]; |
83 | | Td = Tb - Tc; |
84 | | Tu = Tb + Tc; |
85 | | T4 = R0[WS(rs, 1)]; |
86 | | T5 = R1[WS(rs, 3)]; |
87 | | T6 = T4 - T5; |
88 | | Tn = T4 + T5; |
89 | | } |
90 | | TM = T6 - T3; |
91 | | TN = Td - Ta; |
92 | | T7 = T3 + T6; |
93 | | Te = Ta + Td; |
94 | | Tf = T7 + Te; |
95 | | TV = Tq + Tr; |
96 | | TW = Tt + Tu; |
97 | | TX = TV + TW; |
98 | | Ts = FNMS(KP500000000, Tr, Tq); |
99 | | Tv = FNMS(KP500000000, Tu, Tt); |
100 | | TH = Ts + Tv; |
101 | | Tl = FNMS(KP500000000, Tk, Tj); |
102 | | To = FNMS(KP500000000, Tn, Tm); |
103 | | TG = Tl + To; |
104 | | TS = Tj + Tk; |
105 | | TT = Tm + Tn; |
106 | | TU = TS + TT; |
107 | | } |
108 | | Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti); |
109 | | { |
110 | | E TK, TQ, TO, TI, TJ, TP, TL; |
111 | | TK = TG - TH; |
112 | | TQ = FNMS(KP618033988, TM, TN); |
113 | | TO = FMA(KP618033988, TN, TM); |
114 | | TI = TG + TH; |
115 | | TJ = FNMS(KP250000000, TI, TF); |
116 | | Cr[WS(csr, 5)] = TF + TI; |
117 | | TP = FNMS(KP559016994, TK, TJ); |
118 | | Cr[WS(csr, 2)] = FMA(KP823639103, TQ, TP); |
119 | | Cr[WS(csr, 7)] = FNMS(KP823639103, TQ, TP); |
120 | | TL = FMA(KP559016994, TK, TJ); |
121 | | Cr[WS(csr, 1)] = FMA(KP823639103, TO, TL); |
122 | | Cr[WS(csr, 4)] = FNMS(KP823639103, TO, TL); |
123 | | } |
124 | | { |
125 | | E T11, T12, T10, TY, TZ; |
126 | | T11 = TW - TV; |
127 | | T12 = TS - TT; |
128 | | Ci[WS(csi, 3)] = KP951056516 * (FMA(KP618033988, T12, T11)); |
129 | | Ci[WS(csi, 6)] = -(KP951056516 * (FNMS(KP618033988, T11, T12))); |
130 | | T10 = TU - TX; |
131 | | TY = TU + TX; |
132 | | TZ = FNMS(KP250000000, TY, TR); |
133 | | Cr[WS(csr, 3)] = FNMS(KP559016994, T10, TZ); |
134 | | Cr[0] = TR + TY; |
135 | | Cr[WS(csr, 6)] = FMA(KP559016994, T10, TZ); |
136 | | { |
137 | | E Tx, TB, TA, TC; |
138 | | { |
139 | | E Tp, Tw, Ty, Tz; |
140 | | Tp = Tl - To; |
141 | | Tw = Ts - Tv; |
142 | | Tx = FMA(KP618033988, Tw, Tp); |
143 | | TB = FNMS(KP618033988, Tp, Tw); |
144 | | Ty = FMA(KP250000000, Tf, Ti); |
145 | | Tz = Te - T7; |
146 | | TA = FMA(KP559016994, Tz, Ty); |
147 | | TC = FNMS(KP559016994, Tz, Ty); |
148 | | } |
149 | | Ci[WS(csi, 1)] = -(KP951056516 * (FNMS(KP910592997, TA, Tx))); |
150 | | Ci[WS(csi, 7)] = KP951056516 * (FMA(KP910592997, TC, TB)); |
151 | | Ci[WS(csi, 4)] = KP951056516 * (FMA(KP910592997, TA, Tx)); |
152 | | Ci[WS(csi, 2)] = KP951056516 * (FNMS(KP910592997, TC, TB)); |
153 | | } |
154 | | } |
155 | | } |
156 | | } |
157 | | } |
158 | | |
159 | | static const kr2c_desc desc = { 15, "r2cf_15", { 36, 7, 28, 0 }, &GENUS }; |
