/src/fftw3/dft/scalar/codelets/t1_16.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Nov 16 06:51:34 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 174 FP additions, 100 FP multiplications, |
32 | | * (or, 104 additions, 30 multiplications, 70 fused multiply/add), |
33 | | * 60 stack variables, 3 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
41 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
42 | | { |
43 | | INT m; |
44 | | for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { |
45 | | E T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N; |
46 | | E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W; |
47 | | E T1W, T21; |
48 | | { |
49 | | E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; |
50 | | T1 = ri[0]; |
51 | | T3n = ii[0]; |
52 | | T3 = ri[WS(rs, 8)]; |
53 | | T6 = ii[WS(rs, 8)]; |
54 | | T2 = W[14]; |
55 | | T4 = T2 * T3; |
56 | | T3l = T2 * T6; |
57 | | T5 = W[15]; |
58 | | T7 = FMA(T5, T6, T4); |
59 | | T3m = FNMS(T5, T3, T3l); |
60 | | T8 = T1 + T7; |
61 | | T3z = T3n - T3m; |
62 | | T1I = T1 - T7; |
63 | | T3o = T3m + T3n; |
64 | | } |
65 | | { |
66 | | E T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m; |
67 | | T1h = ri[WS(rs, 15)]; |
68 | | T1k = ii[WS(rs, 15)]; |
69 | | T1g = W[28]; |
70 | | T1i = T1g * T1h; |
71 | | T2k = T1g * T1k; |
72 | | T1n = ri[WS(rs, 7)]; |
73 | | T1q = ii[WS(rs, 7)]; |
74 | | T1m = W[12]; |
75 | | T1o = T1m * T1n; |
76 | | T2m = T1m * T1q; |
77 | | { |
78 | | E T1l, T2l, T1r, T2n, T1j, T1p; |
79 | | T1j = W[29]; |
80 | | T1l = FMA(T1j, T1k, T1i); |
81 | | T2l = FNMS(T1j, T1h, T2k); |
82 | | T1p = W[13]; |
83 | | T1r = FMA(T1p, T1q, T1o); |
84 | | T2n = FNMS(T1p, T1n, T2m); |
85 | | T1s = T1l + T1r; |
86 | | T35 = T2l + T2n; |
87 | | T2o = T2l - T2n; |
88 | | T2r = T1l - T1r; |
89 | | } |
90 | | } |
91 | | { |
92 | | E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z; |
93 | | T1u = ri[WS(rs, 3)]; |
94 | | T1x = ii[WS(rs, 3)]; |
95 | | T1t = W[4]; |
96 | | T1v = T1t * T1u; |
97 | | T2s = T1t * T1x; |
98 | | T1A = ri[WS(rs, 11)]; |
99 | | T1D = ii[WS(rs, 11)]; |
100 | | T1z = W[20]; |
101 | | T1B = T1z * T1A; |
102 | | T2u = T1z * T1D; |
103 | | { |
104 | | E T1y, T2t, T1E, T2v, T1w, T1C; |
105 | | T1w = W[5]; |
106 | | T1y = FMA(T1w, T1x, T1v); |
107 | | T2t = FNMS(T1w, T1u, T2s); |
108 | | T1C = W[21]; |
109 | | T1E = FMA(T1C, T1D, T1B); |
110 | | T2v = FNMS(T1C, T1A, T2u); |
111 | | T1F = T1y + T1E; |
112 | | T36 = T2t + T2v; |
113 | | T2p = T1y - T1E; |
114 | | T2w = T2t - T2v; |
115 | | } |
116 | | } |
117 | | { |
118 | | E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; |
119 | | Ta = ri[WS(rs, 4)]; |
120 | | Td = ii[WS(rs, 4)]; |
121 | | T9 = W[6]; |
122 | | Tb = T9 * Ta; |
123 | | T1J = T9 * Td; |
124 | | Tg = ri[WS(rs, 12)]; |
125 | | Tj = ii[WS(rs, 12)]; |
126 | | Tf = W[22]; |
127 | | Th = Tf * Tg; |
128 | | T1L = Tf * Tj; |
129 | | { |
