Coverage Report

Created: 2025-11-16 06:54

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/q1_4.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Nov 16 06:51:48 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
29
30
/*
31
 * This function contains 88 FP additions, 48 FP multiplications,
32
 * (or, 64 additions, 24 multiplications, 24 fused multiply/add),
33
 * 51 stack variables, 0 constants, and 64 memory accesses
34
 */
35
#include "dft/scalar/q.h"
36
37
static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38
{
39
     {
40
    INT m;
41
    for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
42
         E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q;
43
         E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ;
44
         E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o;
45
         {
46
        E T1, T2, Tb, Tg, Th, T8;
47
        {
48
       E T9, Ta, T4, T5;
49
       T1 = rio[0];
50
       T2 = rio[WS(rs, 2)];
51
       T3 = T1 + T2;
52
       T9 = iio[0];
53
       Ta = iio[WS(rs, 2)];
54
       Tb = T9 - Ta;
55
       Tv = T9 + Ta;
56
       Tg = iio[WS(rs, 1)];
57
       Th = iio[WS(rs, 3)];
58
       Tw = Tg + Th;
59
       T4 = rio[WS(rs, 1)];
60
       T5 = rio[WS(rs, 3)];
61
       T6 = T4 + T5;
62
       T8 = T4 - T5;
63
        }
64
        Tc = T8 + Tb;
65
        Tf = T1 - T2;
66
        Tx = Tv - Tw;
67
        Ts = T3 - T6;
68
        Tm = Tb - T8;
69
        Ti = Tg - Th;
70
         }
71
         {
72
        E T1F, T1G, T1P, T1U, T1V, T1M;
73
        {
74
       E T1N, T1O, T1I, T1J;
75
       T1F = rio[WS(vs, 3)];
76
       T1G = rio[WS(vs, 3) + WS(rs, 2)];
77
       T1H = T1F + T1G;
78
       T1N = iio[WS(vs, 3)];
79
       T1O = iio[WS(vs, 3) + WS(rs, 2)];
80
       T1P = T1N - T1O;
81
       T29 = T1N + T1O;
82
       T1U = iio[WS(vs, 3) + WS(rs, 1)];
83
       T1V = iio[WS(vs, 3) + WS(rs, 3)];
84
       T2a = T1U + T1V;
85
       T1I = rio[WS(vs, 3) + WS(rs, 1)];
86
       T1J = rio[WS(vs, 3) + WS(rs, 3)];
87
       T1K = T1I + T1J;
88
       T1M = T1I - T1J;
89
        }
90
        T1Q = T1M + T1P;
91
        T1T = T1F - T1G;
92
        T2b = T29 - T2a;
93
        T26 = T1H - T1K;
94
        T20 = T1P - T1M;
95
        T1W = T1U - T1V;
96
         }
97
         {
98
        E Tz, TA, TJ, TO, TP, TG;
99
        {
100
       E TH, TI, TC, TD;
101
       Tz = rio[WS(vs, 1)];
102
       TA = rio[WS(vs, 1) + WS(rs, 2)];
103
       TB = Tz + TA;
104
       TH = iio[WS(vs, 1)];
105
       TI = iio[WS(vs, 1) + WS(rs, 2)];
106
       TJ = TH - TI;
107
       T13 = TH + TI;
108
       TO = iio[WS(vs, 1) + WS(rs, 1)];
109
       TP = iio[WS(vs, 1) + WS(rs, 3)];
110
       T14 = TO + TP;
111
       TC = rio[WS(vs, 1) + WS(rs, 1)];
112
       TD = rio[WS(vs, 1) + WS(rs, 3)];
113
       TE = TC + TD;
114
       TG = TC - TD;
115
        }
116
        TK = TG + TJ;
117
        TN = Tz - TA;
118
        T15 = T13 - T14;
119
        T10 = TB - TE;
120
        TU = TJ - TG;
121
        TQ = TO - TP;
122
         }
123
         {
124
        E T17, T18, T1h, T1m, T1n, T1e;
125
        {
126
       E T1f, T1g, T1a, T1b;
127
       T17 = rio[WS(vs, 2)];
128
       T18 = rio[WS(vs, 2) + WS(rs, 2)];
129
       T19 = T17 + T18;
130
       T1f = iio[WS(vs, 2)];
131
       T1g = iio[WS(vs, 2) + WS(rs, 2)];
132
       T1h = T1f - T1g;
133
       T1B = T1f + T1g;
134
       T1m = iio[WS(vs, 2) + WS(rs, 1)];
135
       T1n = iio[WS(vs, 2) + WS(rs, 3)];
136
       T1C = T1m + T1n;
137
       T1a = rio[WS(vs, 2) + WS(rs, 1)];
138
       T1b = rio[WS(vs, 2) + WS(rs, 3)];
139
       T1c = T1a + T1b;
140
       T1e = T1a - T1b;
141
        }
142
        T1i = T1e + T1h;
143
        T1l = T17 - T18;
144
        T1D = T1B - T1C;
145
        T1y = T19 - T1c;
146
        T1s = T1h - T1e;
147
        T1o = T1m - T1n;
148
         }
149
         rio[0] = T3 + T6;
150
         iio[0] = Tv + Tw;
151
         rio[WS(rs, 1)] = TB + TE;
152
         iio[WS(rs, 1)] = T13 + T14;
153
         rio[WS(rs, 2)] = T19 + T1c;
154
         iio[WS(rs, 2)] = T1B + T1C;
