Coverage Report

Created: 2025-11-11 06:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cf/r2cf_15.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Nov 11 06:18:10 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include rdft/scalar/r2cf.h */
29
30
/*
31
 * This function contains 64 FP additions, 35 FP multiplications,
32
 * (or, 36 additions, 7 multiplications, 28 fused multiply/add),
33
 * 45 stack variables, 8 constants, and 30 memory accesses
34
 */
35
#include "rdft/scalar/r2cf.h"
36
37
static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP910592997, +0.910592997310029334643087372129977886038870291);
40
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
41
     DK(KP823639103, +0.823639103546331925877420039278190003029660514);
42
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
43
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
44
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
45
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
46
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
47
     {
48
    INT i;
49
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
50
         E Ti, TR, TF, TM, TN, T7, Te, Tf, TV, TW, TX, Ts, Tv, TH, Tl;
51
         E To, TG, TS, TT, TU;
52
         {
53
        E TD, Tg, Th, TE;
54
        TD = R0[0];
55
        Tg = R0[WS(rs, 5)];
56
        Th = R1[WS(rs, 2)];
57
        TE = Th + Tg;
58
        Ti = Tg - Th;
59
        TR = TD + TE;
60
        TF = FNMS(KP500000000, TE, TD);
61
         }
62
         {
63
        E Tj, Tq, Tt, Tm, T3, Tk, Ta, Tr, Td, Tu, T6, Tn;
64
        Tj = R1[WS(rs, 1)];
65
        Tq = R0[WS(rs, 3)];
66
        Tt = R1[WS(rs, 4)];
67
        Tm = R0[WS(rs, 6)];
68
        {
69
       E T1, T2, T8, T9;
70
       T1 = R0[WS(rs, 4)];
71
       T2 = R1[WS(rs, 6)];
72
       T3 = T1 - T2;
73
       Tk = T1 + T2;
74
       T8 = R1[WS(rs, 5)];
75
       T9 = R1[0];
76
       Ta = T8 - T9;
77
       Tr = T8 + T9;
78
        }
79
        {
80
       E Tb, Tc, T4, T5;
81
       Tb = R0[WS(rs, 7)];
82
       Tc = R0[WS(rs, 2)];
83
       Td = Tb - Tc;
84
       Tu = Tb + Tc;
85
       T4 = R0[WS(rs, 1)];
86
       T5 = R1[WS(rs, 3)];
87
       T6 = T4 - T5;
88
       Tn = T4 + T5;
89
        }
90
        TM = T6 - T3;
91
        TN = Td - Ta;
92
        T7 = T3 + T6;
93
        Te = Ta + Td;
94
        Tf = T7 + Te;
95
        TV = Tq + Tr;
96
        TW = Tt + Tu;
97
        TX = TV + TW;
98
        Ts = FNMS(KP500000000, Tr, Tq);
99
        Tv = FNMS(KP500000000, Tu, Tt);
100
        TH = Ts + Tv;
101
        Tl = FNMS(KP500000000, Tk, Tj);
102
        To = FNMS(KP500000000, Tn, Tm);
103
        TG = Tl + To;
104
        TS = Tj + Tk;
105
        TT = Tm + Tn;
106
        TU = TS + TT;
107
         }
108
         Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti);
109
         {
110
        E TK, TQ, TO, TI, TJ, TP, TL;
111
        TK = TG - TH;
112
        TQ = FNMS(KP618033988, TM, TN);
113
        TO = FMA(KP618033988, TN, TM);
114
        TI = TG + TH;
115
        TJ = FNMS(KP250000000, TI, TF);
116
        Cr[WS(csr, 5)] = TF + TI;
117
        TP = FNMS(KP559016994, TK, TJ);
118
        Cr[WS(csr, 2)] = FMA(KP823639103, TQ, TP);
119
        Cr[WS(csr, 7)] = FNMS(KP823639103, TQ, TP);
120
        TL = FMA(KP559016994, TK, TJ);
