Coverage Report

Created: 2025-11-16 06:54

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/n1_11.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Nov 16 06:51:30 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */
29
30
/*
31
 * This function contains 140 FP additions, 110 FP multiplications,
32
 * (or, 30 additions, 0 multiplications, 110 fused multiply/add),
33
 * 62 stack variables, 10 constants, and 44 memory accesses
34
 */
35
#include "dft/scalar/n.h"
36
37
static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP989821441, +0.989821441880932732376092037776718787376519372);
40
     DK(KP959492973, +0.959492973614497389890368057066327699062454848);
41
     DK(KP918985947, +0.918985947228994779780736114132655398124909697);
42
     DK(KP830830026, +0.830830026003772851058548298459246407048009821);
43
     DK(KP876768831, +0.876768831002589333891339807079336796764054852);
44
     DK(KP778434453, +0.778434453334651800608337670740821884709317477);
45
     DK(KP715370323, +0.715370323453429719112414662767260662417897278);
46
     DK(KP521108558, +0.521108558113202722944698153526659300680427422);
47
     DK(KP634356270, +0.634356270682424498893150776899916060542806975);
48
     DK(KP342584725, +0.342584725681637509502641509861112333758894680);
49
     {
50
    INT i;
51
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) {
52
         E T1, T1f, T4, T1u, Tg, T1q, T7, T1t, Ta, T1s, Td, T1r, Ti, TP, T26;
53
         E TG, T1X, T1O, T1w, TY, T1F, T17, To, T1i, TA, T1k, Tr, T1h, Tu, T1j;
54
         E Tx, T1g, TC, TU, T21, TL, T1S, T1J, T1m, T13, T1A, T1c;
55
         T1 = ri[0];
56
         T1f = ii[0];
57
         {
58
        E T5, T6, Tp, Tq;
59
        {
60
       E T2, T3, Te, Tf;
61
       T2 = ri[WS(is, 1)];
62
       T3 = ri[WS(is, 10)];
63
       T4 = T2 + T3;
64
       T1u = T3 - T2;
65
       Te = ri[WS(is, 5)];
66
       Tf = ri[WS(is, 6)];
67
       Tg = Te + Tf;
68
       T1q = Tf - Te;
69
        }
70
        T5 = ri[WS(is, 2)];
71
        T6 = ri[WS(is, 9)];
72
        T7 = T5 + T6;
73
        T1t = T6 - T5;
74
        {
75
       E T8, T9, Tb, Tc;
76
       T8 = ri[WS(is, 3)];
77
       T9 = ri[WS(is, 8)];
78
       Ta = T8 + T9;
79
       T1s = T9 - T8;
80
       Tb = ri[WS(is, 4)];
81
       Tc = ri[WS(is, 7)];
82
       Td = Tb + Tc;
83
       T1r = Tc - Tb;
84
        }
85
        {
86
       E Th, TO, T25, TF, T1W;
87
       Th = FNMS(KP342584725, Ta, T7);
88
       Ti = FNMS(KP634356270, Th, Td);
89
       TO = FNMS(KP342584725, T4, Ta);
90
       TP = FNMS(KP634356270, TO, Tg);
91
       T25 = FMA(KP521108558, T1q, T1u);
92
       T26 = FMA(KP715370323, T25, T1r);
93
       TF = FNMS(KP342584725, Td, T4);
94
       TG = FNMS(KP634356270, TF, T7);
95
       T1W = FMA(KP521108558, T1s, T1q);
96
       T1X = FNMS(KP715370323, T1W, T1t);
97
        }
98
        {
99
       E T1N, T1v, TX, T1E, T16;
100
       T1N = FNMS(KP521108558, T1t, T1r);
101
       T1O = FMA(KP715370323, T1N, T1q);
102
       T1v = FNMS(KP521108558, T1u, T1t);
103
       T1w = FNMS(KP715370323, T1v, T1s);
104
       TX = FNMS(KP342584725, T7, Tg);
105
       TY = FNMS(KP634356270, TX, T4);
106
       T1E = FMA(KP521108558, T1r, T1s);
107
       T1F = FMA(KP715370323, T1E, T1u);
108
       T16 = FNMS(KP342584725, Tg, Td);
109
       T17 = FNMS(KP634356270, T16, Ta);
