/src/fftw3/dft/scalar/codelets/q1_8.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Nov 24 06:37:17 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 528 FP additions, 288 FP multiplications, |
32 | | * (or, 352 additions, 112 multiplications, 176 fused multiply/add), |
33 | | * 152 stack variables, 1 constants, and 256 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/q.h" |
36 | | |
37 | | static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
43 | | E T7, T1d, T1t, Tk, TD, TV, T18, TQ, T4F, T5L, T61, T4S, T5b, T5t, T5G; |
44 | | E T5o, T6b, T7h, T7x, T6o, T6H, T6Z, T7c, T6U, TaJ, TbP, Tc5, TaW, Tbf, Tbx; |
45 | | E TbK, Tbs, T1D, T2J, T2Z, T1Q, T29, T2r, T2E, T2m, T39, T4f, T4v, T3m, T3F; |
46 | | E T3X, T4a, T3S, T7H, T8N, T93, T7U, T8d, T8v, T8I, T8q, T9d, Taj, Taz, T9q; |
47 | | E T9J, Ta1, Tae, T9W, Te, T19, T1u, T1g, TE, TF, TW, Tv, TR, T4M, T5H; |
48 | | E T62, T5O, T5c, T5d, T5u, T53, T5p, T6i, T7d, T7y, T7k, T6I, T6J, T70, T6z; |
49 | | E T6V, TaQ, TbL, Tc6, TbS, Tbg, Tbh, Tby, Tb7, Tbt, T1K, T2F, T30, T2M, T2a; |
50 | | E T2b, T2s, T21, T2n, T3g, T4b, T4w, T4i, T3G, T3H, T3Y, T3x, T3T, T7O, T8J; |
51 | | E T94, T8Q, T8e, T8f, T8w, T85, T8r, T9k, Taf, TaA, Tam, T9K, T9L, Ta2, T9B; |
52 | | E T9X; |
53 | | { |
54 | | E T3, Tz, Tj, T16, T6, Tg, TC, T17; |
55 | | { |
56 | | E T1, T2, Th, Ti; |
57 | | T1 = rio[0]; |
58 | | T2 = rio[WS(rs, 4)]; |
59 | | T3 = T1 + T2; |
60 | | Tz = T1 - T2; |
61 | | Th = iio[0]; |
62 | | Ti = iio[WS(rs, 4)]; |
63 | | Tj = Th - Ti; |
64 | | T16 = Th + Ti; |
65 | | } |
66 | | { |
67 | | E T4, T5, TA, TB; |
68 | | T4 = rio[WS(rs, 2)]; |
69 | | T5 = rio[WS(rs, 6)]; |
70 | | T6 = T4 + T5; |
71 | | Tg = T4 - T5; |
72 | | TA = iio[WS(rs, 2)]; |
73 | | TB = iio[WS(rs, 6)]; |
74 | | TC = TA - TB; |
75 | | T17 = TA + TB; |
76 | | } |
77 | | T7 = T3 + T6; |
78 | | T1d = T3 - T6; |
79 | | T1t = T16 + T17; |
80 | | Tk = Tg + Tj; |
81 | | TD = Tz - TC; |
82 | | TV = Tj - Tg; |
83 | | T18 = T16 - T17; |
84 | | TQ = Tz + TC; |
85 | | } |
86 | | { |
87 | | E T4B, T57, T4R, T5E, T4E, T4O, T5a, T5F; |
88 | | { |
89 | | E T4z, T4A, T4P, T4Q; |
90 | | T4z = rio[WS(vs, 3)]; |
91 | | T4A = rio[WS(vs, 3) + WS(rs, 4)]; |
92 | | T4B = T4z + T4A; |
93 | | T57 = T4z - T4A; |
94 | | T4P = iio[WS(vs, 3)]; |
95 | | T4Q = iio[WS(vs, 3) + WS(rs, 4)]; |
96 | | T4R = T4P - T4Q; |
97 | | T5E = T4P + T4Q; |
98 | | } |
99 | | { |
100 | | E T4C, T4D, T58, T59; |
101 | | T4C = rio[WS(vs, 3) + WS(rs, 2)]; |
102 | | T4D = rio[WS(vs, 3) + WS(rs, 6)]; |
103 | | T4E = T4C + T4D; |
104 | | T4O = T4C - T4D; |
105 | | T58 = iio[WS(vs, 3) + WS(rs, 2)]; |
106 | | T59 = iio[WS(vs, 3) + WS(rs, 6)]; |
107 | | T5a = T58 - T59; |
108 | | T5F = T58 + T59; |
109 | | } |
110 | | T4F = T4B + T4E; |
111 | | T5L = T4B - T4E; |
112 | | T61 = T5E + T5F; |
113 | | T4S = T4O + T4R; |
114 | | T5b = T57 - T5a; |
115 | | T5t = T4R - T4O; |
116 | | T5G = T5E - T5F; |
117 | | T5o = T57 + T5a; |
118 | | } |
119 | | { |
120 | | E T67, T6D, T6n, T7a, T6a, T6k, T6G, T7b; |
121 | | { |
122 | | E T65, T66, T6l, T6m; |
123 | | T65 = rio[WS(vs, 4)]; |
124 | | T66 = rio[WS(vs, 4) + WS(rs, 4)]; |
125 | | T67 = T65 + T66; |
126 | | T6D = T65 - T66; |
127 | | T6l = iio[WS(vs, 4)]; |
128 | | T6m = iio[WS(vs, 4) + WS(rs, 4)]; |
129 | | T6n = T6l - T6m; |
130 | | T7a = T6l + T6m; |
131 | | } |
132 | | { |
133 | | E T68, T69, T6E, T6F; |
134 | | T68 = rio[WS(vs, 4) + WS(rs, 2)]; |
135 | | T69 = rio[WS(vs, 4) + WS(rs, 6)]; |
136 | | T6a = T68 + T69; |
137 | | T6k = T68 - T69; |
138 | | T6E = iio[WS(vs, 4) + WS(rs, 2)]; |
139 | | T6F = iio[WS(vs, 4) + WS(rs, 6)]; |
140 | | T6G = T6E - T6F; |
141 | | T7b = T6E + T6F; |
142 | | } |
143 | | T6b = T67 + T6a; |
144 | | T7h = T67 - T6a; |
145 | | T7x = T7a + T7b; |
146 | | T6o = T6k + T6n; |
147 | | T6H = T6D - T6G; |
148 | | T6Z = T6n - T6k; |
149 | | T7c = T7a - T7b; |
150 | | T6U = T6D + T6G; |
151 | | } |
152 | | { |
153 | | E TaF, Tbb, TaV, TbI, TaI, TaS, Tbe, TbJ; |
154 | | { |
155 | | E TaD, TaE, TaT, TaU; |
156 | | TaD = rio[WS(vs, 7)]; |
157 | | TaE = rio[WS(vs, 7) + WS(rs, 4)]; |
158 | | TaF = TaD + TaE; |
159 | | Tbb = TaD - TaE; |
160 | | TaT = iio[WS(vs, 7)]; |
161 | | TaU = iio[WS(vs, 7) + WS(rs, 4)]; |
162 | | TaV = TaT - TaU; |
163 | | TbI = TaT + TaU; |
164 | | } |
165 | | { |
166 | | E TaG, TaH, Tbc, Tbd; |
167 | | TaG = rio[WS(vs, 7) + WS(rs, 2)]; |
168 | | TaH = rio[WS(vs, 7) + WS(rs, 6)]; |
169 | | TaI = TaG + TaH; |
170 | | TaS = TaG - TaH; |
171 | | Tbc = iio[WS(vs, 7) + WS(rs, 2)]; |
172 | | Tbd = iio[WS(vs, 7) + WS(rs, 6)]; |
173 | | Tbe = Tbc - Tbd; |
174 | | TbJ = Tbc + Tbd; |
175 | | } |
176 | | TaJ = TaF + TaI; |
177 | | TbP = TaF - TaI; |
178 | | Tc5 = TbI + TbJ; |
179 | | TaW = TaS + TaV; |
180 | | Tbf = Tbb - Tbe; |
181 | | Tbx = TaV - TaS; |
182 | | TbK = TbI - TbJ; |
183 | | Tbs = Tbb + Tbe; |
184 | | } |
185 | | { |
186 | | E T1z, T25, T1P, T2C, T1C, T1M, T28, T2D; |
187 | | { |
188 | | E T1x, T1y, T1N, T1O; |
189 | | T1x = rio[WS(vs, 1)]; |
190 | | T1y = rio[WS(vs, 1) + WS(rs, 4)]; |
191 | | T1z = T1x + T1y; |
192 | | T25 = T1x - T1y; |
193 | | T1N = iio[WS(vs, 1)]; |
194 | | T1O = iio[WS(vs, 1) + WS(rs, 4)]; |
195 | | T1P = T1N - T1O; |
196 | | T2C = T1N + T1O; |
197 | | } |
198 | | { |
199 | | E T1A, T1B, T26, T27; |
200 | | T1A = rio[WS(vs, 1) + WS(rs, 2)]; |
201 | | T1B = rio[WS(vs, 1) + WS(rs, 6)]; |
202 | | T1C = T1A + T1B; |
203 | | T1M = T1A - T1B; |
204 | | T26 = iio[WS(vs, 1) + WS(rs, 2)]; |
205 | | T27 = iio[WS(vs, 1) + WS(rs, 6)]; |
206 | | T28 = T26 - T27; |
207 | | T2D = T26 + T27; |
208 | | } |
209 | | T1D = T1z + T1C; |
210 | | T2J = T1z - T1C; |
211 | | T2Z = T2C + T2D; |
212 | | T1Q = T1M + T1P; |
213 | | T29 = T25 - T28; |
214 | | T2r = T1P - T1M; |
215 | | T2E = T2C - T2D; |
216 | | T2m = T25 + T28; |
217 | | } |
218 | | { |
219 | | E T35, T3B, T3l, T48, T38, T3i, T3E, T49; |
220 | | { |
221 | | E T33, T34, T3j, T3k; |
222 | | T33 = rio[WS(vs, 2)]; |
223 | | T34 = rio[WS(vs, 2) + WS(rs, 4)]; |
224 | | T35 = T33 + T34; |
225 | | T3B = T33 - T34; |
226 | | T3j = iio[WS(vs, 2)]; |
227 | | T3k = iio[WS(vs, 2) + WS(rs, 4)]; |
228 | | T3l = T3j - T3k; |
229 | | T48 = T3j + T3k; |
230 | | } |
231 | | { |
232 | | E T36, T37, T3C, T3D; |
233 | | T36 = rio[WS(vs, 2) + WS(rs, 2)]; |
234 | | T37 = rio[WS(vs, 2) + WS(rs, 6)]; |
235 | | T38 = T36 + T37; |
236 | | T3i = T36 - T37; |
237 | | T3C = iio[WS(vs, 2) + WS(rs, 2)]; |
238 | | T3D = iio[WS(vs, 2) + WS(rs, 6)]; |
239 | | T3E = T3C - T3D; |
240 | | T49 = T3C + T3D; |
241 | | } |
242 | | T39 = T35 + T38; |
243 | | T4f = T35 - T38; |
244 | | T4v = T48 + T49; |
245 | | T3m = T3i + T3l; |
246 | | T3F = T3B - T3E; |
247 | | T3X = T3l - T3i; |
248 | | T4a = T48 - T49; |
249 | | T3S = T3B + T3E; |
250 | | } |
251 | | { |
252 | | E T7D, T89, T7T, T8G, T7G, T7Q, T8c, T8H; |
253 | | { |
254 | | E T7B, T7C, T7R, T7S; |
255 | | T7B = rio[WS(vs, 5)]; |
256 | | T7C = rio[WS(vs, 5) + WS(rs, 4)]; |
257 | | T7D = T7B + T7C; |