160 | | |
161 | | void X(codelet_r2cf_15) (planner *p) { X(kr2c_register) (p, r2cf_15, &desc); |
162 | | } |
163 | | |
164 | | #else |
165 | | |
166 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include rdft/scalar/r2cf.h */ |
167 | | |
168 | | /* |
169 | | * This function contains 64 FP additions, 25 FP multiplications, |
170 | | * (or, 50 additions, 11 multiplications, 14 fused multiply/add), |
171 | | * 47 stack variables, 10 constants, and 30 memory accesses |
172 | | */ |
173 | | #include "rdft/scalar/r2cf.h" |
174 | | |
175 | | static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
176 | 0 | { |
177 | 0 | DK(KP484122918, +0.484122918275927110647408174972799951354115213); |
178 | 0 | DK(KP216506350, +0.216506350946109661690930792688234045867850657); |
179 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
180 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
181 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
182 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
183 | 0 | DK(KP509036960, +0.509036960455127183450980863393907648510733164); |
184 | 0 | DK(KP823639103, +0.823639103546331925877420039278190003029660514); |
185 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
186 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
187 | 0 | { |
188 | 0 | INT i; |
189 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { |
190 | 0 | E Ti, TR, TL, TD, TE, T7, Te, Tf, TV, TW, TX, Tv, Ty, TH, To; |
191 | 0 | E Tr, TG, TS, TT, TU; |
192 | 0 | { |
193 | 0 | E TJ, Tg, Th, TK; |
194 | 0 | TJ = R0[0]; |
195 | 0 | Tg = R0[WS(rs, 5)]; |
196 | 0 | Th = R1[WS(rs, 2)]; |
197 | 0 | TK = Th + Tg; |
198 | 0 | Ti = Tg - Th; |
199 | 0 | TR = TJ + TK; |
200 | 0 | TL = FNMS(KP500000000, TK, TJ); |
201 | 0 | } |
202 | 0 | { |
203 | 0 | E Tm, Tt, Tw, Tp, T3, Tx, Ta, Tn, Td, Tq, T6, Tu; |
204 | 0 | Tm = R1[WS(rs, 1)]; |
205 | 0 | Tt = R0[WS(rs, 3)]; |
206 | 0 | Tw = R1[WS(rs, 4)]; |
207 | 0 | Tp = R0[WS(rs, 6)]; |
208 | 0 | { |
209 | 0 | E T1, T2, T8, T9; |
210 | 0 | T1 = R0[WS(rs, 7)]; |
211 | 0 | T2 = R0[WS(rs, 2)]; |
212 | 0 | T3 = T1 - T2; |
213 | 0 | Tx = T1 + T2; |
214 | 0 | T8 = R1[WS(rs, 6)]; |
215 | 0 | T9 = R0[WS(rs, 4)]; |
216 | 0 | Ta = T8 - T9; |
217 | 0 | Tn = T9 + T8; |
218 | 0 | } |
219 | 0 | { |
220 | 0 | E Tb, Tc, T4, T5; |
221 | 0 | Tb = R1[WS(rs, 3)]; |
222 | 0 | Tc = R0[WS(rs, 1)]; |
223 | 0 | Td = Tb - Tc; |
224 | 0 | Tq = Tc + Tb; |
225 | 0 | T4 = R1[0]; |
226 | 0 | T5 = R1[WS(rs, 5)]; |
227 | 0 | T6 = T4 - T5; |
