Coverage Report

Created: 2025-11-15 06:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/r2cb_13.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sat Nov 15 06:11:11 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 76 FP additions, 58 FP multiplications,
32
 * (or, 18 additions, 0 multiplications, 58 fused multiply/add),
33
 * 63 stack variables, 26 constants, and 26 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP875502302, +0.875502302409147941146295545768755143177842006);
40
     DK(KP1_040057143, +1.040057143777729238234261000998465604986476278);
41
     DK(KP968287244, +0.968287244361984016049539446938120421179794516);
42
     DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
43
     DK(KP1_200954543, +1.200954543865330565851538506669526018704025697);
44
     DK(KP769338817, +0.769338817572980603471413688209101117038278899);
45
     DK(KP686558370, +0.686558370781754340655719594850823015421401653);
46
     DK(KP226109445, +0.226109445035782405468510155372505010481906348);
47
     DK(KP1_033041561, +1.033041561246979445681802577138034271410067244);
48
     DK(KP581704778, +0.581704778510515730456870384989698884939833902);
49
     DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
50
     DK(KP600925212, +0.600925212577331548853203544578415991041882762);
51
     DK(KP859542535, +0.859542535098774820163672132761689612766401925);
52
     DK(KP503537032, +0.503537032863766627246873853868466977093348562);
53
     DK(KP522026385, +0.522026385161275033714027226654165028300441940);
54
     DK(KP957805992, +0.957805992594665126462521754605754580515587217);
55
     DK(KP853480001, +0.853480001859823990758994934970528322872359049);
56
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
57
     DK(KP514918778, +0.514918778086315755491789696138117261566051239);
58
     DK(KP301479260, +0.301479260047709873958013540496673347309208464);
59
     DK(KP166666666, +0.166666666666666666666666666666666666666666667);
60
     DK(KP612264650, +0.612264650376756543746494474777125408779395514);
61
     DK(KP302775637, +0.302775637731994646559610633735247973125648287);
62
     DK(KP038632954, +0.038632954644348171955506895830342264440241080);
63
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
64
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
65
     {
66
    INT i;
67
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
68
         E TG, TU, TN, T16, TJ, TV, T1, Tp, Tc, Td, Tg, Tj, Tk, Tm, Tn;
69
         E To;
70
         {
71
        E Ts, Tv, Tw, TE, TB, TC, Tz, TD, TA, TF;
72
        {
73
       E Tt, Tu, Tx, Ty;
74
       Ts = Ci[WS(csi, 5)];
75
       Tt = Ci[WS(csi, 2)];
76
       Tu = Ci[WS(csi, 6)];
77
       Tv = Tt + Tu;
78
       Tw = FNMS(KP500000000, Tv, Ts);
79
       TE = Tu - Tt;
80
       TB = Ci[WS(csi, 1)];
81
       Tx = Ci[WS(csi, 3)];
82
       Ty = Ci[WS(csi, 4)];
83
       TC = Tx - Ty;
84
       Tz = Tx + Ty;
85
       TD = FNMS(KP500000000, TC, TB);
86
        }
87
        TA = FMA(KP866025403, Tz, Tw);
88
        TF = FMA(KP866025403, TE, TD);
89
        TG = FNMS(KP038632954, TF, TA);
90
        TU = FMA(KP038632954, TA, TF);
91
        {
92
       E TL, TM, TH, TI;
93
       TL = Ts + Tv;
94
       TM = TB + TC;
95
       TN = FMA(KP302775637, TM, TL);
96
       T16 = FNMS(KP302775637, TL, TM);
97
       TH = FNMS(KP866025403, Tz, Tw);
98