130 | | E Te, T1K, Tk, T1M, Tc, Ti; |
131 | | Tc = W[7]; |
132 | | Te = FMA(Tc, Td, Tb); |
133 | | T1K = FNMS(Tc, Ta, T1J); |
134 | | Ti = W[23]; |
135 | | Tk = FMA(Ti, Tj, Th); |
136 | | T1M = FNMS(Ti, Tg, T1L); |
137 | | Tl = Te + Tk; |
138 | | T3A = Te - Tk; |
139 | | T1N = T1K - T1M; |
140 | | T3k = T1K + T1M; |
141 | | } |
142 | | } |
143 | | { |
144 | | E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt; |
145 | | To = ri[WS(rs, 2)]; |
146 | | Tr = ii[WS(rs, 2)]; |
147 | | Tn = W[2]; |
148 | | Tp = Tn * To; |
149 | | T1P = Tn * Tr; |
150 | | Tu = ri[WS(rs, 10)]; |
151 | | Tx = ii[WS(rs, 10)]; |
152 | | Tt = W[18]; |
153 | | Tv = Tt * Tu; |
154 | | T1R = Tt * Tx; |
155 | | { |
156 | | E Ts, T1Q, Ty, T1S, Tq, Tw; |
157 | | Tq = W[3]; |
158 | | Ts = FMA(Tq, Tr, Tp); |
159 | | T1Q = FNMS(Tq, To, T1P); |
160 | | Tw = W[19]; |
161 | | Ty = FMA(Tw, Tx, Tv); |
162 | | T1S = FNMS(Tw, Tu, T1R); |
163 | | Tz = Ts + Ty; |
164 | | T2V = T1Q + T1S; |
165 | | T1T = T1Q - T1S; |
166 | | T1U = Ts - Ty; |
167 | | } |
168 | | } |
169 | | { |
170 | | E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV; |
171 | | TQ = ri[WS(rs, 1)]; |
172 | | TT = ii[WS(rs, 1)]; |
173 | | TP = W[0]; |
174 | | TR = TP * TQ; |
175 | | T25 = TP * TT; |
176 | | TW = ri[WS(rs, 9)]; |
177 | | TZ = ii[WS(rs, 9)]; |
178 | | TV = W[16]; |
179 | | TX = TV * TW; |
180 | | T27 = TV * TZ; |
181 | | { |
182 | | E TU, T26, T10, T28, TS, TY; |
183 | | TS = W[1]; |
184 | | TU = FMA(TS, TT, TR); |
185 | | T26 = FNMS(TS, TQ, T25); |
186 | | TY = W[17]; |
187 | | T10 = FMA(TY, TZ, TX); |
188 | | T28 = FNMS(TY, TW, T27); |
189 | | T11 = TU + T10; |
190 | | T30 = T26 + T28; |
191 | | T29 = T26 - T28; |
192 | | T2c = TU - T10; |
193 | | } |
194 | | } |
195 | | { |
196 | | E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18; |
197 | | T13 = ri[WS(rs, 5)]; |
198 | | T16 = ii[WS(rs, 5)]; |
199 | | T12 = W[8]; |
200 | | T14 = T12 * T13; |
201 | | T2d = T12 * T16; |
202 | | T19 = ri[WS(rs, 13)]; |
203 | | T1c = ii[WS(rs, 13)]; |
204 | | T18 = W[24]; |
205 | | T1a = T18 * T19; |
206 | | T2f = T18 * T1c; |
207 | | { |
208 | | E T17, T2e, T1d, T2g, T15, T1b; |
209 | | T15 = W[9]; |
210 | | T17 = FMA(T15, T16, T14); |
211 | | T2e = FNMS(T15, T13, T2d); |
212 | | T1b = W[25]; |
213 | | T1d = FMA(T1b, T1c, T1a); |
214 | | T2g = FNMS(T1b, T19, T2f); |
215 | | T1e = T17 + T1d; |
216 | | T31 = T2e + T2g; |
217 | | T2a = T17 - T1d; |
218 | | T2h = T2e - T2g; |
219 | | } |
220 | | } |
221 | | { |
222 | | E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; |
223 | | TB = ri[WS(rs, 14)]; |
224 | | TE = ii[WS(rs, 14)]; |
225 | | TA = W[26]; |
226 | | TC = TA * TB; |
227 | | T1X = TA * TE; |
228 | | TH = ri[WS(rs, 6)]; |
229 | | TK = ii[WS(rs, 6)]; |
230 | | TG = W[10]; |
231 | | TI = TG * TH; |
232 | | T1Z = TG * TK; |
233 | | { |
234 | | E TF, T1Y, TL, T20, TD, TJ; |
235 | | TD = W[27]; |
236 | | TF = FMA(TD, TE, TC); |