228 | 0 | Tu = T5 + T4; |
229 | 0 | } |
230 | 0 | TD = Ta - Td; |
231 | 0 | TE = T6 + T3; |
232 | 0 | T7 = T3 - T6; |
233 | 0 | Te = Ta + Td; |
234 | 0 | Tf = T7 - Te; |
235 | 0 | TV = Tt + Tu; |
236 | 0 | TW = Tw + Tx; |
237 | 0 | TX = TV + TW; |
238 | 0 | Tv = FNMS(KP500000000, Tu, Tt); |
239 | 0 | Ty = FNMS(KP500000000, Tx, Tw); |
240 | 0 | TH = Tv + Ty; |
241 | 0 | To = FNMS(KP500000000, Tn, Tm); |
242 | 0 | Tr = FNMS(KP500000000, Tq, Tp); |
243 | 0 | TG = To + Tr; |
244 | 0 | TS = Tm + Tn; |
245 | 0 | TT = Tp + Tq; |
246 | 0 | TU = TS + TT; |
247 | 0 | } |
248 | 0 | Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti); |
249 | 0 | { |
250 | 0 | E TF, TP, TI, TM, TN, TQ, TO; |
251 | 0 | TF = FMA(KP823639103, TD, KP509036960 * TE); |
252 | 0 | TP = FNMS(KP509036960, TD, KP823639103 * TE); |
253 | 0 | TI = KP559016994 * (TG - TH); |
254 | 0 | TM = TG + TH; |
255 | 0 | TN = FNMS(KP250000000, TM, TL); |
256 | 0 | Cr[WS(csr, 5)] = TL + TM; |
257 | 0 | TQ = TN - TI; |
258 | 0 | Cr[WS(csr, 2)] = TP + TQ; |
259 | 0 | Cr[WS(csr, 7)] = TQ - TP; |
260 | 0 | TO = TI + TN; |
261 | 0 | Cr[WS(csr, 1)] = TF + TO; |
262 | 0 | Cr[WS(csr, 4)] = TO - TF; |
263 | 0 | } |
264 | 0 | { |
265 | 0 | E T11, T12, T10, TY, TZ; |
266 | 0 | T11 = TS - TT; |
267 | 0 | T12 = TW - TV; |
268 | 0 | Ci[WS(csi, 3)] = FMA(KP587785252, T11, KP951056516 * T12); |
269 | 0 | Ci[WS(csi, 6)] = FNMS(KP951056516, T11, KP587785252 * T12); |
270 | 0 | T10 = KP559016994 * (TU - TX); |
271 | 0 | TY = TU + TX; |
272 | 0 | TZ = FNMS(KP250000000, TY, TR); |
273 | 0 | Cr[WS(csr, 3)] = TZ - T10; |
274 | 0 | Cr[0] = TR + TY; |
275 | 0 | Cr[WS(csr, 6)] = T10 + TZ; |
276 | 0 | { |
277 | 0 | E Tl, TB, TA, TC; |
278 | 0 | { |
279 | 0 | E Tj, Tk, Ts, Tz; |
280 | 0 | Tj = FMA(KP866025403, Ti, KP216506350 * Tf); |
281 | 0 | Tk = KP484122918 * (Te + T7); |
282 | 0 | Tl = Tj + Tk; |
283 | 0 | TB = Tk - Tj; |
284 | 0 | Ts = To - Tr; |
285 | 0 | Tz = Tv - Ty; |
286 | 0 | TA = FMA(KP951056516, Ts, KP587785252 * Tz); |
287 | 0 | TC = FNMS(KP587785252, Ts, KP951056516 * Tz); |
288 | 0 | } |
289 | 0 | Ci[WS(csi, 1)] = Tl - TA; |
290 | 0 | Ci[WS(csi, 7)] = TC - TB; |
291 | 0 | Ci[WS(csi, 4)] = Tl + TA; |
292 | 0 | Ci[WS(csi, 2)] = TB + TC; |
293 | 0 | } |
294 | 0 | } |
295 | 0 | } |
296 | 0 | } |
297 | 0 | } |
298 | | |
299 | | static const kr2c_desc desc = { 15, "r2cf_15", { 50, 11, 14, 0 }, &GENUS }; |
300 | | |
301 | 1 | void X(codelet_r2cf_15) (planner *p) { X(kr2c_register) (p, r2cf_15, &desc); |
302 | 1 | } |
303 | | |
304 | | #endif |