       TI = FNMS(KP866025403, TE, TD);
99
       TJ = FNMS(KP612264650, TI, TH);
100
       TV = FMA(KP612264650, TH, TI);
101
        }
102
         }
103
         {
104
        E Tb, Ti, Tf, T6, Th, Te;
105
        T1 = Cr[0];
106
        {
107
       E T7, T8, T9, Ta;
108
       T7 = Cr[WS(csr, 5)];
109
       T8 = Cr[WS(csr, 2)];
110
       T9 = Cr[WS(csr, 6)];
111
       Ta = T8 + T9;
112
       Tb = T7 + Ta;
113
       Ti = FMS(KP500000000, Ta, T7);
114
       Tf = T8 - T9;
115
        }
116
        {
117
       E T2, T3, T4, T5;
118
       T2 = Cr[WS(csr, 1)];
119
       T3 = Cr[WS(csr, 3)];
120
       T4 = Cr[WS(csr, 4)];
121
       T5 = T3 + T4;
122
       T6 = T2 + T5;
123
       Th = FNMS(KP500000000, T5, T2);
124
       Te = T3 - T4;
125
        }
126
        Tp = T6 - Tb;
127
        Tc = T6 + Tb;
128
        Td = FNMS(KP166666666, Tc, T1);
129
        Tg = Te + Tf;
130
        Tj = Th - Ti;
131
        Tk = FMA(KP301479260, Tj, Tg);
132
        Tm = Th + Ti;
133
        Tn = Te - Tf;
134
        To = FNMS(KP514918778, Tn, Tm);
135
         }
136
         R0[0] = FMA(KP2_000000000, Tc, T1);
137
         {
138
        E TW, T14, TO, TS, T18, T1e, TR, T13, Tr, T1d, TZ, T19;
139
        {
140
       E TK, T17, TP, TQ;
141
       TW = FMA(KP853480001, TV, TU);
142
       T14 = FMA(KP853480001, TJ, TG);
143
       TK = FNMS(KP853480001, TJ, TG);
144
       TO = FMA(KP957805992, TN, TK);
145
       TS = FNMS(KP522026385, TK, TN);
146
       T17 = FNMS(KP853480001, TV, TU);
147
       T18 = FNMS(KP522026385, T17, T16);
148
       T1e = FMA(KP957805992, T16, T17);
149
       TP = FNMS(KP503537032, Tk, Td);
150
       TQ = FNMS(KP859542535, To, Tp);
151
       TR = FMA(KP600925212, TQ, TP);
152
       T13 = FNMS(KP600925212, TQ, TP);
153
       {
154
            E Tl, Tq, TX, TY;
155
            Tl = FMA(KP1_007074065, Tk, Td);
156
            Tq = FMA(KP581704778, Tp, To);
157
            Tr = FMA(KP1_033041561, Tq, Tl);
158
            T1d = FNMS(KP1_033041561, Tq, Tl);
159
            TX = FNMS(KP226109445, Tg, Tj);
160
            TY = FMA(KP686558370, Tm, Tn);
161
            TZ = FNMS(KP769338817, TY, TX);
162
            T19 = FMA(KP769338817, TY, TX);
163
       }
164
        }
165
        R1[0] = FNMS(KP1_200954543, TO, Tr);
166
        R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d);
167
        R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d);
168
        R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr);
169
        {
170
       E TT, T10, T15, T1a;
171
       TT = FNMS(KP1_150281458, TS, TR);
172
       T10 = FNMS(KP968287244, TZ, TW);
173
       R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT);
174
       R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT);
175
       T15 = FMA(KP1_040057143, T14, T13);
176
       T1a = FNMS(KP875502302, T19, T18);
177
       R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15);
178
       R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15);
179
        }
180
        {
181
       E T1b, T1c, T11, T12;
182
       T1b = FNMS(KP1_040057143, T14, T13);
183
       T1c = FMA(KP875502302, T19, T18);
184
       R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b);
185
       R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b);
186
       T11 = FMA(KP1_150281458, TS, TR);
187
       T12 = FMA(KP968287244, TZ, TW);
