/src/fftw3/rdft/scalar/r2cb/hb_7.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Nov 16 06:53:54 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 72 FP additions, 66 FP multiplications, |
32 | | * (or, 18 additions, 12 multiplications, 54 fused multiply/add), |
33 | | * 41 stack variables, 6 constants, and 28 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
40 | | DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
41 | | DK(KP801937735, +0.801937735804838252472204639014890102331838324); |
42 | | DK(KP692021471, +0.692021471630095869627814897002069140197260599); |
43 | | DK(KP356895867, +0.356895867892209443894399510021300583399127187); |
44 | | DK(KP554958132, +0.554958132087371191422194871006410481067288862); |
45 | | { |
46 | | INT m; |
47 | | for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { |
48 | | E T1, T4, TC, T7, TB, Ta, TA, TD, TZ, T1l, T1b, TP, Td, Tt, Tw; |
49 | | E Tv, Tu, Tp, Ty, T1j, T1e, TX, TS; |
50 | | T1 = cr[0]; |
51 | | { |
52 | | E T2, T3, T1a, TO, Tc; |
53 | | T2 = cr[WS(rs, 1)]; |
54 | | T3 = ci[0]; |
55 | | T4 = T2 + T3; |
56 | | TC = T2 - T3; |
57 | | { |
58 | | E T5, T6, T8, T9; |
59 | | T5 = cr[WS(rs, 2)]; |
60 | | T6 = ci[WS(rs, 1)]; |
61 | | T7 = T5 + T6; |
62 | | TB = T5 - T6; |
63 | | T8 = cr[WS(rs, 3)]; |
64 | | T9 = ci[WS(rs, 2)]; |
65 | | Ta = T8 + T9; |
66 | | TA = T8 - T9; |
67 | | } |
68 | | TD = FNMS(KP554958132, TC, TB); |
69 | | TZ = FMA(KP554958132, TB, TA); |
70 | | T1l = FMA(KP554958132, TA, TC); |
71 | | T1a = FNMS(KP356895867, T7, T4); |
72 | | T1b = FNMS(KP692021471, T1a, Ta); |
73 | | TO = FNMS(KP356895867, T4, Ta); |
74 | | TP = FNMS(KP692021471, TO, T7); |
75 | | Tc = FNMS(KP356895867, Ta, T7); |
76 | | Td = FNMS(KP692021471, Tc, T4); |
77 | | } |
78 | | Tt = ci[WS(rs, 6)]; |
79 | | { |
80 | | E Th, Tk, Tn, Tf, Tg; |
81 | | Tf = ci[WS(rs, 3)]; |
82 | | Tg = cr[WS(rs, 4)]; |
83 | | Th = Tf + Tg; |
84 | | Tw = Tf - Tg; |
85 | | { |
86 | | E Ti, Tj, Tl, Tm; |
87 | | Ti = ci[WS(rs, 4)]; |
88 | | Tj = cr[WS(rs, 5)]; |
89 | | Tk = Ti + Tj; |
90 | | Tv = Ti - Tj; |
91 | | Tl = ci[WS(rs, 5)]; |
92 | | Tm = cr[WS(rs, 6)]; |
93 | | Tn = Tl + Tm; |
94 | | Tu = Tl - Tm; |
95 | | } |
96 | | { |
97 | | E To, Tx, T1i, T1d, TW, TR; |
98 | | To = FNMS(KP554958132, Tn, Tk); |
99 | | Tp = FNMS(KP801937735, To, Th); |
100 | | Tx = FNMS(KP356895867, Tw, Tv); |
101 | | Ty = FNMS(KP692021471, Tx, Tu); |
102 | | T1i = FNMS(KP356895867, Tv, Tu); |
103 | | T1j = FNMS(KP692021471, T1i, Tw); |
104 | | T1d = FMA(KP554958132, Th, Tn); |
105 | | T1e = FMA(KP801937735, T1d, Tk); |
106 | | TW = FNMS(KP356895867, Tu, Tw); |
107 | | TX = FNMS(KP692021471, TW, Tv); |
108 | | TR = FMA(KP554958132, Tk, Th); |
109 | | TS = FNMS(KP801937735, TR, Tn); |