258 | | T89 = T7B - T7C; |
259 | | T7R = iio[WS(vs, 5)]; |
260 | | T7S = iio[WS(vs, 5) + WS(rs, 4)]; |
261 | | T7T = T7R - T7S; |
262 | | T8G = T7R + T7S; |
263 | | } |
264 | | { |
265 | | E T7E, T7F, T8a, T8b; |
266 | | T7E = rio[WS(vs, 5) + WS(rs, 2)]; |
267 | | T7F = rio[WS(vs, 5) + WS(rs, 6)]; |
268 | | T7G = T7E + T7F; |
269 | | T7Q = T7E - T7F; |
270 | | T8a = iio[WS(vs, 5) + WS(rs, 2)]; |
271 | | T8b = iio[WS(vs, 5) + WS(rs, 6)]; |
272 | | T8c = T8a - T8b; |
273 | | T8H = T8a + T8b; |
274 | | } |
275 | | T7H = T7D + T7G; |
276 | | T8N = T7D - T7G; |
277 | | T93 = T8G + T8H; |
278 | | T7U = T7Q + T7T; |
279 | | T8d = T89 - T8c; |
280 | | T8v = T7T - T7Q; |
281 | | T8I = T8G - T8H; |
282 | | T8q = T89 + T8c; |
283 | | } |
284 | | { |
285 | | E T99, T9F, T9p, Tac, T9c, T9m, T9I, Tad; |
286 | | { |
287 | | E T97, T98, T9n, T9o; |
288 | | T97 = rio[WS(vs, 6)]; |
289 | | T98 = rio[WS(vs, 6) + WS(rs, 4)]; |
290 | | T99 = T97 + T98; |
291 | | T9F = T97 - T98; |
292 | | T9n = iio[WS(vs, 6)]; |
293 | | T9o = iio[WS(vs, 6) + WS(rs, 4)]; |
294 | | T9p = T9n - T9o; |
295 | | Tac = T9n + T9o; |
296 | | } |
297 | | { |
298 | | E T9a, T9b, T9G, T9H; |
299 | | T9a = rio[WS(vs, 6) + WS(rs, 2)]; |
300 | | T9b = rio[WS(vs, 6) + WS(rs, 6)]; |
301 | | T9c = T9a + T9b; |
302 | | T9m = T9a - T9b; |
303 | | T9G = iio[WS(vs, 6) + WS(rs, 2)]; |
304 | | T9H = iio[WS(vs, 6) + WS(rs, 6)]; |
305 | | T9I = T9G - T9H; |
306 | | Tad = T9G + T9H; |
307 | | } |
308 | | T9d = T99 + T9c; |
309 | | Taj = T99 - T9c; |
310 | | Taz = Tac + Tad; |
311 | | T9q = T9m + T9p; |
312 | | T9J = T9F - T9I; |
313 | | Ta1 = T9p - T9m; |
314 | | Tae = Tac - Tad; |
315 | | T9W = T9F + T9I; |
316 | | } |
317 | | { |
318 | | E Ta, Tq, Tt, T1e, Td, Tl, To, T1f, Tp, Tu; |
319 | | { |
320 | | E T8, T9, Tr, Ts; |
321 | | T8 = rio[WS(rs, 1)]; |
322 | | T9 = rio[WS(rs, 5)]; |
323 | | Ta = T8 + T9; |
324 | | Tq = T8 - T9; |
325 | | Tr = iio[WS(rs, 1)]; |
326 | | Ts = iio[WS(rs, 5)]; |
327 | | Tt = Tr - Ts; |
328 | | T1e = Tr + Ts; |
329 | | } |
330 | | { |
331 | | E Tb, Tc, Tm, Tn; |
332 | | Tb = rio[WS(rs, 7)]; |
333 | | Tc = rio[WS(rs, 3)]; |
334 | | Td = Tb + Tc; |
335 | | Tl = Tb - Tc; |
336 | | Tm = iio[WS(rs, 7)]; |
337 | | Tn = iio[WS(rs, 3)]; |
338 | | To = Tm - Tn; |
339 | | T1f = Tm + Tn; |
340 | | } |
341 | | Te = Ta + Td; |
342 | | T19 = Td - Ta; |
343 | | T1u = T1e + T1f; |
344 | | T1g = T1e - T1f; |
345 | | TE = Tt - Tq; |
346 | | TF = Tl + To; |
347 | | TW = TE + TF; |
348 | | Tp = Tl - To; |
349 | | Tu = Tq + Tt; |
350 | | Tv = Tp - Tu; |
351 | | TR = Tu + Tp; |
352 | | } |
353 | | { |
354 | | E T4I, T4Y, T51, T5M, T4L, T4T, T4W, T5N, T4X, T52; |
355 | | { |
356 | | E T4G, T4H, T4Z, T50; |
357 | | T4G = rio[WS(vs, 3) + WS(rs, 1)]; |
358 | | T4H = rio[WS(vs, 3) + WS(rs, 5)]; |
359 | | T4I = T4G + T4H; |
360 | | T4Y = T4G - T4H; |
361 | | T4Z = iio[WS(vs, 3) + WS(rs, 1)]; |
362 | | T50 = iio[WS(vs, 3) + WS(rs, 5)]; |
363 | | T51 = T4Z - T50; |
364 | | T5M = T4Z + T50; |
365 | | } |
366 | | { |
367 | | E T4J, T4K, T4U, T4V; |
368 | | T4J = rio[WS(vs, 3) + WS(rs, 7)]; |
369 | | T4K = rio[WS(vs, 3) + WS(rs, 3)]; |
370 | | T4L = T4J + T4K; |
371 | | T4T = T4J - T4K; |
372 | | T4U = iio[WS(vs, 3) + WS(rs, 7)]; |
373 | | T4V = iio[WS(vs, 3) + WS(rs, 3)]; |
374 | | T4W = T4U - T4V; |
375 | | T5N = T4U + T4V; |
376 | | } |
377 | | T4M = T4I + T4L; |
378 | | T5H = T4L - T4I; |
379 | | T62 = T5M + T5N; |
380 | | T5O = T5M - T5N; |
381 | | T5c = T51 - T4Y; |
382 | | T5d = T4T + T4W; |
383 | | T5u = T5c + T5d; |
384 | | T4X = T4T - T4W; |
385 | | T52 = T4Y + T51; |
386 | | T53 = T4X - T52; |
387 | | T5p = T52 + T4X; |
388 | | } |
389 | | { |
390 | | E T6e, T6u, T6x, T7i, T6h, T6p, T6s, T7j, T6t, T6y; |
391 | | { |
392 | | E T6c, T6d, T6v, T6w; |
393 | | T6c = rio[WS(vs, 4) + WS(rs, 1)]; |
394 | | T6d = rio[WS(vs, 4) + WS(rs, 5)]; |
395 | | T6e = T6c + T6d; |
396 | | T6u = T6c - T6d; |
397 | | T6v = iio[WS(vs, 4) + WS(rs, 1)]; |
398 | | T6w = iio[WS(vs, 4) + WS(rs, 5)]; |
399 | | T6x = T6v - T6w; |
400 | | T7i = T6v + T6w; |
401 | | } |
402 | | { |
403 | | E T6f, T6g, T6q, T6r; |
404 | | T6f = rio[WS(vs, 4) + WS(rs, 7)]; |
405 | | T6g = rio[WS(vs, 4) + WS(rs, 3)]; |
406 | | T6h = T6f + T6g; |
407 | | T6p = T6f - T6g; |
408 | | T6q = iio[WS(vs, 4) + WS(rs, 7)]; |
409 | | T6r = iio[WS(vs, 4) + WS(rs, 3)]; |
410 | | T6s = T6q - T6r; |
411 | | T7j = T6q + T6r; |
412 | | } |
413 | | T6i = T6e + T6h; |
414 | | T7d = T6h - T6e; |
415 | | T7y = T7i + T7j; |
416 | | T7k = T7i - T7j; |
417 | | T6I = T6x - T6u; |
418 | | T6J = T6p + T6s; |
419 | | T70 = T6I + T6J; |
420 | | T6t = T6p - T6s; |
421 | | T6y = T6u + T6x; |
422 | | T6z = T6t - T6y; |
423 | | T6V = T6y + T6t; |
424 | | } |
425 | | { |
426 | | E TaM, Tb2, Tb5, TbQ, TaP, TaX, Tb0, TbR, Tb1, Tb6; |
427 | | { |
428 | | E TaK, TaL, Tb3, Tb4; |
429 | | TaK = rio[WS(vs, 7) + WS(rs, 1)]; |
430 | | TaL = rio[WS(vs, 7) + WS(rs, 5)]; |
431 | | TaM = TaK + TaL; |
432 | | Tb2 = TaK - TaL; |
433 | | Tb3 = iio[WS(vs, 7) + WS(rs, 1)]; |
434 | | Tb4 = iio[WS(vs, 7) + WS(rs, 5)]; |
435 | | Tb5 = Tb3 - Tb4; |
436 | | TbQ = Tb3 + Tb4; |
437 | | } |
438 | | { |
439 | | E TaN, TaO, TaY, TaZ; |
440 | | TaN = rio[WS(vs, 7) + WS(rs, 7)]; |
441 | | TaO = rio[WS(vs, 7) + WS(rs, 3)]; |
442 | | TaP = TaN + TaO; |
443 | | TaX = TaN - TaO; |
444 | | TaY = iio[WS(vs, 7) + WS(rs, 7)]; |
445 | | TaZ = iio[WS(vs, 7) + WS(rs, 3)]; |
446 | | Tb0 = TaY - TaZ; |
447 | | TbR = TaY + TaZ; |
448 | | } |
449 | | TaQ = TaM + TaP; |
450 | | TbL = TaP - TaM; |
451 | | Tc6 = TbQ + TbR; |
452 | | TbS = TbQ - TbR; |
453 | | Tbg = Tb5 - Tb2; |
454 | | Tbh = TaX + Tb0; |
455 | | Tby = Tbg + Tbh; |
456 | | Tb1 = TaX - Tb0; |
457 | | Tb6 = Tb2 + Tb5; |
458 | | Tb7 = Tb1 - Tb6; |
459 | | Tbt = Tb6 + Tb1; |
460 | | } |
461 | | { |
462 | | E T1G, T1W, T1Z, T2K, T1J, T1R, T1U, T2L, T1V, T20; |
463 | | { |
464 | | E T1E, T1F, T1X, T1Y; |
465 | | T1E = rio[WS(vs, 1) + WS(rs, 1)]; |
466 | | T1F = rio[WS(vs, 1) + WS(rs, 5)]; |
467 | | T1G = T1E + T1F; |
468 | | T1W = T1E - T1F; |
469 | | T1X = iio[WS(vs, 1) + WS(rs, 1)]; |
470 | | T1Y = iio[WS(vs, 1) + WS(rs, 5)]; |
471 | | T1Z = T1X - T1Y; |
472 | | T2K = T1X + T1Y; |
473 | | } |
474 | | { |
475 | | E T1H, T1I, T1S, T1T; |
476 | | T1H = rio[WS(vs, 1) + WS(rs, 7)]; |
477 | | T1I = rio[WS(vs, 1) + WS(rs, 3)]; |
478 | | T1J = T1H + T1I; |
479 | | T1R = T1H - T1I; |
480 | | T1S = iio[WS(vs, 1) + WS(rs, 7)]; |
481 | | T1T = iio[WS(vs, 1) + WS(rs, 3)]; |
482 | | T1U = T1S - T1T; |
483 | | T2L = T1S + T1T; |
484 | | } |
485 | | T1K = T1G + T1J; |
486 | | T2F = T1J - T1G; |
487 | | T30 = T2K + T2L; |
488 | | T2M = T2K - T2L; |
489 | | T2a = T1Z - T1W; |
490 | | T2b = T1R + T1U; |
491 | | T2s = T2a + T2b; |
492 | | T1V = T1R - T1U; |
493 | | T20 = T1W + T1Z; |
494 | | T21 = T1V - T20; |
495 | | T2n = T20 + T1V; |
496 | | } |
497 | | { |
498 | | E T3c, T3s, T3v, T4g, T3f, T3n, T3q, T4h, T3r, T3w; |
499 | | { |
500 | | E T3a, T3b, T3t, T3u; |