237 | | T1Y = FNMS(TD, TB, T1X); |
238 | | TJ = W[11]; |
239 | | TL = FMA(TJ, TK, TI); |
240 | | T20 = FNMS(TJ, TH, T1Z); |
241 | | TM = TF + TL; |
242 | | T2W = T1Y + T20; |
243 | | T1W = TF - TL; |
244 | | T21 = T1Y - T20; |
245 | | } |
246 | | } |
247 | | { |
248 | | E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; |
249 | | { |
250 | | E Tm, TN, T3j, T3p; |
251 | | Tm = T8 + Tl; |
252 | | TN = Tz + TM; |
253 | | TO = Tm + TN; |
254 | | T3e = Tm - TN; |
255 | | T3j = T2V + T2W; |
256 | | T3p = T3k + T3o; |
257 | | T3q = T3j + T3p; |
258 | | T3s = T3p - T3j; |
259 | | } |
260 | | { |
261 | | E T1f, T1G, T3f, T3g; |
262 | | T1f = T11 + T1e; |
263 | | T1G = T1s + T1F; |
264 | | T1H = T1f + T1G; |
265 | | T3r = T1G - T1f; |
266 | | T3f = T30 + T31; |
267 | | T3g = T35 + T36; |
268 | | T3h = T3f - T3g; |
269 | | T3i = T3f + T3g; |
270 | | } |
271 | | ri[WS(rs, 8)] = TO - T1H; |
272 | | ii[WS(rs, 8)] = T3q - T3i; |
273 | | ri[0] = TO + T1H; |
274 | | ii[0] = T3i + T3q; |
275 | | ri[WS(rs, 12)] = T3e - T3h; |
276 | | ii[WS(rs, 12)] = T3s - T3r; |
277 | | ri[WS(rs, 4)] = T3e + T3h; |
278 | | ii[WS(rs, 4)] = T3r + T3s; |
279 | | } |
280 | | { |
281 | | E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; |
282 | | { |
283 | | E T2U, T2X, T3t, T3u; |
284 | | T2U = T8 - Tl; |
285 | | T2X = T2V - T2W; |
286 | | T2Y = T2U + T2X; |
287 | | T3a = T2U - T2X; |
288 | | T3t = TM - Tz; |
289 | | T3u = T3o - T3k; |
290 | | T3v = T3t + T3u; |
291 | | T3x = T3u - T3t; |
292 | | } |
293 | | { |
294 | | E T2Z, T32, T34, T37; |
295 | | T2Z = T11 - T1e; |
296 | | T32 = T30 - T31; |
297 | | T33 = T2Z + T32; |
298 | | T3b = T32 - T2Z; |
299 | | T34 = T1s - T1F; |
300 | | T37 = T35 - T36; |
301 | | T38 = T34 - T37; |
302 | | T3c = T34 + T37; |
303 | | } |
304 | | { |
305 | | E T39, T3w, T3d, T3y; |
306 | | T39 = T33 + T38; |
307 | | ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y); |
308 | | ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y); |
309 | | T3w = T3b + T3c; |
310 | | ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v); |
311 | | ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v); |
312 | | T3d = T3b - T3c; |
313 | | ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a); |
314 | | ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a); |
315 | | T3y = T38 - T33; |
316 | | ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x); |
317 | | ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x); |
318 | | } |
319 | | } |
320 | | { |
321 | | E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y; |
322 | | E T2C; |
323 | | { |
324 | | E T1V, T22, T2b, T2i; |
325 | | T1O = T1I - T1N; |
326 | | T3B = T3z - T3A; |
327 | | T3H = T3A + T3z; |
328 | | T2E = T1I + T1N; |
329 | | T1V = T1T - T1U; |
330 | | T22 = T1W + T21; |
331 | | T23 = T1V - T22; |
332 | | T3C = T1V + T22; |
333 | | { |
334 | | E T2M, T2N, T2F, T2G; |
335 | | T2M = T2r + T2w; |
