Coverage Report

Created: 2025-11-15 06:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/n1_12.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sat Nov 15 06:07:43 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name n1_12 -include dft/scalar/n.h */
29
30
/*
31
 * This function contains 96 FP additions, 24 FP multiplications,
32
 * (or, 72 additions, 0 multiplications, 24 fused multiply/add),
33
 * 43 stack variables, 2 constants, and 48 memory accesses
34
 */
35
#include "dft/scalar/n.h"
36
37
static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT i;
43
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(48, is), MAKE_VOLATILE_STRIDE(48, os)) {
44
         E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1d, TG;
45
         E TJ, T1u, T1c, Tl, T1i, TL, TO, T1v, T1h;
46
         {
47
        E T1, T2, T3, T4;
48
        T1 = ri[0];
49
        T2 = ri[WS(is, 4)];
50
        T3 = ri[WS(is, 8)];
51
        T4 = T2 + T3;
52
        T5 = T1 + T4;
53
        TR = FNMS(KP500000000, T4, T1);
54
        TA = T3 - T2;
55
         }
56
         {
57
        E To, Tp, Tq, Tr;
58
        To = ii[0];
59
        Tp = ii[WS(is, 4)];
60
        Tq = ii[WS(is, 8)];
61
        Tr = Tp + Tq;
62
        Ts = To + Tr;
63
        TS = Tp - Tq;
64
        Tz = FNMS(KP500000000, Tr, To);
65
         }
66
         {
67
        E T6, T7, T8, T9;
68
        T6 = ri[WS(is, 6)];
69
        T7 = ri[WS(is, 10)];
70
        T8 = ri[WS(is, 2)];
71
        T9 = T7 + T8;
72
        Ta = T6 + T9;
73
        TU = FNMS(KP500000000, T9, T6);
74
        TD = T8 - T7;
75
         }
76
         {
77
        E Tt, Tu, Tv, Tw;
78
        Tt = ii[WS(is, 6)];
79
        Tu = ii[WS(is, 10)];
80
        Tv = ii[WS(is, 2)];
81
        Tw = Tu + Tv;
82
        Tx = Tt + Tw;
83
        TV = Tu - Tv;
84
        TC = FNMS(KP500000000, Tw, Tt);
85
         }
86
         {
87
        E Tc, Td, Te, Tf;
88
        Tc = ri[WS(is, 3)];
89
        Td = ri[WS(is, 7)];
90
        Te = ri[WS(is, 11)];
91
        Tf = Td + Te;
92
        Tg = Tc + Tf;
93
        T1d = Te - Td;
94
        TG = FNMS(KP500000000, Tf, Tc);
95
         }
96
         {
97
        E T1a, TH, TI, T1b;
98
        T1a = ii[WS(is, 3)];
99
        TH = ii[WS(is, 7)];
100
        TI = ii[WS(is, 11)];
101
        T1b = TH + TI;
102
        TJ = TH - TI;
103
        T1u = T1a + T1b;
104
        T1c = FNMS(KP500000000, T1b, T1a);
105
         }
106
         {
107
        E Th, Ti, Tj, Tk;
108
        Th = ri[WS(is, 9)];
109
        Ti = ri[WS(is, 1)];
110
        Tj = ri[WS(is, 5)];
111
        Tk = Ti + Tj;
112
        Tl = Th + Tk;
113
        T1i = Tj - Ti;
114
        TL = FNMS(KP500000000, Tk, Th);
115
         }
116
         {
117
        E T1f, TM, TN, T1g;
118
        T1f = ii[WS(is, 9)];
119
        TM = ii[WS(is, 1)];
120
        TN = ii[WS(is, 5)];
121
        T1g = TM + TN;
122
        TO = TM - TN;
123
        T1v = T1f + T1g;
124
        T1h = FNMS(KP500000000, T1g, T1f);
125
         }
126
         {
127
        E Tb, Tm, T1t, T1w;
128
        Tb = T5 + Ta;
129
        Tm = Tg + Tl;
130
        ro[WS(os, 6)] = Tb - Tm;
131
        ro[0] = Tb + Tm;
132
        {
133
       E T1x, T1y, Tn, Ty;
134
       T1x = Ts + Tx;