110
        }
111
        {
112
       E Tm, Tn, Ty, Tz;
113
       Tm = ii[WS(is, 3)];
114
       Tn = ii[WS(is, 8)];
115
       To = Tm - Tn;
116
       T1i = Tm + Tn;
117
       Ty = ii[WS(is, 5)];
118
       Tz = ii[WS(is, 6)];
119
       TA = Ty - Tz;
120
       T1k = Ty + Tz;
121
        }
122
        Tp = ii[WS(is, 2)];
123
        Tq = ii[WS(is, 9)];
124
        Tr = Tp - Tq;
125
        T1h = Tp + Tq;
126
        {
127
       E Ts, Tt, Tv, Tw;
128
       Ts = ii[WS(is, 4)];
129
       Tt = ii[WS(is, 7)];
130
       Tu = Ts - Tt;
131
       T1j = Ts + Tt;
132
       Tv = ii[WS(is, 1)];
133
       Tw = ii[WS(is, 10)];
134
       Tx = Tv - Tw;
135
       T1g = Tv + Tw;
136
        }
137
        {
138
       E TB, TT, T20, TK, T1R;
139
       TB = FMA(KP521108558, TA, Tx);
140
       TC = FMA(KP715370323, TB, Tu);
141
       TT = FNMS(KP521108558, Tr, Tu);
142
       TU = FMA(KP715370323, TT, TA);
143
       T20 = FNMS(KP342584725, T1i, T1h);
144
       T21 = FNMS(KP634356270, T20, T1j);
145
       TK = FMA(KP521108558, To, TA);
146
       TL = FNMS(KP715370323, TK, Tr);
147
       T1R = FNMS(KP342584725, T1j, T1g);
148
       T1S = FNMS(KP634356270, T1R, T1h);
149
        }
150
        {
151
       E T1I, T1l, T12, T1z, T1b;
152
       T1I = FNMS(KP342584725, T1g, T1i);
153
       T1J = FNMS(KP634356270, T1I, T1k);
154
       T1l = FNMS(KP342584725, T1k, T1j);
155
       T1m = FNMS(KP634356270, T1l, T1i);
156
       T12 = FMA(KP521108558, Tu, To);
157
       T13 = FMA(KP715370323, T12, Tx);
158
       T1z = FNMS(KP342584725, T1h, T1k);
159
       T1A = FNMS(KP634356270, T1z, T1g);
160
       T1b = FNMS(KP521108558, Tx, Tr);
161
       T1c = FNMS(KP715370323, T1b, To);
162
        }
163
         }
164
         ro[0] = T1 + T4 + T7 + Ta + Td + Tg;
165
         io[0] = T1f + T1g + T1h + T1i + T1j + T1k;
166
         {
167
        E Tk, TE, Tj, TD, Tl;
168
        Tj = FNMS(KP778434453, Ti, T4);
169
        Tk = FNMS(KP876768831, Tj, Tg);
170
        TD = FMA(KP830830026, TC, Tr);
171
        TE = FMA(KP918985947, TD, To);
172
        Tl = FNMS(KP959492973, Tk, T1);
173
        ro[WS(os, 10)] = FNMS(KP989821441, TE, Tl);
174
        ro[WS(os, 1)] = FMA(KP989821441, TE, Tl);
175
         }
176
         {
177
        E T23, T28, T22, T27, T24;
178
        T22 = FNMS(KP778434453, T21, T1g);
179
        T23 = FNMS(KP876768831, T22, T1k);
180
        T27 = FMA(KP830830026, T26, T1t);
181
        T28 = FMA(KP918985947, T27, T1s);
182
        T24 = FNMS(KP959492973, T23, T1f);
183
        io[WS(os, 1)] = FMA(KP989821441, T28, T24);
184
        io[WS(os, 10)] = FNMS(KP989821441, T28, T24);
185
         }
186
         {
187
        E T1U, T1Z, T1T, T1Y, T1V;
188
        T1T = FNMS(KP778434453, T1S, T1k);
189
        T1U = FNMS(KP876768831, T1T, T1i);
190
        T1Y = FMA(KP830830026, T1X, T1u);
191
        T1Z = FNMS(KP918985947, T1Y, T1r);
192
        T1V = FNMS(KP959492973, T1U, T1f);
193
        io[WS(os, 2)] = FNMS(KP989821441, T1Z, T1V);
194
        io[WS(os, 9)] = FMA(KP989821441, T1Z, T1V);
195
         }
196
         {
197
        E TI, TN, TH, TM, TJ;
198
        TH = FNMS(KP778434453, TG, Tg);
199
        TI = FNMS(KP876768831, TH, Ta);
200
        TM = FMA(KP830830026, TL, Tx);
201
        TN = FNMS(KP918985947, TM, Tu);
202
        TJ = FNMS(KP959492973, TI, T1);