336 | | T2N = T2o - T2p; |
337 | | T2O = FNMS(KP414213562, T2N, T2M); |
338 | | T2S = FMA(KP414213562, T2M, T2N); |
339 | | T2F = T1U + T1T; |
340 | | T2G = T1W - T21; |
341 | | T2H = T2F + T2G; |
342 | | T3I = T2G - T2F; |
343 | | } |
344 | | T2b = T29 + T2a; |
345 | | T2i = T2c - T2h; |
346 | | T2j = FMA(KP414213562, T2i, T2b); |
347 | | T2B = FNMS(KP414213562, T2b, T2i); |
348 | | { |
349 | | E T2J, T2K, T2q, T2x; |
350 | | T2J = T2c + T2h; |
351 | | T2K = T29 - T2a; |
352 | | T2L = FMA(KP414213562, T2K, T2J); |
353 | | T2R = FNMS(KP414213562, T2J, T2K); |
354 | | T2q = T2o + T2p; |
355 | | T2x = T2r - T2w; |
356 | | T2y = FNMS(KP414213562, T2x, T2q); |
357 | | T2C = FMA(KP414213562, T2q, T2x); |
358 | | } |
359 | | } |
360 | | { |
361 | | E T24, T2z, T3J, T3K; |
362 | | T24 = FMA(KP707106781, T23, T1O); |
363 | | T2z = T2j - T2y; |
364 | | ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24); |
365 | | ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24); |
366 | | T3J = FMA(KP707106781, T3I, T3H); |
367 | | T3K = T2C - T2B; |
368 | | ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J); |
369 | | ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J); |
370 | | } |
371 | | { |
372 | | E T2A, T2D, T3L, T3M; |
373 | | T2A = FNMS(KP707106781, T23, T1O); |
374 | | T2D = T2B + T2C; |
375 | | ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A); |
376 | | ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A); |
377 | | T3L = FNMS(KP707106781, T3I, T3H); |
378 | | T3M = T2j + T2y; |
379 | | ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L); |
380 | | ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L); |
381 | | } |
382 | | { |
383 | | E T2I, T2P, T3D, T3E; |
384 | | T2I = FMA(KP707106781, T2H, T2E); |
385 | | T2P = T2L + T2O; |
386 | | ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I); |
387 | | ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I); |
388 | | T3D = FMA(KP707106781, T3C, T3B); |
389 | | T3E = T2R + T2S; |
390 | | ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D); |
391 | | ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D); |
392 | | } |
393 | | { |
394 | | E T2Q, T2T, T3F, T3G; |
395 | | T2Q = FNMS(KP707106781, T2H, T2E); |
396 | | T2T = T2R - T2S; |
397 | | ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q); |
398 | | ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q); |
399 | | T3F = FNMS(KP707106781, T3C, T3B); |
400 | | T3G = T2O - T2L; |
401 | | ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F); |
402 | | ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F); |
403 | | } |
404 | | } |
405 | | } |
406 | | } |
407 | | } |
408 | | |
409 | | static const tw_instr twinstr[] = { |
410 | | { TW_FULL, 0, 16 }, |
411 | | { TW_NEXT, 1, 0 } |
412 | | }; |
413 | | |
414 | | static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, { 104, 30, 70, 0 }, 0, 0, 0 }; |