135
       T1y = T1u + T1v;
136
       io[WS(os, 6)] = T1x - T1y;
137
       io[0] = T1x + T1y;
138
       Tn = Tg - Tl;
139
       Ty = Ts - Tx;
140
       io[WS(os, 3)] = Tn + Ty;
141
       io[WS(os, 9)] = Ty - Tn;
142
        }
143
        T1t = T5 - Ta;
144
        T1w = T1u - T1v;
145
        ro[WS(os, 3)] = T1t - T1w;
146
        ro[WS(os, 9)] = T1t + T1w;
147
        {
148
       E T11, T1l, T1k, T1m, T14, T18, T17, T19;
149
       {
150
            E TZ, T10, T1e, T1j;
151
            TZ = FMA(KP866025403, TA, Tz);
152
            T10 = FMA(KP866025403, TD, TC);
153
            T11 = TZ - T10;
154
            T1l = TZ + T10;
155
            T1e = FMA(KP866025403, T1d, T1c);
156
            T1j = FMA(KP866025403, T1i, T1h);
157
            T1k = T1e - T1j;
158
            T1m = T1e + T1j;
159
       }
160
       {
161
            E T12, T13, T15, T16;
162
            T12 = FMA(KP866025403, TJ, TG);
163
            T13 = FMA(KP866025403, TO, TL);
164
            T14 = T12 - T13;
165
            T18 = T12 + T13;
166
            T15 = FMA(KP866025403, TS, TR);
167
            T16 = FMA(KP866025403, TV, TU);
168
            T17 = T15 + T16;
169
            T19 = T15 - T16;
170
       }
171
       io[WS(os, 1)] = T11 - T14;
172
       ro[WS(os, 1)] = T19 + T1k;
173
       io[WS(os, 7)] = T11 + T14;
174
       ro[WS(os, 7)] = T19 - T1k;
175
       ro[WS(os, 10)] = T17 - T18;
176
       io[WS(os, 10)] = T1l - T1m;
177
       ro[WS(os, 4)] = T17 + T18;
178
       io[WS(os, 4)] = T1l + T1m;
179
        }
180
        {
181
       E TF, T1r, T1q, T1s, TQ, TY, TX, T1n;
182
       {
183
            E TB, TE, T1o, T1p;
184
            TB = FNMS(KP866025403, TA, Tz);
185
            TE = FNMS(KP866025403, TD, TC);
186
            TF = TB - TE;
187
            T1r = TB + TE;
188
            T1o = FNMS(KP866025403, T1d, T1c);
189
            T1p = FNMS(KP866025403, T1i, T1h);
190
            T1q = T1o - T1p;
191
            T1s = T1o + T1p;
192
       }
193
       {
194
            E TK, TP, TT, TW;
195
            TK = FNMS(KP866025403, TJ, TG);
196
            TP = FNMS(KP866025403, TO, TL);
197
            TQ = TK - TP;
198
            TY = TK + TP;
199
            TT = FNMS(KP866025403, TS, TR);
200
            TW = FNMS(KP866025403, TV, TU);
201
            TX = TT + TW;
202
            T1n = TT - TW;
203
       }
204
       io[WS(os, 5)] = TF - TQ;
205
       ro[WS(os, 5)] = T1n + T1q;
206
       io[WS(os, 11)] = TF + TQ;
207
       ro[WS(os, 11)] = T1n - T1q;
208
       ro[WS(os, 2)] = TX - TY;
209
       io[WS(os, 2)] = T1r - T1s;
210
       ro[WS(os, 8)] = TX + TY;
211
       io[WS(os, 8)] = T1r + T1s;
212
        }
213
         }
214
    }
215
     }
216
}
217
218
static const kdft_desc desc = { 12, "n1_12", { 72, 0, 24, 0 }, &GENUS, 0, 0, 0, 0 };
219
220
void X(codelet_n1_12) (planner *p) { X(kdft_register) (p, n1_12, &desc);
221
}
222
223
#else
224
225
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 12 -name n1_12 -include dft/scalar/n.h */
226
227
/*
228
 * This function contains 96 FP additions, 16 FP multiplications,
229
 * (or, 88 additions, 8 multiplications, 8 fused multiply/add),
230
 * 43 stack variables, 2 constants, and 48 memory accesses