203
        ro[WS(os, 2)] = FNMS(KP989821441, TN, TJ);
204
        ro[WS(os, 9)] = FMA(KP989821441, TN, TJ);
205
         }
206
         {
207
        E TR, TW, TQ, TV, TS;
208
        TQ = FNMS(KP778434453, TP, Td);
209
        TR = FNMS(KP876768831, TQ, T7);
210
        TV = FNMS(KP830830026, TU, To);
211
        TW = FNMS(KP918985947, TV, Tx);
212
        TS = FNMS(KP959492973, TR, T1);
213
        ro[WS(os, 8)] = FNMS(KP989821441, TW, TS);
214
        ro[WS(os, 3)] = FMA(KP989821441, TW, TS);
215
         }
216
         {
217
        E T1L, T1Q, T1K, T1P, T1M;
218
        T1K = FNMS(KP778434453, T1J, T1j);
219
        T1L = FNMS(KP876768831, T1K, T1h);
220
        T1P = FNMS(KP830830026, T1O, T1s);
221
        T1Q = FNMS(KP918985947, T1P, T1u);
222
        T1M = FNMS(KP959492973, T1L, T1f);
223
        io[WS(os, 3)] = FMA(KP989821441, T1Q, T1M);
224
        io[WS(os, 8)] = FNMS(KP989821441, T1Q, T1M);
225
         }
226
         {
227
        E T10, T15, TZ, T14, T11;
228
        TZ = FNMS(KP778434453, TY, Ta);
229
        T10 = FNMS(KP876768831, TZ, Td);
230
        T14 = FNMS(KP830830026, T13, TA);
231
        T15 = FMA(KP918985947, T14, Tr);
232
        T11 = FNMS(KP959492973, T10, T1);
233
        ro[WS(os, 4)] = FNMS(KP989821441, T15, T11);
234
        ro[WS(os, 7)] = FMA(KP989821441, T15, T11);
235
         }
236
         {
237
        E T1C, T1H, T1B, T1G, T1D;
238
        T1B = FNMS(KP778434453, T1A, T1i);
239
        T1C = FNMS(KP876768831, T1B, T1j);
240
        T1G = FNMS(KP830830026, T1F, T1q);
241
        T1H = FMA(KP918985947, T1G, T1t);
242
        T1D = FNMS(KP959492973, T1C, T1f);
243
        io[WS(os, 4)] = FNMS(KP989821441, T1H, T1D);
244
        io[WS(os, 7)] = FMA(KP989821441, T1H, T1D);
245
         }
246
         {
247
        E T1o, T1y, T1n, T1x, T1p;
248
        T1n = FNMS(KP778434453, T1m, T1h);
249
        T1o = FNMS(KP876768831, T1n, T1g);
250
        T1x = FNMS(KP830830026, T1w, T1r);
251
        T1y = FNMS(KP918985947, T1x, T1q);
252
        T1p = FNMS(KP959492973, T1o, T1f);
253
        io[WS(os, 5)] = FMA(KP989821441, T1y, T1p);
254
        io[WS(os, 6)] = FNMS(KP989821441, T1y, T1p);
255
         }
256
         {
257
        E T19, T1e, T18, T1d, T1a;
258
        T18 = FNMS(KP778434453, T17, T7);
259
        T19 = FNMS(KP876768831, T18, T4);
260
        T1d = FNMS(KP830830026, T1c, Tu);
261
        T1e = FNMS(KP918985947, T1d, TA);
262
        T1a = FNMS(KP959492973, T19, T1);
263
        ro[WS(os, 6)] = FNMS(KP989821441, T1e, T1a);
264
        ro[WS(os, 5)] = FMA(KP989821441, T1e, T1a);
265
         }
266
    }
267
     }
268
}
269
270
static const kdft_desc desc = { 11, "n1_11", { 30, 0, 110, 0 }, &GENUS, 0, 0, 0, 0 };
271
272
void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc);
273
}
274
275
#else
276
277
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */
278
279
/*
280
 * This function contains 140 FP additions, 100 FP multiplications,
281
 * (or, 60 additions, 20 multiplications, 80 fused multiply/add),
282
 * 41 stack variables, 10 constants, and 44 memory accesses
283
 */
284
#include "dft/scalar/n.h"
285
286
static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
287
47
{
288
47
     DK(KP654860733, +0.654860733945285064056925072466293553183791199);
289
47
