/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_20.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sat Nov 15 06:10:59 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cfdft2_20 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 316 FP additions, 238 FP multiplications, |
32 | | * (or, 176 additions, 98 multiplications, 140 fused multiply/add), |
33 | | * 164 stack variables, 5 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
44 | | { |
45 | | INT m; |
46 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { |
47 | | E Tm, Tq, Tn, T1, T6, Tg, Tp, Tr, Tx, TU, Tb, T1i, T1A, T2y, T33; |
48 | | E T1o, T1u, T2B, T30, T1Q, T2a, T26, T2e, T22, T2V, T2R, TG, TD, TH, T1V; |
49 | | E TN, TW, TX, T13, T2u, T2q, T2m, T2j; |
50 | | { |
51 | | E Tw, T1h, T29, T1n, T2d, T1z, T25, TC, T21, T1t, To, T2U; |
52 | | Tm = W[0]; |
53 | | Tq = W[3]; |
54 | | Tn = W[2]; |
55 | | To = Tm * Tn; |
56 | | Tw = Tm * Tq; |
57 | | T1 = W[6]; |
58 | | T1h = Tn * T1; |
59 | | T29 = Tm * T1; |
60 | | T6 = W[7]; |
61 | | T1n = Tn * T6; |
62 | | T2d = Tm * T6; |
63 | | Tg = W[5]; |
64 | | T1z = Tn * Tg; |
65 | | T25 = Tm * Tg; |
66 | | Tp = W[1]; |
67 | | Tr = FNMS(Tp, Tq, To); |
68 | | Tx = FMA(Tp, Tn, Tw); |
69 | | TU = FMA(Tp, Tq, To); |
70 | | Tb = W[4]; |
71 | | TC = Tr * Tb; |
72 | | T21 = Tm * Tb; |
73 | | T1t = Tn * Tb; |
74 | | T1i = FMA(Tq, T6, T1h); |
75 | | T1A = FNMS(Tq, Tb, T1z); |
76 | | T2y = FNMS(Tq, Tg, T1t); |
77 | | T33 = FMA(Tp, Tb, T25); |
78 | | T1o = FNMS(Tq, T1, T1n); |
79 | | T1u = FMA(Tq, Tg, T1t); |
80 | | T2B = FMA(Tq, Tb, T1z); |
81 | | T30 = FNMS(Tp, Tg, T21); |
82 | | T1Q = FNMS(Tx, Tg, TC); |
83 | | T2a = FMA(Tp, T6, T29); |
84 | | T26 = FNMS(Tp, Tb, T25); |
85 | | T2e = FNMS(Tp, T1, T2d); |
86 | | T22 = FMA(Tp, Tg, T21); |
87 | | T2U = Tr * T6; |
88 | | T2V = FNMS(Tx, T1, T2U); |
89 | | { |
90 | | E T2Q, TF, TE, TM; |
91 | | T2Q = Tr * T1; |
92 | | T2R = FMA(Tx, T6, T2Q); |
93 | | TF = Tr * Tg; |
94 | | TG = FNMS(Tx, Tb, TF); |
95 | | TD = FMA(Tx, Tg, TC); |
96 | | TE = TD * T1; |
97 | | TM = TD * T6; |
98 | | TH = FMA(TG, T6, TE); |
99 | | T1V = FMA(Tx, Tb, TF); |
100 | | TN = FNMS(TG, T1, TM); |
101 | | { |
102 | | E TV, T2t, T12, T2p; |
103 | | TV = TU * Tb; |
104 | | T2t = TU * T1; |
105 | | T12 = TU * Tg; |
106 | | T2p = TU * T6; |
107 | | TW = FNMS(Tp, Tn, Tw); |
108 | | TX = FNMS(TW, Tg, TV); |
109 | | T13 = FMA(TW, Tb, T12); |
110 | | T2u = FMA(TW, T6, T2t); |
111 | | T2q = FNMS(TW, T1, T2p); |
112 | | T2m = FNMS(TW, Tb, T12); |
113 | | T2j = FMA(TW, Tg, TV); |
114 | | } |
115 | | } |
116 | | } |
117 | | { |
118 | | E T36, T3Q, T4D, T5f, T2Y, T5g, T3P, T4E, TT, T5k, T5R, T39, T3m, T49, T4X; |
119 | | E T3T, T2i, T5r, T5T, T3c, T3B, T4o, T4U, T3W, T2J, T5u, T5U, T3d, T3I, T4v; |
120 | | E T4V, T3X, T1G, T5n, T5Q, T3a, T3t, T4g, T4Y, T3U; |
121 | | { |
122 | | E T9, T2f, T5, T4k, T2c, T3i, TA, T2O, T1e, T2Z, T1O, T2G, TQ, T2W, T1Y; |
123 | | E T2C, T3v, Tj, T27, T3g, T1l, T1m, T2v, T1D, T2n, T3E, T4c, T1x, T2k, T1y; |
124 | | E T2l, T10, T31, T11, T32, T16, T34, T3p, T4B, T1b, T4A, T3n, T1T, T1U, T4q; |
125 | | E T2A, Te, Tf, T4i, T24, T1r, T2s, T4a, T3C, Tv, T43, T2N, T3L, TL, T45; |
126 | | E T2T, T3N, T1L, T4s, T2F, T3x, T35, T4C; |
127 | | { |
128 | | E Th, Ti, T14, T15; |
129 | | { |
130 | | E T7, T8, Ty, Tz; |
131 | | T7 = Rp[WS(rs, 9)]; |
132 | | T8 = Rm[WS(rs, 9)]; |
133 | | T9 = T7 - T8; |
134 | | T2f = T7 + T8; |
135 | | { |
136 | | E T4, T2b, T2, T3; |
137 | | T2 = Ip[WS(rs, 9)]; |
138 | | T3 = Im[WS(rs, 9)]; |
139 | | T4 = T2 + T3; |
140 | | T2b = T2 - T3; |
141 | | T5 = T1 * T4; |
142 | | T4k = T2e * T2b; |
143 | | T2c = T2a * T2b; |
144 | | T3i = T6 * T4; |
145 | | } |
146 | | Ty = Rp[WS(rs, 2)]; |
147 | | Tz = Rm[WS(rs, 2)]; |
148 | | TA = Ty + Tz; |
149 | | T2O = Ty - Tz; |
150 | | { |
151 | | E T1c, T1d, T1M, T1N; |
152 | | T1c = Ip[0]; |
153 | | T1d = Im[0]; |
154 | | T1e = T1c + T1d; |
155 | | T2Z = T1c - T1d; |
156 | | T1M = Rp[WS(rs, 1)]; |
157 | | T1N = Rm[WS(rs, 1)]; |
158 | | T1O = T1M - T1N; |
159 | | T2G = T1M + T1N; |
160 | | } |
161 | | } |
162 | | { |
163 | | E TO, TP, T1W, T1X; |
164 | | TO = Rp[WS(rs, 7)]; |
165 | | TP = Rm[WS(rs, 7)]; |
166 | | TQ = TO + TP; |
167 | | T2W = TO - TP; |
168 | | T1W = Rm[WS(rs, 6)]; |
169 | | T1X = Rp[WS(rs, 6)]; |
170 | | T1Y = T1W - T1X; |
171 | | T2C = T1X + T1W; |
172 | | T3v = T1Q * T1Y; |
173 | | } |
174 | | Th = Rm[WS(rs, 4)]; |
175 | | Ti = Rp[WS(rs, 4)]; |
176 | | Tj = Th - Ti; |
177 | | T27 = Ti + Th; |
178 | | T3g = Tb * Tj; |
179 | | { |
180 | | E T1j, T1k, T1B, T1C; |
181 | | T1j = Ip[WS(rs, 8)]; |
182 | | T1k = Im[WS(rs, 8)]; |
183 | | T1l = T1j - T1k; |
184 | | T1m = T1i * T1l; |