188
       R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11);
189
       R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11);
190
        }
191
         }
192
    }
193
     }
194
}
195
196
static const kr2c_desc desc = { 13, "r2cb_13", { 18, 0, 58, 0 }, &GENUS };
197
198
void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc);
199
}
200
201
#else
202
203
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include rdft/scalar/r2cb.h */
204
205
/*
206
 * This function contains 76 FP additions, 35 FP multiplications,
207
 * (or, 56 additions, 15 multiplications, 20 fused multiply/add),
208
 * 56 stack variables, 19 constants, and 26 memory accesses
209
 */
210
#include "rdft/scalar/r2cb.h"
211
212
static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
213
0
{
214
0
     DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
215
0
     DK(KP227708958, +0.227708958111581597949308691735310621069285120);
216
0
     DK(KP531932498, +0.531932498429674575175042127684371897596660533);
217
0
     DK(KP774781170, +0.774781170935234584261351932853525703557550433);
218
0
     DK(KP265966249, +0.265966249214837287587521063842185948798330267);
219
0
     DK(KP516520780, +0.516520780623489722840901288569017135705033622);
220
0
     DK(KP151805972, +0.151805972074387731966205794490207080712856746);
221
0
     DK(KP503537032, +0.503537032863766627246873853868466977093348562);
222
0
     DK(KP166666666, +0.166666666666666666666666666666666666666666667);
223
0
     DK(KP600925212, +0.600925212577331548853203544578415991041882762);
224
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
225
0
     DK(KP256247671, +0.256247671582936600958684654061725059144125175);
226
0
     DK(KP156891391, +0.156891391051584611046832726756003269660212636);
227
0
     DK(KP348277202, +0.348277202304271810011321589858529485233929352);
228
0
     DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
229
0
     DK(KP300238635, +0.300238635966332641462884626667381504676006424);
230
0
     DK(KP011599105, +0.011599105605768290721655456654083252189827041);
231
0
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
232
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
233
0
     {
234
0
    INT i;
235
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
236
0
         E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To;
237
0
         E Tp;
238
0
         {
239
0
        E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF;
240
0
        {
241
0
       E Tt, Tu, Tx, Ty;
242
0
       Ts = Ci[WS(csi, 1)];
243
0
       Tt = Ci[WS(csi, 3)];
244
0
       Tu = Ci[WS(csi, 4)];
245
0
       Tv = Tt - Tu;
246
0
       Tw = FMS(KP2_000000000, Ts, Tv);
247
0
       TE = KP1_732050807 * (Tt + Tu);
248
0
       TC = Ci[WS(csi, 5)];
249
0
       Tx = Ci[WS(csi, 6)];
250
0
       Ty = Ci[WS(csi, 2)];
251
0
       TB = Tx + Ty;
252
0
       Tz = KP1_732050807 * (Tx - Ty);
253
0
       TD = FNMS(KP2_000000000, TC, TB);
254
0
        }
255
0
        TA = Tw + Tz;
256
0
        TF = TD - TE;
257
0
        TG = FMA(KP011599105, TA, KP300238635 * TF);
258
0
        TS = FNMS(KP011599105, TF, KP300238635 * TA);
259
0
        {
260
0
       E TP, TQ, TH, TI;
261
0
       TP = Ts + Tv;
262
0
       TQ = TB + TC;
263
0
       TR = FNMS(KP348277202, TQ, KP1_150281458 * TP);
264
0
       T15 = FMA(KP348277202, TP, KP1_150281458 * TQ);
