/src/fftw3/dft/scalar/codelets/n1_15.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Nov 16 06:51:31 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name n1_15 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 156 FP additions, 84 FP multiplications, |
32 | | * (or, 72 additions, 0 multiplications, 84 fused multiply/add), |
33 | | * 69 stack variables, 6 constants, and 60 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
44 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
45 | | { |
46 | | INT i; |
47 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(60, is), MAKE_VOLATILE_STRIDE(60, os)) { |
48 | | E T5, T2l, Tx, TV, T1z, T1X, Tl, Tq, Tr, TN, TS, TT, T2c, T2d, T2n; |
49 | | E T1O, T1P, T1Z, T1l, T1q, T1B, TZ, T10, T11, Ta, Tf, Tg, TC, TH, TI; |
50 | | E T2f, T2g, T2m, T1R, T1S, T1Y, T1a, T1f, T1A, TW, TX, TY; |
51 | | { |
52 | | E T1, T1v, T4, T1y, Tw, T1w, Tt, T1x; |
53 | | T1 = ri[0]; |
54 | | T1v = ii[0]; |
55 | | { |
56 | | E T2, T3, Tu, Tv; |
57 | | T2 = ri[WS(is, 5)]; |
58 | | T3 = ri[WS(is, 10)]; |
59 | | T4 = T2 + T3; |
60 | | T1y = T3 - T2; |
61 | | Tu = ii[WS(is, 5)]; |
62 | | Tv = ii[WS(is, 10)]; |
63 | | Tw = Tu - Tv; |
64 | | T1w = Tu + Tv; |
65 | | } |
66 | | T5 = T1 + T4; |
67 | | T2l = T1v + T1w; |
68 | | Tt = FNMS(KP500000000, T4, T1); |
69 | | Tx = FNMS(KP866025403, Tw, Tt); |
70 | | TV = FMA(KP866025403, Tw, Tt); |
71 | | T1x = FNMS(KP500000000, T1w, T1v); |
72 | | T1z = FMA(KP866025403, T1y, T1x); |
73 | | T1X = FNMS(KP866025403, T1y, T1x); |
74 | | } |
75 | | { |
76 | | E Th, Tk, TJ, T1k, T1h, T1i, TM, T1j, Tm, Tp, TO, T1p, T1m, T1n, TR; |
77 | | E T1o; |
78 | | { |
79 | | E Ti, Tj, TK, TL; |
80 | | Th = ri[WS(is, 6)]; |
81 | | Ti = ri[WS(is, 11)]; |
82 | | Tj = ri[WS(is, 1)]; |
83 | | Tk = Ti + Tj; |
84 | | TJ = FNMS(KP500000000, Tk, Th); |
85 | | T1k = Tj - Ti; |
86 | | T1h = ii[WS(is, 6)]; |
87 | | TK = ii[WS(is, 11)]; |
88 | | TL = ii[WS(is, 1)]; |
89 | | T1i = TK + TL; |
90 | | TM = TK - TL; |
91 | | T1j = FNMS(KP500000000, T1i, T1h); |
92 | | } |
93 | | { |
94 | | E Tn, To, TP, TQ; |
95 | | Tm = ri[WS(is, 9)]; |
96 | | Tn = ri[WS(is, 14)]; |
97 | | To = ri[WS(is, 4)]; |
98 | | Tp = Tn + To; |
99 | | TO = FNMS(KP500000000, Tp, Tm); |
100 | | T1p = To - Tn; |
101 | | T1m = ii[WS(is, 9)]; |
102 | | TP = ii[WS(is, 14)]; |
103 | | TQ = ii[WS(is, 4)]; |
104 | | T1n = TP + TQ; |
105 | | TR = TP - TQ; |
106 | | T1o = FNMS(KP500000000, T1n, T1m); |
107 | | } |
108 | | Tl = Th + Tk; |
109 | | Tq = Tm + Tp; |
110 | | Tr = Tl + Tq; |
111 | | TN = FNMS(KP866025403, TM, TJ); |
112 | | TS = FNMS(KP866025403, TR, TO); |
113 | | TT = TN + TS; |
114 | | T2c = T1h + T1i; |