185 | | T2v = T1j + T1k; |
186 | | T1B = Rp[WS(rs, 3)]; |
187 | | T1C = Rm[WS(rs, 3)]; |
188 | | T1D = T1B + T1C; |
189 | | T2n = T1B - T1C; |
190 | | T3E = T2j * T2n; |
191 | | T4c = T1u * T1D; |
192 | | } |
193 | | { |
194 | | E T1v, T1w, TY, TZ; |
195 | | T1v = Ip[WS(rs, 3)]; |
196 | | T1w = Im[WS(rs, 3)]; |
197 | | T1x = T1v - T1w; |
198 | | T2k = T1v + T1w; |
199 | | T1y = T1u * T1x; |
200 | | T2l = T2j * T2k; |
201 | | TY = Ip[WS(rs, 5)]; |
202 | | TZ = Im[WS(rs, 5)]; |
203 | | T10 = TY + TZ; |
204 | | T31 = TY - TZ; |
205 | | T11 = TX * T10; |
206 | | T32 = T30 * T31; |
207 | | } |
208 | | T14 = Rp[WS(rs, 5)]; |
209 | | T15 = Rm[WS(rs, 5)]; |
210 | | T16 = T14 - T15; |
211 | | T34 = T14 + T15; |
212 | | T3p = TX * T16; |
213 | | T4B = T30 * T34; |
214 | | { |
215 | | E T18, T19, T1a, T2z, T1R, T1S; |
216 | | T18 = Rm[0]; |
217 | | T19 = Rp[0]; |
218 | | T1a = T18 - T19; |
219 | | T1b = Tp * T1a; |
220 | | T4A = T19 + T18; |
221 | | T3n = Tm * T1a; |
222 | | T1R = Ip[WS(rs, 6)]; |
223 | | T1S = Im[WS(rs, 6)]; |
224 | | T1T = T1R + T1S; |
225 | | T2z = T1R - T1S; |
226 | | T1U = T1Q * T1T; |
227 | | T4q = T2B * T2z; |
228 | | T2A = T2y * T2z; |
229 | | } |
230 | | { |
231 | | E T23, Tc, Td, T2r, T1p, T1q; |
232 | | Tc = Ip[WS(rs, 4)]; |
233 | | Td = Im[WS(rs, 4)]; |
234 | | Te = Tc + Td; |
235 | | T23 = Tc - Td; |
236 | | Tf = Tb * Te; |
237 | | T4i = T26 * T23; |
238 | | T24 = T22 * T23; |
239 | | T1p = Rp[WS(rs, 8)]; |
240 | | T1q = Rm[WS(rs, 8)]; |
241 | | T1r = T1p + T1q; |
242 | | T2r = T1q - T1p; |
243 | | T2s = T2q * T2r; |
244 | | T4a = T1i * T1r; |
245 | | T3C = T2u * T2r; |
246 | | } |
247 | | { |
248 | | E Tu, T2M, Ts, Tt; |
249 | | Ts = Ip[WS(rs, 2)]; |
250 | | Tt = Im[WS(rs, 2)]; |
251 | | Tu = Ts - Tt; |
252 | | T2M = Ts + Tt; |
253 | | Tv = Tr * Tu; |
254 | | T43 = Tx * Tu; |
255 | | T2N = TD * T2M; |
256 | | T3L = TG * T2M; |
257 | | } |
258 | | { |
259 | | E TK, T2S, TI, TJ; |
260 | | TI = Ip[WS(rs, 7)]; |
261 | | TJ = Im[WS(rs, 7)]; |
262 | | TK = TI - TJ; |
263 | | T2S = TI + TJ; |
264 | | TL = TH * TK; |
265 | | T45 = TN * TK; |
266 | | T2T = T2R * T2S; |
267 | | T3N = T2V * T2S; |
268 | | } |
269 | | { |
270 | | E T1K, T2E, T1I, T1J; |
271 | | T1I = Ip[WS(rs, 1)]; |
272 | | T1J = Im[WS(rs, 1)]; |
273 | | T1K = T1I + T1J; |
274 | | T2E = T1I - T1J; |
275 | | T1L = Tn * T1K; |
276 | | T4s = TW * T2E; |
277 | | T2F = TU * T2E; |
278 | | T3x = Tq * T1K; |
279 | | } |
280 | | } |
281 | | T35 = FNMS(T33, T34, T32); |
282 | | T36 = T2Z - T35; |
283 | | T3Q = T35 + T2Z; |
284 | | T4C = FMA(T33, T31, T4B); |
285 | | T4D = T4A - T4C; |
286 | | T5f = T4A + T4C; |
287 | | { |
288 | | E T2P, T2X, T3M, T3O; |
289 | | T2P = FNMS(TG, T2O, T2N); |
290 | | T2X = FNMS(T2V, T2W, T2T); |
291 | | T2Y = T2P - T2X; |
292 | | T5g = T2P + T2X; |
293 | | T3M = FMA(TD, T2O, T3L); |
294 | | T3O = FMA(T2R, T2W, T3N); |
295 | | T3P = T3M + T3O; |
296 | | T4E = T3O - T3M; |
297 | | } |
298 | | { |
299 | | E Tl, T5j, T47, T5i, TS, T3l, T3k, T48; |
300 | | { |
301 | | E Ta, Tk, T44, T46; |
302 | | Ta = FNMS(T6, T9, T5); |
303 | | Tk = FMA(Tg, Tj, Tf); |
304 | | Tl = Ta - Tk; |
305 | | T5j = Tk + Ta; |
306 | | T44 = FMA(Tr, TA, T43); |
307 | | T46 = FMA(TH, TQ, T45); |
308 | | T47 = T44 - T46; |
309 | | T5i = T44 + T46; |
310 | | } |
311 | | { |
312 | | E TB, TR, T3h, T3j; |
313 | | TB = FNMS(Tx, TA, Tv); |
314 | | TR = FNMS(TN, TQ, TL); |
315 | | TS = TB - TR; |
316 | | T3l = TB + TR; |
317 | | T3h = FNMS(Tg, Te, T3g); |
318 | | T3j = FMA(T1, T9, T3i); |
319 | | T3k = T3h - T3j; |
320 | | T48 = T3h + T3j; |
321 | | } |
322 | | TT = Tl - TS; |
323 | | T5k = T5i + T5j; |
324 | | T5R = T5i - T5j; |
325 | | T39 = TS + Tl; |
326 | | T3m = T3k - T3l; |
327 | | T49 = T47 + T48; |
328 | | T4X = T47 - T48; |
329 | | T3T = T3l + T3k; |
330 | | } |
331 | | { |
332 | | E T20, T5q, T4m, T5p, T2h, T3A, T3z, T4n; |
333 | | { |
334 | | E T1P, T1Z, T4j, T4l; |
335 | | T1P = FNMS(Tq, T1O, T1L); |
336 | | T1Z = FMA(T1V, T1Y, T1U); |
337 | | T20 = T1P - T1Z; |
338 | | T5q = T1Z + T1P; |
339 | | T4j = FMA(T22, T27, T4i); |
340 | | T4l = FMA(T2a, T2f, T4k); |
341 | | T4m = T4j - T4l; |
342 | | T5p = T4j + T4l; |
343 | | } |
344 | | { |
345 | | E T28, T2g, T3w, T3y; |
346 | | T28 = FNMS(T26, T27, T24); |
347 | | T2g = FNMS(T2e, T2f, T2c); |
348 | | T2h = T28 - T2g; |
349 | | T3A = T28 + T2g; |
350 | | T3w = FNMS(T1V, T1T, T3v); |
351 | | T3y = FMA(Tn, T1O, T3x); |
352 | | T3z = T3w - T3y; |
353 | | T4n = T3w + T3y; |
354 | | } |
355 | | T2i = T20 - T2h; |
356 | | T5r = T5p + T5q; |
357 | | T5T = T5p - T5q; |
358 | | T3c = T2h + T20; |
359 | | T3B = T3z - T3A; |
360 | | T4o = T4m + T4n; |
361 | | T4U = T4m - T4n; |
362 | | T3W = T3A + T3z; |