110 | | } |
111 | | } |
112 | | cr[0] = T1 + T4 + T7 + Ta; |
113 | | ci[0] = Tt + Tu + Tv + Tw; |
114 | | { |
115 | | E Tq, TI, TF, TL, Te, Tz, TE; |
116 | | Te = FNMS(KP900968867, Td, T1); |
117 | | Tq = FNMS(KP974927912, Tp, Te); |
118 | | TI = FMA(KP974927912, Tp, Te); |
119 | | Tz = FNMS(KP900968867, Ty, Tt); |
120 | | TE = FNMS(KP801937735, TD, TA); |
121 | | TF = FMA(KP974927912, TE, Tz); |
122 | | TL = FNMS(KP974927912, TE, Tz); |
123 | | { |
124 | | E Tb, Tr, Ts, TG; |
125 | | Tb = W[4]; |
126 | | Tr = Tb * Tq; |
127 | | Ts = W[5]; |
128 | | TG = Ts * Tq; |
129 | | cr[WS(rs, 3)] = FNMS(Ts, TF, Tr); |
130 | | ci[WS(rs, 3)] = FMA(Tb, TF, TG); |
131 | | } |
132 | | { |
133 | | E TH, TJ, TK, TM; |
134 | | TH = W[6]; |
135 | | TJ = TH * TI; |
136 | | TK = W[7]; |
137 | | TM = TK * TI; |
138 | | cr[WS(rs, 4)] = FNMS(TK, TL, TJ); |
139 | | ci[WS(rs, 4)] = FMA(TH, TL, TM); |
140 | | } |
141 | | } |
142 | | { |
143 | | E TT, T14, T11, T17, TQ, TY, T10; |
144 | | TQ = FNMS(KP900968867, TP, T1); |
145 | | TT = FNMS(KP974927912, TS, TQ); |
146 | | T14 = FMA(KP974927912, TS, TQ); |
147 | | TY = FNMS(KP900968867, TX, Tt); |
148 | | T10 = FNMS(KP801937735, TZ, TC); |
149 | | T11 = FMA(KP974927912, T10, TY); |
150 | | T17 = FNMS(KP974927912, T10, TY); |
151 | | { |
152 | | E TN, TU, TV, T12; |
153 | | TN = W[2]; |
154 | | TU = TN * TT; |
155 | | TV = W[3]; |
156 | | T12 = TV * TT; |
157 | | cr[WS(rs, 2)] = FNMS(TV, T11, TU); |
158 | | ci[WS(rs, 2)] = FMA(TN, T11, T12); |
159 | | } |
160 | | { |
161 | | E T13, T15, T16, T18; |
162 | | T13 = W[8]; |
163 | | T15 = T13 * T14; |
164 | | T16 = W[9]; |
165 | | T18 = T16 * T14; |
166 | | cr[WS(rs, 5)] = FNMS(T16, T17, T15); |
167 | | ci[WS(rs, 5)] = FMA(T13, T17, T18); |
168 | | } |
169 | | } |
170 | | { |
171 | | E T1f, T1q, T1n, T1t, T1c, T1k, T1m; |
172 | | T1c = FNMS(KP900968867, T1b, T1); |
173 | | T1f = FNMS(KP974927912, T1e, T1c); |
174 | | T1q = FMA(KP974927912, T1e, T1c); |
175 | | T1k = FNMS(KP900968867, T1j, Tt); |
176 | | T1m = FMA(KP801937735, T1l, TB); |
177 | | T1n = FMA(KP974927912, T1m, T1k); |
178 | | T1t = FNMS(KP974927912, T1m, T1k); |
179 | | { |
180 | | E T19, T1g, T1h, T1o; |
181 | | T19 = W[0]; |
182 | | T1g = T19 * T1f; |
183 | | T1h = W[1]; |
184 | | T1o = T1h * T1f; |
185 | | cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g); |
186 | | ci[WS(rs, 1)] = FMA(T19, T1n, T1o); |
187 | | } |
188 | | { |
189 | | E T1p, T1r, T1s, T1u; |
190 | | T1p = W[10]; |
191 | | T1r = T1p * T1q; |
192 | | T1s = W[11]; |
193 | | T1u = T1s * T1q; |
194 | | cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r); |
195 | | ci[WS(rs, 6)] = FMA(T1p, T1t, T1u); |
196 | | } |
197 | | } |
198 | | } |
199 | | } |
200 | | } |
201 | | |