155
         iio[WS(rs, 3)] = T29 + T2a;
156
         rio[WS(rs, 3)] = T1H + T1K;
157
         {
158
        E Tt, Ty, Tr, Tu;
159
        Tr = W[2];
160
        Tt = Tr * Ts;
161
        Ty = Tr * Tx;
162
        Tu = W[3];
163
        rio[WS(vs, 2)] = FMA(Tu, Tx, Tt);
164
        iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty);
165
         }
166
         {
167
        E T27, T2c, T25, T28;
168
        T25 = W[2];
169
        T27 = T25 * T26;
170
        T2c = T25 * T2b;
171
        T28 = W[3];
172
        rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27);
173
        iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c);
174
         }
175
         {
176
        E T11, T16, TZ, T12;
177
        TZ = W[2];
178
        T11 = TZ * T10;
179
        T16 = TZ * T15;
180
        T12 = W[3];
181
        rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11);
182
        iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16);
183
         }
184
         {
185
        E T1z, T1E, T1x, T1A;
186
        T1x = W[2];
187
        T1z = T1x * T1y;
188
        T1E = T1x * T1D;
189
        T1A = W[3];
190
        rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z);
191
        iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E);
192
         }
193
         {
194
        E Tj, Te, Tk, T7, Td;
195
        Tj = Tf - Ti;
196
        Te = W[5];
197
        Tk = Te * Tc;
198
        T7 = W[4];
199
        Td = T7 * Tc;
200
        iio[WS(vs, 3)] = FNMS(Te, Tj, Td);
201
        rio[WS(vs, 3)] = FMA(T7, Tj, Tk);
202
         }
203
         {
204
        E T1p, T1k, T1q, T1d, T1j;
205
        T1p = T1l - T1o;
206
        T1k = W[5];
207
        T1q = T1k * T1i;
208
        T1d = W[4];
209
        T1j = T1d * T1i;
210
        iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j);
211
        rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q);
212
         }
213
         {
214
        E T23, T22, T24, T1Z, T21;
215
        T23 = T1T + T1W;
216
        T22 = W[1];
217
        T24 = T22 * T20;
218
        T1Z = W[0];
219
        T21 = T1Z * T20;
220
        iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21);
221
        rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24);
222
         }
223
         {
224
        E TX, TW, TY, TT, TV;
225
        TX = TN + TQ;
226
        TW = W[1];
227
        TY = TW * TU;
228
        TT = W[0];
229
        TV = TT * TU;
230
        iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV);
231
        rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY);
232
         }
233
         {
234
        E TR, TM, TS, TF, TL;
235
        TR = TN - TQ;
236
        TM = W[5];
237
        TS = TM * TK;
238
        TF = W[4];
239
        TL = TF * TK;
240
        iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL);
241
        rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS);
242
         }
243
         {
244
        E Tp, To, Tq, Tl, Tn;
245
        Tp = Tf + Ti;
246
        To = W[1];
247
        Tq = To * Tm;
248
        Tl = W[0];
249
        Tn = Tl * Tm;
250
        iio[WS(vs, 1)] = FNMS(To, Tp, Tn);
251
        rio[WS(vs, 1)] = FMA(Tl, Tp, Tq);
252
         }
253
         {
254
        E T1v, T1u, T1w, T1r, T1t;
255
        T1v = T1l + T1o;
256
        T1u = W[1];
257
        T1w = T1u * T1s;
258
        T1r = W[0];
259
        T1t = T1r * T1s;
260
        iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t);
261
        rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w);
262
         }
263
         {
264
        E T1X, T1S, T1Y, T1L, T1R;
265
        T1X = T1T - T1W;
266
        T1S = W[5];
267
        T1Y = T1S * T1Q;
268
        T1L = W[4];
269
        T1R = T1L * T1Q;
270
        iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R);
271
        rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y);
272
         }
273
    }
274
     }
275
}
276
277
static const tw_instr twinstr[] = {
278
     { TW_FULL, 0, 4 },
279
     { TW_NEXT, 1, 0 }
280
};
281
282