363 | | } |
364 | | { |
365 | | E T2x, T5s, T4u, T5t, T2I, T3H, T3G, T4p; |
366 | | { |
367 | | E T2o, T2w, T4r, T4t; |
368 | | T2o = FNMS(T2m, T2n, T2l); |
369 | | T2w = FMA(T2u, T2v, T2s); |
370 | | T2x = T2o - T2w; |
371 | | T5s = T2w + T2o; |
372 | | T4r = FMA(T2y, T2C, T4q); |
373 | | T4t = FMA(TU, T2G, T4s); |
374 | | T4u = T4r - T4t; |
375 | | T5t = T4r + T4t; |
376 | | } |
377 | | { |
378 | | E T2D, T2H, T3D, T3F; |
379 | | T2D = FNMS(T2B, T2C, T2A); |
380 | | T2H = FNMS(TW, T2G, T2F); |
381 | | T2I = T2D - T2H; |
382 | | T3H = T2D + T2H; |
383 | | T3D = FNMS(T2q, T2v, T3C); |
384 | | T3F = FMA(T2m, T2k, T3E); |
385 | | T3G = T3D - T3F; |
386 | | T4p = T3D + T3F; |
387 | | } |
388 | | T2J = T2x - T2I; |
389 | | T5u = T5s + T5t; |
390 | | T5U = T5t - T5s; |
391 | | T3d = T2x + T2I; |
392 | | T3I = T3G - T3H; |
393 | | T4v = T4p + T4u; |
394 | | T4V = T4u - T4p; |
395 | | T3X = T3G + T3H; |
396 | | } |
397 | | { |
398 | | E T1g, T5m, T4e, T5l, T1F, T3s, T3r, T4f; |
399 | | { |
400 | | E T17, T1f, T4b, T4d; |
401 | | T17 = FNMS(T13, T16, T11); |
402 | | T1f = FMA(Tm, T1e, T1b); |
403 | | T1g = T17 - T1f; |
404 | | T5m = T17 + T1f; |
405 | | T4b = FMA(T1o, T1l, T4a); |
406 | | T4d = FMA(T1A, T1x, T4c); |
407 | | T4e = T4b - T4d; |
408 | | T5l = T4b + T4d; |
409 | | } |
410 | | { |
411 | | E T1s, T1E, T3o, T3q; |
412 | | T1s = FNMS(T1o, T1r, T1m); |
413 | | T1E = FNMS(T1A, T1D, T1y); |
414 | | T1F = T1s - T1E; |
415 | | T3s = T1s + T1E; |
416 | | T3o = FNMS(Tp, T1e, T3n); |
417 | | T3q = FMA(T13, T10, T3p); |
418 | | T3r = T3o - T3q; |
419 | | T4f = T3q + T3o; |
420 | | } |
421 | | T1G = T1g - T1F; |
422 | | T5n = T5l + T5m; |
423 | | T5Q = T5l - T5m; |
424 | | T3a = T1F + T1g; |
425 | | T3t = T3r - T3s; |
426 | | T4g = T4e + T4f; |
427 | | T4Y = T4e - T4f; |
428 | | T3U = T3s + T3r; |
429 | | } |
430 | | } |
431 | | { |
432 | | E T50, T52, T37, T2L, T4R, T4S, T51, T4T; |
433 | | { |
434 | | E T4W, T4Z, T1H, T2K; |
435 | | T4W = T4U - T4V; |
436 | | T4Z = T4X - T4Y; |
437 | | T50 = FNMS(KP618033988, T4Z, T4W); |
438 | | T52 = FMA(KP618033988, T4W, T4Z); |
439 | | T37 = T2Y + T36; |
440 | | T1H = TT + T1G; |
441 | | T2K = T2i + T2J; |
442 | | T2L = T1H + T2K; |
443 | | T4R = FMA(KP250000000, T2L, T37); |
444 | | T4S = T1H - T2K; |
445 | | } |
446 | | Im[WS(rs, 4)] = KP500000000 * (T2L - T37); |
447 | | T51 = FNMS(KP559016994, T4S, T4R); |
448 | | Im[0] = -(KP500000000 * (FMA(KP951056516, T52, T51))); |
449 | | Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP951056516, T52, T51))); |
450 | | T4T = FMA(KP559016994, T4S, T4R); |
451 | | Ip[WS(rs, 3)] = KP500000000 * (FNMS(KP951056516, T50, T4T)); |
452 | | Ip[WS(rs, 7)] = KP500000000 * (FMA(KP951056516, T50, T4T)); |
453 | | } |
454 | | { |
455 | | E T5c, T5e, T53, T56, T57, T58, T5d, T59; |
456 | | { |
457 | | E T5a, T5b, T54, T55; |
458 | | T5a = T2J - T2i; |
459 | | T5b = T1G - TT; |
460 | | T5c = FNMS(KP618033988, T5b, T5a); |
461 | | T5e = FMA(KP618033988, T5a, T5b); |
462 | | T53 = T4D - T4E; |
463 | | T54 = T4X + T4Y; |
464 | | T55 = T4U + T4V; |
465 | | T56 = T54 + T55; |
466 | | T57 = FNMS(KP250000000, T56, T53); |
467 | | T58 = T54 - T55; |
468 | | } |
469 | | Rm[WS(rs, 4)] = KP500000000 * (T53 + T56); |
470 | | T5d = FMA(KP559016994, T58, T57); |
471 | | Rm[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5e, T5d)); |
472 | | Rm[0] = KP500000000 * (FNMS(KP951056516, T5e, T5d)); |
473 | | T59 = FNMS(KP559016994, T58, T57); |
474 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5c, T59)); |
475 | | Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5c, T59)); |
476 | | } |
477 | | { |
478 | | E T4x, T4z, T38, T3f, T40, T41, T4y, T42; |
479 | | { |
480 | | E T4h, T4w, T3b, T3e; |
481 | | T4h = T49 - T4g; |
482 | | T4w = T4o - T4v; |
483 | | T4x = FMA(KP618033988, T4w, T4h); |
484 | | T4z = FNMS(KP618033988, T4h, T4w); |
485 | | T38 = T36 - T2Y; |
486 | | T3b = T39 + T3a; |
487 | | T3e = T3c + T3d; |
488 | | T3f = T3b + T3e; |
489 | | T40 = FNMS(KP250000000, T3f, T38); |
490 | | T41 = T3b - T3e; |
491 | | } |
492 | | Ip[WS(rs, 5)] = KP500000000 * (T38 + T3f); |
493 | | T4y = FNMS(KP559016994, T41, T40); |
494 | | Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP951056516, T4z, T4y))); |
495 | | Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP951056516, T4z, T4y))); |
496 | | T42 = FMA(KP559016994, T41, T40); |
497 | | Ip[WS(rs, 1)] = KP500000000 * (FNMS(KP951056516, T4x, T42)); |
498 | | Ip[WS(rs, 9)] = KP500000000 * (FMA(KP951056516, T4x, T42)); |
499 | | } |
500 | | { |
501 | | E T4O, T4Q, T4F, T4I, T4J, T4K, T4P, T4L; |
502 | | { |
503 | | E T4M, T4N, T4G, T4H; |
504 | | T4M = T39 - T3a; |
505 | | T4N = T3c - T3d; |
