Coverage Report

Created: 2025-11-16 06:54

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/t1_16.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Nov 16 06:51:34 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 174 FP additions, 100 FP multiplications,
32
 * (or, 104 additions, 30 multiplications, 70 fused multiply/add),
33
 * 60 stack variables, 3 constants, and 64 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42
     {
43
    INT m;
44
    for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
45
         E T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N;
46
         E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W;
47
         E T1W, T21;
48
         {
49
        E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5;
50
        T1 = ri[0];
51
        T3n = ii[0];
52
        T3 = ri[WS(rs, 8)];
53
        T6 = ii[WS(rs, 8)];
54
        T2 = W[14];
55
        T4 = T2 * T3;
56
        T3l = T2 * T6;
57
        T5 = W[15];
58
        T7 = FMA(T5, T6, T4);
59
        T3m = FNMS(T5, T3, T3l);
60
        T8 = T1 + T7;
61
        T3z = T3n - T3m;
62
        T1I = T1 - T7;
63
        T3o = T3m + T3n;
64
         }
65
         {
66
        E T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m;
67
        T1h = ri[WS(rs, 15)];
68
        T1k = ii[WS(rs, 15)];
69
        T1g = W[28];
70
        T1i = T1g * T1h;
71
        T2k = T1g * T1k;
72
        T1n = ri[WS(rs, 7)];
73
        T1q = ii[WS(rs, 7)];
74
        T1m = W[12];
75
        T1o = T1m * T1n;
76
        T2m = T1m * T1q;
77
        {
78
       E T1l, T2l, T1r, T2n, T1j, T1p;
79
       T1j = W[29];
80
       T1l = FMA(T1j, T1k, T1i);
81
       T2l = FNMS(T1j, T1h, T2k);
82
       T1p = W[13];
83
       T1r = FMA(T1p, T1q, T1o);
84
       T2n = FNMS(T1p, T1n, T2m);
85
       T1s = T1l + T1r;
86
       T35 = T2l + T2n;
87
       T2o = T2l - T2n;
88
       T2r = T1l - T1r;
89
        }
90
         }
91
         {
92
        E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z;
93
        T1u = ri[WS(rs, 3)];
94
        T1x = ii[WS(rs, 3)];
95
        T1t = W[4];
96
        T1v = T1t * T1u;
97
        T2s = T1t * T1x;
98
        T1A = ri[WS(rs, 11)];
99
        T1D = ii[WS(rs, 11)];
100
        T1z = W[20];
101
        T1B = T1z * T1A;
102
        T2u = T1z * T1D;
103
        {
104
       E T1y, T2t, T1E, T2v, T1w, T1C;
105
       T1w = W[5];
106
       T1y = FMA(T1w, T1x, T1v);
107
       T2t = FNMS(T1w, T1u, T2s);
108
       T1C = W[21];
109
       T1E = FMA(T1C, T1D, T1B);
110
       T2v = FNMS(T1C, T1A, T2u);
111
       T1F = T1y + T1E;
112
       T36 = T2t + T2v;
113
       T2p = T1y - T1E;
114
       T2w = T2t - T2v;
115
        }
116
         }
117
         {
118
        E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf;
119
        Ta = ri[WS(rs, 4)];
120
        Td = ii[WS(rs, 4)];
121
        T9 = W[6];
122
        Tb = T9 * Ta;
123
        T1J = T9 * Td;
124
        Tg = ri[WS(rs, 12)];
125
        Tj = ii[WS(rs, 12)];
126
        Tf = W[22];
127
        Th = Tf * Tg;
