/src/fftw3/dft/scalar/codelets/q1_4.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Nov 16 06:51:48 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 88 FP additions, 48 FP multiplications, |
32 | | * (or, 64 additions, 24 multiplications, 24 fused multiply/add), |
33 | | * 51 stack variables, 0 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/q.h" |
36 | | |
37 | | static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
38 | | { |
39 | | { |
40 | | INT m; |
41 | | for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
42 | | E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q; |
43 | | E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ; |
44 | | E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o; |
45 | | { |
46 | | E T1, T2, Tb, Tg, Th, T8; |
47 | | { |
48 | | E T9, Ta, T4, T5; |
49 | | T1 = rio[0]; |
50 | | T2 = rio[WS(rs, 2)]; |
51 | | T3 = T1 + T2; |
52 | | T9 = iio[0]; |
53 | | Ta = iio[WS(rs, 2)]; |
54 | | Tb = T9 - Ta; |
55 | | Tv = T9 + Ta; |
56 | | Tg = iio[WS(rs, 1)]; |
57 | | Th = iio[WS(rs, 3)]; |
58 | | Tw = Tg + Th; |
59 | | T4 = rio[WS(rs, 1)]; |
60 | | T5 = rio[WS(rs, 3)]; |
61 | | T6 = T4 + T5; |
62 | | T8 = T4 - T5; |
63 | | } |
64 | | Tc = T8 + Tb; |
65 | | Tf = T1 - T2; |
66 | | Tx = Tv - Tw; |
67 | | Ts = T3 - T6; |
68 | | Tm = Tb - T8; |
69 | | Ti = Tg - Th; |
70 | | } |
71 | | { |
72 | | E T1F, T1G, T1P, T1U, T1V, T1M; |
73 | | { |
74 | | E T1N, T1O, T1I, T1J; |
75 | | T1F = rio[WS(vs, 3)]; |
76 | | T1G = rio[WS(vs, 3) + WS(rs, 2)]; |
77 | | T1H = T1F + T1G; |
78 | | T1N = iio[WS(vs, 3)]; |
79 | | T1O = iio[WS(vs, 3) + WS(rs, 2)]; |
80 | | T1P = T1N - T1O; |
81 | | T29 = T1N + T1O; |
82 | | T1U = iio[WS(vs, 3) + WS(rs, 1)]; |
83 | | T1V = iio[WS(vs, 3) + WS(rs, 3)]; |
84 | | T2a = T1U + T1V; |
85 | | T1I = rio[WS(vs, 3) + WS(rs, 1)]; |
86 | | T1J = rio[WS(vs, 3) + WS(rs, 3)]; |
87 | | T1K = T1I + T1J; |
88 | | T1M = T1I - T1J; |
89 | | } |
90 | | T1Q = T1M + T1P; |
91 | | T1T = T1F - T1G; |
92 | | T2b = T29 - T2a; |
93 | | T26 = T1H - T1K; |
94 | | T20 = T1P - T1M; |
95 | | T1W = T1U - T1V; |
96 | | } |
97 | | { |
98 | | E Tz, TA, TJ, TO, TP, TG; |
99 | | { |
100 | | E TH, TI, TC, TD; |
101 | | Tz = rio[WS(vs, 1)]; |
102 | | TA = rio[WS(vs, 1) + WS(rs, 2)]; |
103 | | TB = Tz + TA; |
104 | | TH = iio[WS(vs, 1)]; |
105 | | TI = iio[WS(vs, 1) + WS(rs, 2)]; |
106 | | TJ = TH - TI; |
107 | | T13 = TH + TI; |
108 | | TO = iio[WS(vs, 1) + WS(rs, 1)]; |
109 | | TP = iio[WS(vs, 1) + WS(rs, 3)]; |
110 | | T14 = TO + TP; |
111 | | TC = rio[WS(vs, 1) + WS(rs, 1)]; |
112 | | TD = rio[WS(vs, 1) + WS(rs, 3)]; |
113 | | TE = TC + TD; |
114 | | TG = TC - TD; |
115 | | } |
116 | | TK = TG + TJ; |
117 | | TN = Tz - TA; |
118 | | T15 = T13 - T14; |
119 | | T10 = TB - TE; |
120 | | TU = TJ - TG; |
121 | | TQ = TO - TP; |
122 | | } |
123 | | { |
124 | | E T17, T18, T1h, T1m, T1n, T1e; |
125 | | { |
126 | | E T1f, T1g, T1a, T1b; |
127 | | T17 = rio[WS(vs, 2)]; |
128 | | T18 = rio[WS(vs, 2) + WS(rs, 2)]; |
129 | | T19 = T17 + T18; |
130 | | T1f = iio[WS(vs, 2)]; |
131 | | T1g = iio[WS(vs, 2) + WS(rs, 2)]; |