501 | | T3a = rio[WS(vs, 2) + WS(rs, 1)]; |
502 | | T3b = rio[WS(vs, 2) + WS(rs, 5)]; |
503 | | T3c = T3a + T3b; |
504 | | T3s = T3a - T3b; |
505 | | T3t = iio[WS(vs, 2) + WS(rs, 1)]; |
506 | | T3u = iio[WS(vs, 2) + WS(rs, 5)]; |
507 | | T3v = T3t - T3u; |
508 | | T4g = T3t + T3u; |
509 | | } |
510 | | { |
511 | | E T3d, T3e, T3o, T3p; |
512 | | T3d = rio[WS(vs, 2) + WS(rs, 7)]; |
513 | | T3e = rio[WS(vs, 2) + WS(rs, 3)]; |
514 | | T3f = T3d + T3e; |
515 | | T3n = T3d - T3e; |
516 | | T3o = iio[WS(vs, 2) + WS(rs, 7)]; |
517 | | T3p = iio[WS(vs, 2) + WS(rs, 3)]; |
518 | | T3q = T3o - T3p; |
519 | | T4h = T3o + T3p; |
520 | | } |
521 | | T3g = T3c + T3f; |
522 | | T4b = T3f - T3c; |
523 | | T4w = T4g + T4h; |
524 | | T4i = T4g - T4h; |
525 | | T3G = T3v - T3s; |
526 | | T3H = T3n + T3q; |
527 | | T3Y = T3G + T3H; |
528 | | T3r = T3n - T3q; |
529 | | T3w = T3s + T3v; |
530 | | T3x = T3r - T3w; |
531 | | T3T = T3w + T3r; |
532 | | } |
533 | | { |
534 | | E T7K, T80, T83, T8O, T7N, T7V, T7Y, T8P, T7Z, T84; |
535 | | { |
536 | | E T7I, T7J, T81, T82; |
537 | | T7I = rio[WS(vs, 5) + WS(rs, 1)]; |
538 | | T7J = rio[WS(vs, 5) + WS(rs, 5)]; |
539 | | T7K = T7I + T7J; |
540 | | T80 = T7I - T7J; |
541 | | T81 = iio[WS(vs, 5) + WS(rs, 1)]; |
542 | | T82 = iio[WS(vs, 5) + WS(rs, 5)]; |
543 | | T83 = T81 - T82; |
544 | | T8O = T81 + T82; |
545 | | } |
546 | | { |
547 | | E T7L, T7M, T7W, T7X; |
548 | | T7L = rio[WS(vs, 5) + WS(rs, 7)]; |
549 | | T7M = rio[WS(vs, 5) + WS(rs, 3)]; |
550 | | T7N = T7L + T7M; |
551 | | T7V = T7L - T7M; |
552 | | T7W = iio[WS(vs, 5) + WS(rs, 7)]; |
553 | | T7X = iio[WS(vs, 5) + WS(rs, 3)]; |
554 | | T7Y = T7W - T7X; |
555 | | T8P = T7W + T7X; |
556 | | } |
557 | | T7O = T7K + T7N; |
558 | | T8J = T7N - T7K; |
559 | | T94 = T8O + T8P; |
560 | | T8Q = T8O - T8P; |
561 | | T8e = T83 - T80; |
562 | | T8f = T7V + T7Y; |
563 | | T8w = T8e + T8f; |
564 | | T7Z = T7V - T7Y; |
565 | | T84 = T80 + T83; |
566 | | T85 = T7Z - T84; |
567 | | T8r = T84 + T7Z; |
568 | | } |
569 | | { |
570 | | E T9g, T9w, T9z, Tak, T9j, T9r, T9u, Tal, T9v, T9A; |
571 | | { |
572 | | E T9e, T9f, T9x, T9y; |
573 | | T9e = rio[WS(vs, 6) + WS(rs, 1)]; |
574 | | T9f = rio[WS(vs, 6) + WS(rs, 5)]; |
575 | | T9g = T9e + T9f; |
576 | | T9w = T9e - T9f; |
577 | | T9x = iio[WS(vs, 6) + WS(rs, 1)]; |
578 | | T9y = iio[WS(vs, 6) + WS(rs, 5)]; |
579 | | T9z = T9x - T9y; |
580 | | Tak = T9x + T9y; |
581 | | } |
582 | | { |
583 | | E T9h, T9i, T9s, T9t; |
584 | | T9h = rio[WS(vs, 6) + WS(rs, 7)]; |
585 | | T9i = rio[WS(vs, 6) + WS(rs, 3)]; |
586 | | T9j = T9h + T9i; |
587 | | T9r = T9h - T9i; |
588 | | T9s = iio[WS(vs, 6) + WS(rs, 7)]; |
589 | | T9t = iio[WS(vs, 6) + WS(rs, 3)]; |
590 | | T9u = T9s - T9t; |
591 | | Tal = T9s + T9t; |
592 | | } |
593 | | T9k = T9g + T9j; |
594 | | Taf = T9j - T9g; |
595 | | TaA = Tak + Tal; |
596 | | Tam = Tak - Tal; |
597 | | T9K = T9z - T9w; |
598 | | T9L = T9r + T9u; |
599 | | Ta2 = T9K + T9L; |
600 | | T9v = T9r - T9u; |
601 | | T9A = T9w + T9z; |
602 | | T9B = T9v - T9A; |
603 | | T9X = T9A + T9v; |
604 | | } |
605 | | rio[0] = T7 + Te; |
606 | | iio[0] = T1t + T1u; |
607 | | rio[WS(rs, 1)] = T1D + T1K; |
608 | | iio[WS(rs, 1)] = T2Z + T30; |
609 | | rio[WS(rs, 2)] = T39 + T3g; |
610 | | iio[WS(rs, 2)] = T4v + T4w; |
611 | | rio[WS(rs, 3)] = T4F + T4M; |
612 | | iio[WS(rs, 3)] = T61 + T62; |
613 | | rio[WS(rs, 4)] = T6b + T6i; |
614 | | iio[WS(rs, 4)] = T7x + T7y; |
615 | | rio[WS(rs, 5)] = T7H + T7O; |
616 | | iio[WS(rs, 5)] = T93 + T94; |
617 | | rio[WS(rs, 6)] = T9d + T9k; |
618 | | iio[WS(rs, 6)] = Taz + TaA; |
619 | | rio[WS(rs, 7)] = TaJ + TaQ; |
620 | | iio[WS(rs, 7)] = Tc5 + Tc6; |
621 | | { |
622 | | E TS, TX, TT, TY, TP, TU; |
623 | | TS = FNMS(KP707106781, TR, TQ); |
624 | | TX = FNMS(KP707106781, TW, TV); |
625 | | TP = W[8]; |
626 | | TT = TP * TS; |
627 | | TY = TP * TX; |
628 | | TU = W[9]; |
629 | | rio[WS(vs, 5)] = FMA(TU, TX, TT); |
630 | | iio[WS(vs, 5)] = FNMS(TU, TS, TY); |
631 | | } |
632 | | { |
633 | | E T2N, T2B, T2H, T2I, T2O, T2G; |
634 | | T2N = T2J - T2M; |
635 | | T2G = T2E - T2F; |
636 | | T2B = W[10]; |
637 | | T2H = T2B * T2G; |
638 | | T2I = W[11]; |
639 | | T2O = T2I * T2G; |
640 | | iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H); |
641 | | rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O); |
642 | | } |
643 | | { |
644 | | E T1n, T1j, T1l, T1m, T1o, T1k; |
645 | | T1n = T1d + T1g; |
646 | | T1k = T19 + T18; |
647 | | T1j = W[2]; |
648 | | T1l = T1j * T1k; |
649 | | T1m = W[3]; |
650 | | T1o = T1m * T1k; |
651 | | iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l); |
652 | | rio[WS(vs, 2)] = FMA(T1j, T1n, T1o); |
653 | | } |
654 | | { |
655 | | E T1q, T1v, T1r, T1w, T1p, T1s; |
656 | | T1q = T7 - Te; |
657 | | T1v = T1t - T1u; |
658 | | T1p = W[6]; |
659 | | T1r = T1p * T1q; |
660 | | T1w = T1p * T1v; |
661 | | T1s = W[7]; |
662 | | rio[WS(vs, 4)] = FMA(T1s, T1v, T1r); |
663 | | iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w); |
664 | | } |
665 | | { |
666 | | E Tan, Tab, Tah, Tai, Tao, Tag; |
667 | | Tan = Taj - Tam; |
668 | | Tag = Tae - Taf; |
669 | | Tab = W[10]; |
670 | | Tah = Tab * Tag; |
671 | | Tai = W[11]; |
672 | | Tao = Tai * Tag; |
673 | | iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah); |
674 | | rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao); |
675 | | } |
676 | | { |
677 | | E Tc2, Tc7, Tc3, Tc8, Tc1, Tc4; |
678 | | Tc2 = TaJ - TaQ; |
679 | | Tc7 = Tc5 - Tc6; |
680 | | Tc1 = W[6]; |
681 | | Tc3 = Tc1 * Tc2; |
682 | | Tc8 = Tc1 * Tc7; |
683 | | Tc4 = W[7]; |
684 | | rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3); |
685 | | iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8); |
686 | | } |
687 | | { |
688 | | E Tbu, Tbz, Tbv, TbA, Tbr, Tbw; |
689 | | Tbu = FNMS(KP707106781, Tbt, Tbs); |
690 | | Tbz = FNMS(KP707106781, Tby, Tbx); |
691 | | Tbr = W[8]; |
692 | | Tbv = Tbr * Tbu; |
693 | | TbA = Tbr * Tbz; |
694 | | Tbw = W[9]; |
695 | | rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv); |
696 | | iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA); |
697 | | } |
698 | | { |
699 | | E TbC, TbF, TbD, TbG, TbB, TbE; |
700 | | TbC = FMA(KP707106781, Tbt, Tbs); |
701 | | TbF = FMA(KP707106781, Tby, Tbx); |
702 | | TbB = W[0]; |
703 | | TbD = TbB * TbC; |
704 | | TbG = TbB * TbF; |
705 | | TbE = W[1]; |
706 | | rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD); |
707 | | iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG); |
708 | | } |
709 | | { |
710 | | E T10, T13, T11, T14, TZ, T12; |
711 | | T10 = FMA(KP707106781, TR, TQ); |
712 | | T13 = FMA(KP707106781, TW, TV); |
713 | | TZ = W[0]; |
714 | | T11 = TZ * T10; |
715 | | T14 = TZ * T13; |
716 | | T12 = W[1]; |
717 | | rio[WS(vs, 1)] = FMA(T12, T13, T11); |
718 | | iio[WS(vs, 1)] = FNMS(T12, T10, T14); |
719 | | } |
720 | | { |
721 | | E T2w, T2z, T2x, T2A, T2v, T2y; |
722 | | T2w = FMA(KP707106781, T2n, T2m); |
723 | | T2z = FMA(KP707106781, T2s, T2r); |