115 | | T2d = T1m + T1n; |
116 | | T2n = T2c + T2d; |
117 | | T1O = FNMS(KP866025403, T1k, T1j); |
118 | | T1P = FNMS(KP866025403, T1p, T1o); |
119 | | T1Z = T1O + T1P; |
120 | | T1l = FMA(KP866025403, T1k, T1j); |
121 | | T1q = FMA(KP866025403, T1p, T1o); |
122 | | T1B = T1l + T1q; |
123 | | TZ = FMA(KP866025403, TM, TJ); |
124 | | T10 = FMA(KP866025403, TR, TO); |
125 | | T11 = TZ + T10; |
126 | | } |
127 | | { |
128 | | E T6, T9, Ty, T19, T16, T17, TB, T18, Tb, Te, TD, T1e, T1b, T1c, TG; |
129 | | E T1d; |
130 | | { |
131 | | E T7, T8, Tz, TA; |
132 | | T6 = ri[WS(is, 3)]; |
133 | | T7 = ri[WS(is, 8)]; |
134 | | T8 = ri[WS(is, 13)]; |
135 | | T9 = T7 + T8; |
136 | | Ty = FNMS(KP500000000, T9, T6); |
137 | | T19 = T8 - T7; |
138 | | T16 = ii[WS(is, 3)]; |
139 | | Tz = ii[WS(is, 8)]; |
140 | | TA = ii[WS(is, 13)]; |
141 | | T17 = Tz + TA; |
142 | | TB = Tz - TA; |
143 | | T18 = FNMS(KP500000000, T17, T16); |
144 | | } |
145 | | { |
146 | | E Tc, Td, TE, TF; |
147 | | Tb = ri[WS(is, 12)]; |
148 | | Tc = ri[WS(is, 2)]; |
149 | | Td = ri[WS(is, 7)]; |
150 | | Te = Tc + Td; |
151 | | TD = FNMS(KP500000000, Te, Tb); |
152 | | T1e = Td - Tc; |
153 | | T1b = ii[WS(is, 12)]; |
154 | | TE = ii[WS(is, 2)]; |
155 | | TF = ii[WS(is, 7)]; |
156 | | T1c = TE + TF; |
157 | | TG = TE - TF; |
158 | | T1d = FNMS(KP500000000, T1c, T1b); |
159 | | } |
160 | | Ta = T6 + T9; |
161 | | Tf = Tb + Te; |
162 | | Tg = Ta + Tf; |
163 | | TC = FNMS(KP866025403, TB, Ty); |
164 | | TH = FNMS(KP866025403, TG, TD); |
165 | | TI = TC + TH; |
166 | | T2f = T16 + T17; |
167 | | T2g = T1b + T1c; |
168 | | T2m = T2f + T2g; |
169 | | T1R = FNMS(KP866025403, T19, T18); |
170 | | T1S = FNMS(KP866025403, T1e, T1d); |
171 | | T1Y = T1R + T1S; |
172 | | T1a = FMA(KP866025403, T19, T18); |
173 | | T1f = FMA(KP866025403, T1e, T1d); |
174 | | T1A = T1a + T1f; |
175 | | TW = FMA(KP866025403, TB, Ty); |
176 | | TX = FMA(KP866025403, TG, TD); |
177 | | TY = TW + TX; |
178 | | } |
179 | | { |
180 | | E T2a, Ts, T29, T2i, T2k, T2e, T2h, T2j, T2b; |
181 | | T2a = Tg - Tr; |
182 | | Ts = Tg + Tr; |
183 | | T29 = FNMS(KP250000000, Ts, T5); |
184 | | T2e = T2c - T2d; |
185 | | T2h = T2f - T2g; |
186 | | T2i = FNMS(KP618033988, T2h, T2e); |
187 | | T2k = FMA(KP618033988, T2e, T2h); |
188 | | ro[0] = T5 + Ts; |
189 | | T2j = FMA(KP559016994, T2a, T29); |
190 | | ro[WS(os, 9)] = FNMS(KP951056516, T2k, T2j); |
191 | | ro[WS(os, 6)] = FMA(KP951056516, T2k, T2j); |
192 | | T2b = FNMS(KP559016994, T2a, T29); |
193 | | ro[WS(os, 12)] = FNMS(KP951056516, T2i, T2b); |
194 | | ro[WS(os, 3)] = FMA(KP951056516, T2i, T2b); |
195 | | } |
196 | | { |