506 | | T4O = FMA(KP618033988, T4N, T4M); |
507 | | T4Q = FNMS(KP618033988, T4M, T4N); |
508 | | T4F = T4D + T4E; |
509 | | T4G = T49 + T4g; |
510 | | T4H = T4o + T4v; |
511 | | T4I = T4G + T4H; |
512 | | T4J = FNMS(KP250000000, T4I, T4F); |
513 | | T4K = T4G - T4H; |
514 | | } |
515 | | Rp[WS(rs, 5)] = KP500000000 * (T4F + T4I); |
516 | | T4P = FNMS(KP559016994, T4K, T4J); |
517 | | Rm[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T4Q, T4P)); |
518 | | Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T4Q, T4P)); |
519 | | T4L = FMA(KP559016994, T4K, T4J); |
520 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T4O, T4L)); |
521 | | Rp[WS(rs, 9)] = KP500000000 * (FNMS(KP951056516, T4O, T4L)); |
522 | | } |
523 | | { |
524 | | E T5W, T5Y, T3R, T3K, T5N, T5O, T5X, T5P; |
525 | | { |
526 | | E T5S, T5V, T3u, T3J; |
527 | | T5S = T5Q - T5R; |
528 | | T5V = T5T - T5U; |
529 | | T5W = FNMS(KP618033988, T5V, T5S); |
530 | | T5Y = FMA(KP618033988, T5S, T5V); |
531 | | T3R = T3P + T3Q; |
532 | | T3u = T3m + T3t; |
533 | | T3J = T3B + T3I; |
534 | | T3K = T3u + T3J; |
535 | | T5N = FMA(KP250000000, T3K, T3R); |
536 | | T5O = T3J - T3u; |
537 | | } |
538 | | Im[WS(rs, 9)] = KP500000000 * (T3K - T3R); |
539 | | T5X = FNMS(KP559016994, T5O, T5N); |
540 | | Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T5Y, T5X)); |
541 | | Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T5Y, T5X))); |
542 | | T5P = FMA(KP559016994, T5O, T5N); |
543 | | Ip[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5W, T5P)); |
544 | | Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP951056516, T5W, T5P))); |
545 | | } |
546 | | { |
547 | | E T68, T6a, T5Z, T62, T63, T64, T69, T65; |
548 | | { |
549 | | E T66, T67, T60, T61; |
550 | | T66 = T3I - T3B; |
551 | | T67 = T3t - T3m; |
552 | | T68 = FNMS(KP618033988, T67, T66); |
553 | | T6a = FMA(KP618033988, T66, T67); |
554 | | T5Z = T5f - T5g; |
555 | | T60 = T5R + T5Q; |
556 | | T61 = T5T + T5U; |
557 | | T62 = T60 + T61; |
558 | | T63 = FNMS(KP250000000, T62, T5Z); |
559 | | T64 = T60 - T61; |
560 | | } |
561 | | Rm[WS(rs, 9)] = KP500000000 * (T5Z + T62); |
562 | | T69 = FMA(KP559016994, T64, T63); |
563 | | Rp[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T6a, T69)); |
564 | | Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP951056516, T6a, T69)); |
565 | | T65 = FNMS(KP559016994, T64, T63); |
566 | | Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T68, T65)); |
567 | | Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T68, T65)); |
568 | | } |
569 | | { |
570 | | E T5K, T5M, T3S, T3Z, T5F, T5G, T5L, T5H; |
571 | | { |
572 | | E T5I, T5J, T3V, T3Y; |
573 | | T5I = T5k - T5n; |
574 | | T5J = T5u - T5r; |
575 | | T5K = FNMS(KP618033988, T5J, T5I); |
576 | | T5M = FMA(KP618033988, T5I, T5J); |
577 | | T3S = T3Q - T3P; |
578 | | T3V = T3T + T3U; |
579 | | T3Y = T3W + T3X; |
580 | | T3Z = T3V + T3Y; |
581 | | T5F = FNMS(KP250000000, T3Z, T3S); |
582 | | T5G = T3V - T3Y; |
583 | | } |
584 | | Ip[0] = KP500000000 * (T3S + T3Z); |
585 | | T5L = FNMS(KP559016994, T5G, T5F); |
586 | | Ip[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5M, T5L)); |
587 | | Im[WS(rs, 7)] = -(KP500000000 * (FNMS(KP951056516, T5M, T5L))); |
588 | | T5H = FMA(KP559016994, T5G, T5F); |
589 | | Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T5K, T5H)); |
590 | | Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T5K, T5H))); |
591 | | } |
592 | | { |
593 | | E T5C, T5E, T5h, T5w, T5x, T5y, T5D, T5z; |
594 | | { |
595 | | E T5A, T5B, T5o, T5v; |
596 | | T5A = T3T - T3U; |
597 | | T5B = T3W - T3X; |
598 | | T5C = FMA(KP618033988, T5B, T5A); |
599 | | T5E = FNMS(KP618033988, T5A, T5B); |
600 | | T5h = T5f + T5g; |
601 | | T5o = T5k + T5n; |
602 | | T5v = T5r + T5u; |
603 | | T5w = T5o + T5v; |
604 | | T5x = FNMS(KP250000000, T5w, T5h); |
605 | | T5y = T5o - T5v; |
606 | | } |
607 | | Rp[0] = KP500000000 * (T5h + T5w); |
608 | | T5D = FNMS(KP559016994, T5y, T5x); |
609 | | Rp[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5E, T5D)); |
610 | | Rm[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5E, T5D)); |
611 | | T5z = FMA(KP559016994, T5y, T5x); |
612 | | Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T5C, T5z)); |
613 | | Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5C, T5z)); |
614 | | } |
615 | | } |
616 | | } |
617 | | } |
618 | | } |
619 | | |
620 | | static const tw_instr twinstr[] = { |
621 | | { TW_CEXP, 1, 1 }, |
622 | | { TW_CEXP, 1, 3 }, |
623 | | { TW_CEXP, 1, 9 }, |
624 | | { TW_CEXP, 1, 19 }, |
625 | | { TW_NEXT, 1, 0 } |
626 | | }; |
627 | | |
628 | | static const hc2c_desc desc = { 20, "hc2cfdft2_20", twinstr, &GENUS, { 176, 98, 140, 0 } }; |