415 | | |
416 | | void X(codelet_t1_16) (planner *p) { |
417 | | X(kdft_dit_register) (p, t1_16, &desc); |
418 | | } |
419 | | #else |
420 | | |
421 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */ |
422 | | |
423 | | /* |
424 | | * This function contains 174 FP additions, 84 FP multiplications, |
425 | | * (or, 136 additions, 46 multiplications, 38 fused multiply/add), |
426 | | * 52 stack variables, 3 constants, and 64 memory accesses |
427 | | */ |
428 | | #include "dft/scalar/t.h" |
429 | | |
430 | | static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
431 | 0 | { |
432 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
433 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
434 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
435 | 0 | { |
436 | 0 | INT m; |
437 | 0 | for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { |
438 | 0 | E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H; |
439 | 0 | E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x; |
440 | 0 | E T2y, T2z, T1O, T2g, T1T, T2h; |
441 | 0 | { |
442 | 0 | E T1, T2T, T6, T2S; |
443 | 0 | T1 = ri[0]; |
444 | 0 | T2T = ii[0]; |
445 | 0 | { |
446 | 0 | E T3, T5, T2, T4; |
447 | 0 | T3 = ri[WS(rs, 8)]; |
448 | 0 | T5 = ii[WS(rs, 8)]; |
449 | 0 | T2 = W[14]; |
450 | 0 | T4 = W[15]; |
451 | 0 | T6 = FMA(T2, T3, T4 * T5); |
452 | 0 | T2S = FNMS(T4, T3, T2 * T5); |
453 | 0 | } |
454 | 0 | T7 = T1 + T6; |
455 | 0 | T37 = T2T - T2S; |
456 | 0 | T1t = T1 - T6; |
457 | 0 | T2U = T2S + T2T; |
458 | 0 | } |
459 | 0 | { |
460 | 0 | E Tc, T1u, Th, T1v; |
461 | 0 | { |
462 | 0 | E T9, Tb, T8, Ta; |
463 | 0 | T9 = ri[WS(rs, 4)]; |
464 | 0 | Tb = ii[WS(rs, 4)]; |
465 | 0 | T8 = W[6]; |
466 | 0 | Ta = W[7]; |
467 | 0 | Tc = FMA(T8, T9, Ta * Tb); |
468 | 0 | T1u = FNMS(Ta, T9, T8 * Tb); |
469 | 0 | } |
470 | 0 | { |
471 | 0 | E Te, Tg, Td, Tf; |
472 | 0 | Te = ri[WS(rs, 12)]; |
473 | 0 | Tg = ii[WS(rs, 12)]; |
474 | 0 | Td = W[22]; |
475 | 0 | Tf = W[23]; |
476 | 0 | Th = FMA(Td, Te, Tf * Tg); |
477 | 0 | T1v = FNMS(Tf, Te, Td * Tg); |
478 | 0 | } |
479 | 0 | Ti = Tc + Th; |
480 | 0 | T38 = Tc - Th; |
481 | 0 | T1w = T1u - T1v; |
482 | 0 | T2R = T1u + T1v; |
483 | 0 | } |
484 | 0 | { |
485 | 0 | E To, T1y, Tt, T1z, T1A, T1B; |
486 | 0 | { |
487 | 0 | E Tl, Tn, Tk, Tm; |
488 | 0 | Tl = ri[WS(rs, 2)]; |
489 | 0 | Tn = ii[WS(rs, 2)]; |
490 | 0 | Tk = W[2]; |
491 | 0 | Tm = W[3]; |
492 | 0 | To = FMA(Tk, Tl, Tm * Tn); |
493 | 0 | T1y = FNMS(Tm, Tl, Tk * Tn); |
494 | 0 | } |
495 | 0 | { |
496 | 0 | E Tq, Ts, Tp, Tr; |
497 | 0 | Tq = ri[WS(rs, 10)]; |
498 | 0 | Ts = ii[WS(rs, 10)]; |
499 | 0 | Tp = W[18]; |
500 | 0 | Tr = W[19]; |
501 | 0 | Tt = FMA(Tp, Tq, Tr * Ts); |
502 | 0 | T1z = FNMS(Tr, Tq, Tp * Ts); |
503 | 0 | } |
504 | 0 | Tu = To + Tt; |
505 | 0 | T2s = T1y + T1z; |
506 | 0 | T1A = T1y - T1z; |
507 | 0 | T1B = To - Tt; |
508 | 0 | T1C = T1A - T1B; |
509 | 0 | T2c = T1B + T1A; |