static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 };
283
284
void X(codelet_q1_4) (planner *p) {
285
     X(kdft_difsq_register) (p, q1_4, &desc);
286
}
287
#else
288
289
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
290
291
/*
292
 * This function contains 88 FP additions, 48 FP multiplications,
293
 * (or, 64 additions, 24 multiplications, 24 fused multiply/add),
294
 * 37 stack variables, 0 constants, and 64 memory accesses
295
 */
296
#include "dft/scalar/q.h"
297
298
static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
299
0
{
300
0
     {
301
0
    INT m;
302
0
    for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
303
0
         E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ;
304
0
         E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u;
305
0
         E T1D, T1N;
306
0
         {
307
0
        E T1, T2, T9, Ta;
308
0
        T1 = rio[0];
309
0
        T2 = rio[WS(rs, 2)];
310
0
        T3 = T1 + T2;
311
0
        Te = T1 - T2;
312
0
        T9 = iio[0];
313
0
        Ta = iio[WS(rs, 2)];
314
0
        Tb = T9 - Ta;
315
0
        Tq = T9 + Ta;
316
0
         }
317
0
         {
318
0
        E T4, T5, Tf, Tg;
319
0
        T4 = rio[WS(rs, 1)];
320
0
        T5 = rio[WS(rs, 3)];
321
0
        T6 = T4 + T5;
322
0
        T8 = T4 - T5;
323
0
        Tf = iio[WS(rs, 1)];
324
0
        Tg = iio[WS(rs, 3)];
325
0
        Th = Tf - Tg;
326
0
        Tr = Tf + Tg;
327
0
         }
328
0
         {
329
0
        E Tt, Tu, TB, TC;
330
0
        Tt = rio[WS(vs, 1)];
331
0
        Tu = rio[WS(vs, 1) + WS(rs, 2)];
332
0
        Tv = Tt + Tu;
333
0
        TG = Tt - Tu;
334
0
        TB = iio[WS(vs, 1)];
335
0
        TC = iio[WS(vs, 1) + WS(rs, 2)];
336
0
        TD = TB - TC;
337
0
        TS = TB + TC;
338
0
         }
339
0
         {
340
0
        E Tw, Tx, TH, TI;
341
0
        Tw = rio[WS(vs, 1) + WS(rs, 1)];
342
0
        Tx = rio[WS(vs, 1) + WS(rs, 3)];
343
0
        Ty = Tw + Tx;
344
0
        TA = Tw - Tx;
345
0
        TH = iio[WS(vs, 1) + WS(rs, 1)];
346
0
        TI = iio[WS(vs, 1) + WS(rs, 3)];
347
0
        TJ = TH - TI;
348
0
        TT = TH + TI;
349
0
         }
350
0
         {
351
0
        E TV, TW, T13, T14;
352
0
        TV = rio[WS(vs, 2)];
353
0
        TW = rio[WS(vs, 2) + WS(rs, 2)];
354
0
        TX = TV + TW;
355
0
        T18 = TV - TW;
356
0
        T13 = iio[WS(vs, 2)];
357
0
        T14 = iio[WS(vs, 2) + WS(rs, 2)];
358
0
        T15 = T13 - T14;
359
0
        T1k = T13 + T14;
360
0
         }
361
0
         {
362
0
        E TY, TZ, T19, T1a;
363
0
        TY = rio[WS(vs, 2) + WS(rs, 1)];
364
0
        TZ = rio[WS(vs, 2) + WS(rs, 3)];
365
0
        T10 = TY + TZ;
366
0
        T12 = TY - TZ;
367
0
        T19 = iio[WS(vs, 2) + WS(rs, 1)];
368
0
        T1a = iio[WS(vs, 2) + WS(rs, 3)];
369
0
        T1b = T19 - T1a;
370
0
        T1l = T19 + T1a;
371
0
         }
372
0
         {
373
0
        E T1n, T1o, T1v, T1w;
374
0
        T1n = rio[WS(vs, 3)];
375
0
        T1o = rio[WS(vs, 3) + WS(rs, 2)];
376
0
        T1p = T1n + T1o;
377
0
        T1A = T1n - T1o;
378
0
        T1v = iio[WS(vs, 3)];
379
0
        T1w = iio[WS(vs, 3) + WS(rs, 2)];
380
0
        T1x = T1v - T1w;
381
0
        T1M = T1v + T1w;
382
0
         }
383
0
         {
384
0
        E T1q, T1r, T1B, T1C;
385
0
        T1q = rio[WS(vs, 3) + WS(rs, 1)];
386
0
        T1r = rio[WS(vs, 3) + WS(rs, 3)];
387
0
        T1s = T1q + T1r;
388
0
        T1u = T1q - T1r;
389
0
        T1B = iio[WS(vs, 3) + WS(rs, 1)];
390
0
        T1C = iio[WS(vs, 3) + WS(rs, 3)];
391
0
        T1D = T1B - T1C;
392
0
        T1N = T1B + T1C;
393
0
         }
394
0
         rio[0] = T3 + T6;
395
0
         iio[0] = Tq + Tr;
396
0
         rio[WS(rs, 1)] = Tv + Ty;
397
0
         iio[WS(rs, 1)] = TS + TT;
398
0
         rio[WS(rs, 2)] = TX + T10;
399
0
         iio[WS(rs, 2)] = T1k + T1l;
400
0
         iio[WS(rs, 3)] = T1M + T1N;
401
0
         rio[WS(rs, 3)] = T1p + T1s;
402
0
         {
403
0
        E Tc, Ti, T7, Td;
404
0
        Tc = T8 + Tb;
405
0
        Ti = Te - Th;
406
0
        T7 = W[4];
407
