/src/fftw3/dft/scalar/codelets/n1_11.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Nov 16 06:51:30 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 140 FP additions, 110 FP multiplications, |
32 | | * (or, 30 additions, 0 multiplications, 110 fused multiply/add), |
33 | | * 62 stack variables, 10 constants, and 44 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP989821441, +0.989821441880932732376092037776718787376519372); |
40 | | DK(KP959492973, +0.959492973614497389890368057066327699062454848); |
41 | | DK(KP918985947, +0.918985947228994779780736114132655398124909697); |
42 | | DK(KP830830026, +0.830830026003772851058548298459246407048009821); |
43 | | DK(KP876768831, +0.876768831002589333891339807079336796764054852); |
44 | | DK(KP778434453, +0.778434453334651800608337670740821884709317477); |
45 | | DK(KP715370323, +0.715370323453429719112414662767260662417897278); |
46 | | DK(KP521108558, +0.521108558113202722944698153526659300680427422); |
47 | | DK(KP634356270, +0.634356270682424498893150776899916060542806975); |
48 | | DK(KP342584725, +0.342584725681637509502641509861112333758894680); |
49 | | { |
50 | | INT i; |
51 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) { |
52 | | E T1, T1f, T4, T1u, Tg, T1q, T7, T1t, Ta, T1s, Td, T1r, Ti, TP, T26; |
53 | | E TG, T1X, T1O, T1w, TY, T1F, T17, To, T1i, TA, T1k, Tr, T1h, Tu, T1j; |
54 | | E Tx, T1g, TC, TU, T21, TL, T1S, T1J, T1m, T13, T1A, T1c; |
55 | | T1 = ri[0]; |
56 | | T1f = ii[0]; |
57 | | { |
58 | | E T5, T6, Tp, Tq; |
59 | | { |
60 | | E T2, T3, Te, Tf; |
61 | | T2 = ri[WS(is, 1)]; |
62 | | T3 = ri[WS(is, 10)]; |
63 | | T4 = T2 + T3; |
64 | | T1u = T3 - T2; |
65 | | Te = ri[WS(is, 5)]; |
66 | | Tf = ri[WS(is, 6)]; |
67 | | Tg = Te + Tf; |
68 | | T1q = Tf - Te; |
69 | | } |
70 | | T5 = ri[WS(is, 2)]; |
71 | | T6 = ri[WS(is, 9)]; |
72 | | T7 = T5 + T6; |
73 | | T1t = T6 - T5; |
74 | | { |
75 | | E T8, T9, Tb, Tc; |
76 | | T8 = ri[WS(is, 3)]; |
77 | | T9 = ri[WS(is, 8)]; |
78 | | Ta = T8 + T9; |
79 | | T1s = T9 - T8; |
80 | | Tb = ri[WS(is, 4)]; |
81 | | Tc = ri[WS(is, 7)]; |
82 | | Td = Tb + Tc; |
83 | | T1r = Tc - Tb; |
84 | | } |
85 | | { |
86 | | E Th, TO, T25, TF, T1W; |
87 | | Th = FNMS(KP342584725, Ta, T7); |
88 | | Ti = FNMS(KP634356270, Th, Td); |
89 | | TO = FNMS(KP342584725, T4, Ta); |
90 | | TP = FNMS(KP634356270, TO, Tg); |
91 | | T25 = FMA(KP521108558, T1q, T1u); |
92 | | T26 = FMA(KP715370323, T25, T1r); |
93 | | TF = FNMS(KP342584725, Td, T4); |
94 | | TG = FNMS(KP634356270, TF, T7); |
95 | | T1W = FMA(KP521108558, T1s, T1q); |
96 | | T1X = FNMS(KP715370323, T1W, T1t); |
97 | | } |
98 | | { |
99 | | E T1N, T1v, TX, T1E, T16; |