128
        T1L = Tf * Tj;
129
        {
130
       E Te, T1K, Tk, T1M, Tc, Ti;
131
       Tc = W[7];
132
       Te = FMA(Tc, Td, Tb);
133
       T1K = FNMS(Tc, Ta, T1J);
134
       Ti = W[23];
135
       Tk = FMA(Ti, Tj, Th);
136
       T1M = FNMS(Ti, Tg, T1L);
137
       Tl = Te + Tk;
138
       T3A = Te - Tk;
139
       T1N = T1K - T1M;
140
       T3k = T1K + T1M;
141
        }
142
         }
143
         {
144
        E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt;
145
        To = ri[WS(rs, 2)];
146
        Tr = ii[WS(rs, 2)];
147
        Tn = W[2];
148
        Tp = Tn * To;
149
        T1P = Tn * Tr;
150
        Tu = ri[WS(rs, 10)];
151
        Tx = ii[WS(rs, 10)];
152
        Tt = W[18];
153
        Tv = Tt * Tu;
154
        T1R = Tt * Tx;
155
        {
156
       E Ts, T1Q, Ty, T1S, Tq, Tw;
157
       Tq = W[3];
158
       Ts = FMA(Tq, Tr, Tp);
159
       T1Q = FNMS(Tq, To, T1P);
160
       Tw = W[19];
161
       Ty = FMA(Tw, Tx, Tv);
162
       T1S = FNMS(Tw, Tu, T1R);
163
       Tz = Ts + Ty;
164
       T2V = T1Q + T1S;
165
       T1T = T1Q - T1S;
166
       T1U = Ts - Ty;
167
        }
168
         }
169
         {
170
        E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV;
171
        TQ = ri[WS(rs, 1)];
172
        TT = ii[WS(rs, 1)];
173
        TP = W[0];
174
        TR = TP * TQ;
175
        T25 = TP * TT;
176
        TW = ri[WS(rs, 9)];
177
        TZ = ii[WS(rs, 9)];
178
        TV = W[16];
179
        TX = TV * TW;
180
        T27 = TV * TZ;
181
        {
182
       E TU, T26, T10, T28, TS, TY;
183
       TS = W[1];
184
       TU = FMA(TS, TT, TR);
185
       T26 = FNMS(TS, TQ, T25);
186
       TY = W[17];
187
       T10 = FMA(TY, TZ, TX);
188
       T28 = FNMS(TY, TW, T27);
189
       T11 = TU + T10;
190
       T30 = T26 + T28;
191
       T29 = T26 - T28;
192
       T2c = TU - T10;
193
        }
194
         }
195
         {
196
        E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18;
197
        T13 = ri[WS(rs, 5)];
198
        T16 = ii[WS(rs, 5)];
199
        T12 = W[8];
200
        T14 = T12 * T13;
201
        T2d = T12 * T16;
202
        T19 = ri[WS(rs, 13)];
203
        T1c = ii[WS(rs, 13)];
204
        T18 = W[24];
205
        T1a = T18 * T19;
206
        T2f = T18 * T1c;
207
        {
208
       E T17, T2e, T1d, T2g, T15, T1b;
209
       T15 = W[9];
210
       T17 = FMA(T15, T16, T14);
211
       T2e = FNMS(T15, T13, T2d);
212
       T1b = W[25];
213
       T1d = FMA(T1b, T1c, T1a);
214
       T2g = FNMS(T1b, T19, T2f);
215
       T1e = T17 + T1d;
216
       T31 = T2e + T2g;
217
       T2a = T17 - T1d;
218
       T2h = T2e - T2g;
219
        }
220
         }
221
         {
222
        E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG;
223
        TB = ri[WS(rs, 14)];
224
        TE = ii[WS(rs, 14)];
225
        TA = W[26];
226
        TC = TA * TB;
227
        T1X = TA * TE;
228
        TH = ri[WS(rs, 6)];
229
        TK = ii[WS(rs, 6)];
230
        TG = W[10];
231
        TI = TG * TH;
232
        T1Z = TG * TK;