510 | 0 | } |
511 | 0 | { |
512 | 0 | E Tz, T1E, TE, T1F, T1D, T1G; |
513 | 0 | { |
514 | 0 | E Tw, Ty, Tv, Tx; |
515 | 0 | Tw = ri[WS(rs, 14)]; |
516 | 0 | Ty = ii[WS(rs, 14)]; |
517 | 0 | Tv = W[26]; |
518 | 0 | Tx = W[27]; |
519 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
520 | 0 | T1E = FNMS(Tx, Tw, Tv * Ty); |
521 | 0 | } |
522 | 0 | { |
523 | 0 | E TB, TD, TA, TC; |
524 | 0 | TB = ri[WS(rs, 6)]; |
525 | 0 | TD = ii[WS(rs, 6)]; |
526 | 0 | TA = W[10]; |
527 | 0 | TC = W[11]; |
528 | 0 | TE = FMA(TA, TB, TC * TD); |
529 | 0 | T1F = FNMS(TC, TB, TA * TD); |
530 | 0 | } |
531 | 0 | TF = Tz + TE; |
532 | 0 | T2t = T1E + T1F; |
533 | 0 | T1D = Tz - TE; |
534 | 0 | T1G = T1E - T1F; |
535 | 0 | T1H = T1D + T1G; |
536 | 0 | T2d = T1D - T1G; |
537 | 0 | } |
538 | 0 | { |
539 | 0 | E T19, T20, T1p, T1X, T1e, T21, T1k, T1W; |
540 | 0 | { |
541 | 0 | E T16, T18, T15, T17; |
542 | 0 | T16 = ri[WS(rs, 15)]; |
543 | 0 | T18 = ii[WS(rs, 15)]; |
544 | 0 | T15 = W[28]; |
545 | 0 | T17 = W[29]; |
546 | 0 | T19 = FMA(T15, T16, T17 * T18); |
547 | 0 | T20 = FNMS(T17, T16, T15 * T18); |
548 | 0 | } |
549 | 0 | { |
550 | 0 | E T1m, T1o, T1l, T1n; |
551 | 0 | T1m = ri[WS(rs, 11)]; |
552 | 0 | T1o = ii[WS(rs, 11)]; |
553 | 0 | T1l = W[20]; |
554 | 0 | T1n = W[21]; |
555 | 0 | T1p = FMA(T1l, T1m, T1n * T1o); |
556 | 0 | T1X = FNMS(T1n, T1m, T1l * T1o); |
557 | 0 | } |
558 | 0 | { |
559 | 0 | E T1b, T1d, T1a, T1c; |
560 | 0 | T1b = ri[WS(rs, 7)]; |
561 | 0 | T1d = ii[WS(rs, 7)]; |
562 | 0 | T1a = W[12]; |
563 | 0 | T1c = W[13]; |
564 | 0 | T1e = FMA(T1a, T1b, T1c * T1d); |
565 | 0 | T21 = FNMS(T1c, T1b, T1a * T1d); |
566 | 0 | } |
567 | 0 | { |
568 | 0 | E T1h, T1j, T1g, T1i; |
569 | 0 | T1h = ri[WS(rs, 3)]; |
570 | 0 | T1j = ii[WS(rs, 3)]; |
571 | 0 | T1g = W[4]; |
572 | 0 | T1i = W[5]; |
573 | 0 | T1k = FMA(T1g, T1h, T1i * T1j); |
574 | 0 | T1W = FNMS(T1i, T1h, T1g * T1j); |
575 | 0 | } |
576 | 0 | T1f = T19 + T1e; |
577 | 0 | T1q = T1k + T1p; |
578 | 0 | T2B = T1f - T1q; |
579 | 0 | T2C = T20 + T21; |
580 | 0 | T2D = T1W + T1X; |
581 | 0 | T2E = T2C - T2D; |
582 | 0 | { |
583 | 0 | E T1V, T1Y, T22, T23; |
584 | 0 | T1V = T19 - T1e; |
585 | 0 | T1Y = T1W - T1X; |
586 | 0 | T1Z = T1V - T1Y; |
587 | 0 | T2j = T1V + T1Y; |
588 | 0 | T22 = T20 - T21; |
589 | 0 | T23 = T1k - T1p; |
590 | 0 | T24 = T22 + T23; |
591 | 0 | T2k = T22 - T23; |
592 | 0 | } |
593 | 0 | } |
594 | 0 | { |
595 | 0 | E TM, T1K, T12, T1R, TR, T1L, TX, T1Q; |
596 | 0 | { |
597 | 0 | E TJ, TL, TI, TK; |
598 | 0 | TJ = ri[WS(rs, 1)]; |
599 | 0 | TL = ii[WS(rs, 1)]; |
600 | 0 | TI = W[0]; |
601 | 0 | TK = W[1]; |
602 | 0 | TM = FMA(TI, TJ, TK * TL); |
603 | 0 | T1K = FNMS(TK, TJ, TI * TL); |
604 | 0 | } |
605 | 0 | { |
606 | 0 | E TZ, T11, TY, T10; |
607 | 0 | TZ = ri[WS(rs, 13)]; |
608 | 0 | T11 = ii[WS(rs, 13)]; |
609 | 0 | TY = W[24]; |
610 | 0 | T10 = W[25]; |
611 | 0 | T12 = FMA(TY, TZ, T10 * T11); |