100 | | T1N = FNMS(KP521108558, T1t, T1r); |
101 | | T1O = FMA(KP715370323, T1N, T1q); |
102 | | T1v = FNMS(KP521108558, T1u, T1t); |
103 | | T1w = FNMS(KP715370323, T1v, T1s); |
104 | | TX = FNMS(KP342584725, T7, Tg); |
105 | | TY = FNMS(KP634356270, TX, T4); |
106 | | T1E = FMA(KP521108558, T1r, T1s); |
107 | | T1F = FMA(KP715370323, T1E, T1u); |
108 | | T16 = FNMS(KP342584725, Tg, Td); |
109 | | T17 = FNMS(KP634356270, T16, Ta); |
110 | | } |
111 | | { |
112 | | E Tm, Tn, Ty, Tz; |
113 | | Tm = ii[WS(is, 3)]; |
114 | | Tn = ii[WS(is, 8)]; |
115 | | To = Tm - Tn; |
116 | | T1i = Tm + Tn; |
117 | | Ty = ii[WS(is, 5)]; |
118 | | Tz = ii[WS(is, 6)]; |
119 | | TA = Ty - Tz; |
120 | | T1k = Ty + Tz; |
121 | | } |
122 | | Tp = ii[WS(is, 2)]; |
123 | | Tq = ii[WS(is, 9)]; |
124 | | Tr = Tp - Tq; |
125 | | T1h = Tp + Tq; |
126 | | { |
127 | | E Ts, Tt, Tv, Tw; |
128 | | Ts = ii[WS(is, 4)]; |
129 | | Tt = ii[WS(is, 7)]; |
130 | | Tu = Ts - Tt; |
131 | | T1j = Ts + Tt; |
132 | | Tv = ii[WS(is, 1)]; |
133 | | Tw = ii[WS(is, 10)]; |
134 | | Tx = Tv - Tw; |
135 | | T1g = Tv + Tw; |
136 | | } |
137 | | { |
138 | | E TB, TT, T20, TK, T1R; |
139 | | TB = FMA(KP521108558, TA, Tx); |
140 | | TC = FMA(KP715370323, TB, Tu); |
141 | | TT = FNMS(KP521108558, Tr, Tu); |
142 | | TU = FMA(KP715370323, TT, TA); |
143 | | T20 = FNMS(KP342584725, T1i, T1h); |
144 | | T21 = FNMS(KP634356270, T20, T1j); |
145 | | TK = FMA(KP521108558, To, TA); |
146 | | TL = FNMS(KP715370323, TK, Tr); |
147 | | T1R = FNMS(KP342584725, T1j, T1g); |
148 | | T1S = FNMS(KP634356270, T1R, T1h); |
149 | | } |
150 | | { |
151 | | E T1I, T1l, T12, T1z, T1b; |
152 | | T1I = FNMS(KP342584725, T1g, T1i); |
153 | | T1J = FNMS(KP634356270, T1I, T1k); |
154 | | T1l = FNMS(KP342584725, T1k, T1j); |
155 | | T1m = FNMS(KP634356270, T1l, T1i); |
156 | | T12 = FMA(KP521108558, Tu, To); |
157 | | T13 = FMA(KP715370323, T12, Tx); |
158 | | T1z = FNMS(KP342584725, T1h, T1k); |
159 | | T1A = FNMS(KP634356270, T1z, T1g); |
160 | | T1b = FNMS(KP521108558, Tx, Tr); |
161 | | T1c = FNMS(KP715370323, T1b, To); |
162 | | } |
163 | | } |
164 | | ro[0] = T1 + T4 + T7 + Ta + Td + Tg; |
165 | | io[0] = T1f + T1g + T1h + T1i + T1j + T1k; |
166 | | { |
167 | | E Tk, TE, Tj, TD, Tl; |
168 | | Tj = FNMS(KP778434453, Ti, T4); |
169 | | Tk = FNMS(KP876768831, Tj, Tg); |
170 | | TD = FMA(KP830830026, TC, Tr); |
171 | | TE = FMA(KP918985947, TD, To); |
172 | | Tl = FNMS(KP959492973, Tk, T1); |
173 | | ro[WS(os, 10)] = FNMS(KP989821441, TE, Tl); |
174 | | ro[WS(os, 1)] = FMA(KP989821441, TE, Tl); |
175 | | } |
176 | | { |
177 | | E T23, T28, T22, T27, T24; |
178 | | T22 = FNMS(KP778434453, T21, T1g); |
179 | | T23 = FNMS(KP876768831, T22, T1k); |
