/src/fftw3/rdft/scalar/r2cb/r2cb_13.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sat Nov 15 06:11:11 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 76 FP additions, 58 FP multiplications, |
32 | | * (or, 18 additions, 0 multiplications, 58 fused multiply/add), |
33 | | * 63 stack variables, 26 constants, and 26 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP875502302, +0.875502302409147941146295545768755143177842006); |
40 | | DK(KP1_040057143, +1.040057143777729238234261000998465604986476278); |
41 | | DK(KP968287244, +0.968287244361984016049539446938120421179794516); |
42 | | DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); |
43 | | DK(KP1_200954543, +1.200954543865330565851538506669526018704025697); |
44 | | DK(KP769338817, +0.769338817572980603471413688209101117038278899); |
45 | | DK(KP686558370, +0.686558370781754340655719594850823015421401653); |
46 | | DK(KP226109445, +0.226109445035782405468510155372505010481906348); |
47 | | DK(KP1_033041561, +1.033041561246979445681802577138034271410067244); |
48 | | DK(KP581704778, +0.581704778510515730456870384989698884939833902); |
49 | | DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); |
50 | | DK(KP600925212, +0.600925212577331548853203544578415991041882762); |
51 | | DK(KP859542535, +0.859542535098774820163672132761689612766401925); |
52 | | DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
53 | | DK(KP522026385, +0.522026385161275033714027226654165028300441940); |
54 | | DK(KP957805992, +0.957805992594665126462521754605754580515587217); |
55 | | DK(KP853480001, +0.853480001859823990758994934970528322872359049); |
56 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
57 | | DK(KP514918778, +0.514918778086315755491789696138117261566051239); |
58 | | DK(KP301479260, +0.301479260047709873958013540496673347309208464); |
59 | | DK(KP166666666, +0.166666666666666666666666666666666666666666667); |
60 | | DK(KP612264650, +0.612264650376756543746494474777125408779395514); |
61 | | DK(KP302775637, +0.302775637731994646559610633735247973125648287); |
62 | | DK(KP038632954, +0.038632954644348171955506895830342264440241080); |
63 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
64 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
65 | | { |
66 | | INT i; |
67 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { |
68 | | E TG, TU, TN, T16, TJ, TV, T1, Tp, Tc, Td, Tg, Tj, Tk, Tm, Tn; |
69 | | E To; |
70 | | { |
71 | | E Ts, Tv, Tw, TE, TB, TC, Tz, TD, TA, TF; |
72 | | { |
73 | | E Tt, Tu, Tx, Ty; |
74 | | Ts = Ci[WS(csi, 5)]; |
75 | | Tt = Ci[WS(csi, 2)]; |
76 | | Tu = Ci[WS(csi, 6)]; |
77 | | Tv = Tt + Tu; |
78 | | Tw = FNMS(KP500000000, Tv, Ts); |
79 | | TE = Tu - Tt; |
80 | | TB = Ci[WS(csi, 1)]; |
81 | | Tx = Ci[WS(csi, 3)]; |
82 | | Ty = Ci[WS(csi, 4)]; |
83 | | TC = Tx - Ty; |
84 | | Tz = Tx + Ty; |
85 | | TD = FNMS(KP500000000, TC, TB); |
86 | | } |
87 | | TA = FMA(KP866025403, Tz, Tw); |
88 | | TF = FMA(KP866025403, TE, TD); |
89 | | TG = FNMS(KP038632954, TF, TA); |
90 | | TU = FMA(KP038632954, TA, TF); |
91 | | { |
92 | | E TL, TM, TH, TI; |
93 | | TL = Ts + Tv; |
94 | | TM = TB + TC; |
95 | | TN = FMA(KP302775637, TM, TL); |
96 | | T16 = FNMS(KP302775637, TL, TM); |
97 | | TH = FNMS(KP866025403, Tz, Tw); |