724 | | T2v = W[0]; |
725 | | T2x = T2v * T2w; |
726 | | T2A = T2v * T2z; |
727 | | T2y = W[1]; |
728 | | rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x); |
729 | | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A); |
730 | | } |
731 | | { |
732 | | E T1h, T15, T1b, T1c, T1i, T1a; |
733 | | T1h = T1d - T1g; |
734 | | T1a = T18 - T19; |
735 | | T15 = W[10]; |
736 | | T1b = T15 * T1a; |
737 | | T1c = W[11]; |
738 | | T1i = T1c * T1a; |
739 | | iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b); |
740 | | rio[WS(vs, 6)] = FMA(T15, T1h, T1i); |
741 | | } |
742 | | { |
743 | | E T2o, T2t, T2p, T2u, T2l, T2q; |
744 | | T2o = FNMS(KP707106781, T2n, T2m); |
745 | | T2t = FNMS(KP707106781, T2s, T2r); |
746 | | T2l = W[8]; |
747 | | T2p = T2l * T2o; |
748 | | T2u = T2l * T2t; |
749 | | T2q = W[9]; |
750 | | rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p); |
751 | | iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u); |
752 | | } |
753 | | { |
754 | | E Tat, Tap, Tar, Tas, Tau, Taq; |
755 | | Tat = Taj + Tam; |
756 | | Taq = Taf + Tae; |
757 | | Tap = W[2]; |
758 | | Tar = Tap * Taq; |
759 | | Tas = W[3]; |
760 | | Tau = Tas * Taq; |
761 | | iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar); |
762 | | rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau); |
763 | | } |
764 | | { |
765 | | E TbZ, TbV, TbX, TbY, Tc0, TbW; |
766 | | TbZ = TbP + TbS; |
767 | | TbW = TbL + TbK; |
768 | | TbV = W[2]; |
769 | | TbX = TbV * TbW; |
770 | | TbY = W[3]; |
771 | | Tc0 = TbY * TbW; |
772 | | iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX); |
773 | | rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0); |
774 | | } |
775 | | { |
776 | | E Taw, TaB, Tax, TaC, Tav, Tay; |
777 | | Taw = T9d - T9k; |
778 | | TaB = Taz - TaA; |
779 | | Tav = W[6]; |
780 | | Tax = Tav * Taw; |
781 | | TaC = Tav * TaB; |
782 | | Tay = W[7]; |
783 | | rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax); |
784 | | iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC); |
785 | | } |
786 | | { |
787 | | E TbT, TbH, TbN, TbO, TbU, TbM; |
788 | | TbT = TbP - TbS; |
789 | | TbM = TbK - TbL; |
790 | | TbH = W[10]; |
791 | | TbN = TbH * TbM; |
792 | | TbO = W[11]; |
793 | | TbU = TbO * TbM; |
794 | | iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN); |
795 | | rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU); |
796 | | } |
797 | | { |
798 | | E T2T, T2P, T2R, T2S, T2U, T2Q; |
799 | | T2T = T2J + T2M; |
800 | | T2Q = T2F + T2E; |
801 | | T2P = W[2]; |
802 | | T2R = T2P * T2Q; |
803 | | T2S = W[3]; |
804 | | T2U = T2S * T2Q; |
805 | | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R); |
806 | | rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U); |
807 | | } |
808 | | { |
809 | | E T5Y, T63, T5Z, T64, T5X, T60; |
810 | | T5Y = T4F - T4M; |
811 | | T63 = T61 - T62; |
812 | | T5X = W[6]; |
813 | | T5Z = T5X * T5Y; |
814 | | T64 = T5X * T63; |
815 | | T60 = W[7]; |
816 | | rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z); |
817 | | iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64); |
818 | | } |
819 | | { |
820 | | E T42, T45, T43, T46, T41, T44; |
821 | | T42 = FMA(KP707106781, T3T, T3S); |
822 | | T45 = FMA(KP707106781, T3Y, T3X); |
823 | | T41 = W[0]; |
824 | | T43 = T41 * T42; |
825 | | T46 = T41 * T45; |
826 | | T44 = W[1]; |
827 | | rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43); |
828 | | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46); |
829 | | } |
830 | | { |
831 | | E T5y, T5B, T5z, T5C, T5x, T5A; |
832 | | T5y = FMA(KP707106781, T5p, T5o); |
833 | | T5B = FMA(KP707106781, T5u, T5t); |
834 | | T5x = W[0]; |
835 | | T5z = T5x * T5y; |
836 | | T5C = T5x * T5B; |
837 | | T5A = W[1]; |
838 | | rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z); |
839 | | iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C); |
840 | | } |
841 | | { |
842 | | E T6W, T71, T6X, T72, T6T, T6Y; |
843 | | T6W = FNMS(KP707106781, T6V, T6U); |
844 | | T71 = FNMS(KP707106781, T70, T6Z); |
845 | | T6T = W[8]; |
846 | | T6X = T6T * T6W; |
847 | | T72 = T6T * T71; |
848 | | T6Y = W[9]; |
849 | | rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X); |
850 | | iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72); |
851 | | } |
852 | | { |
853 | | E Ta6, Ta9, Ta7, Taa, Ta5, Ta8; |
854 | | Ta6 = FMA(KP707106781, T9X, T9W); |
855 | | Ta9 = FMA(KP707106781, Ta2, Ta1); |
856 | | Ta5 = W[0]; |
857 | | Ta7 = Ta5 * Ta6; |
858 | | Taa = Ta5 * Ta9; |
859 | | Ta8 = W[1]; |
860 | | rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7); |
861 | | iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa); |
862 | | } |
863 | | { |
864 | | E T7r, T7n, T7p, T7q, T7s, T7o; |
865 | | T7r = T7h + T7k; |
866 | | T7o = T7d + T7c; |
867 | | T7n = W[2]; |
868 | | T7p = T7n * T7o; |
869 | | T7q = W[3]; |
870 | | T7s = T7q * T7o; |
871 | | iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p); |
872 | | rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s); |
873 | | } |
874 | | { |
875 | | E T8X, T8T, T8V, T8W, T8Y, T8U; |
876 | | T8X = T8N + T8Q; |
877 | | T8U = T8J + T8I; |
878 | | T8T = W[2]; |
879 | | T8V = T8T * T8U; |
880 | | T8W = W[3]; |
881 | | T8Y = T8W * T8U; |
882 | | iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V); |
883 | | rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y); |
884 | | } |
885 | | { |
886 | | E T2W, T31, T2X, T32, T2V, T2Y; |
887 | | T2W = T1D - T1K; |
888 | | T31 = T2Z - T30; |
889 | | T2V = W[6]; |
890 | | T2X = T2V * T2W; |
891 | | T32 = T2V * T31; |
892 | | T2Y = W[7]; |
893 | | rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X); |
894 | | iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32); |
895 | | } |
896 | | { |
897 | | E T5V, T5R, T5T, T5U, T5W, T5S; |
898 | | T5V = T5L + T5O; |
899 | | T5S = T5H + T5G; |
900 | | T5R = W[2]; |
901 | | T5T = T5R * T5S; |
902 | | T5U = W[3]; |
903 | | T5W = T5U * T5S; |
904 | | iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T); |
905 | | rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W); |
906 | | } |
907 | | { |
908 | | E T3U, T3Z, T3V, T40, T3R, T3W; |
909 | | T3U = FNMS(KP707106781, T3T, T3S); |
910 | | T3Z = FNMS(KP707106781, T3Y, T3X); |
911 | | T3R = W[8]; |
912 | | T3V = T3R * T3U; |
913 | | T40 = T3R * T3Z; |
914 | | T3W = W[9]; |
915 | | rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V); |
916 | | iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40); |
917 | | } |
918 | | { |
919 | | E T5P, T5D, T5J, T5K, T5Q, T5I; |
920 | | T5P = T5L - T5O; |
921 | | T5I = T5G - T5H; |
922 | | T5D = W[10]; |
923 | | T5J = T5D * T5I; |
924 | | T5K = W[11]; |
925 | | T5Q = T5K * T5I; |
926 | | iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J); |
927 | | rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q); |
928 | | } |
929 | | { |
930 | | E T74, T77, T75, T78, T73, T76; |
931 | | T74 = FMA(KP707106781, T6V, T6U); |
932 | | T77 = FMA(KP707106781, T70, T6Z); |