132 | | T1h = T1f - T1g; |
133 | | T1B = T1f + T1g; |
134 | | T1m = iio[WS(vs, 2) + WS(rs, 1)]; |
135 | | T1n = iio[WS(vs, 2) + WS(rs, 3)]; |
136 | | T1C = T1m + T1n; |
137 | | T1a = rio[WS(vs, 2) + WS(rs, 1)]; |
138 | | T1b = rio[WS(vs, 2) + WS(rs, 3)]; |
139 | | T1c = T1a + T1b; |
140 | | T1e = T1a - T1b; |
141 | | } |
142 | | T1i = T1e + T1h; |
143 | | T1l = T17 - T18; |
144 | | T1D = T1B - T1C; |
145 | | T1y = T19 - T1c; |
146 | | T1s = T1h - T1e; |
147 | | T1o = T1m - T1n; |
148 | | } |
149 | | rio[0] = T3 + T6; |
150 | | iio[0] = Tv + Tw; |
151 | | rio[WS(rs, 1)] = TB + TE; |
152 | | iio[WS(rs, 1)] = T13 + T14; |
153 | | rio[WS(rs, 2)] = T19 + T1c; |
154 | | iio[WS(rs, 2)] = T1B + T1C; |
155 | | iio[WS(rs, 3)] = T29 + T2a; |
156 | | rio[WS(rs, 3)] = T1H + T1K; |
157 | | { |
158 | | E Tt, Ty, Tr, Tu; |
159 | | Tr = W[2]; |
160 | | Tt = Tr * Ts; |
161 | | Ty = Tr * Tx; |
162 | | Tu = W[3]; |
163 | | rio[WS(vs, 2)] = FMA(Tu, Tx, Tt); |
164 | | iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty); |
165 | | } |
166 | | { |
167 | | E T27, T2c, T25, T28; |
168 | | T25 = W[2]; |
169 | | T27 = T25 * T26; |
170 | | T2c = T25 * T2b; |
171 | | T28 = W[3]; |
172 | | rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27); |
173 | | iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c); |
174 | | } |
175 | | { |
176 | | E T11, T16, TZ, T12; |
177 | | TZ = W[2]; |
178 | | T11 = TZ * T10; |
179 | | T16 = TZ * T15; |
180 | | T12 = W[3]; |
181 | | rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11); |
182 | | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16); |
183 | | } |
184 | | { |
185 | | E T1z, T1E, T1x, T1A; |
186 | | T1x = W[2]; |
187 | | T1z = T1x * T1y; |
188 | | T1E = T1x * T1D; |
189 | | T1A = W[3]; |
190 | | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z); |
191 | | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E); |
192 | | } |
193 | | { |
194 | | E Tj, Te, Tk, T7, Td; |
195 | | Tj = Tf - Ti; |
196 | | Te = W[5]; |
197 | | Tk = Te * Tc; |
198 | | T7 = W[4]; |
199 | | Td = T7 * Tc; |
200 | | iio[WS(vs, 3)] = FNMS(Te, Tj, Td); |
201 | | rio[WS(vs, 3)] = FMA(T7, Tj, Tk); |
202 | | } |
203 | | { |
204 | | E T1p, T1k, T1q, T1d, T1j; |
205 | | T1p = T1l - T1o; |
206 | | T1k = W[5]; |
207 | | T1q = T1k * T1i; |
208 | | T1d = W[4]; |
209 | | T1j = T1d * T1i; |
210 | | iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j); |
211 | | rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q); |
212 | | } |
213 | | { |
214 | | E T23, T22, T24, T1Z, T21; |
215 | | T23 = T1T + T1W; |
216 | | T22 = W[1]; |
217 | | T24 = T22 * T20; |
218 | | T1Z = W[0]; |
219 | | T21 = T1Z * T20; |
220 | | iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21); |
221 | | rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24); |
222 | | } |
223 | | { |
224 | | E TX, TW, TY, TT, TV; |
225 | | TX = TN + TQ; |
226 | | TW = W[1]; |
227 | | TY = TW * TU; |
228 | | TT = W[0]; |
229 | | TV = TT * TU; |
230 | | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV); |
231 | | rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY); |