     DK(KP142314838, +0.142314838273285140443792668616369668791051361);
290
47
     DK(KP959492973, +0.959492973614497389890368057066327699062454848);
291
47
     DK(KP415415013, +0.415415013001886425529274149229623203524004910);
292
47
     DK(KP841253532, +0.841253532831181168861811648919367717513292498);
293
47
     DK(KP989821441, +0.989821441880932732376092037776718787376519372);
294
47
     DK(KP909631995, +0.909631995354518371411715383079028460060241051);
295
47
     DK(KP281732556, +0.281732556841429697711417915346616899035777899);
296
47
     DK(KP540640817, +0.540640817455597582107635954318691695431770608);
297
47
     DK(KP755749574, +0.755749574354258283774035843972344420179717445);
298
47
     {
299
47
    INT i;
300
319
    for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) {
301
272
         E T1, TM, T4, TG, Tk, TR, Tw, TN, T7, TK, Ta, TH, Tn, TQ, Td;
302
272
         E TJ, Tq, TO, Tt, TP, Tg, TI;
303
272
         {
304
272
        E T2, T3, Ti, Tj;
305
272
        T1 = ri[0];
306
272
        TM = ii[0];
307
272
        T2 = ri[WS(is, 1)];
308
272
        T3 = ri[WS(is, 10)];
309
272
        T4 = T2 + T3;
310
272
        TG = T3 - T2;
311
272
        Ti = ii[WS(is, 1)];
312
272
        Tj = ii[WS(is, 10)];
313
272
        Tk = Ti - Tj;
314
272
        TR = Ti + Tj;
315
272
        {
316
272
       E Tu, Tv, T5, T6;
317
272
       Tu = ii[WS(is, 2)];
318
272
       Tv = ii[WS(is, 9)];
319
272
       Tw = Tu - Tv;
320
272
       TN = Tu + Tv;
321
272
       T5 = ri[WS(is, 2)];
322
272
       T6 = ri[WS(is, 9)];
323
272
       T7 = T5 + T6;
324
272
       TK = T6 - T5;
325
272
        }
326
272
         }
327
272
         {
328
272
        E T8, T9, To, Tp;
329
272
        T8 = ri[WS(is, 3)];
330
272
        T9 = ri[WS(is, 8)];
331
272
        Ta = T8 + T9;
332
272
        TH = T9 - T8;
333
272
        {
334
272
       E Tl, Tm, Tb, Tc;
335
272
       Tl = ii[WS(is, 3)];
336
272
       Tm = ii[WS(is, 8)];
337
272
       Tn = Tl - Tm;
338
272
       TQ = Tl + Tm;
339
272
       Tb = ri[WS(is, 4)];
340
272
       Tc = ri[WS(is, 7)];
341
272
       Td = Tb + Tc;
342
272
       TJ = Tc - Tb;
343
272
        }
344
272
        To = ii[WS(is, 4)];
345
272
        Tp = ii[WS(is, 7)];
346
272
        Tq = To - Tp;
347
272
        TO = To + Tp;
348
272
        {
349
272
       E Tr, Ts, Te, Tf;
350
272
       Tr = ii[WS(is, 5)];
351
272
       Ts = ii[WS(is, 6)];
352
272
       Tt = Tr - Ts;
353
272
       TP = Tr + Ts;
354
272
       Te = ri[WS(is, 5)];
355
272
       Tf = ri[WS(is, 6)];
356
272
       Tg = Te + Tf;
357
272
       TI = Tf - Te;
358
272
        }
359
272
         }
360
272
         {
361
272
        E Tx, Th, TZ, T10;
362
272
        ro[0] = T1 + T4 + T7 + Ta + Td + Tg;
363
272
        io[0] = TM + TR + TN + TQ + TO + TP;
364
272
        Tx = FMA(KP755749574, Tk, KP540640817 * Tn) + FNMS(KP909631995, Tt, KP281732556 * Tq) - (KP989821441 * Tw);
365
272
        Th = FMA(KP841253532, Ta, T1) + FNMS(KP959492973, Td, KP415415013 * Tg) + FNMA(KP142314838, T7, KP654860733 * T4);
366
272
        ro[WS(os, 7)] = Th - Tx;
367
272
        ro[WS(os, 4)] = Th + Tx;
368
272
        TZ = FMA(KP755749574, TG, KP540640817 * TH) + FNMS(KP909631995, TI, KP281732556 * TJ) - (KP989821441 * TK);
369
272
        T10 = FMA(KP841253532, TQ, TM) + FNMS(KP959492973, TO, KP415415013 * TP) + FNMA(KP142314838, TN, KP654860733 * TR);