933 | | T73 = W[0]; |
934 | | T75 = T73 * T74; |
935 | | T78 = T73 * T77; |
936 | | T76 = W[1]; |
937 | | rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75); |
938 | | iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78); |
939 | | } |
940 | | { |
941 | | E T9Y, Ta3, T9Z, Ta4, T9V, Ta0; |
942 | | T9Y = FNMS(KP707106781, T9X, T9W); |
943 | | Ta3 = FNMS(KP707106781, Ta2, Ta1); |
944 | | T9V = W[8]; |
945 | | T9Z = T9V * T9Y; |
946 | | Ta4 = T9V * Ta3; |
947 | | Ta0 = W[9]; |
948 | | rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z); |
949 | | iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4); |
950 | | } |
951 | | { |
952 | | E T7l, T79, T7f, T7g, T7m, T7e; |
953 | | T7l = T7h - T7k; |
954 | | T7e = T7c - T7d; |
955 | | T79 = W[10]; |
956 | | T7f = T79 * T7e; |
957 | | T7g = W[11]; |
958 | | T7m = T7g * T7e; |
959 | | iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f); |
960 | | rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m); |
961 | | } |
962 | | { |
963 | | E T90, T95, T91, T96, T8Z, T92; |
964 | | T90 = T7H - T7O; |
965 | | T95 = T93 - T94; |
966 | | T8Z = W[6]; |
967 | | T91 = T8Z * T90; |
968 | | T96 = T8Z * T95; |
969 | | T92 = W[7]; |
970 | | rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91); |
971 | | iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96); |
972 | | } |
973 | | { |
974 | | E T4j, T47, T4d, T4e, T4k, T4c; |
975 | | T4j = T4f - T4i; |
976 | | T4c = T4a - T4b; |
977 | | T47 = W[10]; |
978 | | T4d = T47 * T4c; |
979 | | T4e = W[11]; |
980 | | T4k = T4e * T4c; |
981 | | iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d); |
982 | | rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k); |
983 | | } |
984 | | { |
985 | | E T5q, T5v, T5r, T5w, T5n, T5s; |
986 | | T5q = FNMS(KP707106781, T5p, T5o); |
987 | | T5v = FNMS(KP707106781, T5u, T5t); |
988 | | T5n = W[8]; |
989 | | T5r = T5n * T5q; |
990 | | T5w = T5n * T5v; |
991 | | T5s = W[9]; |
992 | | rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r); |
993 | | iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w); |
994 | | } |
995 | | { |
996 | | E T4p, T4l, T4n, T4o, T4q, T4m; |
997 | | T4p = T4f + T4i; |
998 | | T4m = T4b + T4a; |
999 | | T4l = W[2]; |
1000 | | T4n = T4l * T4m; |
1001 | | T4o = W[3]; |
1002 | | T4q = T4o * T4m; |
1003 | | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n); |
1004 | | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q); |
1005 | | } |
1006 | | { |
1007 | | E T4s, T4x, T4t, T4y, T4r, T4u; |
1008 | | T4s = T39 - T3g; |
1009 | | T4x = T4v - T4w; |
1010 | | T4r = W[6]; |
1011 | | T4t = T4r * T4s; |
1012 | | T4y = T4r * T4x; |
1013 | | T4u = W[7]; |
1014 | | rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t); |
1015 | | iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y); |
1016 | | } |
1017 | | { |
1018 | | E T7u, T7z, T7v, T7A, T7t, T7w; |
1019 | | T7u = T6b - T6i; |
1020 | | T7z = T7x - T7y; |
1021 | | T7t = W[6]; |
1022 | | T7v = T7t * T7u; |
1023 | | T7A = T7t * T7z; |
1024 | | T7w = W[7]; |
1025 | | rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v); |
1026 | | iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A); |
1027 | | } |
1028 | | { |
1029 | | E T8R, T8F, T8L, T8M, T8S, T8K; |
1030 | | T8R = T8N - T8Q; |
1031 | | T8K = T8I - T8J; |
1032 | | T8F = W[10]; |
1033 | | T8L = T8F * T8K; |
1034 | | T8M = W[11]; |
1035 | | T8S = T8M * T8K; |
1036 | | iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L); |
1037 | | rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S); |
1038 | | } |
1039 | | { |
1040 | | E T8s, T8x, T8t, T8y, T8p, T8u; |
1041 | | T8s = FNMS(KP707106781, T8r, T8q); |
1042 | | T8x = FNMS(KP707106781, T8w, T8v); |
1043 | | T8p = W[8]; |
1044 | | T8t = T8p * T8s; |
1045 | | T8y = T8p * T8x; |
1046 | | T8u = W[9]; |
1047 | | rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t); |
1048 | | iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y); |
1049 | | } |
1050 | | { |
1051 | | E T8A, T8D, T8B, T8E, T8z, T8C; |
1052 | | T8A = FMA(KP707106781, T8r, T8q); |
1053 | | T8D = FMA(KP707106781, T8w, T8v); |
1054 | | T8z = W[0]; |
1055 | | T8B = T8z * T8A; |
1056 | | T8E = T8z * T8D; |
1057 | | T8C = W[1]; |
1058 | | rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B); |
1059 | | iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E); |
1060 | | } |
1061 | | { |
1062 | | E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw; |
1063 | | TG = TE - TF; |
1064 | | TH = FNMS(KP707106781, TG, TD); |
1065 | | TN = FMA(KP707106781, TG, TD); |
1066 | | TK = FMA(KP707106781, Tv, Tk); |
1067 | | TJ = W[4]; |
1068 | | TL = TJ * TK; |
1069 | | TM = W[5]; |
1070 | | TO = TM * TK; |
1071 | | Tw = FNMS(KP707106781, Tv, Tk); |
1072 | | Tf = W[12]; |
1073 | | Tx = Tf * Tw; |
1074 | | Ty = W[13]; |
1075 | | TI = Ty * Tw; |
1076 | | iio[WS(vs, 7)] = FNMS(Ty, TH, Tx); |
1077 | | rio[WS(vs, 7)] = FMA(Tf, TH, TI); |
1078 | | iio[WS(vs, 3)] = FNMS(TM, TN, TL); |
1079 | | rio[WS(vs, 3)] = FMA(TJ, TN, TO); |
1080 | | } |
1081 | | { |
1082 | | E T5f, T5l, T5h, T5j, T5k, T5m, T4N, T55, T56, T5g, T5e, T5i, T54; |
1083 | | T5e = T5c - T5d; |
1084 | | T5f = FNMS(KP707106781, T5e, T5b); |
1085 | | T5l = FMA(KP707106781, T5e, T5b); |
1086 | | T5i = FMA(KP707106781, T53, T4S); |
1087 | | T5h = W[4]; |
1088 | | T5j = T5h * T5i; |
1089 | | T5k = W[5]; |
1090 | | T5m = T5k * T5i; |
1091 | | T54 = FNMS(KP707106781, T53, T4S); |
1092 | | T4N = W[12]; |
1093 | | T55 = T4N * T54; |
1094 | | T56 = W[13]; |
1095 | | T5g = T56 * T54; |
1096 | | iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55); |
1097 | | rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g); |
1098 | | iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j); |
1099 | | rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m); |
1100 | | } |
1101 | | { |
1102 | | E T2d, T2j, T2f, T2h, T2i, T2k, T1L, T23, T24, T2e, T2c, T2g, T22; |
1103 | | T2c = T2a - T2b; |
1104 | | T2d = FNMS(KP707106781, T2c, T29); |
1105 | | T2j = FMA(KP707106781, T2c, T29); |
1106 | | T2g = FMA(KP707106781, T21, T1Q); |
1107 | | T2f = W[4]; |
1108 | | T2h = T2f * T2g; |
1109 | | T2i = W[5]; |
1110 | | T2k = T2i * T2g; |
1111 | | T22 = FNMS(KP707106781, T21, T1Q); |
1112 | | T1L = W[12]; |
1113 | | T23 = T1L * T22; |
1114 | | T24 = W[13]; |
1115 | | T2e = T24 * T22; |
1116 | | iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23); |
1117 | | rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e); |
1118 | | iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h); |
1119 | | rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k); |
1120 | | } |
1121 | | { |
1122 | | E T3J, T3P, T3L, T3N, T3O, T3Q, T3h, T3z, T3A, T3K, T3I, T3M, T3y; |
1123 | | T3I = T3G - T3H; |
1124 | | T3J = FNMS(KP707106781, T3I, T3F); |
1125 | | T3P = FMA(KP707106781, T3I, T3F); |
1126 | | T3M = FMA(KP707106781, T3x, T3m); |
1127 | | T3L = W[4]; |
1128 | | T3N = T3L * T3M; |
1129 | | T3O = W[5]; |
1130 | | T3Q = T3O * T3M; |