233
        {
234
       E TF, T1Y, TL, T20, TD, TJ;
235
       TD = W[27];
236
       TF = FMA(TD, TE, TC);
237
       T1Y = FNMS(TD, TB, T1X);
238
       TJ = W[11];
239
       TL = FMA(TJ, TK, TI);
240
       T20 = FNMS(TJ, TH, T1Z);
241
       TM = TF + TL;
242
       T2W = T1Y + T20;
243
       T1W = TF - TL;
244
       T21 = T1Y - T20;
245
        }
246
         }
247
         {
248
        E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i;
249
        {
250
       E Tm, TN, T3j, T3p;
251
       Tm = T8 + Tl;
252
       TN = Tz + TM;
253
       TO = Tm + TN;
254
       T3e = Tm - TN;
255
       T3j = T2V + T2W;
256
       T3p = T3k + T3o;
257
       T3q = T3j + T3p;
258
       T3s = T3p - T3j;
259
        }
260
        {
261
       E T1f, T1G, T3f, T3g;
262
       T1f = T11 + T1e;
263
       T1G = T1s + T1F;
264
       T1H = T1f + T1G;
265
       T3r = T1G - T1f;
266
       T3f = T30 + T31;
267
       T3g = T35 + T36;
268
       T3h = T3f - T3g;
269
       T3i = T3f + T3g;
270
        }
271
        ri[WS(rs, 8)] = TO - T1H;
272
        ii[WS(rs, 8)] = T3q - T3i;
273
        ri[0] = TO + T1H;
274
        ii[0] = T3i + T3q;
275
        ri[WS(rs, 12)] = T3e - T3h;
276
        ii[WS(rs, 12)] = T3s - T3r;
277
        ri[WS(rs, 4)] = T3e + T3h;
278
        ii[WS(rs, 4)] = T3r + T3s;
279
         }
280
         {
281
        E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c;
282
        {
283
       E T2U, T2X, T3t, T3u;
284
       T2U = T8 - Tl;
285
       T2X = T2V - T2W;
286
       T2Y = T2U + T2X;
287
       T3a = T2U - T2X;
288
       T3t = TM - Tz;
289
       T3u = T3o - T3k;
290
       T3v = T3t + T3u;
291
       T3x = T3u - T3t;
292
        }
293
        {
294
       E T2Z, T32, T34, T37;
295
       T2Z = T11 - T1e;
296
       T32 = T30 - T31;
297
       T33 = T2Z + T32;
298
       T3b = T32 - T2Z;
299
       T34 = T1s - T1F;
300
       T37 = T35 - T36;
301
       T38 = T34 - T37;
302
       T3c = T34 + T37;
303
        }
304
        {
305
       E T39, T3w, T3d, T3y;
306
       T39 = T33 + T38;
307
       ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y);
308
       ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y);
309
       T3w = T3b + T3c;
310
       ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v);
311
       ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v);
312
       T3d = T3b - T3c;
313
       ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a);
314
       ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a);
315
       T3y = T38 - T33;
316
       ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x);
317
       ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x);
318
        }
319
         }
320
         {
321
        E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y;
322
        E T2C;
323
        {
324
       E T1V, T22, T2b, T2i;
325
       T1O = T1I - T1N;
326
       T3B = T3z - T3A;
327
       T3H = T3A + T3z;
328
       T2E = T1I + T1N;
329
       T1V = T1T - T1U;
330
       T22 = T1W + T21;