232 | | } |
233 | | { |
234 | | E TR, TM, TS, TF, TL; |
235 | | TR = TN - TQ; |
236 | | TM = W[5]; |
237 | | TS = TM * TK; |
238 | | TF = W[4]; |
239 | | TL = TF * TK; |
240 | | iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL); |
241 | | rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS); |
242 | | } |
243 | | { |
244 | | E Tp, To, Tq, Tl, Tn; |
245 | | Tp = Tf + Ti; |
246 | | To = W[1]; |
247 | | Tq = To * Tm; |
248 | | Tl = W[0]; |
249 | | Tn = Tl * Tm; |
250 | | iio[WS(vs, 1)] = FNMS(To, Tp, Tn); |
251 | | rio[WS(vs, 1)] = FMA(Tl, Tp, Tq); |
252 | | } |
253 | | { |
254 | | E T1v, T1u, T1w, T1r, T1t; |
255 | | T1v = T1l + T1o; |
256 | | T1u = W[1]; |
257 | | T1w = T1u * T1s; |
258 | | T1r = W[0]; |
259 | | T1t = T1r * T1s; |
260 | | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t); |
261 | | rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w); |
262 | | } |
263 | | { |
264 | | E T1X, T1S, T1Y, T1L, T1R; |
265 | | T1X = T1T - T1W; |
266 | | T1S = W[5]; |
267 | | T1Y = T1S * T1Q; |
268 | | T1L = W[4]; |
269 | | T1R = T1L * T1Q; |
270 | | iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R); |
271 | | rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y); |
272 | | } |
273 | | } |
274 | | } |
275 | | } |
276 | | |
277 | | static const tw_instr twinstr[] = { |
278 | | { TW_FULL, 0, 4 }, |
279 | | { TW_NEXT, 1, 0 } |
280 | | }; |
281 | | |
282 | | static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 }; |
283 | | |
284 | | void X(codelet_q1_4) (planner *p) { |
285 | | X(kdft_difsq_register) (p, q1_4, &desc); |
286 | | } |
287 | | #else |
288 | | |
289 | | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ |
290 | | |
291 | | /* |
292 | | * This function contains 88 FP additions, 48 FP multiplications, |
293 | | * (or, 64 additions, 24 multiplications, 24 fused multiply/add), |
294 | | * 37 stack variables, 0 constants, and 64 memory accesses |
295 | | */ |
296 | | #include "dft/scalar/q.h" |
297 | | |
298 | | static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
299 | 0 | { |
300 | 0 | { |
301 | 0 | INT m; |
302 | 0 | for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
303 | 0 | E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ; |
304 | 0 | E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u; |
305 | 0 | E T1D, T1N; |
306 | 0 | { |
307 | 0 | E T1, T2, T9, Ta; |
308 | 0 | T1 = rio[0]; |
309 | 0 | T2 = rio[WS(rs, 2)]; |
310 | 0 | T3 = T1 + T2; |
311 | 0 | Te = T1 - T2; |
312 | 0 | T9 = iio[0]; |
313 | 0 | Ta = iio[WS(rs, 2)]; |
314 | 0 | Tb = T9 - Ta; |
315 | 0 | Tq = T9 + Ta; |
316 | 0 | } |
317 | 0 | { |
318 | 0 | E T4, T5, Tf, Tg; |
319 | 0 | T4 = rio[WS(rs, 1)]; |
320 | 0 | T5 = rio[WS(rs, 3)]; |
321 | 0 | T6 = T4 + T5; |
322 | 0 | T8 = T4 - T5; |
323 | 0 | Tf = iio[WS(rs, 1)]; |
324 | 0 | Tg = iio[WS(rs, 3)]; |
325 | 0 | Th = Tf - Tg; |
326 | 0 | Tr = Tf + Tg; |
327 | 0 | } |
328 | 0 | { |
329 | 0 | E Tt, Tu, TB, TC; |
330 | 0 | Tt = rio[WS(vs, 1)]; |
331 | 0 | Tu = rio[WS(vs, 1) + WS(rs, 2)]; |
332 | 0 | Tv = Tt + Tu; |
333 | 0 | TG = Tt - Tu; |
334 | 0 | TB = iio[WS(vs, 1)]; |