629 | | |
630 | | void X(codelet_hc2cfdft2_20) (planner *p) { |
631 | | X(khc2c_register) (p, hc2cfdft2_20, &desc, HC2C_VIA_DFT); |
632 | | } |
633 | | #else |
634 | | |
635 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cfdft2_20 -include rdft/scalar/hc2cf.h */ |
636 | | |
637 | | /* |
638 | | * This function contains 316 FP additions, 180 FP multiplications, |
639 | | * (or, 244 additions, 108 multiplications, 72 fused multiply/add), |
640 | | * 134 stack variables, 5 constants, and 80 memory accesses |
641 | | */ |
642 | | #include "rdft/scalar/hc2cf.h" |
643 | | |
644 | | static void hc2cfdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
645 | 0 | { |
646 | 0 | DK(KP125000000, +0.125000000000000000000000000000000000000000000); |
647 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
648 | 0 | DK(KP279508497, +0.279508497187473712051146708591409529430077295); |
649 | 0 | DK(KP293892626, +0.293892626146236564584352977319536384298826219); |
650 | 0 | DK(KP475528258, +0.475528258147576786058219666689691071702849317); |
651 | 0 | { |
652 | 0 | INT m; |
653 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { |
654 | 0 | E T4, T7, Tm, To, Tq, Tu, T1I, T1G, T8, T5, Ta, T1u, T2u, Tg, T2s; |
655 | 0 | E T21, T1A, T1Z, T1O, T2I, T1K, T2G, Tw, TC, T2a, T2e, TH, TI, TJ, TX; |
656 | 0 | E T2D, TN, T2B, T26, T1n, TZ, T24, T1j; |
657 | 0 | { |
658 | 0 | E T9, T1y, Te, T1t, T6, T1z, Tf, T1s; |
659 | 0 | { |
660 | 0 | E Tn, Tt, Tp, Ts; |
661 | 0 | T4 = W[0]; |
662 | 0 | T7 = W[1]; |
663 | 0 | Tm = W[2]; |
664 | 0 | To = W[3]; |
665 | 0 | Tn = T4 * Tm; |
666 | 0 | Tt = T7 * Tm; |
667 | 0 | Tp = T7 * To; |
668 | 0 | Ts = T4 * To; |
669 | 0 | Tq = Tn - Tp; |
670 | 0 | Tu = Ts + Tt; |
671 | 0 | T1I = Ts - Tt; |
672 | 0 | T1G = Tn + Tp; |
673 | 0 | T8 = W[5]; |
674 | 0 | T9 = T7 * T8; |
675 | 0 | T1y = Tm * T8; |
676 | 0 | Te = T4 * T8; |
677 | 0 | T1t = To * T8; |
678 | 0 | T5 = W[4]; |
679 | 0 | T6 = T4 * T5; |
680 | 0 | T1z = To * T5; |
681 | 0 | Tf = T7 * T5; |
682 | 0 | T1s = Tm * T5; |
683 | 0 | } |
684 | 0 | Ta = T6 - T9; |
685 | 0 | T1u = T1s + T1t; |
686 | 0 | T2u = T1y + T1z; |
687 | 0 | Tg = Te + Tf; |
688 | 0 | T2s = T1s - T1t; |
689 | 0 | T21 = Te - Tf; |
690 | 0 | T1A = T1y - T1z; |
691 | 0 | T1Z = T6 + T9; |
692 | 0 | { |
693 | 0 | E T1M, T1N, T1H, T1J; |
694 | 0 | T1M = T1G * T8; |
695 | 0 | T1N = T1I * T5; |
696 | 0 | T1O = T1M + T1N; |
697 | 0 | T2I = T1M - T1N; |
698 | 0 | T1H = T1G * T5; |
699 | 0 | T1J = T1I * T8; |
700 | 0 | T1K = T1H - T1J; |
701 | 0 | T2G = T1H + T1J; |
702 | 0 | { |
703 | 0 | E Tr, Tv, TA, TB; |
704 | 0 | Tr = Tq * T5; |
705 | 0 | Tv = Tu * T8; |
706 | 0 | Tw = Tr + Tv; |
707 | 0 | TA = Tq * T8; |
708 | 0 | TB = Tu * T5; |
709 | 0 | TC = TA - TB; |
710 | 0 | T2a = Tr - Tv; |
711 | 0 | T2e = TA + TB; |
712 | 0 | TH = W[6]; |
713 | 0 | TI = W[7]; |
714 | 0 | TJ = FMA(Tq, TH, Tu * TI); |
715 | 0 | TX = FMA(Tw, TH, TC * TI); |
716 | 0 | T2D = FMA(T1G, TH, T1I * TI); |
717 | 0 | TN = FNMS(Tu, TH, Tq * TI); |
718 | 0 | T2B = FNMS(T1I, TH, T1G * TI); |
719 | 0 | T26 = FNMS(T7, TH, T4 * TI); |
720 | 0 | T1n = FNMS(To, TH, Tm * TI); |
721 | 0 | TZ = FNMS(TC, TH, Tw * TI); |
722 | 0 | T24 = FMA(T4, TH, T7 * TI); |
723 | 0 | T1j = FMA(Tm, TH, To * TI); |
724 | 0 | } |
725 | 0 | } |
726 | 0 | } |
727 | 0 | { |
728 | 0 | E Tl, T3n, T1i, T2Q, T47, T50, T4S, T5i, T2M, T2T, T4I, T5f, T4L, T5e, T4P; |
729 | 0 | E T5h, T2r, T2S, T1X, T2P, T31, T3u, T36, T3t, T3E, T4l, T3U, T4j, T3h, T3r; |
730 | 0 | E T3J, T4m, T3c, T3q, T3P, T4i, TS, T51, T3m, T48; |
731 | 0 | { |
732 | 0 | E T3, T45, T1V, T3f, Tz, TF, TW, T3A, TM, TQ, T11, T3B, Td, Tj, T1Q; |
733 | 0 | E T3e, T19, T3L, T23, T39, T2p, T3S, T2z, T34, T1E, T3G, T2K, T2Y, T1g, T3M; |
734 | 0 | E T28, T3a, T2i, T3R, T2w, T33, T1r, T3F, T2F, T2X, T4N, T4O; |
735 | 0 | { |
736 | 0 | E T1, T2, T1R, T1S, T1T, T1U; |
737 | 0 | T1 = Ip[0]; |
738 | 0 | T2 = Im[0]; |
739 | 0 | T1R = T1 + T2; |
740 | 0 | T1S = Rp[0]; |
741 | 0 | T1T = Rm[0]; |
742 | 0 | T1U = T1S - T1T; |
743 | 0 | T3 = T1 - T2; |
744 | 0 | T45 = T1S + T1T; |
745 | 0 | T1V = FNMS(T7, T1U, T4 * T1R); |
746 | 0 | T3f = FMA(T4, T1U, T7 * T1R); |
747 | 0 | } |
748 | 0 | { |
749 | 0 | E Tx, Ty, TU, TD, TE, TV; |
750 | 0 | Tx = Ip[WS(rs, 2)]; |
751 | 0 | Ty = Im[WS(rs, 2)]; |
752 | 0 | TU = Tx - Ty; |
753 | 0 | TD = Rp[WS(rs, 2)]; |
754 | 0 | TE = Rm[WS(rs, 2)]; |
755 | 0 | TV = TD + TE; |
756 | 0 | Tz = Tx + Ty; |
757 | 0 | TF = TD - TE; |
758 | 0 | TW = FNMS(Tu, TV, Tq * TU); |
759 | 0 | T3A = FMA(Tu, TU, Tq * TV); |
760 | 0 | } |
761 | 0 | { |
762 | 0 | E TK, TL, TY, TO, TP, T10; |
763 | 0 | TK = Ip[WS(rs, 7)]; |
764 | 0 | TL = Im[WS(rs, 7)]; |