121
        Cr[WS(csr, 1)] = FMA(KP823639103, TO, TL);
122
        Cr[WS(csr, 4)] = FNMS(KP823639103, TO, TL);
123
         }
124
         {
125
        E T11, T12, T10, TY, TZ;
126
        T11 = TW - TV;
127
        T12 = TS - TT;
128
        Ci[WS(csi, 3)] = KP951056516 * (FMA(KP618033988, T12, T11));
129
        Ci[WS(csi, 6)] = -(KP951056516 * (FNMS(KP618033988, T11, T12)));
130
        T10 = TU - TX;
131
        TY = TU + TX;
132
        TZ = FNMS(KP250000000, TY, TR);
133
        Cr[WS(csr, 3)] = FNMS(KP559016994, T10, TZ);
134
        Cr[0] = TR + TY;
135
        Cr[WS(csr, 6)] = FMA(KP559016994, T10, TZ);
136
        {
137
       E Tx, TB, TA, TC;
138
       {
139
            E Tp, Tw, Ty, Tz;
140
            Tp = Tl - To;
141
            Tw = Ts - Tv;
142
            Tx = FMA(KP618033988, Tw, Tp);
143
            TB = FNMS(KP618033988, Tp, Tw);
144
            Ty = FMA(KP250000000, Tf, Ti);
145
            Tz = Te - T7;
146
            TA = FMA(KP559016994, Tz, Ty);
147
            TC = FNMS(KP559016994, Tz, Ty);
148
       }
149
       Ci[WS(csi, 1)] = -(KP951056516 * (FNMS(KP910592997, TA, Tx)));
150
       Ci[WS(csi, 7)] = KP951056516 * (FMA(KP910592997, TC, TB));
151
       Ci[WS(csi, 4)] = KP951056516 * (FMA(KP910592997, TA, Tx));
152
       Ci[WS(csi, 2)] = KP951056516 * (FNMS(KP910592997, TC, TB));
153
        }
154
         }
155
    }
156
     }
157
}
158
159
static const kr2c_desc desc = { 15, "r2cf_15", { 36, 7, 28, 0 }, &GENUS };
160
161
void X(codelet_r2cf_15) (planner *p) { X(kr2c_register) (p, r2cf_15, &desc);
162
}
163
164
#else
165
166
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include rdft/scalar/r2cf.h */
167
168
/*
169
 * This function contains 64 FP additions, 25 FP multiplications,
170
 * (or, 50 additions, 11 multiplications, 14 fused multiply/add),
171
 * 47 stack variables, 10 constants, and 30 memory accesses
172
 */
173
#include "rdft/scalar/r2cf.h"
174
175
static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
176
0
{
177
0
     DK(KP484122918, +0.484122918275927110647408174972799951354115213);
178
0
     DK(KP216506350, +0.216506350946109661690930792688234045867850657);
179
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
180
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
181
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
182
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
183
0
     DK(KP509036960, +0.509036960455127183450980863393907648510733164);
184
0
     DK(KP823639103, +0.823639103546331925877420039278190003029660514);
185
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
186
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
187
0
     {
188
0
    INT i;
189
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
190
0
         E Ti, TR, TL, TD, TE, T7, Te, Tf, TV, TW, TX, Tv, Ty, TH, To;
191
0
         E Tr, TG, TS, TT, TU;
192
0
         {
193
0
        E TJ, Tg, Th, TK;
194
0
        TJ = R0[0];
195
0
        Tg = R0[WS(rs, 5)];
196
0
        Th = R1[WS(rs, 2)];
197
0
        TK = Th + Tg;
198
0
        Ti = Tg - Th;
199
0
        TR = TJ + TK;
200
0
        TL = FNMS(KP500000000, TK, TJ);
201
0
         }
202
0
         {
203
0
        E Tm, Tt, Tw, Tp, T3, Tx, Ta, Tn, Td, Tq, T6, Tu;
204
0
        Tm = R1[WS(rs, 1)];
205
0