1131 | | T3y = FNMS(KP707106781, T3x, T3m); |
1132 | | T3h = W[12]; |
1133 | | T3z = T3h * T3y; |
1134 | | T3A = W[13]; |
1135 | | T3K = T3A * T3y; |
1136 | | iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z); |
1137 | | rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K); |
1138 | | iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N); |
1139 | | rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q); |
1140 | | } |
1141 | | { |
1142 | | E T6L, T6R, T6N, T6P, T6Q, T6S, T6j, T6B, T6C, T6M, T6K, T6O, T6A; |
1143 | | T6K = T6I - T6J; |
1144 | | T6L = FNMS(KP707106781, T6K, T6H); |
1145 | | T6R = FMA(KP707106781, T6K, T6H); |
1146 | | T6O = FMA(KP707106781, T6z, T6o); |
1147 | | T6N = W[4]; |
1148 | | T6P = T6N * T6O; |
1149 | | T6Q = W[5]; |
1150 | | T6S = T6Q * T6O; |
1151 | | T6A = FNMS(KP707106781, T6z, T6o); |
1152 | | T6j = W[12]; |
1153 | | T6B = T6j * T6A; |
1154 | | T6C = W[13]; |
1155 | | T6M = T6C * T6A; |
1156 | | iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B); |
1157 | | rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M); |
1158 | | iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P); |
1159 | | rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S); |
1160 | | } |
1161 | | { |
1162 | | E Tbj, Tbp, Tbl, Tbn, Tbo, Tbq, TaR, Tb9, Tba, Tbk, Tbi, Tbm, Tb8; |
1163 | | Tbi = Tbg - Tbh; |
1164 | | Tbj = FNMS(KP707106781, Tbi, Tbf); |
1165 | | Tbp = FMA(KP707106781, Tbi, Tbf); |
1166 | | Tbm = FMA(KP707106781, Tb7, TaW); |
1167 | | Tbl = W[4]; |
1168 | | Tbn = Tbl * Tbm; |
1169 | | Tbo = W[5]; |
1170 | | Tbq = Tbo * Tbm; |
1171 | | Tb8 = FNMS(KP707106781, Tb7, TaW); |
1172 | | TaR = W[12]; |
1173 | | Tb9 = TaR * Tb8; |
1174 | | Tba = W[13]; |
1175 | | Tbk = Tba * Tb8; |
1176 | | iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9); |
1177 | | rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk); |
1178 | | iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn); |
1179 | | rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq); |
1180 | | } |
1181 | | { |
1182 | | E T8h, T8n, T8j, T8l, T8m, T8o, T7P, T87, T88, T8i, T8g, T8k, T86; |
1183 | | T8g = T8e - T8f; |
1184 | | T8h = FNMS(KP707106781, T8g, T8d); |
1185 | | T8n = FMA(KP707106781, T8g, T8d); |
1186 | | T8k = FMA(KP707106781, T85, T7U); |
1187 | | T8j = W[4]; |
1188 | | T8l = T8j * T8k; |
1189 | | T8m = W[5]; |
1190 | | T8o = T8m * T8k; |
1191 | | T86 = FNMS(KP707106781, T85, T7U); |
1192 | | T7P = W[12]; |
1193 | | T87 = T7P * T86; |
1194 | | T88 = W[13]; |
1195 | | T8i = T88 * T86; |
1196 | | iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87); |
1197 | | rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i); |
1198 | | iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l); |
1199 | | rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o); |
1200 | | } |
1201 | | { |
1202 | | E T9N, T9T, T9P, T9R, T9S, T9U, T9l, T9D, T9E, T9O, T9M, T9Q, T9C; |
1203 | | T9M = T9K - T9L; |
1204 | | T9N = FNMS(KP707106781, T9M, T9J); |
1205 | | T9T = FMA(KP707106781, T9M, T9J); |
1206 | | T9Q = FMA(KP707106781, T9B, T9q); |
1207 | | T9P = W[4]; |
1208 | | T9R = T9P * T9Q; |
1209 | | T9S = W[5]; |
1210 | | T9U = T9S * T9Q; |
1211 | | T9C = FNMS(KP707106781, T9B, T9q); |
1212 | | T9l = W[12]; |
1213 | | T9D = T9l * T9C; |
1214 | | T9E = W[13]; |
1215 | | T9O = T9E * T9C; |
1216 | | iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D); |
1217 | | rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O); |
1218 | | iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R); |
1219 | | rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U); |
1220 | | } |
1221 | | } |
1222 | | } |
1223 | | } |
1224 | | |
1225 | | static const tw_instr twinstr[] = { |
1226 | | { TW_FULL, 0, 8 }, |
1227 | | { TW_NEXT, 1, 0 } |
1228 | | }; |
1229 | | |
1230 | | static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 352, 112, 176, 0 }, 0, 0, 0 }; |
1231 | | |
1232 | | void X(codelet_q1_8) (planner *p) { |
1233 | | X(kdft_difsq_register) (p, q1_8, &desc); |
1234 | | } |
1235 | | #else |
1236 | | |
1237 | | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */ |
1238 | | |
1239 | | /* |
1240 | | * This function contains 528 FP additions, 256 FP multiplications, |
1241 | | * (or, 416 additions, 144 multiplications, 112 fused multiply/add), |
1242 | | * 142 stack variables, 1 constants, and 256 memory accesses |
1243 | | */ |
1244 | | #include "dft/scalar/q.h" |
1245 | | |
1246 | | static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
1247 | 0 | { |
1248 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1249 | 0 | { |
1250 | 0 | INT m; |
1251 | 0 | for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
1252 | 0 | E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j; |
1253 | 0 | E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G; |
1254 | 0 | E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U; |
1255 | 0 | E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m; |
1256 | 0 | E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59; |
1257 | 0 | E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z; |
1258 | 0 | E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z; |
1259 | 0 | E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N; |
1260 | 0 | E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e; |
1261 | 0 | { |
1262 | 0 | E T3, Ty, Tj, TY, T6, Tg, TB, TZ; |
1263 | 0 | { |
1264 | 0 | E T1, T2, Th, Ti; |
1265 | 0 | T1 = rio[0]; |
1266 | 0 | T2 = rio[WS(rs, 4)]; |
1267 | 0 | T3 = T1 + T2; |
1268 | 0 | Ty = T1 - T2; |
1269 | 0 | Th = iio[0]; |
1270 | 0 | Ti = iio[WS(rs, 4)]; |
1271 | 0 | Tj = Th - Ti; |
1272 | 0 | TY = Th + Ti; |
1273 | 0 | } |
1274 | 0 | { |
1275 | 0 | E T4, T5, Tz, TA; |
1276 | 0 | T4 = rio[WS(rs, 2)]; |
1277 | 0 | T5 = rio[WS(rs, 6)]; |
1278 | 0 | T6 = T4 + T5; |
1279 | 0 | Tg = T4 - T5; |
1280 | 0 | Tz = iio[WS(rs, 2)]; |
1281 | 0 | TA = iio[WS(rs, 6)]; |
1282 | 0 | TB = Tz - TA; |
1283 | 0 | TZ = Tz + TA; |
1284 | 0 | } |
1285 | 0 | T7 = T3 + T6; |
1286 | 0 | T14 = T3 - T6; |
1287 | 0 | T1g = TY + TZ; |
1288 | 0 | Tk = Tg + Tj; |
1289 | 0 | TC = Ty - TB; |
1290 | 0 | TQ = Tj - Tg; |
1291 | 0 | T10 = TY - TZ; |
1292 | 0 | TM = Ty + TB; |
1293 | 0 | } |
1294 | 0 | { |
1295 | 0 | E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o; |
1296 | 0 | { |
1297 | 0 | E T1q, T1r, T1J, T1K; |
1298 | 0 | T1q = rio[WS(vs, 1) + WS(rs, 1)]; |
1299 | 0 | T1r = rio[WS(vs, 1) + WS(rs, 5)]; |
1300 | 0 | T1s = T1q + T1r; |
1301 | 0 | T1I = T1q - T1r; |
1302 | 0 | T1J = iio[WS(vs, 1) + WS(rs, 1)]; |
1303 | 0 | T1K = iio[WS(vs, 1) + WS(rs, 5)]; |
1304 | 0 | T1L = T1J - T1K; |
1305 | 0 | T2n = T1J + T1K; |
1306 | 0 | } |
1307 | 0 | { |
1308 | 0 | E T1t, T1u, T1E, T1F; |
1309 | 0 | T1t = rio[WS(vs, 1) + WS(rs, 7)]; |
1310 | 0 | T1u = rio[WS(vs, 1) + WS(rs, 3)]; |
1311 | 0 | T1v = T1t + T1u; |
1312 | 0 | T1D = T1t - T1u; |
1313 | 0 | T1E = iio[WS(vs, 1) + WS(rs, 7)]; |
1314 | 0 | T1F = iio[WS(vs, 1) + WS(rs, 3)]; |