331
       T23 = T1V - T22;
332
       T3C = T1V + T22;
333
       {
334
            E T2M, T2N, T2F, T2G;
335
            T2M = T2r + T2w;
336
            T2N = T2o - T2p;
337
            T2O = FNMS(KP414213562, T2N, T2M);
338
            T2S = FMA(KP414213562, T2M, T2N);
339
            T2F = T1U + T1T;
340
            T2G = T1W - T21;
341
            T2H = T2F + T2G;
342
            T3I = T2G - T2F;
343
       }
344
       T2b = T29 + T2a;
345
       T2i = T2c - T2h;
346
       T2j = FMA(KP414213562, T2i, T2b);
347
       T2B = FNMS(KP414213562, T2b, T2i);
348
       {
349
            E T2J, T2K, T2q, T2x;
350
            T2J = T2c + T2h;
351
            T2K = T29 - T2a;
352
            T2L = FMA(KP414213562, T2K, T2J);
353
            T2R = FNMS(KP414213562, T2J, T2K);
354
            T2q = T2o + T2p;
355
            T2x = T2r - T2w;
356
            T2y = FNMS(KP414213562, T2x, T2q);
357
            T2C = FMA(KP414213562, T2q, T2x);
358
       }
359
        }
360
        {
361
       E T24, T2z, T3J, T3K;
362
       T24 = FMA(KP707106781, T23, T1O);
363
       T2z = T2j - T2y;
364
       ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24);
365
       ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24);
366
       T3J = FMA(KP707106781, T3I, T3H);
367
       T3K = T2C - T2B;
368
       ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J);
369
       ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J);
370
        }
371
        {
372
       E T2A, T2D, T3L, T3M;
373
       T2A = FNMS(KP707106781, T23, T1O);
374
       T2D = T2B + T2C;
375
       ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A);
376
       ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A);
377
       T3L = FNMS(KP707106781, T3I, T3H);
378
       T3M = T2j + T2y;
379
       ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L);
380
       ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L);
381
        }
382
        {
383
       E T2I, T2P, T3D, T3E;
384
       T2I = FMA(KP707106781, T2H, T2E);
385
       T2P = T2L + T2O;
386
       ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I);
387
       ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I);
388
       T3D = FMA(KP707106781, T3C, T3B);
389
       T3E = T2R + T2S;
390
       ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D);
391
       ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D);
392
        }
393
        {
394
       E T2Q, T2T, T3F, T3G;
395
       T2Q = FNMS(KP707106781, T2H, T2E);
396
       T2T = T2R - T2S;
397
       ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q);
398
       ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q);
399
       T3F = FNMS(KP707106781, T3C, T3B);
400
       T3G = T2O - T2L;
401
       ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F);
402
       ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F);
403
        }
404
         }
405
    }
406
     }
407
}
408
409
static const tw_instr twinstr[] = {
410
     { TW_FULL, 0, 16 },
411