612 | 0 | T1R = FNMS(T10, TZ, TY * T11); |
613 | 0 | } |
614 | 0 | { |
615 | 0 | E TO, TQ, TN, TP; |
616 | 0 | TO = ri[WS(rs, 9)]; |
617 | 0 | TQ = ii[WS(rs, 9)]; |
618 | 0 | TN = W[16]; |
619 | 0 | TP = W[17]; |
620 | 0 | TR = FMA(TN, TO, TP * TQ); |
621 | 0 | T1L = FNMS(TP, TO, TN * TQ); |
622 | 0 | } |
623 | 0 | { |
624 | 0 | E TU, TW, TT, TV; |
625 | 0 | TU = ri[WS(rs, 5)]; |
626 | 0 | TW = ii[WS(rs, 5)]; |
627 | 0 | TT = W[8]; |
628 | 0 | TV = W[9]; |
629 | 0 | TX = FMA(TT, TU, TV * TW); |
630 | 0 | T1Q = FNMS(TV, TU, TT * TW); |
631 | 0 | } |
632 | 0 | TS = TM + TR; |
633 | 0 | T13 = TX + T12; |
634 | 0 | T2w = TS - T13; |
635 | 0 | T2x = T1K + T1L; |
636 | 0 | T2y = T1Q + T1R; |
637 | 0 | T2z = T2x - T2y; |
638 | 0 | { |
639 | 0 | E T1M, T1N, T1P, T1S; |
640 | 0 | T1M = T1K - T1L; |
641 | 0 | T1N = TX - T12; |
642 | 0 | T1O = T1M + T1N; |
643 | 0 | T2g = T1M - T1N; |
644 | 0 | T1P = TM - TR; |
645 | 0 | T1S = T1Q - T1R; |
646 | 0 | T1T = T1P - T1S; |
647 | 0 | T2h = T1P + T1S; |
648 | 0 | } |
649 | 0 | } |
650 | 0 | { |
651 | 0 | E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d; |
652 | 0 | { |
653 | 0 | E T1x, T1I, T3e, T3f; |
654 | 0 | T1x = T1t - T1w; |
655 | 0 | T1I = KP707106781 * (T1C - T1H); |
656 | 0 | T1J = T1x + T1I; |
657 | 0 | T27 = T1x - T1I; |
658 | 0 | T3e = KP707106781 * (T2d - T2c); |
659 | 0 | T3f = T38 + T37; |
660 | 0 | T3g = T3e + T3f; |
661 | 0 | T3i = T3f - T3e; |
662 | 0 | } |
663 | 0 | { |
664 | 0 | E T1U, T25, T28, T29; |
665 | 0 | T1U = FMA(KP923879532, T1O, KP382683432 * T1T); |
666 | 0 | T25 = FNMS(KP923879532, T24, KP382683432 * T1Z); |
667 | 0 | T26 = T1U + T25; |
668 | 0 | T3h = T25 - T1U; |
669 | 0 | T28 = FNMS(KP923879532, T1T, KP382683432 * T1O); |
670 | 0 | T29 = FMA(KP382683432, T24, KP923879532 * T1Z); |
671 | 0 | T2a = T28 - T29; |
672 | 0 | T3d = T28 + T29; |
673 | 0 | } |
674 | 0 | ri[WS(rs, 11)] = T1J - T26; |
675 | 0 | ii[WS(rs, 11)] = T3g - T3d; |
676 | 0 | ri[WS(rs, 3)] = T1J + T26; |
677 | 0 | ii[WS(rs, 3)] = T3d + T3g; |
678 | 0 | ri[WS(rs, 15)] = T27 - T2a; |
679 | 0 | ii[WS(rs, 15)] = T3i - T3h; |
680 | 0 | ri[WS(rs, 7)] = T27 + T2a; |
681 | 0 | ii[WS(rs, 7)] = T3h + T3i; |
682 | 0 | } |
683 | 0 | { |
684 | 0 | E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z; |
685 | 0 | { |
686 | 0 | E T2r, T2u, T30, T31; |
687 | 0 | T2r = T7 - Ti; |
688 | 0 | T2u = T2s - T2t; |
689 | 0 | T2v = T2r + T2u; |
690 | 0 | T2H = T2r - T2u; |
691 | 0 | T30 = TF - Tu; |
692 | 0 | T31 = T2U - T2R; |
693 | 0 | T32 = T30 + T31; |
694 | 0 | T34 = T31 - T30; |
695 | 0 | } |
696 | 0 | { |
697 | 0 | E T2A, T2F, T2I, T2J; |
698 | 0 | T2A = T2w + T2z; |
699 | 0 | T2F = T2B - T2E; |
700 | 0 | T2G = KP707106781 * (T2A + T2F); |
701 | 0 | T33 = KP707106781 * (T2F - T2A); |
702 | 0 | T2I = T2z - T2w; |
703 | 0 | T2J = T2B + T2E; |
704 | 0 | T2K = KP707106781 * (T2I - T2J); |
705 | 0 | T2Z = KP707106781 * (T2I + T2J); |