180 | | T27 = FMA(KP830830026, T26, T1t); |
181 | | T28 = FMA(KP918985947, T27, T1s); |
182 | | T24 = FNMS(KP959492973, T23, T1f); |
183 | | io[WS(os, 1)] = FMA(KP989821441, T28, T24); |
184 | | io[WS(os, 10)] = FNMS(KP989821441, T28, T24); |
185 | | } |
186 | | { |
187 | | E T1U, T1Z, T1T, T1Y, T1V; |
188 | | T1T = FNMS(KP778434453, T1S, T1k); |
189 | | T1U = FNMS(KP876768831, T1T, T1i); |
190 | | T1Y = FMA(KP830830026, T1X, T1u); |
191 | | T1Z = FNMS(KP918985947, T1Y, T1r); |
192 | | T1V = FNMS(KP959492973, T1U, T1f); |
193 | | io[WS(os, 2)] = FNMS(KP989821441, T1Z, T1V); |
194 | | io[WS(os, 9)] = FMA(KP989821441, T1Z, T1V); |
195 | | } |
196 | | { |
197 | | E TI, TN, TH, TM, TJ; |
198 | | TH = FNMS(KP778434453, TG, Tg); |
199 | | TI = FNMS(KP876768831, TH, Ta); |
200 | | TM = FMA(KP830830026, TL, Tx); |
201 | | TN = FNMS(KP918985947, TM, Tu); |
202 | | TJ = FNMS(KP959492973, TI, T1); |
203 | | ro[WS(os, 2)] = FNMS(KP989821441, TN, TJ); |
204 | | ro[WS(os, 9)] = FMA(KP989821441, TN, TJ); |
205 | | } |
206 | | { |
207 | | E TR, TW, TQ, TV, TS; |
208 | | TQ = FNMS(KP778434453, TP, Td); |
209 | | TR = FNMS(KP876768831, TQ, T7); |
210 | | TV = FNMS(KP830830026, TU, To); |
211 | | TW = FNMS(KP918985947, TV, Tx); |
212 | | TS = FNMS(KP959492973, TR, T1); |
213 | | ro[WS(os, 8)] = FNMS(KP989821441, TW, TS); |
214 | | ro[WS(os, 3)] = FMA(KP989821441, TW, TS); |
215 | | } |
216 | | { |
217 | | E T1L, T1Q, T1K, T1P, T1M; |
218 | | T1K = FNMS(KP778434453, T1J, T1j); |
219 | | T1L = FNMS(KP876768831, T1K, T1h); |
220 | | T1P = FNMS(KP830830026, T1O, T1s); |
221 | | T1Q = FNMS(KP918985947, T1P, T1u); |
222 | | T1M = FNMS(KP959492973, T1L, T1f); |
223 | | io[WS(os, 3)] = FMA(KP989821441, T1Q, T1M); |
224 | | io[WS(os, 8)] = FNMS(KP989821441, T1Q, T1M); |
225 | | } |
226 | | { |
227 | | E T10, T15, TZ, T14, T11; |
228 | | TZ = FNMS(KP778434453, TY, Ta); |
229 | | T10 = FNMS(KP876768831, TZ, Td); |
230 | | T14 = FNMS(KP830830026, T13, TA); |
231 | | T15 = FMA(KP918985947, T14, Tr); |
232 | | T11 = FNMS(KP959492973, T10, T1); |
233 | | ro[WS(os, 4)] = FNMS(KP989821441, T15, T11); |
234 | | ro[WS(os, 7)] = FMA(KP989821441, T15, T11); |
235 | | } |
236 | | { |
237 | | E T1C, T1H, T1B, T1G, T1D; |
238 | | T1B = FNMS(KP778434453, T1A, T1i); |
239 | | T1C = FNMS(KP876768831, T1B, T1j); |
240 | | T1G = FNMS(KP830830026, T1F, T1q); |
241 | | T1H = FMA(KP918985947, T1G, T1t); |
242 | | T1D = FNMS(KP959492973, T1C, T1f); |
243 | | io[WS(os, 4)] = FNMS(KP989821441, T1H, T1D); |
244 | | io[WS(os, 7)] = FMA(KP989821441, T1H, T1D); |
245 | | } |
246 | | { |
247 | | E T1o, T1y, T1n, T1x, T1p; |
248 | | T1n = FNMS(KP778434453, T1m, T1h); |