197 | | E T2q, T2o, T2p, T2u, T2w, T2s, T2t, T2v, T2r; |
198 | | T2q = T2m - T2n; |
199 | | T2o = T2m + T2n; |
200 | | T2p = FNMS(KP250000000, T2o, T2l); |
201 | | T2s = Tl - Tq; |
202 | | T2t = Ta - Tf; |
203 | | T2u = FNMS(KP618033988, T2t, T2s); |
204 | | T2w = FMA(KP618033988, T2s, T2t); |
205 | | io[0] = T2l + T2o; |
206 | | T2v = FMA(KP559016994, T2q, T2p); |
207 | | io[WS(os, 6)] = FNMS(KP951056516, T2w, T2v); |
208 | | io[WS(os, 9)] = FMA(KP951056516, T2w, T2v); |
209 | | T2r = FNMS(KP559016994, T2q, T2p); |
210 | | io[WS(os, 3)] = FNMS(KP951056516, T2u, T2r); |
211 | | io[WS(os, 12)] = FMA(KP951056516, T2u, T2r); |
212 | | } |
213 | | { |
214 | | E T1M, TU, T1L, T1U, T1W, T1Q, T1T, T1V, T1N; |
215 | | T1M = TI - TT; |
216 | | TU = TI + TT; |
217 | | T1L = FNMS(KP250000000, TU, Tx); |
218 | | T1Q = T1O - T1P; |
219 | | T1T = T1R - T1S; |
220 | | T1U = FNMS(KP618033988, T1T, T1Q); |
221 | | T1W = FMA(KP618033988, T1Q, T1T); |
222 | | ro[WS(os, 5)] = Tx + TU; |
223 | | T1V = FMA(KP559016994, T1M, T1L); |
224 | | ro[WS(os, 14)] = FNMS(KP951056516, T1W, T1V); |
225 | | ro[WS(os, 11)] = FMA(KP951056516, T1W, T1V); |
226 | | T1N = FNMS(KP559016994, T1M, T1L); |
227 | | ro[WS(os, 2)] = FNMS(KP951056516, T1U, T1N); |
228 | | ro[WS(os, 8)] = FMA(KP951056516, T1U, T1N); |
229 | | } |
230 | | { |
231 | | E T22, T20, T21, T26, T28, T24, T25, T27, T23; |
232 | | T22 = T1Y - T1Z; |
233 | | T20 = T1Y + T1Z; |
234 | | T21 = FNMS(KP250000000, T20, T1X); |
235 | | T24 = TN - TS; |
236 | | T25 = TC - TH; |
237 | | T26 = FNMS(KP618033988, T25, T24); |
238 | | T28 = FMA(KP618033988, T24, T25); |
239 | | io[WS(os, 5)] = T1X + T20; |
240 | | T27 = FMA(KP559016994, T22, T21); |
241 | | io[WS(os, 11)] = FNMS(KP951056516, T28, T27); |
242 | | io[WS(os, 14)] = FMA(KP951056516, T28, T27); |
243 | | T23 = FNMS(KP559016994, T22, T21); |
244 | | io[WS(os, 2)] = FMA(KP951056516, T26, T23); |
245 | | io[WS(os, 8)] = FNMS(KP951056516, T26, T23); |
246 | | } |
247 | | { |
248 | | E T1E, T1C, T1D, T1I, T1K, T1G, T1H, T1J, T1F; |
249 | | T1E = T1A - T1B; |
250 | | T1C = T1A + T1B; |
251 | | T1D = FNMS(KP250000000, T1C, T1z); |
252 | | T1G = TW - TX; |
253 | | T1H = TZ - T10; |
254 | | T1I = FMA(KP618033988, T1H, T1G); |
255 | | T1K = FNMS(KP618033988, T1G, T1H); |
256 | | io[WS(os, 10)] = T1z + T1C; |
257 | | T1J = FNMS(KP559016994, T1E, T1D); |
258 | | io[WS(os, 7)] = FMA(KP951056516, T1K, T1J); |
259 | | io[WS(os, 13)] = FNMS(KP951056516, T1K, T1J); |
260 | | T1F = FMA(KP559016994, T1E, T1D); |
261 | | io[WS(os, 1)] = FNMS(KP951056516, T1I, T1F); |
262 | | io[WS(os, 4)] = FMA(KP951056516, T1I, T1F); |
263 | | } |
264 | | { |