265
0
       TH = Tw - Tz;
266
0
       TI = TE + TD;
267
0
       TJ = FMA(KP156891391, TH, KP256247671 * TI);
268
0
       TT = FNMS(KP256247671, TH, KP156891391 * TI);
269
0
        }
270
0
         }
271
0
         {
272
0
        E Tb, Ti, Tf, T6, Th, Te;
273
0
        T1 = Cr[0];
274
0
        {
275
0
       E T7, T8, T9, Ta;
276
0
       T7 = Cr[WS(csr, 5)];
277
0
       T8 = Cr[WS(csr, 2)];
278
0
       T9 = Cr[WS(csr, 6)];
279
0
       Ta = T8 + T9;
280
0
       Tb = T7 + Ta;
281
0
       Ti = FNMS(KP500000000, Ta, T7);
282
0
       Tf = T8 - T9;
283
0
        }
284
0
        {
285
0
       E T2, T3, T4, T5;
286
0
       T2 = Cr[WS(csr, 1)];
287
0
       T3 = Cr[WS(csr, 3)];
288
0
       T4 = Cr[WS(csr, 4)];
289
0
       T5 = T3 + T4;
290
0
       T6 = T2 + T5;
291
0
       Th = FNMS(KP500000000, T5, T2);
292
0
       Te = T3 - T4;
293
0
        }
294
0
        Tm = KP600925212 * (T6 - Tb);
295
0
        Tc = T6 + Tb;
296
0
        Td = FNMS(KP166666666, Tc, T1);
297
0
        Tg = Te + Tf;
298
0
        Tj = Th + Ti;
299
0
        Tk = FMA(KP503537032, Tg, KP151805972 * Tj);
300
0
        Tn = Th - Ti;
301
0
        To = Te - Tf;
302
0
        Tp = FNMS(KP265966249, To, KP516520780 * Tn);
303
0
         }
304
0
         R0[0] = FMA(KP2_000000000, Tc, T1);
305
0
         {
306
0
        E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13;
307
0
        {
308
0
       E TU, T14, TM, TN;
309
0
       TK = KP1_732050807 * (TG + TJ);
310
0
       T1b = KP1_732050807 * (TS - TT);
311
0
       TU = TS + TT;
312
0
       TV = TR - TU;
313
0
       T12 = FMA(KP2_000000000, TU, TR);
314
0
       T14 = TG - TJ;
315
0
       T16 = FMS(KP2_000000000, T14, T15);
316
0
       T18 = T14 + T15;
317
0
       TM = FMA(KP774781170, To, KP531932498 * Tn);
318
0
       TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg);
319
0
       TO = TM - TN;
320
0
       T1a = TM + TN;
321
0
       {
322
0
            E Tl, Tq, TZ, T10;
323
0
            Tl = Td - Tk;
324
0
            Tq = Tm - Tp;
325
0
            Tr = Tl - Tq;
326
0
            T17 = Tq + Tl;
327
0
            TZ = FMA(KP2_000000000, Tk, Td);
328
0
            T10 = FMA(KP2_000000000, Tp, Tm);
329
0
            T11 = TZ - T10;
330
0
            T13 = T10 + TZ;
331
0
       }
332
0
        }
333
0
        R1[WS(rs, 2)] = T11 - T12;
334
0
        R0[WS(rs, 6)] = T13 - T16;
335
0
        R1[0] = T13 + T16;
336
0
        R0[WS(rs, 4)] = T11 + T12;
337
0
        {
338
0
       E TL, TW, T19, T1c;
339
0
       TL = Tr - TK;
340
0
       TW = TO - TV;
341
0
       R1[WS(rs, 3)] = TL - TW;
342
0
       R0[WS(rs, 1)] = TL + TW;
343
0
       T19 = T17 - T18;
344
0
       T1c = T1a + T1b;
345
0
       R1[WS(rs, 1)] = T19 - T1c;
346
0
       R1[WS(rs, 4)] = T1c + T19;
347
0
        }
348
0
        {
349
0
       E T1d, T1e, TX, TY;
350
0
       T1d = T1a - T1b;
351
0
       T1e = T17 + T18;
352
0
       R0[WS(rs, 2)] = T1d + T1e;
353
0
       R0[WS(rs, 5)] = T1e - T1d;
354
0
       TX = Tr + TK;
355
0
       TY = TO + TV;
356
0
       R0[WS(rs, 3)] = TX - TY;
357
0
       R1[WS(rs, 5)] = TX + TY;
358
0
        }
359
0
         }
360
0
    }
361
0
     }
362
0
}
363
364
static const kr2c_desc desc = { 13, "r2cb_13", { 56, 15, 20, 0 }, &GENUS };
365
366
1
void X(codelet_r2cb_13) (planner *p) { X(kr2c_register) (p, r2cb_13, &desc);
367
1
}
368
369
#endif