249 | | T1o = FNMS(KP876768831, T1n, T1g); |
250 | | T1x = FNMS(KP830830026, T1w, T1r); |
251 | | T1y = FNMS(KP918985947, T1x, T1q); |
252 | | T1p = FNMS(KP959492973, T1o, T1f); |
253 | | io[WS(os, 5)] = FMA(KP989821441, T1y, T1p); |
254 | | io[WS(os, 6)] = FNMS(KP989821441, T1y, T1p); |
255 | | } |
256 | | { |
257 | | E T19, T1e, T18, T1d, T1a; |
258 | | T18 = FNMS(KP778434453, T17, T7); |
259 | | T19 = FNMS(KP876768831, T18, T4); |
260 | | T1d = FNMS(KP830830026, T1c, Tu); |
261 | | T1e = FNMS(KP918985947, T1d, TA); |
262 | | T1a = FNMS(KP959492973, T19, T1); |
263 | | ro[WS(os, 6)] = FNMS(KP989821441, T1e, T1a); |
264 | | ro[WS(os, 5)] = FMA(KP989821441, T1e, T1a); |
265 | | } |
266 | | } |
267 | | } |
268 | | } |
269 | | |
270 | | static const kdft_desc desc = { 11, "n1_11", { 30, 0, 110, 0 }, &GENUS, 0, 0, 0, 0 }; |
271 | | |
272 | | void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc); |
273 | | } |
274 | | |
275 | | #else |
276 | | |
277 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */ |
278 | | |
279 | | /* |
280 | | * This function contains 140 FP additions, 100 FP multiplications, |
281 | | * (or, 60 additions, 20 multiplications, 80 fused multiply/add), |
282 | | * 41 stack variables, 10 constants, and 44 memory accesses |
283 | | */ |
284 | | #include "dft/scalar/n.h" |
285 | | |
286 | | static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
287 | 47 | { |
288 | 47 | DK(KP654860733, +0.654860733945285064056925072466293553183791199); |
289 | 47 | DK(KP142314838, +0.142314838273285140443792668616369668791051361); |
290 | 47 | DK(KP959492973, +0.959492973614497389890368057066327699062454848); |
291 | 47 | DK(KP415415013, +0.415415013001886425529274149229623203524004910); |
292 | 47 | DK(KP841253532, +0.841253532831181168861811648919367717513292498); |
293 | 47 | DK(KP989821441, +0.989821441880932732376092037776718787376519372); |
294 | 47 | DK(KP909631995, +0.909631995354518371411715383079028460060241051); |
295 | 47 | DK(KP281732556, +0.281732556841429697711417915346616899035777899); |
296 | 47 | DK(KP540640817, +0.540640817455597582107635954318691695431770608); |
297 | 47 | DK(KP755749574, +0.755749574354258283774035843972344420179717445); |
298 | 47 | { |
299 | 47 | INT i; |
300 | 319 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) { |
301 | 272 | E T1, TM, T4, TG, Tk, TR, Tw, TN, T7, TK, Ta, TH, Tn, TQ, Td; |
302 | 272 | E TJ, Tq, TO, Tt, TP, Tg, TI; |
303 | 272 | { |
304 | 272 | E T2, T3, Ti, Tj; |
305 | 272 | T1 = ri[0]; |
306 | 272 | TM = ii[0]; |
307 | 272 | T2 = ri[WS(is, 1)]; |
308 | 272 | T3 = ri[WS(is, 10)]; |
309 | 272 | T4 = T2 + T3; |
310 | 272 | TG = T3 - T2; |
311 | 272 | Ti = ii[WS(is, 1)]; |