1315 | 0 | T1G = T1E - T1F; |
1316 | 0 | T2o = T1E + T1F; |
1317 | 0 | } |
1318 | 0 | T1w = T1s + T1v; |
1319 | 0 | T2p = T2n - T2o; |
1320 | 0 | T2z = T2n + T2o; |
1321 | 0 | T1H = T1D - T1G; |
1322 | 0 | T1M = T1I + T1L; |
1323 | 0 | T1W = T1D + T1G; |
1324 | 0 | T2j = T1v - T1s; |
1325 | 0 | T1V = T1L - T1I; |
1326 | 0 | } |
1327 | 0 | { |
1328 | 0 | E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J; |
1329 | 0 | { |
1330 | 0 | E T7L, T7M, T81, T82; |
1331 | 0 | T7L = rio[WS(vs, 6)]; |
1332 | 0 | T7M = rio[WS(vs, 6) + WS(rs, 4)]; |
1333 | 0 | T7N = T7L + T7M; |
1334 | 0 | T8i = T7L - T7M; |
1335 | 0 | T81 = iio[WS(vs, 6)]; |
1336 | 0 | T82 = iio[WS(vs, 6) + WS(rs, 4)]; |
1337 | 0 | T83 = T81 - T82; |
1338 | 0 | T8I = T81 + T82; |
1339 | 0 | } |
1340 | 0 | { |
1341 | 0 | E T7O, T7P, T8j, T8k; |
1342 | 0 | T7O = rio[WS(vs, 6) + WS(rs, 2)]; |
1343 | 0 | T7P = rio[WS(vs, 6) + WS(rs, 6)]; |
1344 | 0 | T7Q = T7O + T7P; |
1345 | 0 | T80 = T7O - T7P; |
1346 | 0 | T8j = iio[WS(vs, 6) + WS(rs, 2)]; |
1347 | 0 | T8k = iio[WS(vs, 6) + WS(rs, 6)]; |
1348 | 0 | T8l = T8j - T8k; |
1349 | 0 | T8J = T8j + T8k; |
1350 | 0 | } |
1351 | 0 | T7R = T7N + T7Q; |
1352 | 0 | T8O = T7N - T7Q; |
1353 | 0 | T90 = T8I + T8J; |
1354 | 0 | T84 = T80 + T83; |
1355 | 0 | T8m = T8i - T8l; |
1356 | 0 | T8A = T83 - T80; |
1357 | 0 | T8K = T8I - T8J; |
1358 | 0 | T8w = T8i + T8l; |
1359 | 0 | } |
1360 | 0 | { |
1361 | 0 | E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8; |
1362 | 0 | { |
1363 | 0 | E T9a, T9b, T9t, T9u; |
1364 | 0 | T9a = rio[WS(vs, 7) + WS(rs, 1)]; |
1365 | 0 | T9b = rio[WS(vs, 7) + WS(rs, 5)]; |
1366 | 0 | T9c = T9a + T9b; |
1367 | 0 | T9s = T9a - T9b; |
1368 | 0 | T9t = iio[WS(vs, 7) + WS(rs, 1)]; |
1369 | 0 | T9u = iio[WS(vs, 7) + WS(rs, 5)]; |
1370 | 0 | T9v = T9t - T9u; |
1371 | 0 | Ta7 = T9t + T9u; |
1372 | 0 | } |
1373 | 0 | { |
1374 | 0 | E T9d, T9e, T9o, T9p; |
1375 | 0 | T9d = rio[WS(vs, 7) + WS(rs, 7)]; |
1376 | 0 | T9e = rio[WS(vs, 7) + WS(rs, 3)]; |
1377 | 0 | T9f = T9d + T9e; |
1378 | 0 | T9n = T9d - T9e; |
1379 | 0 | T9o = iio[WS(vs, 7) + WS(rs, 7)]; |
1380 | 0 | T9p = iio[WS(vs, 7) + WS(rs, 3)]; |
1381 | 0 | T9q = T9o - T9p; |
1382 | 0 | Ta8 = T9o + T9p; |
1383 | 0 | } |
1384 | 0 | T9g = T9c + T9f; |
1385 | 0 | Ta9 = Ta7 - Ta8; |
1386 | 0 | Taj = Ta7 + Ta8; |
1387 | 0 | T9r = T9n - T9q; |
1388 | 0 | T9w = T9s + T9v; |
1389 | 0 | T9G = T9n + T9q; |
1390 | 0 | Ta3 = T9f - T9c; |
1391 | 0 | T9F = T9v - T9s; |
1392 | 0 | } |
1393 | 0 | { |
1394 | 0 | E Ta, Tq, Tt, T15, Td, Tl, To, T16; |
1395 | 0 | { |
1396 | 0 | E T8, T9, Tr, Ts; |
1397 | 0 | T8 = rio[WS(rs, 1)]; |
1398 | 0 | T9 = rio[WS(rs, 5)]; |
1399 | 0 | Ta = T8 + T9; |
1400 | 0 | Tq = T8 - T9; |
1401 | 0 | Tr = iio[WS(rs, 1)]; |
1402 | 0 | Ts = iio[WS(rs, 5)]; |
1403 | 0 | Tt = Tr - Ts; |
1404 | 0 | T15 = Tr + Ts; |
1405 | 0 | } |
1406 | 0 | { |
1407 | 0 | E Tb, Tc, Tm, Tn; |
1408 | 0 | Tb = rio[WS(rs, 7)]; |
1409 | 0 | Tc = rio[WS(rs, 3)]; |
1410 | 0 | Td = Tb + Tc; |
1411 | 0 | Tl = Tb - Tc; |
1412 | 0 | Tm = iio[WS(rs, 7)]; |
1413 | 0 | Tn = iio[WS(rs, 3)]; |
1414 | 0 | To = Tm - Tn; |
1415 | 0 | T16 = Tm + Tn; |
1416 | 0 | } |
1417 | 0 | Te = Ta + Td; |
1418 | 0 | T17 = T15 - T16; |
1419 | 0 | T1h = T15 + T16; |
1420 | 0 | Tp = Tl - To; |
1421 | 0 | Tu = Tq + Tt; |
1422 | 0 | TE = Tl + To; |
1423 | 0 | T11 = Td - Ta; |
1424 | 0 | TD = Tt - Tq; |
1425 | 0 | } |
1426 | 0 | { |
1427 | 0 | E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h; |
1428 | 0 | { |
1429 | 0 | E T1j, T1k, T1z, T1A; |
1430 | 0 | T1j = rio[WS(vs, 1)]; |
1431 | 0 | T1k = rio[WS(vs, 1) + WS(rs, 4)]; |
1432 | 0 | T1l = T1j + T1k; |
1433 | 0 | T1Q = T1j - T1k; |
1434 | 0 | T1z = iio[WS(vs, 1)]; |
1435 | 0 | T1A = iio[WS(vs, 1) + WS(rs, 4)]; |
1436 | 0 | T1B = T1z - T1A; |
1437 | 0 | T2g = T1z + T1A; |
1438 | 0 | } |
1439 | 0 | { |
1440 | 0 | E T1m, T1n, T1R, T1S; |
1441 | 0 | T1m = rio[WS(vs, 1) + WS(rs, 2)]; |
1442 | 0 | T1n = rio[WS(vs, 1) + WS(rs, 6)]; |
1443 | 0 | T1o = T1m + T1n; |
1444 | 0 | T1y = T1m - T1n; |
1445 | 0 | T1R = iio[WS(vs, 1) + WS(rs, 2)]; |
1446 | 0 | T1S = iio[WS(vs, 1) + WS(rs, 6)]; |
1447 | 0 | T1T = T1R - T1S; |
1448 | 0 | T2h = T1R + T1S; |
1449 | 0 | } |
1450 | 0 | T1p = T1l + T1o; |
1451 | 0 | T2m = T1l - T1o; |
1452 | 0 | T2y = T2g + T2h; |
1453 | 0 | T1C = T1y + T1B; |
1454 | 0 | T1U = T1Q - T1T; |
1455 | 0 | T28 = T1B - T1y; |
1456 | 0 | T2i = T2g - T2h; |
1457 | 0 | T24 = T1Q + T1T; |
1458 | 0 | } |
1459 | 0 | { |
1460 | 0 | E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q; |
1461 | 0 | { |
1462 | 0 | E T7S, T7T, T8b, T8c; |
1463 | 0 | T7S = rio[WS(vs, 6) + WS(rs, 1)]; |
1464 | 0 | T7T = rio[WS(vs, 6) + WS(rs, 5)]; |
1465 | 0 | T7U = T7S + T7T; |
1466 | 0 | T8a = T7S - T7T; |
1467 | 0 | T8b = iio[WS(vs, 6) + WS(rs, 1)]; |
1468 | 0 | T8c = iio[WS(vs, 6) + WS(rs, 5)]; |
1469 | 0 | T8d = T8b - T8c; |
1470 | 0 | T8P = T8b + T8c; |
1471 | 0 | } |
1472 | 0 | { |
1473 | 0 | E T7V, T7W, T86, T87; |
1474 | 0 | T7V = rio[WS(vs, 6) + WS(rs, 7)]; |
1475 | 0 | T7W = rio[WS(vs, 6) + WS(rs, 3)]; |
1476 | 0 | T7X = T7V + T7W; |
1477 | 0 | T85 = T7V - T7W; |
1478 | 0 | T86 = iio[WS(vs, 6) + WS(rs, 7)]; |
1479 | 0 | T87 = iio[WS(vs, 6) + WS(rs, 3)]; |
1480 | 0 | T88 = T86 - T87; |
1481 | 0 | T8Q = T86 + T87; |
1482 | 0 | } |
1483 | 0 | T7Y = T7U + T7X; |
1484 | 0 | T8R = T8P - T8Q; |
1485 | 0 | T91 = T8P + T8Q; |
1486 | 0 | T89 = T85 - T88; |
1487 | 0 | T8e = T8a + T8d; |
1488 | 0 | T8o = T85 + T88; |
1489 | 0 | T8L = T7X - T7U; |
1490 | 0 | T8n = T8d - T8a; |
1491 | 0 | } |
1492 | 0 | { |
1493 | 0 | E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1; |
1494 | 0 | { |
1495 | 0 | E T93, T94, T9j, T9k; |
1496 | 0 | T93 = rio[WS(vs, 7)]; |
1497 | 0 | T94 = rio[WS(vs, 7) + WS(rs, 4)]; |
1498 | 0 | T95 = T93 + T94; |
1499 | 0 | T9A = T93 - T94; |
1500 | 0 | T9j = iio[WS(vs, 7)]; |
1501 | 0 | T9k = iio[WS(vs, 7) + WS(rs, 4)]; |
1502 | 0 | T9l = T9j - T9k; |
1503 | 0 | Ta0 = T9j + T9k; |
1504 | 0 | } |
1505 | 0 | { |
1506 | 0 | E T96, T97, T9B, T9C; |
1507 | 0 | T96 = rio[WS(vs, 7) + WS(rs, 2)]; |
1508 | 0 | T97 = rio[WS(vs, 7) + WS(rs, 6)]; |
1509 | 0 | T98 = T96 + T97; |
1510 | 0 | T9i = T96 - T97; |
1511 | 0 | T9B = iio[WS(vs, 7) + WS(rs, 2)]; |
1512 | 0 | T9C = iio[WS(vs, 7) + WS(rs, 6)]; |
1513 | 0 | T9D = T9B - T9C; |
1514 | 0 | Ta1 = T9B + T9C; |
1515 | 0 | } |
1516 | 0 | T99 = T95 + T98; |
1517 | 0 | Ta6 = T95 - T98; |
1518 | 0 | Tai = Ta0 + Ta1; |
1519 | 0 | T9m = T9i + T9l; |
1520 | 0 | T9E = T9A - T9D; |
1521 | 0 | T9S = T9l - T9i; |
1522 | 0 | Ta2 = Ta0 - Ta1; |
1523 | 0 | T9O = T9A + T9D; |
1524 | 0 | } |
1525 | 0 | { |
1526 | 0 | E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z; |
1527 | 0 | { |
1528 | 0 | E T2B, T2C, T2R, T2S; |
1529 | 0 | T2B = rio[WS(vs, 2)]; |
1530 | 0 | T2C = rio[WS(vs, 2) + WS(rs, 4)]; |
1531 | 0 | T2D = T2B + T2C; |
1532 | 0 | T38 = T2B - T2C; |
1533 | 0 | T2R = iio[WS(vs, 2)]; |
1534 | 0 | T2S = iio[WS(vs, 2) + WS(rs, 4)]; |