202 | | static const tw_instr twinstr[] = { |
203 | | { TW_FULL, 1, 7 }, |
204 | | { TW_NEXT, 1, 0 } |
205 | | }; |
206 | | |
207 | | static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 18, 12, 54, 0 } }; |
208 | | |
209 | | void X(codelet_hb_7) (planner *p) { |
210 | | X(khc2hc_register) (p, hb_7, &desc); |
211 | | } |
212 | | #else |
213 | | |
214 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ |
215 | | |
216 | | /* |
217 | | * This function contains 72 FP additions, 60 FP multiplications, |
218 | | * (or, 36 additions, 24 multiplications, 36 fused multiply/add), |
219 | | * 36 stack variables, 6 constants, and 28 memory accesses |
220 | | */ |
221 | | #include "rdft/scalar/hb.h" |
222 | | |
223 | | static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
224 | 0 | { |
225 | 0 | DK(KP222520933, +0.222520933956314404288902564496794759466355569); |
226 | 0 | DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
227 | 0 | DK(KP623489801, +0.623489801858733530525004884004239810632274731); |
228 | 0 | DK(KP781831482, +0.781831482468029808708444526674057750232334519); |
229 | 0 | DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
230 | 0 | DK(KP433883739, +0.433883739117558120475768332848358754609990728); |
231 | 0 | { |
232 | 0 | INT m; |
233 | 0 | for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { |
234 | 0 | E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq; |
235 | 0 | E TF, TR, TU, TJ, Tt; |
236 | 0 | { |
237 | 0 | E Tu, Tw, Tv, T2, T3; |
238 | 0 | T1 = cr[0]; |
239 | 0 | T2 = cr[WS(rs, 1)]; |
240 | 0 | T3 = ci[0]; |
241 | 0 | T4 = T2 + T3; |
242 | 0 | Tu = T2 - T3; |
243 | 0 | { |
244 | 0 | E T5, T6, T8, T9; |
245 | 0 | T5 = cr[WS(rs, 2)]; |
246 | 0 | T6 = ci[WS(rs, 1)]; |
247 | 0 | T7 = T5 + T6; |
248 | 0 | Tw = T5 - T6; |
249 | 0 | T8 = cr[WS(rs, 3)]; |
250 | 0 | T9 = ci[WS(rs, 2)]; |
251 | 0 | Ta = T8 + T9; |
252 | 0 | Tv = T8 - T9; |
253 | 0 | } |
254 | 0 | Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw); |
255 | 0 | TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv); |
256 | 0 | TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw); |
257 | 0 | TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); |
258 | 0 | TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); |
259 | 0 | Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); |
260 | 0 | } |
261 | 0 | { |
262 | 0 | E Tp, Tn, To, Tc, Td; |
263 | 0 | Tb = ci[WS(rs, 6)]; |
264 | 0 | Tc = ci[WS(rs, 5)]; |
265 | 0 | Td = cr[WS(rs, 6)]; |
266 | 0 | Te = Tc - Td; |
267 | 0 | Tp = Tc + Td; |
268 | 0 | { |
269 | 0 | E Tf, Tg, Ti, Tj; |
270 | 0 | Tf = ci[WS(rs, 4)]; |
271 | 0 | Tg = cr[WS(rs, 5)]; |
272 | 0 | Th = Tf - Tg; |
273 | 0 | Tn = Tf + Tg; |
274 | 0 | Ti = ci[WS(rs, 3)]; |