     { TW_NEXT, 1, 0 }
412
};
413
414
static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, { 104, 30, 70, 0 }, 0, 0, 0 };
415
416
void X(codelet_t1_16) (planner *p) {
417
     X(kdft_dit_register) (p, t1_16, &desc);
418
}
419
#else
420
421
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */
422
423
/*
424
 * This function contains 174 FP additions, 84 FP multiplications,
425
 * (or, 136 additions, 46 multiplications, 38 fused multiply/add),
426
 * 52 stack variables, 3 constants, and 64 memory accesses
427
 */
428
#include "dft/scalar/t.h"
429
430
static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
431
0
{
432
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
433
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
434
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
435
0
     {
436
0
    INT m;
437
0
    for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) {
438
0
         E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H;
439
0
         E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x;
440
0
         E T2y, T2z, T1O, T2g, T1T, T2h;
441
0
         {
442
0
        E T1, T2T, T6, T2S;
443
0
        T1 = ri[0];
444
0
        T2T = ii[0];
445
0
        {
446
0
       E T3, T5, T2, T4;
447
0
       T3 = ri[WS(rs, 8)];
448
0
       T5 = ii[WS(rs, 8)];
449
0
       T2 = W[14];
450
0
       T4 = W[15];
451
0
       T6 = FMA(T2, T3, T4 * T5);
452
0
       T2S = FNMS(T4, T3, T2 * T5);
453
0
        }
454
0
        T7 = T1 + T6;
455
0
        T37 = T2T - T2S;
456
0
        T1t = T1 - T6;
457
0
        T2U = T2S + T2T;
458
0
         }
459
0
         {
460
0
        E Tc, T1u, Th, T1v;
461
0
        {
462
0
       E T9, Tb, T8, Ta;
463
0
       T9 = ri[WS(rs, 4)];
464
0
       Tb = ii[WS(rs, 4)];
465
0
       T8 = W[6];
466
0
       Ta = W[7];
467
0
       Tc = FMA(T8, T9, Ta * Tb);
468
0
       T1u = FNMS(Ta, T9, T8 * Tb);
469
0
        }
470
0
        {
471
0
       E Te, Tg, Td, Tf;
472
0
       Te = ri[WS(rs, 12)];
473
0
       Tg = ii[WS(rs, 12)];
474
0
       Td = W[22];
475
0
       Tf = W[23];
476
0
       Th = FMA(Td, Te, Tf * Tg);
477
0
       T1v = FNMS(Tf, Te, Td * Tg);
478
0
        }
479
0
        Ti = Tc + Th;
480
0
        T38 = Tc - Th;
481
0
        T1w = T1u - T1v;
482
0
        T2R = T1u + T1v;
483
0
         }
484
0
         {
485
0
        E To, T1y, Tt, T1z, T1A, T1B;
486
0
        {
487
0
       E Tl, Tn, Tk, Tm;
488
0
       Tl = ri[WS(rs, 2)];
489
0
       Tn = ii[WS(rs, 2)];
490
0
       Tk = W[2];
491
0
       Tm = W[3];
492
0
       To = FMA(Tk, Tl, Tm * Tn);
493
0
       T1y = FNMS(Tm, Tl, Tk * Tn);
494
0
        }
495
0
        {
496
0
       E Tq, Ts, Tp, Tr;
497
0
       Tq = ri[WS(rs, 10)];
498
0
       Ts = ii[WS(rs, 10)];
499
0
       Tp = W[18];
500
0
       Tr = W[19];
501
0
       Tt = FMA(Tp, Tq, Tr * Ts);
502
0
       T1z = FNMS(Tr, Tq, Tp * Ts);
503
0
        }
504
0
        Tu = To + Tt;
505
0
        T2s = T1y + T1z;
506
0
        T1A = T1y - T1z;
507
0
        T1B = To - Tt;
508
0