265 | | E T14, T12, T13, T1s, T1u, T1g, T1r, T1t, T15; |
266 | | T14 = TY - T11; |
267 | | T12 = TY + T11; |
268 | | T13 = FNMS(KP250000000, T12, TV); |
269 | | T1g = T1a - T1f; |
270 | | T1r = T1l - T1q; |
271 | | T1s = FMA(KP618033988, T1r, T1g); |
272 | | T1u = FNMS(KP618033988, T1g, T1r); |
273 | | ro[WS(os, 10)] = TV + T12; |
274 | | T1t = FNMS(KP559016994, T14, T13); |
275 | | ro[WS(os, 7)] = FNMS(KP951056516, T1u, T1t); |
276 | | ro[WS(os, 13)] = FMA(KP951056516, T1u, T1t); |
277 | | T15 = FMA(KP559016994, T14, T13); |
278 | | ro[WS(os, 4)] = FNMS(KP951056516, T1s, T15); |
279 | | ro[WS(os, 1)] = FMA(KP951056516, T1s, T15); |
280 | | } |
281 | | } |
282 | | } |
283 | | } |
284 | | |
285 | | static const kdft_desc desc = { 15, "n1_15", { 72, 0, 84, 0 }, &GENUS, 0, 0, 0, 0 }; |
286 | | |
287 | | void X(codelet_n1_15) (planner *p) { X(kdft_register) (p, n1_15, &desc); |
288 | | } |
289 | | |
290 | | #else |
291 | | |
292 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 15 -name n1_15 -include dft/scalar/n.h */ |
293 | | |
294 | | /* |
295 | | * This function contains 156 FP additions, 56 FP multiplications, |
296 | | * (or, 128 additions, 28 multiplications, 28 fused multiply/add), |
297 | | * 69 stack variables, 6 constants, and 60 memory accesses |
298 | | */ |
299 | | #include "dft/scalar/n.h" |
300 | | |
301 | | static void n1_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
302 | 9 | { |
303 | 9 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
304 | 9 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
305 | 9 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
306 | 9 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
307 | 9 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
308 | 9 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
309 | 9 | { |
310 | 9 | INT i; |
311 | 115 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(60, is), MAKE_VOLATILE_STRIDE(60, os)) { |
312 | 106 | E T5, T2l, Tx, TV, T1C, T20, Tl, Tq, Tr, TN, TS, TT, T2c, T2d, T2n; |
313 | 106 | E T1O, T1P, T22, T1l, T1q, T1w, TZ, T10, T11, Ta, Tf, Tg, TC, TH, TI; |
314 | 106 | E T2f, T2g, T2m, T1R, T1S, T21, T1a, T1f, T1v, TW, TX, TY; |
315 | 106 | { |
316 | 106 | E T1, T1z, T4, T1y, Tw, T1A, Tt, T1B; |
317 | 106 | T1 = ri[0]; |
318 | 106 | T1z = ii[0]; |
319 | 106 | { |
320 | 106 | E T2, T3, Tu, Tv; |
321 | 106 | T2 = ri[WS(is, 5)]; |
322 | 106 | T3 = ri[WS(is, 10)]; |
323 | 106 | T4 = T2 + T3; |
324 | 106 | T1y = KP866025403 * (T3 - T2); |
325 | 106 | Tu = ii[WS(is, 5)]; |
326 | 106 | Tv = ii[WS(is, 10)]; |
327 | 106 | Tw = KP866025403 * (Tu - Tv); |
328 | 106 | T1A = Tu + Tv; |
329 | 106 | } |
330 | 106 | T5 = T1 + T4; |