275 | 0 | Tj = cr[WS(rs, 4)]; |
276 | 0 | Tk = Ti - Tj; |
277 | 0 | To = Ti + Tj; |
278 | 0 | } |
279 | 0 | Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp); |
280 | 0 | TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To); |
281 | 0 | TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp); |
282 | 0 | TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te); |
283 | 0 | TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th); |
284 | 0 | Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te); |
285 | 0 | } |
286 | 0 | cr[0] = T1 + T4 + T7 + Ta; |
287 | 0 | ci[0] = Tb + Te + Th + Tk; |
288 | 0 | { |
289 | 0 | E Tr, Ty, Tl, Ts; |
290 | 0 | Tr = Tm - Tq; |
291 | 0 | Ty = Tt - Tx; |
292 | 0 | Tl = W[6]; |
293 | 0 | Ts = W[7]; |
294 | 0 | cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr); |
295 | 0 | ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr); |
296 | 0 | } |
297 | 0 | { |
298 | 0 | E TY, T10, TX, TZ; |
299 | 0 | TY = TQ + TR; |
300 | 0 | T10 = TV + TU; |
301 | 0 | TX = W[2]; |
302 | 0 | TZ = W[3]; |
303 | 0 | cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY); |
304 | 0 | ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY); |
305 | 0 | } |
306 | 0 | { |
307 | 0 | E TA, TC, Tz, TB; |
308 | 0 | TA = Tm + Tq; |
309 | 0 | TC = Tx + Tt; |
310 | 0 | Tz = W[4]; |
311 | 0 | TB = W[5]; |
312 | 0 | cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA); |
313 | 0 | ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA); |
314 | 0 | } |
315 | 0 | { |
316 | 0 | E TM, TO, TL, TN; |
317 | 0 | TM = TE + TF; |
318 | 0 | TO = TJ - TI; |
319 | 0 | TL = W[10]; |
320 | 0 | TN = W[11]; |
321 | 0 | cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM); |
322 | 0 | ci[WS(rs, 6)] = FMA(TL, TO, TN * TM); |
323 | 0 | } |
324 | 0 | { |
325 | 0 | E TS, TW, TP, TT; |
326 | 0 | TS = TQ - TR; |
327 | 0 | TW = TU - TV; |
328 | 0 | TP = W[8]; |
329 | 0 | TT = W[9]; |
330 | 0 | cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS); |
331 | 0 | ci[WS(rs, 5)] = FMA(TP, TW, TT * TS); |
332 | 0 | } |
333 | 0 | { |
334 | 0 | E TG, TK, TD, TH; |
335 | 0 | TG = TE - TF; |
336 | 0 | TK = TI + TJ; |
337 | 0 | TD = W[0]; |
338 | 0 | TH = W[1]; |
339 | 0 | cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG); |
340 | 0 | ci[WS(rs, 1)] = FMA(TD, TK, TH * TG); |
341 | 0 | } |
342 | 0 | } |
343 | 0 | } |
344 | 0 | } |
345 | | |
346 | | static const tw_instr twinstr[] = { |
347 | | { TW_FULL, 1, 7 }, |
348 | | { TW_NEXT, 1, 0 } |
349 | | }; |
350 | | |
351 | | static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 36, 24, 36, 0 } }; |
352 | | |
353 | 1 | void X(codelet_hb_7) (planner *p) { |
354 | 1 | X(khc2hc_register) (p, hb_7, &desc); |
355 | 1 | } |
356 | | #endif |