370
272
        io[WS(os, 4)] = TZ + T10;
371
272
        io[WS(os, 7)] = T10 - TZ;
372
272
        {
373
272
       E TX, TY, Tz, Ty;
374
272
       TX = FMA(KP909631995, TG, KP755749574 * TK) + FNMA(KP540640817, TI, KP989821441 * TJ) - (KP281732556 * TH);
375
272
       TY = FMA(KP415415013, TR, TM) + FNMS(KP142314838, TO, KP841253532 * TP) + FNMA(KP959492973, TQ, KP654860733 * TN);
376
272
       io[WS(os, 2)] = TX + TY;
377
272
       io[WS(os, 9)] = TY - TX;
378
272
       Tz = FMA(KP909631995, Tk, KP755749574 * Tw) + FNMA(KP540640817, Tt, KP989821441 * Tq) - (KP281732556 * Tn);
379
272
       Ty = FMA(KP415415013, T4, T1) + FNMS(KP142314838, Td, KP841253532 * Tg) + FNMA(KP959492973, Ta, KP654860733 * T7);
380
272
       ro[WS(os, 9)] = Ty - Tz;
381
272
       ro[WS(os, 2)] = Ty + Tz;
382
272
        }
383
272
         }
384
272
         {
385
272
        E TB, TA, TT, TU;
386
272
        TB = FMA(KP540640817, Tk, KP909631995 * Tw) + FMA(KP989821441, Tn, KP755749574 * Tq) + (KP281732556 * Tt);
387
272
        TA = FMA(KP841253532, T4, T1) + FNMS(KP959492973, Tg, KP415415013 * T7) + FNMA(KP654860733, Td, KP142314838 * Ta);
388
272
        ro[WS(os, 10)] = TA - TB;
389
272
        ro[WS(os, 1)] = TA + TB;
390
272
        {
391
272
       E TV, TW, TD, TC;
392
272
       TV = FMA(KP540640817, TG, KP909631995 * TK) + FMA(KP989821441, TH, KP755749574 * TJ) + (KP281732556 * TI);
393
272
       TW = FMA(KP841253532, TR, TM) + FNMS(KP959492973, TP, KP415415013 * TN) + FNMA(KP654860733, TO, KP142314838 * TQ);
394
272
       io[WS(os, 1)] = TV + TW;
395
272
       io[WS(os, 10)] = TW - TV;
396
272
       TD = FMA(KP989821441, Tk, KP540640817 * Tq) + FNMS(KP909631995, Tn, KP755749574 * Tt) - (KP281732556 * Tw);
397
272
       TC = FMA(KP415415013, Ta, T1) + FNMS(KP654860733, Tg, KP841253532 * Td) + FNMA(KP959492973, T7, KP142314838 * T4);
398
272
       ro[WS(os, 8)] = TC - TD;
399
272
       ro[WS(os, 3)] = TC + TD;
400
272
        }
401
272
        TT = FMA(KP989821441, TG, KP540640817 * TJ) + FNMS(KP909631995, TH, KP755749574 * TI) - (KP281732556 * TK);
402
272
        TU = FMA(KP415415013, TQ, TM) + FNMS(KP654860733, TP, KP841253532 * TO) + FNMA(KP959492973, TN, KP142314838 * TR);
403
272
        io[WS(os, 3)] = TT + TU;
404
272
        io[WS(os, 8)] = TU - TT;
405
272
        {
406
272
       E TL, TS, TF, TE;
407
272
       TL = FMA(KP281732556, TG, KP755749574 * TH) + FNMS(KP909631995, TJ, KP989821441 * TI) - (KP540640817 * TK);
408
272
       TS = FMA(KP841253532, TN, TM) + FNMS(KP142314838, TP, KP415415013 * TO) + FNMA(KP654860733, TQ, KP959492973 * TR);
409
272
       io[WS(os, 5)] = TL + TS;
410
272
       io[WS(os, 6)] = TS - TL;
411
272
       TF = FMA(KP281732556, Tk, KP755749574 * Tn) + FNMS(KP909631995, Tq, KP989821441 * Tt) - (KP540640817 * Tw);
412
272
       TE = FMA(KP841253532, T7, T1) + FNMS(KP142314838, Tg, KP415415013 * Td) + FNMA(KP654860733, Ta, KP959492973 * T4);
413
272
       ro[WS(os, 6)] = TE - TF;
414
272
       ro[WS(os, 5)] = TE + TF;
415
272
        }
416
272
         }
417
272
    }
418
47
     }
419
47
}
420
421
static const kdft_desc desc = { 11, "n1_11", { 60, 20, 80, 0 }, &GENUS, 0, 0, 0, 0 };
422
423
1
void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc);
424
1
}
425
426
#endif