0
        Td = W[5];
408
0
        iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc);
409
0
        rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti);
410
0
         }
411
0
         {
412
0
        E T1K, T1O, T1J, T1L;
413
0
        T1K = T1p - T1s;
414
0
        T1O = T1M - T1N;
415
0
        T1J = W[2];
416
0
        T1L = W[3];
417
0
        rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O);
418
0
        iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O);
419
0
         }
420
0
         {
421
0
        E Tk, Tm, Tj, Tl;
422
0
        Tk = Tb - T8;
423
0
        Tm = Te + Th;
424
0
        Tj = W[0];
425
0
        Tl = W[1];
426
0
        iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk);
427
0
        rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm);
428
0
         }
429
0
         {
430
0
        E To, Ts, Tn, Tp;
431
0
        To = T3 - T6;
432
0
        Ts = Tq - Tr;
433
0
        Tn = W[2];
434
0
        Tp = W[3];
435
0
        rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts);
436
0
        iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts);
437
0
         }
438
0
         {
439
0
        E T16, T1c, T11, T17;
440
0
        T16 = T12 + T15;
441
0
        T1c = T18 - T1b;
442
0
        T11 = W[4];
443
0
        T17 = W[5];
444
0
        iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16);
445
0
        rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c);
446
0
         }
447
0
         {
448
0
        E T1G, T1I, T1F, T1H;
449
0
        T1G = T1x - T1u;
450
0
        T1I = T1A + T1D;
451
0
        T1F = W[0];
452
0
        T1H = W[1];
453
0
        iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G);
454
0
        rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I);
455
0
         }
456
0
         {
457
0
        E TQ, TU, TP, TR;
458
0
        TQ = Tv - Ty;
459
0
        TU = TS - TT;
460
0
        TP = W[2];
461
0
        TR = W[3];
462
0
        rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU);
463
0
        iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU);
464
0
         }
465
0
         {
466
0
        E T1e, T1g, T1d, T1f;
467
0
        T1e = T15 - T12;
468
0
        T1g = T18 + T1b;
469
0
        T1d = W[0];
470
0
        T1f = W[1];
471
0
        iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e);
472
0
        rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g);
473
0
         }
474
0
         {
475
0
        E T1i, T1m, T1h, T1j;
476
0
        T1i = TX - T10;
477
0
        T1m = T1k - T1l;
478
0
        T1h = W[2];
479
0
        T1j = W[3];
480
0
        rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m);
481
0
        iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m);
482
0
         }
483
0
         {
484
0
        E T1y, T1E, T1t, T1z;
485
0
        T1y = T1u + T1x;
486
0
        T1E = T1A - T1D;
487
0
        T1t = W[4];
488
0
        T1z = W[5];
489
0
        iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y);
490
0
        rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E);
491
0
         }
492
0
         {
493
0
        E TM, TO, TL, TN;
494
0
        TM = TD - TA;
495
0
        TO = TG + TJ;
496
0
        TL = W[0];
497
0
        TN = W[1];
498
0
        iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM);
499
0
        rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO);
500
0
         }
501
0
         {
502
0
        E TE, TK, Tz, TF;
503
0
        TE = TA + TD;
504
0
        TK = TG - TJ;
505
0
        Tz = W[4];
506
0
        TF = W[5];
507
0
        iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE);
508
0
        rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK);
509
0
         }
510
0
    }
511
0
     }
512
0
}
513
514
static const tw_instr twinstr[] = {
515
     { TW_FULL, 0, 4 },
516
     { TW_NEXT, 1, 0 }
517
};
518
519
static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 };
520
521
1
void X(codelet_q1_4) (planner *p) {
522
1
     X(kdft_difsq_register) (p, q1_4, &desc);
523
1
}
524
#endif