706 | 0 | } |
707 | 0 | ri[WS(rs, 10)] = T2v - T2G; |
708 | 0 | ii[WS(rs, 10)] = T32 - T2Z; |
709 | 0 | ri[WS(rs, 2)] = T2v + T2G; |
710 | 0 | ii[WS(rs, 2)] = T2Z + T32; |
711 | 0 | ri[WS(rs, 14)] = T2H - T2K; |
712 | 0 | ii[WS(rs, 14)] = T34 - T33; |
713 | 0 | ri[WS(rs, 6)] = T2H + T2K; |
714 | 0 | ii[WS(rs, 6)] = T33 + T34; |
715 | 0 | } |
716 | 0 | { |
717 | 0 | E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35; |
718 | 0 | { |
719 | 0 | E T2b, T2e, T36, T39; |
720 | 0 | T2b = T1t + T1w; |
721 | 0 | T2e = KP707106781 * (T2c + T2d); |
722 | 0 | T2f = T2b + T2e; |
723 | 0 | T2n = T2b - T2e; |
724 | 0 | T36 = KP707106781 * (T1C + T1H); |
725 | 0 | T39 = T37 - T38; |
726 | 0 | T3a = T36 + T39; |
727 | 0 | T3c = T39 - T36; |
728 | 0 | } |
729 | 0 | { |
730 | 0 | E T2i, T2l, T2o, T2p; |
731 | 0 | T2i = FMA(KP382683432, T2g, KP923879532 * T2h); |
732 | 0 | T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); |
733 | 0 | T2m = T2i + T2l; |
734 | 0 | T3b = T2l - T2i; |
735 | 0 | T2o = FNMS(KP382683432, T2h, KP923879532 * T2g); |
736 | 0 | T2p = FMA(KP923879532, T2k, KP382683432 * T2j); |
737 | 0 | T2q = T2o - T2p; |
738 | 0 | T35 = T2o + T2p; |
739 | 0 | } |
740 | 0 | ri[WS(rs, 9)] = T2f - T2m; |
741 | 0 | ii[WS(rs, 9)] = T3a - T35; |
742 | 0 | ri[WS(rs, 1)] = T2f + T2m; |
743 | 0 | ii[WS(rs, 1)] = T35 + T3a; |
744 | 0 | ri[WS(rs, 13)] = T2n - T2q; |
745 | 0 | ii[WS(rs, 13)] = T3c - T3b; |
746 | 0 | ri[WS(rs, 5)] = T2n + T2q; |
747 | 0 | ii[WS(rs, 5)] = T3b + T3c; |
748 | 0 | } |
749 | 0 | { |
750 | 0 | E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; |
751 | 0 | { |
752 | 0 | E Tj, TG, T2Q, T2V; |
753 | 0 | Tj = T7 + Ti; |
754 | 0 | TG = Tu + TF; |
755 | 0 | TH = Tj + TG; |
756 | 0 | T2L = Tj - TG; |
757 | 0 | T2Q = T2s + T2t; |
758 | 0 | T2V = T2R + T2U; |
759 | 0 | T2W = T2Q + T2V; |
760 | 0 | T2Y = T2V - T2Q; |
761 | 0 | } |
762 | 0 | { |
763 | 0 | E T14, T1r, T2M, T2N; |
764 | 0 | T14 = TS + T13; |
765 | 0 | T1r = T1f + T1q; |
766 | 0 | T1s = T14 + T1r; |
767 | 0 | T2X = T1r - T14; |
768 | 0 | T2M = T2x + T2y; |
769 | 0 | T2N = T2C + T2D; |
770 | 0 | T2O = T2M - T2N; |
771 | 0 | T2P = T2M + T2N; |
772 | 0 | } |
773 | 0 | ri[WS(rs, 8)] = TH - T1s; |
774 | 0 | ii[WS(rs, 8)] = T2W - T2P; |
775 | 0 | ri[0] = TH + T1s; |
776 | 0 | ii[0] = T2P + T2W; |
777 | 0 | ri[WS(rs, 12)] = T2L - T2O; |
778 | 0 | ii[WS(rs, 12)] = T2Y - T2X; |
779 | 0 | ri[WS(rs, 4)] = T2L + T2O; |
780 | 0 | ii[WS(rs, 4)] = T2X + T2Y; |
781 | 0 | } |
782 | 0 | } |
783 | 0 | } |
784 | 0 | } |
785 | | |
786 | | static const tw_instr twinstr[] = { |
787 | | { TW_FULL, 0, 16 }, |
788 | | { TW_NEXT, 1, 0 } |
789 | | }; |
790 | | |
791 | | static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, { 136, 46, 38, 0 }, 0, 0, 0 }; |
792 | | |
793 | 1 | void X(codelet_t1_16) (planner *p) { |
794 | 1 | X(kdft_dit_register) (p, t1_16, &desc); |
795 | 1 | } |
796 | | #endif |