        Tt = R0[WS(rs, 3)];
206
0
        Tw = R1[WS(rs, 4)];
207
0
        Tp = R0[WS(rs, 6)];
208
0
        {
209
0
       E T1, T2, T8, T9;
210
0
       T1 = R0[WS(rs, 7)];
211
0
       T2 = R0[WS(rs, 2)];
212
0
       T3 = T1 - T2;
213
0
       Tx = T1 + T2;
214
0
       T8 = R1[WS(rs, 6)];
215
0
       T9 = R0[WS(rs, 4)];
216
0
       Ta = T8 - T9;
217
0
       Tn = T9 + T8;
218
0
        }
219
0
        {
220
0
       E Tb, Tc, T4, T5;
221
0
       Tb = R1[WS(rs, 3)];
222
0
       Tc = R0[WS(rs, 1)];
223
0
       Td = Tb - Tc;
224
0
       Tq = Tc + Tb;
225
0
       T4 = R1[0];
226
0
       T5 = R1[WS(rs, 5)];
227
0
       T6 = T4 - T5;
228
0
       Tu = T5 + T4;
229
0
        }
230
0
        TD = Ta - Td;
231
0
        TE = T6 + T3;
232
0
        T7 = T3 - T6;
233
0
        Te = Ta + Td;
234
0
        Tf = T7 - Te;
235
0
        TV = Tt + Tu;
236
0
        TW = Tw + Tx;
237
0
        TX = TV + TW;
238
0
        Tv = FNMS(KP500000000, Tu, Tt);
239
0
        Ty = FNMS(KP500000000, Tx, Tw);
240
0
        TH = Tv + Ty;
241
0
        To = FNMS(KP500000000, Tn, Tm);
242
0
        Tr = FNMS(KP500000000, Tq, Tp);
243
0
        TG = To + Tr;
244
0
        TS = Tm + Tn;
245
0
        TT = Tp + Tq;
246
0
        TU = TS + TT;
247
0
         }
248
0
         Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti);
249
0
         {
250
0
        E TF, TP, TI, TM, TN, TQ, TO;
251
0
        TF = FMA(KP823639103, TD, KP509036960 * TE);
252
0
        TP = FNMS(KP509036960, TD, KP823639103 * TE);
253
0
        TI = KP559016994 * (TG - TH);
254
0
        TM = TG + TH;
255
0
        TN = FNMS(KP250000000, TM, TL);
256
0
        Cr[WS(csr, 5)] = TL + TM;
257
0
        TQ = TN - TI;
258
0
        Cr[WS(csr, 2)] = TP + TQ;
259
0
        Cr[WS(csr, 7)] = TQ - TP;
260
0
        TO = TI + TN;
261
0
        Cr[WS(csr, 1)] = TF + TO;
262
0
        Cr[WS(csr, 4)] = TO - TF;
263
0
         }
264
0
         {
265
0
        E T11, T12, T10, TY, TZ;
266
0
        T11 = TS - TT;
267
0
        T12 = TW - TV;
268
0
        Ci[WS(csi, 3)] = FMA(KP587785252, T11, KP951056516 * T12);
269
0
        Ci[WS(csi, 6)] = FNMS(KP951056516, T11, KP587785252 * T12);
270
0
        T10 = KP559016994 * (TU - TX);
271
0
        TY = TU + TX;
272
0
        TZ = FNMS(KP250000000, TY, TR);
273
0
        Cr[WS(csr, 3)] = TZ - T10;
274
0
        Cr[0] = TR + TY;
275
0
        Cr[WS(csr, 6)] = T10 + TZ;
276
0
        {
277
0
       E Tl, TB, TA, TC;
278
0
       {
279
0
            E Tj, Tk, Ts, Tz;
280
0
            Tj = FMA(KP866025403, Ti, KP216506350 * Tf);
281
0
            Tk = KP484122918 * (Te + T7);
282
0
            Tl = Tj + Tk;
283
0
            TB = Tk - Tj;
284
0
            Ts = To - Tr;
285
0
            Tz = Tv - Ty;
286
0
            TA = FMA(KP951056516, Ts, KP587785252 * Tz);
287
0
            TC = FNMS(KP587785252, Ts, KP951056516 * Tz);
288
0
       }
289
0
       Ci[WS(csi, 1)] = Tl - TA;
290
0
       Ci[WS(csi, 7)] = TC - TB;
291
0
       Ci[WS(csi, 4)] = Tl + TA;
292
0
       Ci[WS(csi, 2)] = TB + TC;
293
0
        }
294
0
         }
295
0
    }
296
0
     }
297
0
}
298
299
static const kr2c_desc desc = { 15, "r2cf_15", { 50, 11, 14, 0 }, &GENUS };
300
301
1
void X(codelet_r2cf_15) (planner *p) { X(kr2c_register) (p, r2cf_15, &desc);
302
1
}
303
304
#endif