Coverage Report

Created: 2025-11-16 06:54

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/hb_7.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Nov 16 06:53:54 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 72 FP additions, 66 FP multiplications,
32
 * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
33
 * 41 stack variables, 6 constants, and 28 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
40
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
41
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
42
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
43
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
44
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
45
     {
46
    INT m;
47
    for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
48
         E T1, T4, TC, T7, TB, Ta, TA, TD, TZ, T1l, T1b, TP, Td, Tt, Tw;
49
         E Tv, Tu, Tp, Ty, T1j, T1e, TX, TS;
50
         T1 = cr[0];
51
         {
52
        E T2, T3, T1a, TO, Tc;
53
        T2 = cr[WS(rs, 1)];
54
        T3 = ci[0];
55
        T4 = T2 + T3;
56
        TC = T2 - T3;
57
        {
58
       E T5, T6, T8, T9;
59
       T5 = cr[WS(rs, 2)];
60
       T6 = ci[WS(rs, 1)];
61
       T7 = T5 + T6;
62
       TB = T5 - T6;
63
       T8 = cr[WS(rs, 3)];
64
       T9 = ci[WS(rs, 2)];
65
       Ta = T8 + T9;
66
       TA = T8 - T9;
67
        }
68
        TD = FNMS(KP554958132, TC, TB);
69
        TZ = FMA(KP554958132, TB, TA);
70
        T1l = FMA(KP554958132, TA, TC);
71
        T1a = FNMS(KP356895867, T7, T4);
72
        T1b = FNMS(KP692021471, T1a, Ta);
73
        TO = FNMS(KP356895867, T4, Ta);
74
        TP = FNMS(KP692021471, TO, T7);
75
        Tc = FNMS(KP356895867, Ta, T7);
76
        Td = FNMS(KP692021471, Tc, T4);
77
         }
78
         Tt = ci[WS(rs, 6)];
79
         {
80
        E Th, Tk, Tn, Tf, Tg;
81
        Tf = ci[WS(rs, 3)];
82
        Tg = cr[WS(rs, 4)];
83
        Th = Tf + Tg;
84
        Tw = Tf - Tg;
85
        {
86
       E Ti, Tj, Tl, Tm;
87
       Ti = ci[WS(rs, 4)];
88
       Tj = cr[WS(rs, 5)];
89
       Tk = Ti + Tj;
90
       Tv = Ti - Tj;
91
       Tl = ci[WS(rs, 5)];
92
       Tm = cr[WS(rs, 6)];
93
       Tn = Tl + Tm;
94
       Tu = Tl - Tm;
95
        }
96
        {
97
       E To, Tx, T1i, T1d, TW, TR;
98
       To = FNMS(KP554958132, Tn, Tk);
99
       Tp = FNMS(KP801937735, To, Th);
100
       Tx = FNMS(KP356895867, Tw, Tv);
101
       Ty = FNMS(KP692021471, Tx, Tu);
102
       T1i = FNMS(KP356895867, Tv, Tu);
103
       T1j = FNMS(KP692021471, T1i, Tw);
104
       T1d = FMA(KP554958132, Th, Tn);
105
       T1e = FMA(KP801937735, T1d, Tk);
106
       TW = FNMS(KP356895867, Tu, Tw);
107
       TX = FNMS(KP692021471, TW, Tv);
108
       TR = FMA(KP554958132, Tk, Th);
109
       TS = FNMS(KP801937735, TR, Tn);
110
        }
111
         }
112
         cr[0] = T1 + T4 + T7 + Ta;
113
         ci[0] = Tt + Tu + Tv + Tw;
114
         {
115
        E Tq, TI, TF, TL, Te, Tz, TE;
116
        Te = FNMS(KP900968867, Td, T1);
117
        Tq = FNMS(KP974927912, Tp, Te);
118
        TI = FMA(KP974927912, Tp, Te);
119
        Tz = FNMS(KP900968867, Ty, Tt);
120
        TE = FNMS(KP801937735, TD, TA);
121
        TF = FMA(KP974927912, TE, Tz);
122
        TL = FNMS(KP974927912, TE, Tz);
123
        {
124
       E Tb, Tr, Ts, TG;
125
       Tb = W[4];
126
       Tr = Tb * Tq;
127
       Ts = W[5];
128
       TG = Ts * Tq;
129
       cr[WS(rs, 3)] = FNMS(Ts, TF, Tr);
130
       ci[WS(rs, 3)] = FMA(Tb, TF, TG);
131
        }
132
        {
133
       E TH, TJ, TK, TM;
134
       TH = W[6];
135
       TJ = TH * TI;
136
       TK = W[7];
137
       TM = TK * TI;
138
       cr[WS(rs, 4)] = FNMS(TK, TL, TJ);
139