765 | 0 | TY = TK - TL; |
766 | 0 | TO = Rp[WS(rs, 7)]; |
767 | 0 | TP = Rm[WS(rs, 7)]; |
768 | 0 | T10 = TO + TP; |
769 | 0 | TM = TK + TL; |
770 | 0 | TQ = TO - TP; |
771 | 0 | T11 = FNMS(TZ, T10, TX * TY); |
772 | 0 | T3B = FMA(TZ, TY, TX * T10); |
773 | 0 | } |
774 | 0 | { |
775 | 0 | E Tb, Tc, T1L, Th, Ti, T1P; |
776 | 0 | Tb = Ip[WS(rs, 5)]; |
777 | 0 | Tc = Im[WS(rs, 5)]; |
778 | 0 | T1L = Tb + Tc; |
779 | 0 | Th = Rp[WS(rs, 5)]; |
780 | 0 | Ti = Rm[WS(rs, 5)]; |
781 | 0 | T1P = Th - Ti; |
782 | 0 | Td = Tb - Tc; |
783 | 0 | Tj = Th + Ti; |
784 | 0 | T1Q = FNMS(T1O, T1P, T1K * T1L); |
785 | 0 | T3e = FMA(T1K, T1P, T1O * T1L); |
786 | 0 | } |
787 | 0 | { |
788 | 0 | E T15, T20, T18, T22; |
789 | 0 | { |
790 | 0 | E T13, T14, T16, T17; |
791 | 0 | T13 = Ip[WS(rs, 4)]; |
792 | 0 | T14 = Im[WS(rs, 4)]; |
793 | 0 | T15 = T13 + T14; |
794 | 0 | T20 = T13 - T14; |
795 | 0 | T16 = Rp[WS(rs, 4)]; |
796 | 0 | T17 = Rm[WS(rs, 4)]; |
797 | 0 | T18 = T16 - T17; |
798 | 0 | T22 = T16 + T17; |
799 | 0 | } |
800 | 0 | T19 = FNMS(T8, T18, T5 * T15); |
801 | 0 | T3L = FMA(T21, T20, T1Z * T22); |
802 | 0 | T23 = FNMS(T21, T22, T1Z * T20); |
803 | 0 | T39 = FMA(T8, T15, T5 * T18); |
804 | 0 | } |
805 | 0 | { |
806 | 0 | E T2l, T2x, T2o, T2y; |
807 | 0 | { |
808 | 0 | E T2j, T2k, T2m, T2n; |
809 | 0 | T2j = Ip[WS(rs, 1)]; |
810 | 0 | T2k = Im[WS(rs, 1)]; |
811 | 0 | T2l = T2j + T2k; |
812 | 0 | T2x = T2j - T2k; |
813 | 0 | T2m = Rp[WS(rs, 1)]; |
814 | 0 | T2n = Rm[WS(rs, 1)]; |
815 | 0 | T2o = T2m - T2n; |
816 | 0 | T2y = T2m + T2n; |
817 | 0 | } |
818 | 0 | T2p = FNMS(To, T2o, Tm * T2l); |
819 | 0 | T3S = FMA(T1I, T2x, T1G * T2y); |
820 | 0 | T2z = FNMS(T1I, T2y, T1G * T2x); |
821 | 0 | T34 = FMA(To, T2l, Tm * T2o); |
822 | 0 | } |
823 | 0 | { |
824 | 0 | E T1x, T2H, T1D, T2J; |
825 | 0 | { |
826 | 0 | E T1v, T1w, T1B, T1C; |
827 | 0 | T1v = Ip[WS(rs, 3)]; |
828 | 0 | T1w = Im[WS(rs, 3)]; |
829 | 0 | T1x = T1v - T1w; |
830 | 0 | T2H = T1v + T1w; |
831 | 0 | T1B = Rp[WS(rs, 3)]; |
832 | 0 | T1C = Rm[WS(rs, 3)]; |
833 | 0 | T1D = T1B + T1C; |
834 | 0 | T2J = T1B - T1C; |
835 | 0 | } |
836 | 0 | T1E = FNMS(T1A, T1D, T1u * T1x); |
837 | 0 | T3G = FMA(T1u, T1D, T1A * T1x); |
838 | 0 | T2K = FNMS(T2I, T2J, T2G * T2H); |
839 | 0 | T2Y = FMA(T2G, T2J, T2I * T2H); |
840 | 0 | } |
841 | 0 | { |
842 | 0 | E T1c, T25, T1f, T27; |
843 | 0 | { |
844 | 0 | E T1a, T1b, T1d, T1e; |
845 | 0 | T1a = Ip[WS(rs, 9)]; |
846 | 0 | T1b = Im[WS(rs, 9)]; |
847 | 0 | T1c = T1a + T1b; |
848 | 0 | T25 = T1a - T1b; |
849 | 0 | T1d = Rp[WS(rs, 9)]; |
850 | 0 | T1e = Rm[WS(rs, 9)]; |
851 | 0 | T1f = T1d - T1e; |
852 | 0 | T27 = T1d + T1e; |
853 | 0 | } |
854 | 0 | T1g = FNMS(TI, T1f, TH * T1c); |
855 | 0 | T3M = FMA(T26, T25, T24 * T27); |
856 | 0 | T28 = FNMS(T26, T27, T24 * T25); |
857 | 0 | T3a = FMA(TI, T1c, TH * T1f); |
858 | 0 | } |
859 | 0 | { |
860 | 0 | E T2d, T2t, T2h, T2v; |
861 | 0 | { |
862 | 0 | E T2b, T2c, T2f, T2g; |
863 | 0 | T2b = Ip[WS(rs, 6)]; |
864 | 0 | T2c = Im[WS(rs, 6)]; |
865 | 0 | T2d = T2b + T2c; |
866 | 0 | T2t = T2b - T2c; |
867 | 0 | T2f = Rp[WS(rs, 6)]; |
868 | 0 | T2g = Rm[WS(rs, 6)]; |
869 | 0 | T2h = T2f - T2g; |
870 | 0 | T2v = T2f + T2g; |
871 | 0 | } |
872 | 0 | T2i = FNMS(T2e, T2h, T2a * T2d); |
873 | 0 | T3R = FMA(T2u, T2t, T2s * T2v); |
874 | 0 | T2w = FNMS(T2u, T2v, T2s * T2t); |
875 | 0 | T33 = FMA(T2e, T2d, T2a * T2h); |
876 | 0 | } |
877 | 0 | { |
878 | 0 | E T1m, T2E, T1q, T2C; |
879 | 0 | { |
880 | 0 | E T1k, T1l, T1o, T1p; |
881 | 0 | T1k = Ip[WS(rs, 8)]; |
882 | 0 | T1l = Im[WS(rs, 8)]; |
883 | 0 | T1m = T1k - T1l; |
884 | 0 | T2E = T1k + T1l; |
885 | 0 | T1o = Rp[WS(rs, 8)]; |
886 | 0 | T1p = Rm[WS(rs, 8)]; |
887 | 0 | T1q = T1o + T1p; |
888 | 0 | T2C = T1p - T1o; |
889 | 0 | } |
890 | 0 | T1r = FNMS(T1n, T1q, T1j * T1m); |
891 | 0 | T3F = FMA(T1j, T1q, T1n * T1m); |
892 | 0 | T2F = FMA(T2B, T2C, T2D * T2E); |
893 | 0 | T2X = FNMS(T2B, T2E, T2D * T2C); |
894 | 0 | } |
895 | 0 | { |
896 | 0 | E Tk, T12, T1h, T46; |
897 | 0 | Tk = FNMS(Tg, Tj, Ta * Td); |
898 | 0 | Tl = T3 - Tk; |
899 | 0 | T3n = Tk + T3; |
900 | 0 | T12 = TW - T11; |
901 | 0 | T1h = T19 - T1g; |
902 | 0 | T1i = T12 - T1h; |
903 | 0 | T2Q = T12 + T1h; |
904 | 0 | T46 = FMA(Ta, Tj, Tg * Td); |
905 | 0 | T47 = T45 - T46; |
906 | 0 | T50 = T45 + T46; |
907 | 0 | { |
908 | 0 | E T4Q, T4R, T2A, T2L; |
909 | 0 | T4Q = T2F + T2K; |
910 | 0 | T4R = T3R + T3S; |
911 | 0 | T4S = T4Q + T4R; |
912 | 0 | T5i = T4R - T4Q; |
913 | 0 | T2A = T2w - T2z; |
914 | 0 | T2L = T2F - T2K; |
915 | 0 | T2M = T2A - T2L; |
916 | 0 | T2T = T2L + T2A; |
917 | 0 | } |
918 | 0 | } |
919 | 0 | { |
920 | 0 | E T4G, T4H, T4J, T4K; |
921 | 0 | T4G = T3A + T3B; |