231
 */
232
#include "dft/scalar/n.h"
233
234
static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
235
191
{
236
191
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
237
191
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
238
191
     {
239
191
    INT i;
240
1.09k
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(48, is), MAKE_VOLATILE_STRIDE(48, os)) {
241
904
         E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1a, TG;
242
904
         E TJ, T1u, T1d, Tl, T1f, TL, TO, T1v, T1i;
243
904
         {
244
904
        E T1, T2, T3, T4;
245
904
        T1 = ri[0];
246
904
        T2 = ri[WS(is, 4)];
247
904
        T3 = ri[WS(is, 8)];
248
904
        T4 = T2 + T3;
249
904
        T5 = T1 + T4;
250
904
        TR = FNMS(KP500000000, T4, T1);
251
904
        TA = KP866025403 * (T3 - T2);
252
904
         }
253
904
         {
254
904
        E To, Tp, Tq, Tr;
255
904
        To = ii[0];
256
904
        Tp = ii[WS(is, 4)];
257
904
        Tq = ii[WS(is, 8)];
258
904
        Tr = Tp + Tq;
259
904
        Ts = To + Tr;
260
904
        TS = KP866025403 * (Tp - Tq);
261
904
        Tz = FNMS(KP500000000, Tr, To);
262
904
         }
263
904
         {
264
904
        E T6, T7, T8, T9;
265
904
        T6 = ri[WS(is, 6)];
266
904
        T7 = ri[WS(is, 10)];
267
904
        T8 = ri[WS(is, 2)];
268
904
        T9 = T7 + T8;
269
904
        Ta = T6 + T9;
270
904
        TU = FNMS(KP500000000, T9, T6);
271
904
        TD = KP866025403 * (T8 - T7);
272
904
         }
273
904
         {
274
904
        E Tt, Tu, Tv, Tw;
275
904
        Tt = ii[WS(is, 6)];
276
904
        Tu = ii[WS(is, 10)];
277
904
        Tv = ii[WS(is, 2)];
278
904
        Tw = Tu + Tv;
279
904
        Tx = Tt + Tw;
280
904
        TV = KP866025403 * (Tu - Tv);
281
904
        TC = FNMS(KP500000000, Tw, Tt);
282
904
         }
283
904
         {
284
904
        E Tc, Td, Te, Tf;
285
904
        Tc = ri[WS(is, 3)];
286
904
        Td = ri[WS(is, 7)];
287
904
        Te = ri[WS(is, 11)];
288
904
        Tf = Td + Te;
289
904
        Tg = Tc + Tf;
290
904
        T1a = KP866025403 * (Te - Td);
291
904
        TG = FNMS(KP500000000, Tf, Tc);
292
904
         }
293
904
         {
294
904
        E T1b, TH, TI, T1c;
295
904
        T1b = ii[WS(is, 3)];
296
904
        TH = ii[WS(is, 7)];
297
904
        TI = ii[WS(is, 11)];
298
904
        T1c = TH + TI;
299
904
        TJ = KP866025403 * (TH - TI);
300
904
        T1u = T1b + T1c;
301
904
        T1d = FNMS(KP500000000, T1c, T1b);
302
904
         }
303
904
         {
304
904
        E Th, Ti, Tj, Tk;
305
904
        Th = ri[WS(is, 9)];
306
904
        Ti = ri[WS(is, 1)];
307
904
        Tj = ri[WS(is, 5)];
308
904
        Tk = Ti + Tj;
309
904
        Tl = Th + Tk;
310
904
        T1f = KP866025403 * (Tj - Ti);
311
904
        TL = FNMS(KP500000000, Tk, Th);
312
904
         }
313
904
         {
314
904
        E T1g, TM, TN, T1h;
315
904
        T1g = ii[WS(is, 9)];
316
904
        TM = ii[WS(is, 1)];
317
904
        TN = ii[WS(is, 5)];
318
904
        T1h = TM + TN;
319
904
        TO = KP866025403 * (TM - TN);
320
904
        T1v = T1g + T1h;
321
904
        T1i = FNMS(KP500000000, T1h, T1g);
322
904
         }
323
904