331 | 106 | T2l = T1z + T1A; |
332 | 106 | Tt = FNMS(KP500000000, T4, T1); |
333 | 106 | Tx = Tt - Tw; |
334 | 106 | TV = Tt + Tw; |
335 | 106 | T1B = FNMS(KP500000000, T1A, T1z); |
336 | 106 | T1C = T1y + T1B; |
337 | 106 | T20 = T1B - T1y; |
338 | 106 | } |
339 | 106 | { |
340 | 106 | E Th, Tk, TJ, T1h, T1i, T1j, TM, T1k, Tm, Tp, TO, T1m, T1n, T1o, TR; |
341 | 106 | E T1p; |
342 | 106 | { |
343 | 106 | E Ti, Tj, TK, TL; |
344 | 106 | Th = ri[WS(is, 6)]; |
345 | 106 | Ti = ri[WS(is, 11)]; |
346 | 106 | Tj = ri[WS(is, 1)]; |
347 | 106 | Tk = Ti + Tj; |
348 | 106 | TJ = FNMS(KP500000000, Tk, Th); |
349 | 106 | T1h = KP866025403 * (Tj - Ti); |
350 | 106 | T1i = ii[WS(is, 6)]; |
351 | 106 | TK = ii[WS(is, 11)]; |
352 | 106 | TL = ii[WS(is, 1)]; |
353 | 106 | T1j = TK + TL; |
354 | 106 | TM = KP866025403 * (TK - TL); |
355 | 106 | T1k = FNMS(KP500000000, T1j, T1i); |
356 | 106 | } |
357 | 106 | { |
358 | 106 | E Tn, To, TP, TQ; |
359 | 106 | Tm = ri[WS(is, 9)]; |
360 | 106 | Tn = ri[WS(is, 14)]; |
361 | 106 | To = ri[WS(is, 4)]; |
362 | 106 | Tp = Tn + To; |
363 | 106 | TO = FNMS(KP500000000, Tp, Tm); |
364 | 106 | T1m = KP866025403 * (To - Tn); |
365 | 106 | T1n = ii[WS(is, 9)]; |
366 | 106 | TP = ii[WS(is, 14)]; |
367 | 106 | TQ = ii[WS(is, 4)]; |
368 | 106 | T1o = TP + TQ; |
369 | 106 | TR = KP866025403 * (TP - TQ); |
370 | 106 | T1p = FNMS(KP500000000, T1o, T1n); |
371 | 106 | } |
372 | 106 | Tl = Th + Tk; |
373 | 106 | Tq = Tm + Tp; |
374 | 106 | Tr = Tl + Tq; |
375 | 106 | TN = TJ - TM; |
376 | 106 | TS = TO - TR; |
377 | 106 | TT = TN + TS; |
378 | 106 | T2c = T1i + T1j; |
379 | 106 | T2d = T1n + T1o; |
380 | 106 | T2n = T2c + T2d; |
381 | 106 | T1O = T1k - T1h; |
382 | 106 | T1P = T1p - T1m; |
383 | 106 | T22 = T1O + T1P; |
384 | 106 | T1l = T1h + T1k; |
385 | 106 | T1q = T1m + T1p; |
386 | 106 | T1w = T1l + T1q; |
387 | 106 | TZ = TJ + TM; |
388 | 106 | T10 = TO + TR; |
389 | 106 | T11 = TZ + T10; |
390 | 106 | } |
391 | 106 | { |
392 | 106 | E T6, T9, Ty, T16, T17, T18, TB, T19, Tb, Te, TD, T1b, T1c, T1d, TG; |
393 | 106 | E T1e; |
394 | 106 | { |
395 | 106 | E T7, T8, Tz, TA; |
396 | 106 | T6 = ri[WS(is, 3)]; |
397 | 106 | T7 = ri[WS(is, 8)]; |
398 | 106 | T8 = ri[WS(is, 13)]; |
399 | 106 | T9 = T7 + T8; |
400 | 106 | Ty = FNMS(KP500000000, T9, T6); |
401 | 106 | T16 = KP866025403 * (T8 - T7); |
402 | 106 | T17 = ii[WS(is, 3)]; |
403 | 106 | Tz = ii[WS(is, 8)]; |
404 | 106 | TA = ii[WS(is, 13)]; |
405 | 106 | T18 = Tz + TA; |
406 | 106 | TB = KP866025403 * (Tz - TA); |
407 | 106 | T19 = FNMS(KP500000000, T18, T17); |
408 | 106 | } |
409 | 106 | { |
410 | 106 | E Tc, Td, TE, TF; |