        T1C = T1A - T1B;
509
0
        T2c = T1B + T1A;
510
0
         }
511
0
         {
512
0
        E Tz, T1E, TE, T1F, T1D, T1G;
513
0
        {
514
0
       E Tw, Ty, Tv, Tx;
515
0
       Tw = ri[WS(rs, 14)];
516
0
       Ty = ii[WS(rs, 14)];
517
0
       Tv = W[26];
518
0
       Tx = W[27];
519
0
       Tz = FMA(Tv, Tw, Tx * Ty);
520
0
       T1E = FNMS(Tx, Tw, Tv * Ty);
521
0
        }
522
0
        {
523
0
       E TB, TD, TA, TC;
524
0
       TB = ri[WS(rs, 6)];
525
0
       TD = ii[WS(rs, 6)];
526
0
       TA = W[10];
527
0
       TC = W[11];
528
0
       TE = FMA(TA, TB, TC * TD);
529
0
       T1F = FNMS(TC, TB, TA * TD);
530
0
        }
531
0
        TF = Tz + TE;
532
0
        T2t = T1E + T1F;
533
0
        T1D = Tz - TE;
534
0
        T1G = T1E - T1F;
535
0
        T1H = T1D + T1G;
536
0
        T2d = T1D - T1G;
537
0
         }
538
0
         {
539
0
        E T19, T20, T1p, T1X, T1e, T21, T1k, T1W;
540
0
        {
541
0
       E T16, T18, T15, T17;
542
0
       T16 = ri[WS(rs, 15)];
543
0
       T18 = ii[WS(rs, 15)];
544
0
       T15 = W[28];
545
0
       T17 = W[29];
546
0
       T19 = FMA(T15, T16, T17 * T18);
547
0
       T20 = FNMS(T17, T16, T15 * T18);
548
0
        }
549
0
        {
550
0
       E T1m, T1o, T1l, T1n;
551
0
       T1m = ri[WS(rs, 11)];
552
0
       T1o = ii[WS(rs, 11)];
553
0
       T1l = W[20];
554
0
       T1n = W[21];
555
0
       T1p = FMA(T1l, T1m, T1n * T1o);
556
0
       T1X = FNMS(T1n, T1m, T1l * T1o);
557
0
        }
558
0
        {
559
0
       E T1b, T1d, T1a, T1c;
560
0
       T1b = ri[WS(rs, 7)];
561
0
       T1d = ii[WS(rs, 7)];
562
0
       T1a = W[12];
563
0
       T1c = W[13];
564
0
       T1e = FMA(T1a, T1b, T1c * T1d);
565
0
       T21 = FNMS(T1c, T1b, T1a * T1d);
566
0
        }
567
0
        {
568
0
       E T1h, T1j, T1g, T1i;
569
0
       T1h = ri[WS(rs, 3)];
570
0
       T1j = ii[WS(rs, 3)];
571
0
       T1g = W[4];
572
0
       T1i = W[5];
573
0
       T1k = FMA(T1g, T1h, T1i * T1j);
574
0
       T1W = FNMS(T1i, T1h, T1g * T1j);
575
0
        }
576
0
        T1f = T19 + T1e;
577
0
        T1q = T1k + T1p;
578
0
        T2B = T1f - T1q;
579
0
        T2C = T20 + T21;
580
0
        T2D = T1W + T1X;
581
0
        T2E = T2C - T2D;
582
0
        {
583
0
       E T1V, T1Y, T22, T23;
584
0
       T1V = T19 - T1e;
585
0
       T1Y = T1W - T1X;
586
0
       T1Z = T1V - T1Y;
587
0
       T2j = T1V + T1Y;
588
0
       T22 = T20 - T21;
589
0
       T23 = T1k - T1p;
590
0
       T24 = T22 + T23;
591
0
       T2k = T22 - T23;
592
0
        }
593
0
         }
594
0
         {
595
0
        E TM, T1K, T12, T1R, TR, T1L, TX, T1Q;
596
0
        {
597
0
       E TJ, TL, TI, TK;
598
0
       TJ = ri[WS(rs, 1)];
599
0
       TL = ii[WS(rs, 1)];
600
0
       TI = W[0];
601
0
       TK = W[1];
602
0
       TM = FMA(TI, TJ, TK * TL);
603
0
       T1K = FNMS(TK, TJ, TI * TL);
604
0
        }
605
0
        {
606
0
       E TZ, T11, TY, T10;
607
0
       TZ = ri[WS(rs, 13)];
608
0
       T11 = ii[WS(rs, 13)];
609
0
       TY = W[24];
610
0