98 | | TI = FNMS(KP866025403, TE, TD); |
99 | | TJ = FNMS(KP612264650, TI, TH); |
100 | | TV = FMA(KP612264650, TH, TI); |
101 | | } |
102 | | } |
103 | | { |
104 | | E Tb, Ti, Tf, T6, Th, Te; |
105 | | T1 = Cr[0]; |
106 | | { |
107 | | E T7, T8, T9, Ta; |
108 | | T7 = Cr[WS(csr, 5)]; |
109 | | T8 = Cr[WS(csr, 2)]; |
110 | | T9 = Cr[WS(csr, 6)]; |
111 | | Ta = T8 + T9; |
112 | | Tb = T7 + Ta; |
113 | | Ti = FMS(KP500000000, Ta, T7); |
114 | | Tf = T8 - T9; |
115 | | } |
116 | | { |
117 | | E T2, T3, T4, T5; |
118 | | T2 = Cr[WS(csr, 1)]; |
119 | | T3 = Cr[WS(csr, 3)]; |
120 | | T4 = Cr[WS(csr, 4)]; |
121 | | T5 = T3 + T4; |
122 | | T6 = T2 + T5; |
123 | | Th = FNMS(KP500000000, T5, T2); |
124 | | Te = T3 - T4; |
125 | | } |
126 | | Tp = T6 - Tb; |
127 | | Tc = T6 + Tb; |
128 | | Td = FNMS(KP166666666, Tc, T1); |
129 | | Tg = Te + Tf; |
130 | | Tj = Th - Ti; |
131 | | Tk = FMA(KP301479260, Tj, Tg); |
132 | | Tm = Th + Ti; |
133 | | Tn = Te - Tf; |
134 | | To = FNMS(KP514918778, Tn, Tm); |
135 | | } |
136 | | R0[0] = FMA(KP2_000000000, Tc, T1); |
137 | | { |
138 | | E TW, T14, TO, TS, T18, T1e, TR, T13, Tr, T1d, TZ, T19; |
139 | | { |
140 | | E TK, T17, TP, TQ; |
141 | | TW = FMA(KP853480001, TV, TU); |
142 | | T14 = FMA(KP853480001, TJ, TG); |
143 | | TK = FNMS(KP853480001, TJ, TG); |
144 | | TO = FMA(KP957805992, TN, TK); |
145 | | TS = FNMS(KP522026385, TK, TN); |
146 | | T17 = FNMS(KP853480001, TV, TU); |
147 | | T18 = FNMS(KP522026385, T17, T16); |
148 | | T1e = FMA(KP957805992, T16, T17); |
149 | | TP = FNMS(KP503537032, Tk, Td); |
150 | | TQ = FNMS(KP859542535, To, Tp); |
151 | | TR = FMA(KP600925212, TQ, TP); |
152 | | T13 = FNMS(KP600925212, TQ, TP); |
153 | | { |
154 | | E Tl, Tq, TX, TY; |
155 | | Tl = FMA(KP1_007074065, Tk, Td); |
156 | | Tq = FMA(KP581704778, Tp, To); |
157 | | Tr = FMA(KP1_033041561, Tq, Tl); |
158 | | T1d = FNMS(KP1_033041561, Tq, Tl); |
159 | | TX = FNMS(KP226109445, Tg, Tj); |
160 | | TY = FMA(KP686558370, Tm, Tn); |
161 | | TZ = FNMS(KP769338817, TY, TX); |
162 | | T19 = FMA(KP769338817, TY, TX); |
163 | | } |
164 | | } |
165 | | R1[0] = FNMS(KP1_200954543, TO, Tr); |
166 | | R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d); |
167 | | R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d); |
168 | | R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr); |
169 | | { |
170 | | E TT, T10, T15, T1a; |
171 | | TT = FNMS(KP1_150281458, TS, TR); |
172 | | T10 = FNMS(KP968287244, TZ, TW); |
173 | | R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT); |
174 | | R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT); |
175 | | T15 = FMA(KP1_040057143, T14, T13); |
176 | | T1a = FNMS(KP875502302, T19, T18); |
177 | | R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15); |
178 | | R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15); |
179 | | } |
180 | | { |
181 | | E T1b, T1c, T11, T12; |
182 | | T1b = FNMS(KP1_040057143, T14, T13); |
183 | | T1c = FMA(KP875502302, T19, T18); |
184 | | R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b); |
185 | | R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b); |
186 | | T11 = FMA(KP1_150281458, TS, TR); |
187 | | T12 = FMA(KP968287244, TZ, TW); |
188 | | R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11); |