411 | 106 | Tb = ri[WS(is, 12)]; |
412 | 106 | Tc = ri[WS(is, 2)]; |
413 | 106 | Td = ri[WS(is, 7)]; |
414 | 106 | Te = Tc + Td; |
415 | 106 | TD = FNMS(KP500000000, Te, Tb); |
416 | 106 | T1b = KP866025403 * (Td - Tc); |
417 | 106 | T1c = ii[WS(is, 12)]; |
418 | 106 | TE = ii[WS(is, 2)]; |
419 | 106 | TF = ii[WS(is, 7)]; |
420 | 106 | T1d = TE + TF; |
421 | 106 | TG = KP866025403 * (TE - TF); |
422 | 106 | T1e = FNMS(KP500000000, T1d, T1c); |
423 | 106 | } |
424 | 106 | Ta = T6 + T9; |
425 | 106 | Tf = Tb + Te; |
426 | 106 | Tg = Ta + Tf; |
427 | 106 | TC = Ty - TB; |
428 | 106 | TH = TD - TG; |
429 | 106 | TI = TC + TH; |
430 | 106 | T2f = T17 + T18; |
431 | 106 | T2g = T1c + T1d; |
432 | 106 | T2m = T2f + T2g; |
433 | 106 | T1R = T19 - T16; |
434 | 106 | T1S = T1e - T1b; |
435 | 106 | T21 = T1R + T1S; |
436 | 106 | T1a = T16 + T19; |
437 | 106 | T1f = T1b + T1e; |
438 | 106 | T1v = T1a + T1f; |
439 | 106 | TW = Ty + TB; |
440 | 106 | TX = TD + TG; |
441 | 106 | TY = TW + TX; |
442 | 106 | } |
443 | 106 | { |
444 | 106 | E T2a, Ts, T29, T2i, T2k, T2e, T2h, T2j, T2b; |
445 | 106 | T2a = KP559016994 * (Tg - Tr); |
446 | 106 | Ts = Tg + Tr; |
447 | 106 | T29 = FNMS(KP250000000, Ts, T5); |
448 | 106 | T2e = T2c - T2d; |
449 | 106 | T2h = T2f - T2g; |
450 | 106 | T2i = FNMS(KP587785252, T2h, KP951056516 * T2e); |
451 | 106 | T2k = FMA(KP951056516, T2h, KP587785252 * T2e); |
452 | 106 | ro[0] = T5 + Ts; |
453 | 106 | T2j = T2a + T29; |
454 | 106 | ro[WS(os, 9)] = T2j - T2k; |
455 | 106 | ro[WS(os, 6)] = T2j + T2k; |
456 | 106 | T2b = T29 - T2a; |
457 | 106 | ro[WS(os, 12)] = T2b - T2i; |
458 | 106 | ro[WS(os, 3)] = T2b + T2i; |
459 | 106 | } |
460 | 106 | { |
461 | 106 | E T2q, T2o, T2p, T2u, T2w, T2s, T2t, T2v, T2r; |
462 | 106 | T2q = KP559016994 * (T2m - T2n); |
463 | 106 | T2o = T2m + T2n; |
464 | 106 | T2p = FNMS(KP250000000, T2o, T2l); |
465 | 106 | T2s = Tl - Tq; |
466 | 106 | T2t = Ta - Tf; |
467 | 106 | T2u = FNMS(KP587785252, T2t, KP951056516 * T2s); |
468 | 106 | T2w = FMA(KP951056516, T2t, KP587785252 * T2s); |
469 | 106 | io[0] = T2l + T2o; |
470 | 106 | T2v = T2q + T2p; |
471 | 106 | io[WS(os, 6)] = T2v - T2w; |
472 | 106 | io[WS(os, 9)] = T2w + T2v; |
473 | 106 | T2r = T2p - T2q; |
474 | 106 | io[WS(os, 3)] = T2r - T2u; |
475 | 106 | io[WS(os, 12)] = T2u + T2r; |
476 | 106 | } |
477 | 106 | { |
478 | 106 | E T1M, TU, T1L, T1U, T1W, T1Q, T1T, T1V, T1N; |
479 | 106 | T1M = KP559016994 * (TI - TT); |
480 | 106 | TU = TI + TT; |
481 | 106 | T1L = FNMS(KP250000000, TU, Tx); |
482 | 106 | T1Q = T1O - T1P; |
483 | 106 | T1T = T1R - T1S; |
484 | 106 | T1U = FNMS(KP587785252, T1T, KP951056516 * T1Q); |