335 | 0 | TC = iio[WS(vs, 1) + WS(rs, 2)]; |
336 | 0 | TD = TB - TC; |
337 | 0 | TS = TB + TC; |
338 | 0 | } |
339 | 0 | { |
340 | 0 | E Tw, Tx, TH, TI; |
341 | 0 | Tw = rio[WS(vs, 1) + WS(rs, 1)]; |
342 | 0 | Tx = rio[WS(vs, 1) + WS(rs, 3)]; |
343 | 0 | Ty = Tw + Tx; |
344 | 0 | TA = Tw - Tx; |
345 | 0 | TH = iio[WS(vs, 1) + WS(rs, 1)]; |
346 | 0 | TI = iio[WS(vs, 1) + WS(rs, 3)]; |
347 | 0 | TJ = TH - TI; |
348 | 0 | TT = TH + TI; |
349 | 0 | } |
350 | 0 | { |
351 | 0 | E TV, TW, T13, T14; |
352 | 0 | TV = rio[WS(vs, 2)]; |
353 | 0 | TW = rio[WS(vs, 2) + WS(rs, 2)]; |
354 | 0 | TX = TV + TW; |
355 | 0 | T18 = TV - TW; |
356 | 0 | T13 = iio[WS(vs, 2)]; |
357 | 0 | T14 = iio[WS(vs, 2) + WS(rs, 2)]; |
358 | 0 | T15 = T13 - T14; |
359 | 0 | T1k = T13 + T14; |
360 | 0 | } |
361 | 0 | { |
362 | 0 | E TY, TZ, T19, T1a; |
363 | 0 | TY = rio[WS(vs, 2) + WS(rs, 1)]; |
364 | 0 | TZ = rio[WS(vs, 2) + WS(rs, 3)]; |
365 | 0 | T10 = TY + TZ; |
366 | 0 | T12 = TY - TZ; |
367 | 0 | T19 = iio[WS(vs, 2) + WS(rs, 1)]; |
368 | 0 | T1a = iio[WS(vs, 2) + WS(rs, 3)]; |
369 | 0 | T1b = T19 - T1a; |
370 | 0 | T1l = T19 + T1a; |
371 | 0 | } |
372 | 0 | { |
373 | 0 | E T1n, T1o, T1v, T1w; |
374 | 0 | T1n = rio[WS(vs, 3)]; |
375 | 0 | T1o = rio[WS(vs, 3) + WS(rs, 2)]; |
376 | 0 | T1p = T1n + T1o; |
377 | 0 | T1A = T1n - T1o; |
378 | 0 | T1v = iio[WS(vs, 3)]; |
379 | 0 | T1w = iio[WS(vs, 3) + WS(rs, 2)]; |
380 | 0 | T1x = T1v - T1w; |
381 | 0 | T1M = T1v + T1w; |
382 | 0 | } |
383 | 0 | { |
384 | 0 | E T1q, T1r, T1B, T1C; |
385 | 0 | T1q = rio[WS(vs, 3) + WS(rs, 1)]; |
386 | 0 | T1r = rio[WS(vs, 3) + WS(rs, 3)]; |
387 | 0 | T1s = T1q + T1r; |
388 | 0 | T1u = T1q - T1r; |
389 | 0 | T1B = iio[WS(vs, 3) + WS(rs, 1)]; |
390 | 0 | T1C = iio[WS(vs, 3) + WS(rs, 3)]; |
391 | 0 | T1D = T1B - T1C; |
392 | 0 | T1N = T1B + T1C; |
393 | 0 | } |
394 | 0 | rio[0] = T3 + T6; |
395 | 0 | iio[0] = Tq + Tr; |
396 | 0 | rio[WS(rs, 1)] = Tv + Ty; |
397 | 0 | iio[WS(rs, 1)] = TS + TT; |
398 | 0 | rio[WS(rs, 2)] = TX + T10; |
399 | 0 | iio[WS(rs, 2)] = T1k + T1l; |
400 | 0 | iio[WS(rs, 3)] = T1M + T1N; |
401 | 0 | rio[WS(rs, 3)] = T1p + T1s; |
402 | 0 | { |
403 | 0 | E Tc, Ti, T7, Td; |
404 | 0 | Tc = T8 + Tb; |
405 | 0 | Ti = Te - Th; |
406 | 0 | T7 = W[4]; |
407 | 0 | Td = W[5]; |
408 | 0 | iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc); |
409 | 0 | rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti); |
410 | 0 | } |
411 | 0 | { |
412 | 0 | E T1K, T1O, T1J, T1L; |
413 | 0 | T1K = T1p - T1s; |
414 | 0 | T1O = T1M - T1N; |
415 | 0 | T1J = W[2]; |
416 | 0 | T1L = W[3]; |
417 | 0 | rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O); |
418 | 0 | iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O); |
419 | 0 | } |
420 | 0 | { |
421 | 0 | E Tk, Tm, Tj, Tl; |
422 | 0 | Tk = Tb - T8; |
423 | 0 | Tm = Te + Th; |
424 | 0 | Tj = W[0]; |
425 | 0 | Tl = W[1]; |
426 | 0 | iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk); |
427 | 0 | rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm); |
428 | 0 | } |
429 | 0 | { |
430 | 0 | E To, Ts, Tn, Tp; |