189 | | R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11); |
190 | | } |
191 | | } |
192 | | } |
193 | | } |
194 | | } |
195 | | |
196 | | static const kr2c_desc desc = { 13, "r2cb_13", { 18, 0, 58, 0 }, &GENUS }; |
197 | | |
198 | | void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc); |
199 | | } |
200 | | |
201 | | #else |
202 | | |
203 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include rdft/scalar/r2cb.h */ |
204 | | |
205 | | /* |
206 | | * This function contains 76 FP additions, 35 FP multiplications, |
207 | | * (or, 56 additions, 15 multiplications, 20 fused multiply/add), |
208 | | * 56 stack variables, 19 constants, and 26 memory accesses |
209 | | */ |
210 | | #include "rdft/scalar/r2cb.h" |
211 | | |
212 | | static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
213 | 0 | { |
214 | 0 | DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); |
215 | 0 | DK(KP227708958, +0.227708958111581597949308691735310621069285120); |
216 | 0 | DK(KP531932498, +0.531932498429674575175042127684371897596660533); |
217 | 0 | DK(KP774781170, +0.774781170935234584261351932853525703557550433); |
218 | 0 | DK(KP265966249, +0.265966249214837287587521063842185948798330267); |
219 | 0 | DK(KP516520780, +0.516520780623489722840901288569017135705033622); |
220 | 0 | DK(KP151805972, +0.151805972074387731966205794490207080712856746); |
221 | 0 | DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
222 | 0 | DK(KP166666666, +0.166666666666666666666666666666666666666666667); |
223 | 0 | DK(KP600925212, +0.600925212577331548853203544578415991041882762); |
224 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
225 | 0 | DK(KP256247671, +0.256247671582936600958684654061725059144125175); |
226 | 0 | DK(KP156891391, +0.156891391051584611046832726756003269660212636); |
227 | 0 | DK(KP348277202, +0.348277202304271810011321589858529485233929352); |
228 | 0 | DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); |
229 | 0 | DK(KP300238635, +0.300238635966332641462884626667381504676006424); |
230 | 0 | DK(KP011599105, +0.011599105605768290721655456654083252189827041); |
231 | 0 | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
232 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
233 | 0 | { |
234 | 0 | INT i; |
235 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { |
236 | 0 | E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To; |
237 | 0 | E Tp; |
238 | 0 | { |
239 | 0 | E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF; |
240 | 0 | { |
241 | 0 | E Tt, Tu, Tx, Ty; |
242 | 0 | Ts = Ci[WS(csi, 1)]; |
243 | 0 | Tt = Ci[WS(csi, 3)]; |
244 | 0 | Tu = Ci[WS(csi, 4)]; |
245 | 0 | Tv = Tt - Tu; |
246 | 0 | Tw = FMS(KP2_000000000, Ts, Tv); |
247 | 0 | TE = KP1_732050807 * (Tt + Tu); |
248 | 0 | TC = Ci[WS(csi, 5)]; |
249 | 0 | Tx = Ci[WS(csi, 6)]; |
250 | 0 | Ty = Ci[WS(csi, 2)]; |
251 | 0 | TB = Tx + Ty; |
252 | 0 | Tz = KP1_732050807 * (Tx - Ty); |
253 | 0 | TD = FNMS(KP2_000000000, TC, TB); |
254 | 0 | } |
255 | 0 | TA = Tw + Tz; |
256 | 0 | TF = TD - TE; |
257 | 0 | TG = FMA(KP011599105, TA, KP300238635 * TF); |
258 | 0 | TS = FNMS(KP011599105, TF, KP300238635 * TA); |
259 | 0 | { |
260 | 0 | E TP, TQ, TH, TI; |
261 | 0 | TP = Ts + Tv; |
262 | 0 | TQ = TB + TC; |
263 | 0 | TR = FNMS(KP348277202, TQ, KP1_150281458 * TP); |