922 | 0 | T4H = T19 + T1g; |
923 | 0 | T4I = T4G + T4H; |
924 | 0 | T5f = T4G - T4H; |
925 | 0 | T4J = T3F + T3G; |
926 | 0 | T4K = T1Q + T1V; |
927 | 0 | T4L = T4J + T4K; |
928 | 0 | T5e = T4J - T4K; |
929 | 0 | } |
930 | 0 | T4N = T3L + T3M; |
931 | 0 | T4O = T2i + T2p; |
932 | 0 | T4P = T4N + T4O; |
933 | 0 | T5h = T4N - T4O; |
934 | 0 | { |
935 | 0 | E T29, T2q, T1F, T1W; |
936 | 0 | T29 = T23 - T28; |
937 | 0 | T2q = T2i - T2p; |
938 | 0 | T2r = T29 - T2q; |
939 | 0 | T2S = T29 + T2q; |
940 | 0 | T1F = T1r - T1E; |
941 | 0 | T1W = T1Q - T1V; |
942 | 0 | T1X = T1F + T1W; |
943 | 0 | T2P = T1W - T1F; |
944 | 0 | } |
945 | 0 | { |
946 | 0 | E T3C, T3D, T3N, T3O; |
947 | 0 | { |
948 | 0 | E T2Z, T30, T32, T35; |
949 | 0 | T2Z = T2X - T2Y; |
950 | 0 | T30 = T2w + T2z; |
951 | 0 | T31 = T2Z - T30; |
952 | 0 | T3u = T2Z + T30; |
953 | 0 | T32 = T23 + T28; |
954 | 0 | T35 = T33 + T34; |
955 | 0 | T36 = T32 + T35; |
956 | 0 | T3t = T32 - T35; |
957 | 0 | } |
958 | 0 | T3C = T3A - T3B; |
959 | 0 | T3D = T3a - T39; |
960 | 0 | T3E = T3C + T3D; |
961 | 0 | T4l = T3C - T3D; |
962 | 0 | { |
963 | 0 | E T3Q, T3T, T3d, T3g; |
964 | 0 | T3Q = T2X + T2Y; |
965 | 0 | T3T = T3R - T3S; |
966 | 0 | T3U = T3Q + T3T; |
967 | 0 | T4j = T3T - T3Q; |
968 | 0 | T3d = T1r + T1E; |
969 | 0 | T3g = T3e + T3f; |
970 | 0 | T3h = T3d + T3g; |
971 | 0 | T3r = T3d - T3g; |
972 | 0 | } |
973 | 0 | { |
974 | 0 | E T3H, T3I, T38, T3b; |
975 | 0 | T3H = T3F - T3G; |
976 | 0 | T3I = T3e - T3f; |
977 | 0 | T3J = T3H + T3I; |
978 | 0 | T4m = T3H - T3I; |
979 | 0 | T38 = TW + T11; |
980 | 0 | T3b = T39 + T3a; |
981 | 0 | T3c = T38 + T3b; |
982 | 0 | T3q = T38 - T3b; |
983 | 0 | } |
984 | 0 | T3N = T3L - T3M; |
985 | 0 | T3O = T34 - T33; |
986 | 0 | T3P = T3N + T3O; |
987 | 0 | T4i = T3N - T3O; |
988 | 0 | { |
989 | 0 | E TG, TR, T3k, T3l; |
990 | 0 | TG = FNMS(TC, TF, Tw * Tz); |
991 | 0 | TR = FNMS(TN, TQ, TJ * TM); |
992 | 0 | TS = TG - TR; |
993 | 0 | T51 = TG + TR; |
994 | 0 | T3k = FMA(TC, Tz, Tw * TF); |
995 | 0 | T3l = FMA(TN, TM, TJ * TQ); |
996 | 0 | T3m = T3k + T3l; |
997 | 0 | T48 = T3l - T3k; |
998 | 0 | } |
999 | 0 | } |
1000 | 0 | } |
1001 | 0 | { |
1002 | 0 | E T3W, T3Y, TT, T2O, T3x, T3y, T3X, T3z; |
1003 | 0 | { |
1004 | 0 | E T3K, T3V, T1Y, T2N; |
1005 | 0 | T3K = T3E - T3J; |
1006 | 0 | T3V = T3P - T3U; |
1007 | 0 | T3W = FMA(KP475528258, T3K, KP293892626 * T3V); |
1008 | 0 | T3Y = FNMS(KP293892626, T3K, KP475528258 * T3V); |
1009 | 0 | TT = Tl - TS; |
1010 | 0 | T1Y = T1i + T1X; |
1011 | 0 | T2N = T2r + T2M; |
1012 | 0 | T2O = T1Y + T2N; |
1013 | 0 | T3x = KP279508497 * (T1Y - T2N); |
1014 | 0 | T3y = FNMS(KP125000000, T2O, KP500000000 * TT); |
1015 | 0 | } |
1016 | 0 | Ip[WS(rs, 5)] = KP500000000 * (TT + T2O); |
1017 | 0 | T3X = T3x - T3y; |
1018 | 0 | Im[WS(rs, 2)] = T3X - T3Y; |
1019 | 0 | Im[WS(rs, 6)] = T3X + T3Y; |
1020 | 0 | T3z = T3x + T3y; |
1021 | 0 | Ip[WS(rs, 1)] = T3z - T3W; |
1022 | 0 | Ip[WS(rs, 9)] = T3z + T3W; |
1023 | 0 | } |
1024 | 0 | { |
1025 | 0 | E T41, T4d, T49, T4a, T44, T4b, T4e, T4c; |
1026 | 0 | { |
1027 | 0 | E T3Z, T40, T42, T43; |
1028 | 0 | T3Z = T1i - T1X; |
1029 | 0 | T40 = T2r - T2M; |
1030 | 0 | T41 = FMA(KP475528258, T3Z, KP293892626 * T40); |
1031 | 0 | T4d = FNMS(KP293892626, T3Z, KP475528258 * T40); |
1032 | 0 | T49 = T47 + T48; |
1033 | 0 | T42 = T3E + T3J; |
1034 | 0 | T43 = T3P + T3U; |
1035 | 0 | T4a = T42 + T43; |
1036 | 0 | T44 = KP279508497 * (T42 - T43); |
1037 | 0 | T4b = FNMS(KP125000000, T4a, KP500000000 * T49); |
1038 | 0 | } |
1039 | 0 | Rp[WS(rs, 5)] = KP500000000 * (T49 + T4a); |
1040 | 0 | T4e = T4b - T44; |
1041 | 0 | Rm[WS(rs, 6)] = T4d + T4e; |
1042 | 0 | Rm[WS(rs, 2)] = T4e - T4d; |
1043 | 0 | T4c = T44 + T4b; |
1044 | 0 | Rp[WS(rs, 1)] = T41 + T4c; |
1045 | 0 | Rp[WS(rs, 9)] = T4c - T41; |
1046 | 0 | } |
1047 | 0 | { |
1048 | 0 | E T4o, T4q, T2W, T2V, T4f, T4g, T4p, T4h; |
1049 | 0 | { |
1050 | 0 | E T4k, T4n, T2R, T2U; |
1051 | 0 | T4k = T4i - T4j; |
1052 | 0 | T4n = T4l - T4m; |
1053 | 0 | T4o = FNMS(KP293892626, T4n, KP475528258 * T4k); |
1054 | 0 | T4q = FMA(KP475528258, T4n, KP293892626 * T4k); |
1055 | 0 | T2W = TS + Tl; |
1056 | 0 | T2R = T2P - T2Q; |
1057 | 0 | T2U = T2S + T2T; |
1058 | 0 | T2V = T2R - T2U; |
1059 | 0 | T4f = FMA(KP500000000, T2W, KP125000000 * T2V); |
1060 | 0 | T4g = KP279508497 * (T2R + T2U); |
1061 | 0 | } |
1062 | 0 | Im[WS(rs, 4)] = KP500000000 * (T2V - T2W); |
1063 | 0 | T4p = T4g - T4f; |
1064 | 0 | Im[0] = T4p - T4q; |
1065 | 0 | Im[WS(rs, 8)] = T4p + T4q; |
1066 | 0 | T4h = T4f + T4g; |
1067 | 0 | Ip[WS(rs, 3)] = T4h - T4o; |
1068 | 0 | Ip[WS(rs, 7)] = T4h + T4o; |
1069 | 0 | } |
1070 | 0 | { |
1071 | 0 | E T4t, T4B, T4u, T4x, T4y, T4z, T4C, T4A; |