312 | 272 | Tj = ii[WS(is, 10)]; |
313 | 272 | Tk = Ti - Tj; |
314 | 272 | TR = Ti + Tj; |
315 | 272 | { |
316 | 272 | E Tu, Tv, T5, T6; |
317 | 272 | Tu = ii[WS(is, 2)]; |
318 | 272 | Tv = ii[WS(is, 9)]; |
319 | 272 | Tw = Tu - Tv; |
320 | 272 | TN = Tu + Tv; |
321 | 272 | T5 = ri[WS(is, 2)]; |
322 | 272 | T6 = ri[WS(is, 9)]; |
323 | 272 | T7 = T5 + T6; |
324 | 272 | TK = T6 - T5; |
325 | 272 | } |
326 | 272 | } |
327 | 272 | { |
328 | 272 | E T8, T9, To, Tp; |
329 | 272 | T8 = ri[WS(is, 3)]; |
330 | 272 | T9 = ri[WS(is, 8)]; |
331 | 272 | Ta = T8 + T9; |
332 | 272 | TH = T9 - T8; |
333 | 272 | { |
334 | 272 | E Tl, Tm, Tb, Tc; |
335 | 272 | Tl = ii[WS(is, 3)]; |
336 | 272 | Tm = ii[WS(is, 8)]; |
337 | 272 | Tn = Tl - Tm; |
338 | 272 | TQ = Tl + Tm; |
339 | 272 | Tb = ri[WS(is, 4)]; |
340 | 272 | Tc = ri[WS(is, 7)]; |
341 | 272 | Td = Tb + Tc; |
342 | 272 | TJ = Tc - Tb; |
343 | 272 | } |
344 | 272 | To = ii[WS(is, 4)]; |
345 | 272 | Tp = ii[WS(is, 7)]; |
346 | 272 | Tq = To - Tp; |
347 | 272 | TO = To + Tp; |
348 | 272 | { |
349 | 272 | E Tr, Ts, Te, Tf; |
350 | 272 | Tr = ii[WS(is, 5)]; |
351 | 272 | Ts = ii[WS(is, 6)]; |
352 | 272 | Tt = Tr - Ts; |
353 | 272 | TP = Tr + Ts; |
354 | 272 | Te = ri[WS(is, 5)]; |
355 | 272 | Tf = ri[WS(is, 6)]; |
356 | 272 | Tg = Te + Tf; |
357 | 272 | TI = Tf - Te; |
358 | 272 | } |
359 | 272 | } |
360 | 272 | { |
361 | 272 | E Tx, Th, TZ, T10; |
362 | 272 | ro[0] = T1 + T4 + T7 + Ta + Td + Tg; |
363 | 272 | io[0] = TM + TR + TN + TQ + TO + TP; |
364 | 272 | Tx = FMA(KP755749574, Tk, KP540640817 * Tn) + FNMS(KP909631995, Tt, KP281732556 * Tq) - (KP989821441 * Tw); |
365 | 272 | Th = FMA(KP841253532, Ta, T1) + FNMS(KP959492973, Td, KP415415013 * Tg) + FNMA(KP142314838, T7, KP654860733 * T4); |
366 | 272 | ro[WS(os, 7)] = Th - Tx; |
367 | 272 | ro[WS(os, 4)] = Th + Tx; |
368 | 272 | TZ = FMA(KP755749574, TG, KP540640817 * TH) + FNMS(KP909631995, TI, KP281732556 * TJ) - (KP989821441 * TK); |
369 | 272 | T10 = FMA(KP841253532, TQ, TM) + FNMS(KP959492973, TO, KP415415013 * TP) + FNMA(KP142314838, TN, KP654860733 * TR); |
370 | 272 | io[WS(os, 4)] = TZ + T10; |
371 | 272 | io[WS(os, 7)] = T10 - TZ; |
372 | 272 | { |
373 | 272 | E TX, TY, Tz, Ty; |
374 | 272 | TX = FMA(KP909631995, TG, KP755749574 * TK) + FNMA(KP540640817, TI, KP989821441 * TJ) - (KP281732556 * TH); |
375 | 272 | TY = FMA(KP415415013, TR, TM) + FNMS(KP142314838, TO, KP841253532 * TP) + FNMA(KP959492973, TQ, KP654860733 * TN); |
376 | 272 | io[WS(os, 2)] = TX + TY; |
377 | 272 | io[WS(os, 9)] = TY - TX; |
378 | 272 | Tz = FMA(KP909631995, Tk, KP755749574 * Tw) + FNMA(KP540640817, Tt, KP989821441 * Tq) - (KP281732556 * Tn); |