       ci[WS(rs, 4)] = FMA(TH, TL, TM);
140
        }
141
         }
142
         {
143
        E TT, T14, T11, T17, TQ, TY, T10;
144
        TQ = FNMS(KP900968867, TP, T1);
145
        TT = FNMS(KP974927912, TS, TQ);
146
        T14 = FMA(KP974927912, TS, TQ);
147
        TY = FNMS(KP900968867, TX, Tt);
148
        T10 = FNMS(KP801937735, TZ, TC);
149
        T11 = FMA(KP974927912, T10, TY);
150
        T17 = FNMS(KP974927912, T10, TY);
151
        {
152
       E TN, TU, TV, T12;
153
       TN = W[2];
154
       TU = TN * TT;
155
       TV = W[3];
156
       T12 = TV * TT;
157
       cr[WS(rs, 2)] = FNMS(TV, T11, TU);
158
       ci[WS(rs, 2)] = FMA(TN, T11, T12);
159
        }
160
        {
161
       E T13, T15, T16, T18;
162
       T13 = W[8];
163
       T15 = T13 * T14;
164
       T16 = W[9];
165
       T18 = T16 * T14;
166
       cr[WS(rs, 5)] = FNMS(T16, T17, T15);
167
       ci[WS(rs, 5)] = FMA(T13, T17, T18);
168
        }
169
         }
170
         {
171
        E T1f, T1q, T1n, T1t, T1c, T1k, T1m;
172
        T1c = FNMS(KP900968867, T1b, T1);
173
        T1f = FNMS(KP974927912, T1e, T1c);
174
        T1q = FMA(KP974927912, T1e, T1c);
175
        T1k = FNMS(KP900968867, T1j, Tt);
176
        T1m = FMA(KP801937735, T1l, TB);
177
        T1n = FMA(KP974927912, T1m, T1k);
178
        T1t = FNMS(KP974927912, T1m, T1k);
179
        {
180
       E T19, T1g, T1h, T1o;
181
       T19 = W[0];
182
       T1g = T19 * T1f;
183
       T1h = W[1];
184
       T1o = T1h * T1f;
185
       cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g);
186
       ci[WS(rs, 1)] = FMA(T19, T1n, T1o);
187
        }
188
        {
189
       E T1p, T1r, T1s, T1u;
190
       T1p = W[10];
191
       T1r = T1p * T1q;
192
       T1s = W[11];
193
       T1u = T1s * T1q;
194
       cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r);
195
       ci[WS(rs, 6)] = FMA(T1p, T1t, T1u);
196
        }
197
         }
198
    }
199
     }
200
}
201
202
static const tw_instr twinstr[] = {
203
     { TW_FULL, 1, 7 },
204
     { TW_NEXT, 1, 0 }
205
};
206
207
static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 18, 12, 54, 0 } };
208
209
void X(codelet_hb_7) (planner *p) {
210
     X(khc2hc_register) (p, hb_7, &desc);
211
}
212
#else
213
214
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */
215
216
/*
217
 * This function contains 72 FP additions, 60 FP multiplications,
218
 * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
219
 * 36 stack variables, 6 constants, and 28 memory accesses
220
 */
221
#include "rdft/scalar/hb.h"
222
223
static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
224
0
{
225
0
     DK(KP222520933, +0.222520933956314404288902564496794759466355569);
226
0
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
227
0
     DK(KP623489801, +0.623489801858733530525004884004239810632274731);
228
0
     DK(KP781831482, +0.781831482468029808708444526674057750232334519);
229
0
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
230
0
     DK(KP433883739, +0.433883739117558120475768332848358754609990728);
231
0
     {
232
0
    INT m;
233
0
    for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
234
0
         E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq;
235
0
         E TF, TR, TU, TJ, Tt;
236
0
         {
237
0
        E Tu, Tw, Tv, T2, T3;
238
0
        T1 = cr[0];
239
0
        T2 = cr[WS(rs, 1)];
240
0
        T3 = ci[0];
241
0
        T4 = T2 + T3;
242
0
        Tu = T2 - T3;
243
0
        {
244
0
       E T5, T6, T8, T9;
245
0
       T5 = cr[WS(rs, 2)];
246
0
       T6 = ci[WS(rs, 1)];
247
0
       T7 = T5 + T6;
248
0
       Tw = T5 - T6;
249
0
       T8 = cr[WS(rs, 3)];
250
0
       T9 = ci[WS(rs, 2)];
251
0
       Ta = T8 + T9;