         {
324
904
        E Tb, Tm, T1t, T1w;
325
904
        Tb = T5 + Ta;
326
904
        Tm = Tg + Tl;
327
904
        ro[WS(os, 6)] = Tb - Tm;
328
904
        ro[0] = Tb + Tm;
329
904
        {
330
904
       E T1x, T1y, Tn, Ty;
331
904
       T1x = Ts + Tx;
332
904
       T1y = T1u + T1v;
333
904
       io[WS(os, 6)] = T1x - T1y;
334
904
       io[0] = T1x + T1y;
335
904
       Tn = Tg - Tl;
336
904
       Ty = Ts - Tx;
337
904
       io[WS(os, 3)] = Tn + Ty;
338
904
       io[WS(os, 9)] = Ty - Tn;
339
904
        }
340
904
        T1t = T5 - Ta;
341
904
        T1w = T1u - T1v;
342
904
        ro[WS(os, 3)] = T1t - T1w;
343
904
        ro[WS(os, 9)] = T1t + T1w;
344
904
        {
345
904
       E T11, T1l, T1k, T1m, T14, T18, T17, T19;
346
904
       {
347
904
            E TZ, T10, T1e, T1j;
348
904
            TZ = TA + Tz;
349
904
            T10 = TD + TC;
350
904
            T11 = TZ - T10;
351
904
            T1l = TZ + T10;
352
904
            T1e = T1a + T1d;
353
904
            T1j = T1f + T1i;
354
904
            T1k = T1e - T1j;
355
904
            T1m = T1e + T1j;
356
904
       }
357
904
       {
358
904
            E T12, T13, T15, T16;
359
904
            T12 = TG + TJ;
360
904
            T13 = TL + TO;
361
904
            T14 = T12 - T13;
362
904
            T18 = T12 + T13;
363
904
            T15 = TR + TS;
364
904
            T16 = TU + TV;
365
904
            T17 = T15 + T16;
366
904
            T19 = T15 - T16;
367
904
       }
368
904
       io[WS(os, 1)] = T11 - T14;
369
904
       ro[WS(os, 1)] = T19 + T1k;
370
904
       io[WS(os, 7)] = T11 + T14;
371
904
       ro[WS(os, 7)] = T19 - T1k;
372
904
       ro[WS(os, 10)] = T17 - T18;
373
904
       io[WS(os, 10)] = T1l - T1m;
374
904
       ro[WS(os, 4)] = T17 + T18;
375
904
       io[WS(os, 4)] = T1l + T1m;
376
904
        }
377
904
        {
378
904
       E TF, T1r, T1q, T1s, TQ, TY, TX, T1n;
379
904
       {
380
904
            E TB, TE, T1o, T1p;
381
904
            TB = Tz - TA;
382
904
            TE = TC - TD;
383
904
            TF = TB - TE;
384
904
            T1r = TB + TE;
385
904
            T1o = T1d - T1a;
386
904
            T1p = T1i - T1f;
387
904
            T1q = T1o - T1p;
388
904
            T1s = T1o + T1p;
389
904
       }
390
904
       {
391
904
            E TK, TP, TT, TW;
392
904
            TK = TG - TJ;
393
904
            TP = TL - TO;
394
904
            TQ = TK - TP;
395
904
            TY = TK + TP;
396
904
            TT = TR - TS;
397
904
            TW = TU - TV;
398
904
            TX = TT + TW;
399
904
            T1n = TT - TW;
400
904
       }
401
904
       io[WS(os, 5)] = TF - TQ;
402
904
       ro[WS(os, 5)] = T1n + T1q;
403
904
       io[WS(os, 11)] = TF + TQ;
404
904
       ro[WS(os, 11)] = T1n - T1q;
405
904
       ro[WS(os, 2)] = TX - TY;
406
904
       io[WS(os, 2)] = T1r - T1s;
407
904
       ro[WS(os, 8)] = TX + TY;
408
904
       io[WS(os, 8)] = T1r + T1s;
409
904
        }
410
904
         }
411
904
    }
412
191
     }
413
191
}
414
415
static const kdft_desc desc = { 12, "n1_12", { 88, 8, 8, 0 }, &GENUS, 0, 0, 0, 0 };
416
417
1
void X(codelet_n1_12) (planner *p) { X(kdft_register) (p, n1_12, &desc);
418
1
}
419
420
#endif