379 | 272 | Ty = FMA(KP415415013, T4, T1) + FNMS(KP142314838, Td, KP841253532 * Tg) + FNMA(KP959492973, Ta, KP654860733 * T7); |
380 | 272 | ro[WS(os, 9)] = Ty - Tz; |
381 | 272 | ro[WS(os, 2)] = Ty + Tz; |
382 | 272 | } |
383 | 272 | } |
384 | 272 | { |
385 | 272 | E TB, TA, TT, TU; |
386 | 272 | TB = FMA(KP540640817, Tk, KP909631995 * Tw) + FMA(KP989821441, Tn, KP755749574 * Tq) + (KP281732556 * Tt); |
387 | 272 | TA = FMA(KP841253532, T4, T1) + FNMS(KP959492973, Tg, KP415415013 * T7) + FNMA(KP654860733, Td, KP142314838 * Ta); |
388 | 272 | ro[WS(os, 10)] = TA - TB; |
389 | 272 | ro[WS(os, 1)] = TA + TB; |
390 | 272 | { |
391 | 272 | E TV, TW, TD, TC; |
392 | 272 | TV = FMA(KP540640817, TG, KP909631995 * TK) + FMA(KP989821441, TH, KP755749574 * TJ) + (KP281732556 * TI); |
393 | 272 | TW = FMA(KP841253532, TR, TM) + FNMS(KP959492973, TP, KP415415013 * TN) + FNMA(KP654860733, TO, KP142314838 * TQ); |
394 | 272 | io[WS(os, 1)] = TV + TW; |
395 | 272 | io[WS(os, 10)] = TW - TV; |
396 | 272 | TD = FMA(KP989821441, Tk, KP540640817 * Tq) + FNMS(KP909631995, Tn, KP755749574 * Tt) - (KP281732556 * Tw); |
397 | 272 | TC = FMA(KP415415013, Ta, T1) + FNMS(KP654860733, Tg, KP841253532 * Td) + FNMA(KP959492973, T7, KP142314838 * T4); |
398 | 272 | ro[WS(os, 8)] = TC - TD; |
399 | 272 | ro[WS(os, 3)] = TC + TD; |
400 | 272 | } |
401 | 272 | TT = FMA(KP989821441, TG, KP540640817 * TJ) + FNMS(KP909631995, TH, KP755749574 * TI) - (KP281732556 * TK); |
402 | 272 | TU = FMA(KP415415013, TQ, TM) + FNMS(KP654860733, TP, KP841253532 * TO) + FNMA(KP959492973, TN, KP142314838 * TR); |
403 | 272 | io[WS(os, 3)] = TT + TU; |
404 | 272 | io[WS(os, 8)] = TU - TT; |
405 | 272 | { |
406 | 272 | E TL, TS, TF, TE; |
407 | 272 | TL = FMA(KP281732556, TG, KP755749574 * TH) + FNMS(KP909631995, TJ, KP989821441 * TI) - (KP540640817 * TK); |
408 | 272 | TS = FMA(KP841253532, TN, TM) + FNMS(KP142314838, TP, KP415415013 * TO) + FNMA(KP654860733, TQ, KP959492973 * TR); |
409 | 272 | io[WS(os, 5)] = TL + TS; |
410 | 272 | io[WS(os, 6)] = TS - TL; |
411 | 272 | TF = FMA(KP281732556, Tk, KP755749574 * Tn) + FNMS(KP909631995, Tq, KP989821441 * Tt) - (KP540640817 * Tw); |
412 | 272 | TE = FMA(KP841253532, T7, T1) + FNMS(KP142314838, Tg, KP415415013 * Td) + FNMA(KP654860733, Ta, KP959492973 * T4); |
413 | 272 | ro[WS(os, 6)] = TE - TF; |
414 | 272 | ro[WS(os, 5)] = TE + TF; |
415 | 272 | } |
416 | 272 | } |
417 | 272 | } |
418 | 47 | } |
419 | 47 | } |
420 | | |
421 | | static const kdft_desc desc = { 11, "n1_11", { 60, 20, 80, 0 }, &GENUS, 0, 0, 0, 0 }; |
422 | | |
423 | 1 | void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc); |
424 | 1 | } |
425 | | |
426 | | #endif |