485 | 106 | T1W = FMA(KP951056516, T1T, KP587785252 * T1Q); |
486 | 106 | ro[WS(os, 5)] = Tx + TU; |
487 | 106 | T1V = T1M + T1L; |
488 | 106 | ro[WS(os, 14)] = T1V - T1W; |
489 | 106 | ro[WS(os, 11)] = T1V + T1W; |
490 | 106 | T1N = T1L - T1M; |
491 | 106 | ro[WS(os, 2)] = T1N - T1U; |
492 | 106 | ro[WS(os, 8)] = T1N + T1U; |
493 | 106 | } |
494 | 106 | { |
495 | 106 | E T25, T23, T24, T1Z, T28, T1X, T1Y, T27, T26; |
496 | 106 | T25 = KP559016994 * (T21 - T22); |
497 | 106 | T23 = T21 + T22; |
498 | 106 | T24 = FNMS(KP250000000, T23, T20); |
499 | 106 | T1X = TN - TS; |
500 | 106 | T1Y = TC - TH; |
501 | 106 | T1Z = FNMS(KP587785252, T1Y, KP951056516 * T1X); |
502 | 106 | T28 = FMA(KP951056516, T1Y, KP587785252 * T1X); |
503 | 106 | io[WS(os, 5)] = T20 + T23; |
504 | 106 | T27 = T25 + T24; |
505 | 106 | io[WS(os, 11)] = T27 - T28; |
506 | 106 | io[WS(os, 14)] = T28 + T27; |
507 | 106 | T26 = T24 - T25; |
508 | 106 | io[WS(os, 2)] = T1Z + T26; |
509 | 106 | io[WS(os, 8)] = T26 - T1Z; |
510 | 106 | } |
511 | 106 | { |
512 | 106 | E T1x, T1D, T1E, T1I, T1J, T1G, T1H, T1K, T1F; |
513 | 106 | T1x = KP559016994 * (T1v - T1w); |
514 | 106 | T1D = T1v + T1w; |
515 | 106 | T1E = FNMS(KP250000000, T1D, T1C); |
516 | 106 | T1G = TW - TX; |
517 | 106 | T1H = TZ - T10; |
518 | 106 | T1I = FMA(KP951056516, T1G, KP587785252 * T1H); |
519 | 106 | T1J = FNMS(KP587785252, T1G, KP951056516 * T1H); |
520 | 106 | io[WS(os, 10)] = T1C + T1D; |
521 | 106 | T1K = T1E - T1x; |
522 | 106 | io[WS(os, 7)] = T1J + T1K; |
523 | 106 | io[WS(os, 13)] = T1K - T1J; |
524 | 106 | T1F = T1x + T1E; |
525 | 106 | io[WS(os, 1)] = T1F - T1I; |
526 | 106 | io[WS(os, 4)] = T1I + T1F; |
527 | 106 | } |
528 | 106 | { |
529 | 106 | E T13, T12, T14, T1s, T1u, T1g, T1r, T1t, T15; |
530 | 106 | T13 = KP559016994 * (TY - T11); |
531 | 106 | T12 = TY + T11; |
532 | 106 | T14 = FNMS(KP250000000, T12, TV); |
533 | 106 | T1g = T1a - T1f; |
534 | 106 | T1r = T1l - T1q; |
535 | 106 | T1s = FMA(KP951056516, T1g, KP587785252 * T1r); |
536 | 106 | T1u = FNMS(KP587785252, T1g, KP951056516 * T1r); |
537 | 106 | ro[WS(os, 10)] = TV + T12; |
538 | 106 | T1t = T14 - T13; |
539 | 106 | ro[WS(os, 7)] = T1t - T1u; |
540 | 106 | ro[WS(os, 13)] = T1t + T1u; |
541 | 106 | T15 = T13 + T14; |
542 | 106 | ro[WS(os, 4)] = T15 - T1s; |
543 | 106 | ro[WS(os, 1)] = T15 + T1s; |
544 | 106 | } |
545 | 106 | } |
546 | 9 | } |
547 | 9 | } |
548 | | |
549 | | static const kdft_desc desc = { 15, "n1_15", { 128, 28, 28, 0 }, &GENUS, 0, 0, 0, 0 }; |
550 | | |
551 | 1 | void X(codelet_n1_15) (planner *p) { X(kdft_register) (p, n1_15, &desc); |
552 | 1 | } |
553 | | |
554 | | #endif |