264 | 0 | T15 = FMA(KP348277202, TP, KP1_150281458 * TQ); |
265 | 0 | TH = Tw - Tz; |
266 | 0 | TI = TE + TD; |
267 | 0 | TJ = FMA(KP156891391, TH, KP256247671 * TI); |
268 | 0 | TT = FNMS(KP256247671, TH, KP156891391 * TI); |
269 | 0 | } |
270 | 0 | } |
271 | 0 | { |
272 | 0 | E Tb, Ti, Tf, T6, Th, Te; |
273 | 0 | T1 = Cr[0]; |
274 | 0 | { |
275 | 0 | E T7, T8, T9, Ta; |
276 | 0 | T7 = Cr[WS(csr, 5)]; |
277 | 0 | T8 = Cr[WS(csr, 2)]; |
278 | 0 | T9 = Cr[WS(csr, 6)]; |
279 | 0 | Ta = T8 + T9; |
280 | 0 | Tb = T7 + Ta; |
281 | 0 | Ti = FNMS(KP500000000, Ta, T7); |
282 | 0 | Tf = T8 - T9; |
283 | 0 | } |
284 | 0 | { |
285 | 0 | E T2, T3, T4, T5; |
286 | 0 | T2 = Cr[WS(csr, 1)]; |
287 | 0 | T3 = Cr[WS(csr, 3)]; |
288 | 0 | T4 = Cr[WS(csr, 4)]; |
289 | 0 | T5 = T3 + T4; |
290 | 0 | T6 = T2 + T5; |
291 | 0 | Th = FNMS(KP500000000, T5, T2); |
292 | 0 | Te = T3 - T4; |
293 | 0 | } |
294 | 0 | Tm = KP600925212 * (T6 - Tb); |
295 | 0 | Tc = T6 + Tb; |
296 | 0 | Td = FNMS(KP166666666, Tc, T1); |
297 | 0 | Tg = Te + Tf; |
298 | 0 | Tj = Th + Ti; |
299 | 0 | Tk = FMA(KP503537032, Tg, KP151805972 * Tj); |
300 | 0 | Tn = Th - Ti; |
301 | 0 | To = Te - Tf; |
302 | 0 | Tp = FNMS(KP265966249, To, KP516520780 * Tn); |
303 | 0 | } |
304 | 0 | R0[0] = FMA(KP2_000000000, Tc, T1); |
305 | 0 | { |
306 | 0 | E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13; |
307 | 0 | { |
308 | 0 | E TU, T14, TM, TN; |
309 | 0 | TK = KP1_732050807 * (TG + TJ); |
310 | 0 | T1b = KP1_732050807 * (TS - TT); |
311 | 0 | TU = TS + TT; |
312 | 0 | TV = TR - TU; |
313 | 0 | T12 = FMA(KP2_000000000, TU, TR); |
314 | 0 | T14 = TG - TJ; |
315 | 0 | T16 = FMS(KP2_000000000, T14, T15); |
316 | 0 | T18 = T14 + T15; |
317 | 0 | TM = FMA(KP774781170, To, KP531932498 * Tn); |
318 | 0 | TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg); |
319 | 0 | TO = TM - TN; |
320 | 0 | T1a = TM + TN; |
321 | 0 | { |
322 | 0 | E Tl, Tq, TZ, T10; |
323 | 0 | Tl = Td - Tk; |
324 | 0 | Tq = Tm - Tp; |
325 | 0 | Tr = Tl - Tq; |
326 | 0 | T17 = Tq + Tl; |
327 | 0 | TZ = FMA(KP2_000000000, Tk, Td); |
328 | 0 | T10 = FMA(KP2_000000000, Tp, Tm); |
329 | 0 | T11 = TZ - T10; |
330 | 0 | T13 = T10 + TZ; |
331 | 0 | } |
332 | 0 | } |
333 | 0 | R1[WS(rs, 2)] = T11 - T12; |
334 | 0 | R0[WS(rs, 6)] = T13 - T16; |
335 | 0 | R1[0] = T13 + T16; |
336 | 0 | R0[WS(rs, 4)] = T11 + T12; |
337 | 0 | { |
338 | 0 | E TL, TW, T19, T1c; |
339 | 0 | TL = Tr - TK; |
340 | 0 | TW = TO - TV; |
341 | 0 | R1[WS(rs, 3)] = TL - TW; |
342 | 0 | R0[WS(rs, 1)] = TL + TW; |
343 | 0 | T19 = T17 - T18; |
344 | 0 | T1c = T1a + T1b; |
345 | 0 | R1[WS(rs, 1)] = T19 - T1c; |
346 | 0 | R1[WS(rs, 4)] = T1c + T19; |
347 | 0 | } |
348 | 0 | { |
349 | 0 | E T1d, T1e, TX, TY; |
350 | 0 | T1d = T1a - T1b; |
351 | 0 | T1e = T17 + T18; |
352 | 0 | R0[WS(rs, 2)] = T1d + T1e; |
353 | 0 | R0[WS(rs, 5)] = T1e - T1d; |
354 | 0 | TX = Tr + TK; |
355 | 0 | TY = TO + TV; |
356 | 0 | R0[WS(rs, 3)] = TX - TY; |
357 | 0 | R1[WS(rs, 5)] = TX + TY; |
358 | 0 | } |
359 | 0 | } |
360 | 0 | } |
361 | 0 | } |
362 | 0 | } |
363 | | |
364 | | static const kr2c_desc desc = { 13, "r2cb_13", { 56, 15, 20, 0 }, &GENUS }; |
365 | | |
366 | 1 | void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc); |
367 | 1 | } |
368 | | |
369 | | #endif |