431 | 0 | To = T3 - T6; |
432 | 0 | Ts = Tq - Tr; |
433 | 0 | Tn = W[2]; |
434 | 0 | Tp = W[3]; |
435 | 0 | rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts); |
436 | 0 | iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts); |
437 | 0 | } |
438 | 0 | { |
439 | 0 | E T16, T1c, T11, T17; |
440 | 0 | T16 = T12 + T15; |
441 | 0 | T1c = T18 - T1b; |
442 | 0 | T11 = W[4]; |
443 | 0 | T17 = W[5]; |
444 | 0 | iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16); |
445 | 0 | rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c); |
446 | 0 | } |
447 | 0 | { |
448 | 0 | E T1G, T1I, T1F, T1H; |
449 | 0 | T1G = T1x - T1u; |
450 | 0 | T1I = T1A + T1D; |
451 | 0 | T1F = W[0]; |
452 | 0 | T1H = W[1]; |
453 | 0 | iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G); |
454 | 0 | rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I); |
455 | 0 | } |
456 | 0 | { |
457 | 0 | E TQ, TU, TP, TR; |
458 | 0 | TQ = Tv - Ty; |
459 | 0 | TU = TS - TT; |
460 | 0 | TP = W[2]; |
461 | 0 | TR = W[3]; |
462 | 0 | rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU); |
463 | 0 | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU); |
464 | 0 | } |
465 | 0 | { |
466 | 0 | E T1e, T1g, T1d, T1f; |
467 | 0 | T1e = T15 - T12; |
468 | 0 | T1g = T18 + T1b; |
469 | 0 | T1d = W[0]; |
470 | 0 | T1f = W[1]; |
471 | 0 | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); |
472 | 0 | rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); |
473 | 0 | } |
474 | 0 | { |
475 | 0 | E T1i, T1m, T1h, T1j; |
476 | 0 | T1i = TX - T10; |
477 | 0 | T1m = T1k - T1l; |
478 | 0 | T1h = W[2]; |
479 | 0 | T1j = W[3]; |
480 | 0 | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m); |
481 | 0 | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m); |
482 | 0 | } |
483 | 0 | { |
484 | 0 | E T1y, T1E, T1t, T1z; |
485 | 0 | T1y = T1u + T1x; |
486 | 0 | T1E = T1A - T1D; |
487 | 0 | T1t = W[4]; |
488 | 0 | T1z = W[5]; |
489 | 0 | iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y); |
490 | 0 | rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E); |
491 | 0 | } |
492 | 0 | { |
493 | 0 | E TM, TO, TL, TN; |
494 | 0 | TM = TD - TA; |
495 | 0 | TO = TG + TJ; |
496 | 0 | TL = W[0]; |
497 | 0 | TN = W[1]; |
498 | 0 | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM); |
499 | 0 | rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO); |
500 | 0 | } |
501 | 0 | { |
502 | 0 | E TE, TK, Tz, TF; |
503 | 0 | TE = TA + TD; |
504 | 0 | TK = TG - TJ; |
505 | 0 | Tz = W[4]; |
506 | 0 | TF = W[5]; |
507 | 0 | iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE); |
508 | 0 | rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK); |
509 | 0 | } |
510 | 0 | } |
511 | 0 | } |
512 | 0 | } |
513 | | |
514 | | static const tw_instr twinstr[] = { |
515 | | { TW_FULL, 0, 4 }, |
516 | | { TW_NEXT, 1, 0 } |
517 | | }; |
518 | | |
519 | | static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, { 64, 24, 24, 0 }, 0, 0, 0 }; |
520 | | |
521 | 1 | void X(codelet_q1_4) (planner *p) { |
522 | 1 | X(kdft_difsq_register) (p, q1_4, &desc); |
523 | 1 | } |
524 | | #endif |