       T10 = W[25];
611
0
       T12 = FMA(TY, TZ, T10 * T11);
612
0
       T1R = FNMS(T10, TZ, TY * T11);
613
0
        }
614
0
        {
615
0
       E TO, TQ, TN, TP;
616
0
       TO = ri[WS(rs, 9)];
617
0
       TQ = ii[WS(rs, 9)];
618
0
       TN = W[16];
619
0
       TP = W[17];
620
0
       TR = FMA(TN, TO, TP * TQ);
621
0
       T1L = FNMS(TP, TO, TN * TQ);
622
0
        }
623
0
        {
624
0
       E TU, TW, TT, TV;
625
0
       TU = ri[WS(rs, 5)];
626
0
       TW = ii[WS(rs, 5)];
627
0
       TT = W[8];
628
0
       TV = W[9];
629
0
       TX = FMA(TT, TU, TV * TW);
630
0
       T1Q = FNMS(TV, TU, TT * TW);
631
0
        }
632
0
        TS = TM + TR;
633
0
        T13 = TX + T12;
634
0
        T2w = TS - T13;
635
0
        T2x = T1K + T1L;
636
0
        T2y = T1Q + T1R;
637
0
        T2z = T2x - T2y;
638
0
        {
639
0
       E T1M, T1N, T1P, T1S;
640
0
       T1M = T1K - T1L;
641
0
       T1N = TX - T12;
642
0
       T1O = T1M + T1N;
643
0
       T2g = T1M - T1N;
644
0
       T1P = TM - TR;
645
0
       T1S = T1Q - T1R;
646
0
       T1T = T1P - T1S;
647
0
       T2h = T1P + T1S;
648
0
        }
649
0
         }
650
0
         {
651
0
        E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d;
652
0
        {
653
0
       E T1x, T1I, T3e, T3f;
654
0
       T1x = T1t - T1w;
655
0
       T1I = KP707106781 * (T1C - T1H);
656
0
       T1J = T1x + T1I;
657
0
       T27 = T1x - T1I;
658
0
       T3e = KP707106781 * (T2d - T2c);
659
0
       T3f = T38 + T37;
660
0
       T3g = T3e + T3f;
661
0
       T3i = T3f - T3e;
662
0
        }
663
0
        {
664
0
       E T1U, T25, T28, T29;
665
0
       T1U = FMA(KP923879532, T1O, KP382683432 * T1T);
666
0
       T25 = FNMS(KP923879532, T24, KP382683432 * T1Z);
667
0
       T26 = T1U + T25;
668
0
       T3h = T25 - T1U;
669
0
       T28 = FNMS(KP923879532, T1T, KP382683432 * T1O);
670
0
       T29 = FMA(KP382683432, T24, KP923879532 * T1Z);
671
0
       T2a = T28 - T29;
672
0
       T3d = T28 + T29;
673
0
        }
674
0
        ri[WS(rs, 11)] = T1J - T26;
675
0
        ii[WS(rs, 11)] = T3g - T3d;
676
0
        ri[WS(rs, 3)] = T1J + T26;
677
0
        ii[WS(rs, 3)] = T3d + T3g;
678
0
        ri[WS(rs, 15)] = T27 - T2a;
679
0
        ii[WS(rs, 15)] = T3i - T3h;
680
0
        ri[WS(rs, 7)] = T27 + T2a;
681
0
        ii[WS(rs, 7)] = T3h + T3i;
682
0
         }
683
0
         {
684
0
        E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z;
685
0
        {
686
0
       E T2r, T2u, T30, T31;
687
0
       T2r = T7 - Ti;
688
0
       T2u = T2s - T2t;
689
0
       T2v = T2r + T2u;
690
0
       T2H = T2r - T2u;
691
0
       T30 = TF - Tu;
692
0
       T31 = T2U - T2R;
693
0
       T32 = T30 + T31;
694
0
       T34 = T31 - T30;
695
0
        }
696
0
        {
697
0
       E T2A, T2F, T2I, T2J;
698
0
       T2A = T2w + T2z;
699
0
       T2F = T2B - T2E;
700
0
       T2G = KP707106781 * (T2A + T2F);
701
0
       T33 = KP707106781 * (T2F - T2A);
702
0
       T2I = T2z - T2w;
703
0
       T2J = T2B + T2E;
704
0