1072 | 0 | { |
1073 | 0 | E T4r, T4s, T4v, T4w; |
1074 | 0 | T4r = T2S - T2T; |
1075 | 0 | T4s = T2Q + T2P; |
1076 | 0 | T4t = FNMS(KP293892626, T4s, KP475528258 * T4r); |
1077 | 0 | T4B = FMA(KP475528258, T4s, KP293892626 * T4r); |
1078 | 0 | T4u = T47 - T48; |
1079 | 0 | T4v = T4l + T4m; |
1080 | 0 | T4w = T4i + T4j; |
1081 | 0 | T4x = T4v + T4w; |
1082 | 0 | T4y = FNMS(KP125000000, T4x, KP500000000 * T4u); |
1083 | 0 | T4z = KP279508497 * (T4v - T4w); |
1084 | 0 | } |
1085 | 0 | Rm[WS(rs, 4)] = KP500000000 * (T4u + T4x); |
1086 | 0 | T4C = T4z + T4y; |
1087 | 0 | Rm[WS(rs, 8)] = T4B + T4C; |
1088 | 0 | Rm[0] = T4C - T4B; |
1089 | 0 | T4A = T4y - T4z; |
1090 | 0 | Rp[WS(rs, 3)] = T4t + T4A; |
1091 | 0 | Rp[WS(rs, 7)] = T4A - T4t; |
1092 | 0 | } |
1093 | 0 | { |
1094 | 0 | E T5k, T5m, T3o, T3j, T5b, T5c, T5l, T5d; |
1095 | 0 | { |
1096 | 0 | E T5g, T5j, T37, T3i; |
1097 | 0 | T5g = T5e - T5f; |
1098 | 0 | T5j = T5h - T5i; |
1099 | 0 | T5k = FNMS(KP293892626, T5j, KP475528258 * T5g); |
1100 | 0 | T5m = FMA(KP293892626, T5g, KP475528258 * T5j); |
1101 | 0 | T3o = T3m + T3n; |
1102 | 0 | T37 = T31 - T36; |
1103 | 0 | T3i = T3c + T3h; |
1104 | 0 | T3j = T37 - T3i; |
1105 | 0 | T5b = FMA(KP500000000, T3o, KP125000000 * T3j); |
1106 | 0 | T5c = KP279508497 * (T3i + T37); |
1107 | 0 | } |
1108 | 0 | Im[WS(rs, 9)] = KP500000000 * (T3j - T3o); |
1109 | 0 | T5l = T5b - T5c; |
1110 | 0 | Ip[WS(rs, 2)] = T5l + T5m; |
1111 | 0 | Im[WS(rs, 1)] = T5m - T5l; |
1112 | 0 | T5d = T5b + T5c; |
1113 | 0 | Ip[WS(rs, 6)] = T5d + T5k; |
1114 | 0 | Im[WS(rs, 5)] = T5k - T5d; |
1115 | 0 | } |
1116 | 0 | { |
1117 | 0 | E T5w, T5x, T5n, T5q, T5r, T5s, T5y, T5t; |
1118 | 0 | { |
1119 | 0 | E T5u, T5v, T5o, T5p; |
1120 | 0 | T5u = T36 + T31; |
1121 | 0 | T5v = T3c - T3h; |
1122 | 0 | T5w = FNMS(KP293892626, T5v, KP475528258 * T5u); |
1123 | 0 | T5x = FMA(KP475528258, T5v, KP293892626 * T5u); |
1124 | 0 | T5n = T50 - T51; |
1125 | 0 | T5o = T5f + T5e; |
1126 | 0 | T5p = T5h + T5i; |
1127 | 0 | T5q = T5o + T5p; |
1128 | 0 | T5r = FNMS(KP125000000, T5q, KP500000000 * T5n); |
1129 | 0 | T5s = KP279508497 * (T5o - T5p); |
1130 | 0 | } |
1131 | 0 | Rm[WS(rs, 9)] = KP500000000 * (T5n + T5q); |
1132 | 0 | T5y = T5s + T5r; |
1133 | 0 | Rp[WS(rs, 6)] = T5x + T5y; |
1134 | 0 | Rm[WS(rs, 5)] = T5y - T5x; |
1135 | 0 | T5t = T5r - T5s; |
1136 | 0 | Rp[WS(rs, 2)] = T5t - T5w; |
1137 | 0 | Rm[WS(rs, 1)] = T5w + T5t; |
1138 | 0 | } |
1139 | 0 | { |
1140 | 0 | E T4U, T4W, T3p, T3w, T4D, T4E, T4V, T4F; |
1141 | 0 | { |
1142 | 0 | E T4M, T4T, T3s, T3v; |
1143 | 0 | T4M = T4I - T4L; |
1144 | 0 | T4T = T4P - T4S; |
1145 | 0 | T4U = FNMS(KP475528258, T4T, KP293892626 * T4M); |
1146 | 0 | T4W = FMA(KP475528258, T4M, KP293892626 * T4T); |
1147 | 0 | T3p = T3n - T3m; |
1148 | 0 | T3s = T3q + T3r; |
1149 | 0 | T3v = T3t + T3u; |
1150 | 0 | T3w = T3s + T3v; |
1151 | 0 | T4D = FNMS(KP125000000, T3w, KP500000000 * T3p); |
1152 | 0 | T4E = KP279508497 * (T3s - T3v); |
1153 | 0 | } |
1154 | 0 | Ip[0] = KP500000000 * (T3p + T3w); |
1155 | 0 | T4V = T4E + T4D; |
1156 | 0 | Ip[WS(rs, 4)] = T4V + T4W; |
1157 | 0 | Im[WS(rs, 3)] = T4W - T4V; |
1158 | 0 | T4F = T4D - T4E; |
1159 | 0 | Ip[WS(rs, 8)] = T4F + T4U; |
1160 | 0 | Im[WS(rs, 7)] = T4U - T4F; |
1161 | 0 | } |
1162 | 0 | { |
1163 | 0 | E T58, T59, T52, T53, T4Z, T54, T5a, T55; |
1164 | 0 | { |
1165 | 0 | E T56, T57, T4X, T4Y; |
1166 | 0 | T56 = T3q - T3r; |
1167 | 0 | T57 = T3t - T3u; |
1168 | 0 | T58 = FMA(KP475528258, T56, KP293892626 * T57); |
1169 | 0 | T59 = FNMS(KP293892626, T56, KP475528258 * T57); |
1170 | 0 | T52 = T50 + T51; |
1171 | 0 | T4X = T4I + T4L; |
1172 | 0 | T4Y = T4P + T4S; |
1173 | 0 | T53 = T4X + T4Y; |
1174 | 0 | T4Z = KP279508497 * (T4X - T4Y); |
1175 | 0 | T54 = FNMS(KP125000000, T53, KP500000000 * T52); |
1176 | 0 | } |
1177 | 0 | Rp[0] = KP500000000 * (T52 + T53); |
1178 | 0 | T5a = T54 - T4Z; |
1179 | 0 | Rp[WS(rs, 8)] = T59 + T5a; |
1180 | 0 | Rm[WS(rs, 7)] = T5a - T59; |
1181 | 0 | T55 = T4Z + T54; |
1182 | 0 | Rp[WS(rs, 4)] = T55 - T58; |
1183 | 0 | Rm[WS(rs, 3)] = T58 + T55; |
1184 | 0 | } |
1185 | 0 | } |
1186 | 0 | } |
1187 | 0 | } |
1188 | 0 | } |
1189 | | |
1190 | | static const tw_instr twinstr[] = { |
1191 | | { TW_CEXP, 1, 1 }, |
1192 | | { TW_CEXP, 1, 3 }, |
1193 | | { TW_CEXP, 1, 9 }, |
1194 | | { TW_CEXP, 1, 19 }, |
1195 | | { TW_NEXT, 1, 0 } |
1196 | | }; |
1197 | | |
1198 | | static const hc2c_desc desc = { 20, "hc2cfdft2_20", twinstr, &GENUS, { 244, 108, 72, 0 } }; |
1199 | | |
1200 | 1 | void X(codelet_hc2cfdft2_20) (planner *p) { |
1201 | 1 | X(khc2c_register) (p, hc2cfdft2_20, &desc, HC2C_VIA_DFT); |
1202 | 1 | } |
1203 | | #endif |