252
0
       Tv = T8 - T9;
253
0
        }
254
0
        Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw);
255
0
        TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv);
256
0
        TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw);
257
0
        TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
258
0
        TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
259
0
        Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
260
0
         }
261
0
         {
262
0
        E Tp, Tn, To, Tc, Td;
263
0
        Tb = ci[WS(rs, 6)];
264
0
        Tc = ci[WS(rs, 5)];
265
0
        Td = cr[WS(rs, 6)];
266
0
        Te = Tc - Td;
267
0
        Tp = Tc + Td;
268
0
        {
269
0
       E Tf, Tg, Ti, Tj;
270
0
       Tf = ci[WS(rs, 4)];
271
0
       Tg = cr[WS(rs, 5)];
272
0
       Th = Tf - Tg;
273
0
       Tn = Tf + Tg;
274
0
       Ti = ci[WS(rs, 3)];
275
0
       Tj = cr[WS(rs, 4)];
276
0
       Tk = Ti - Tj;
277
0
       To = Ti + Tj;
278
0
        }
279
0
        Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp);
280
0
        TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To);
281
0
        TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp);
282
0
        TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te);
283
0
        TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th);
284
0
        Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te);
285
0
         }
286
0
         cr[0] = T1 + T4 + T7 + Ta;
287
0
         ci[0] = Tb + Te + Th + Tk;
288
0
         {
289
0
        E Tr, Ty, Tl, Ts;
290
0
        Tr = Tm - Tq;
291
0
        Ty = Tt - Tx;
292
0
        Tl = W[6];
293
0
        Ts = W[7];
294
0
        cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr);
295
0
        ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr);
296
0
         }
297
0
         {
298
0
        E TY, T10, TX, TZ;
299
0
        TY = TQ + TR;
300
0
        T10 = TV + TU;
301
0
        TX = W[2];
302
0
        TZ = W[3];
303
0
        cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY);
304
0
        ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY);
305
0
         }
306
0
         {
307
0
        E TA, TC, Tz, TB;
308
0
        TA = Tm + Tq;
309
0
        TC = Tx + Tt;
310
0
        Tz = W[4];
311
0
        TB = W[5];
312
0
        cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA);
313
0
        ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA);
314
0
         }
315
0
         {
316
0
        E TM, TO, TL, TN;
317
0
        TM = TE + TF;
318
0
        TO = TJ - TI;
319
0
        TL = W[10];
320
0
        TN = W[11];
321
0
        cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM);
322
0
        ci[WS(rs, 6)] = FMA(TL, TO, TN * TM);
323
0
         }
324
0
         {
325
0
        E TS, TW, TP, TT;
326
0
        TS = TQ - TR;
327
0
        TW = TU - TV;
328
0
        TP = W[8];
329
0
        TT = W[9];
330
0
        cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS);
331
0
        ci[WS(rs, 5)] = FMA(TP, TW, TT * TS);
332
0
         }
333
0
         {
334
0
        E TG, TK, TD, TH;
335
0
        TG = TE - TF;
336
0
        TK = TI + TJ;
337
0
        TD = W[0];
338
0
        TH = W[1];
339
0
        cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG);
340
0
        ci[WS(rs, 1)] = FMA(TD, TK, TH * TG);
341
0
         }
342
0
    }
343
0
     }
344
0
}
345
346
static const tw_instr twinstr[] = {
347
     { TW_FULL, 1, 7 },
348
     { TW_NEXT, 1, 0 }
349
};
350
351
static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 36, 24, 36, 0 } };
352
353
1
void X(codelet_hb_7) (planner *p) {
354
1
     X(khc2hc_register) (p, hb_7, &desc);
355
1
}
356
#endif