       T2K = KP707106781 * (T2I - T2J);
705
0
       T2Z = KP707106781 * (T2I + T2J);
706
0
        }
707
0
        ri[WS(rs, 10)] = T2v - T2G;
708
0
        ii[WS(rs, 10)] = T32 - T2Z;
709
0
        ri[WS(rs, 2)] = T2v + T2G;
710
0
        ii[WS(rs, 2)] = T2Z + T32;
711
0
        ri[WS(rs, 14)] = T2H - T2K;
712
0
        ii[WS(rs, 14)] = T34 - T33;
713
0
        ri[WS(rs, 6)] = T2H + T2K;
714
0
        ii[WS(rs, 6)] = T33 + T34;
715
0
         }
716
0
         {
717
0
        E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35;
718
0
        {
719
0
       E T2b, T2e, T36, T39;
720
0
       T2b = T1t + T1w;
721
0
       T2e = KP707106781 * (T2c + T2d);
722
0
       T2f = T2b + T2e;
723
0
       T2n = T2b - T2e;
724
0
       T36 = KP707106781 * (T1C + T1H);
725
0
       T39 = T37 - T38;
726
0
       T3a = T36 + T39;
727
0
       T3c = T39 - T36;
728
0
        }
729
0
        {
730
0
       E T2i, T2l, T2o, T2p;
731
0
       T2i = FMA(KP382683432, T2g, KP923879532 * T2h);
732
0
       T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);
733
0
       T2m = T2i + T2l;
734
0
       T3b = T2l - T2i;
735
0
       T2o = FNMS(KP382683432, T2h, KP923879532 * T2g);
736
0
       T2p = FMA(KP923879532, T2k, KP382683432 * T2j);
737
0
       T2q = T2o - T2p;
738
0
       T35 = T2o + T2p;
739
0
        }
740
0
        ri[WS(rs, 9)] = T2f - T2m;
741
0
        ii[WS(rs, 9)] = T3a - T35;
742
0
        ri[WS(rs, 1)] = T2f + T2m;
743
0
        ii[WS(rs, 1)] = T35 + T3a;
744
0
        ri[WS(rs, 13)] = T2n - T2q;
745
0
        ii[WS(rs, 13)] = T3c - T3b;
746
0
        ri[WS(rs, 5)] = T2n + T2q;
747
0
        ii[WS(rs, 5)] = T3b + T3c;
748
0
         }
749
0
         {
750
0
        E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P;
751
0
        {
752
0
       E Tj, TG, T2Q, T2V;
753
0
       Tj = T7 + Ti;
754
0
       TG = Tu + TF;
755
0
       TH = Tj + TG;
756
0
       T2L = Tj - TG;
757
0
       T2Q = T2s + T2t;
758
0
       T2V = T2R + T2U;
759
0
       T2W = T2Q + T2V;
760
0
       T2Y = T2V - T2Q;
761
0
        }
762
0
        {
763
0
       E T14, T1r, T2M, T2N;
764
0
       T14 = TS + T13;
765
0
       T1r = T1f + T1q;
766
0
       T1s = T14 + T1r;
767
0
       T2X = T1r - T14;
768
0
       T2M = T2x + T2y;
769
0
       T2N = T2C + T2D;
770
0
       T2O = T2M - T2N;
771
0
       T2P = T2M + T2N;
772
0
        }
773
0
        ri[WS(rs, 8)] = TH - T1s;
774
0
        ii[WS(rs, 8)] = T2W - T2P;
775
0
        ri[0] = TH + T1s;
776
0
        ii[0] = T2P + T2W;
777
0
        ri[WS(rs, 12)] = T2L - T2O;
778
0
        ii[WS(rs, 12)] = T2Y - T2X;
779
0
        ri[WS(rs, 4)] = T2L + T2O;
780
0
        ii[WS(rs, 4)] = T2X + T2Y;
781
0
         }
782
0
    }
783
0
     }
784
0
}
785
786
static const tw_instr twinstr[] = {
787
     { TW_FULL, 0, 16 },
788
     { TW_NEXT, 1, 0 }
789
};
790
791
static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, { 136, 46, 38, 0 }, 0, 0, 0 };
792
793
1
void X(codelet_t1_16) (planner *p) {
794
1
     X(kdft_dit_register) (p, t1_16, &desc);
795
1
}
796
#endif