1535 | 0 | T2T = T2R - T2S; |
1536 | 0 | T3y = T2R + T2S; |
1537 | 0 | } |
1538 | 0 | { |
1539 | 0 | E T2E, T2F, T39, T3a; |
1540 | 0 | T2E = rio[WS(vs, 2) + WS(rs, 2)]; |
1541 | 0 | T2F = rio[WS(vs, 2) + WS(rs, 6)]; |
1542 | 0 | T2G = T2E + T2F; |
1543 | 0 | T2Q = T2E - T2F; |
1544 | 0 | T39 = iio[WS(vs, 2) + WS(rs, 2)]; |
1545 | 0 | T3a = iio[WS(vs, 2) + WS(rs, 6)]; |
1546 | 0 | T3b = T39 - T3a; |
1547 | 0 | T3z = T39 + T3a; |
1548 | 0 | } |
1549 | 0 | T2H = T2D + T2G; |
1550 | 0 | T3E = T2D - T2G; |
1551 | 0 | T3Q = T3y + T3z; |
1552 | 0 | T2U = T2Q + T2T; |
1553 | 0 | T3c = T38 - T3b; |
1554 | 0 | T3q = T2T - T2Q; |
1555 | 0 | T3A = T3y - T3z; |
1556 | 0 | T3m = T38 + T3b; |
1557 | 0 | } |
1558 | 0 | { |
1559 | 0 | E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y; |
1560 | 0 | { |
1561 | 0 | E T40, T41, T4j, T4k; |
1562 | 0 | T40 = rio[WS(vs, 3) + WS(rs, 1)]; |
1563 | 0 | T41 = rio[WS(vs, 3) + WS(rs, 5)]; |
1564 | 0 | T42 = T40 + T41; |
1565 | 0 | T4i = T40 - T41; |
1566 | 0 | T4j = iio[WS(vs, 3) + WS(rs, 1)]; |
1567 | 0 | T4k = iio[WS(vs, 3) + WS(rs, 5)]; |
1568 | 0 | T4l = T4j - T4k; |
1569 | 0 | T4X = T4j + T4k; |
1570 | 0 | } |
1571 | 0 | { |
1572 | 0 | E T43, T44, T4e, T4f; |
1573 | 0 | T43 = rio[WS(vs, 3) + WS(rs, 7)]; |
1574 | 0 | T44 = rio[WS(vs, 3) + WS(rs, 3)]; |
1575 | 0 | T45 = T43 + T44; |
1576 | 0 | T4d = T43 - T44; |
1577 | 0 | T4e = iio[WS(vs, 3) + WS(rs, 7)]; |
1578 | 0 | T4f = iio[WS(vs, 3) + WS(rs, 3)]; |
1579 | 0 | T4g = T4e - T4f; |
1580 | 0 | T4Y = T4e + T4f; |
1581 | 0 | } |
1582 | 0 | T46 = T42 + T45; |
1583 | 0 | T4Z = T4X - T4Y; |
1584 | 0 | T59 = T4X + T4Y; |
1585 | 0 | T4h = T4d - T4g; |
1586 | 0 | T4m = T4i + T4l; |
1587 | 0 | T4w = T4d + T4g; |
1588 | 0 | T4T = T45 - T42; |
1589 | 0 | T4v = T4l - T4i; |
1590 | 0 | } |
1591 | 0 | { |
1592 | 0 | E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69; |
1593 | 0 | { |
1594 | 0 | E T5b, T5c, T5r, T5s; |
1595 | 0 | T5b = rio[WS(vs, 4)]; |
1596 | 0 | T5c = rio[WS(vs, 4) + WS(rs, 4)]; |
1597 | 0 | T5d = T5b + T5c; |
1598 | 0 | T5I = T5b - T5c; |
1599 | 0 | T5r = iio[WS(vs, 4)]; |
1600 | 0 | T5s = iio[WS(vs, 4) + WS(rs, 4)]; |
1601 | 0 | T5t = T5r - T5s; |
1602 | 0 | T68 = T5r + T5s; |
1603 | 0 | } |
1604 | 0 | { |
1605 | 0 | E T5e, T5f, T5J, T5K; |
1606 | 0 | T5e = rio[WS(vs, 4) + WS(rs, 2)]; |
1607 | 0 | T5f = rio[WS(vs, 4) + WS(rs, 6)]; |
1608 | 0 | T5g = T5e + T5f; |
1609 | 0 | T5q = T5e - T5f; |
1610 | 0 | T5J = iio[WS(vs, 4) + WS(rs, 2)]; |
1611 | 0 | T5K = iio[WS(vs, 4) + WS(rs, 6)]; |
1612 | 0 | T5L = T5J - T5K; |
1613 | 0 | T69 = T5J + T5K; |
1614 | 0 | } |
1615 | 0 | T5h = T5d + T5g; |
1616 | 0 | T6e = T5d - T5g; |
1617 | 0 | T6q = T68 + T69; |
1618 | 0 | T5u = T5q + T5t; |
1619 | 0 | T5M = T5I - T5L; |
1620 | 0 | T60 = T5t - T5q; |
1621 | 0 | T6a = T68 - T69; |
1622 | 0 | T5W = T5I + T5L; |
1623 | 0 | } |
1624 | 0 | { |
1625 | 0 | E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y; |
1626 | 0 | { |
1627 | 0 | E T6A, T6B, T6T, T6U; |
1628 | 0 | T6A = rio[WS(vs, 5) + WS(rs, 1)]; |
1629 | 0 | T6B = rio[WS(vs, 5) + WS(rs, 5)]; |
1630 | 0 | T6C = T6A + T6B; |
1631 | 0 | T6S = T6A - T6B; |
1632 | 0 | T6T = iio[WS(vs, 5) + WS(rs, 1)]; |
1633 | 0 | T6U = iio[WS(vs, 5) + WS(rs, 5)]; |
1634 | 0 | T6V = T6T - T6U; |
1635 | 0 | T7x = T6T + T6U; |
1636 | 0 | } |
1637 | 0 | { |
1638 | 0 | E T6D, T6E, T6O, T6P; |
1639 | 0 | T6D = rio[WS(vs, 5) + WS(rs, 7)]; |
1640 | 0 | T6E = rio[WS(vs, 5) + WS(rs, 3)]; |
1641 | 0 | T6F = T6D + T6E; |
1642 | 0 | T6N = T6D - T6E; |
1643 | 0 | T6O = iio[WS(vs, 5) + WS(rs, 7)]; |
1644 | 0 | T6P = iio[WS(vs, 5) + WS(rs, 3)]; |
1645 | 0 | T6Q = T6O - T6P; |
1646 | 0 | T7y = T6O + T6P; |
1647 | 0 | } |
1648 | 0 | T6G = T6C + T6F; |
1649 | 0 | T7z = T7x - T7y; |
1650 | 0 | T7J = T7x + T7y; |
1651 | 0 | T6R = T6N - T6Q; |
1652 | 0 | T6W = T6S + T6V; |
1653 | 0 | T76 = T6N + T6Q; |
1654 | 0 | T7t = T6F - T6C; |
1655 | 0 | T75 = T6V - T6S; |
1656 | 0 | } |
1657 | 0 | { |
1658 | 0 | E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G; |
1659 | 0 | { |
1660 | 0 | E T2I, T2J, T31, T32; |
1661 | 0 | T2I = rio[WS(vs, 2) + WS(rs, 1)]; |
1662 | 0 | T2J = rio[WS(vs, 2) + WS(rs, 5)]; |
1663 | 0 | T2K = T2I + T2J; |
1664 | 0 | T30 = T2I - T2J; |
1665 | 0 | T31 = iio[WS(vs, 2) + WS(rs, 1)]; |
1666 | 0 | T32 = iio[WS(vs, 2) + WS(rs, 5)]; |
1667 | 0 | T33 = T31 - T32; |
1668 | 0 | T3F = T31 + T32; |
1669 | 0 | } |
1670 | 0 | { |
1671 | 0 | E T2L, T2M, T2W, T2X; |
1672 | 0 | T2L = rio[WS(vs, 2) + WS(rs, 7)]; |
1673 | 0 | T2M = rio[WS(vs, 2) + WS(rs, 3)]; |
1674 | 0 | T2N = T2L + T2M; |
1675 | 0 | T2V = T2L - T2M; |
1676 | 0 | T2W = iio[WS(vs, 2) + WS(rs, 7)]; |
1677 | 0 | T2X = iio[WS(vs, 2) + WS(rs, 3)]; |
1678 | 0 | T2Y = T2W - T2X; |
1679 | 0 | T3G = T2W + T2X; |
1680 | 0 | } |
1681 | 0 | T2O = T2K + T2N; |
1682 | 0 | T3H = T3F - T3G; |
1683 | 0 | T3R = T3F + T3G; |
1684 | 0 | T2Z = T2V - T2Y; |
1685 | 0 | T34 = T30 + T33; |
1686 | 0 | T3e = T2V + T2Y; |
1687 | 0 | T3B = T2N - T2K; |
1688 | 0 | T3d = T33 - T30; |
1689 | 0 | } |
1690 | 0 | { |
1691 | 0 | E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R; |
1692 | 0 | { |
1693 | 0 | E T3T, T3U, T49, T4a; |
1694 | 0 | T3T = rio[WS(vs, 3)]; |
1695 | 0 | T3U = rio[WS(vs, 3) + WS(rs, 4)]; |
1696 | 0 | T3V = T3T + T3U; |
1697 | 0 | T4q = T3T - T3U; |
1698 | 0 | T49 = iio[WS(vs, 3)]; |
1699 | 0 | T4a = iio[WS(vs, 3) + WS(rs, 4)]; |
1700 | 0 | T4b = T49 - T4a; |
1701 | 0 | T4Q = T49 + T4a; |
1702 | 0 | } |
1703 | 0 | { |
1704 | 0 | E T3W, T3X, T4r, T4s; |
1705 | 0 | T3W = rio[WS(vs, 3) + WS(rs, 2)]; |
1706 | 0 | T3X = rio[WS(vs, 3) + WS(rs, 6)]; |
1707 | 0 | T3Y = T3W + T3X; |
1708 | 0 | T48 = T3W - T3X; |
1709 | 0 | T4r = iio[WS(vs, 3) + WS(rs, 2)]; |
1710 | 0 | T4s = iio[WS(vs, 3) + WS(rs, 6)]; |
1711 | 0 | T4t = T4r - T4s; |
1712 | 0 | T4R = T4r + T4s; |
1713 | 0 | } |
1714 | 0 | T3Z = T3V + T3Y; |
1715 | 0 | T4W = T3V - T3Y; |
1716 | 0 | T58 = T4Q + T4R; |
1717 | 0 | T4c = T48 + T4b; |
1718 | 0 | T4u = T4q - T4t; |
1719 | 0 | T4I = T4b - T48; |
1720 | 0 | T4S = T4Q - T4R; |
1721 | 0 | T4E = T4q + T4t; |
1722 | 0 | } |
1723 | 0 | { |
1724 | 0 | E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g; |
1725 | 0 | { |
1726 | 0 | E T5i, T5j, T5B, T5C; |
1727 | 0 | T5i = rio[WS(vs, 4) + WS(rs, 1)]; |
1728 | 0 | T5j = rio[WS(vs, 4) + WS(rs, 5)]; |
1729 | 0 | T5k = T5i + T5j; |
1730 | 0 | T5A = T5i - T5j; |
1731 | 0 | T5B = iio[WS(vs, 4) + WS(rs, 1)]; |
1732 | 0 | T5C = iio[WS(vs, 4) + WS(rs, 5)]; |
1733 | 0 | T5D = T5B - T5C; |
1734 | 0 | T6f = T5B + T5C; |
1735 | 0 | } |
1736 | 0 | { |
1737 | 0 | E T5l, T5m, T5w, T5x; |
1738 | 0 | T5l = rio[WS(vs, 4) + WS(rs, 7)]; |
1739 | 0 | T5m = rio[WS(vs, 4) + WS(rs, 3)]; |
1740 | 0 | T5n = T5l + T5m; |
1741 | 0 | T5v = T5l - T5m; |
1742 | 0 | T5w = iio[WS(vs, 4) + WS(rs, 7)]; |
1743 | 0 | T5x = iio[WS(vs, 4) + WS(rs, 3)]; |
1744 | 0 | T5y = T5w - T5x; |
1745 | 0 | T6g = T5w + T5x; |
1746 | 0 | } |
1747 | 0 | T5o = T5k + T5n; |
1748 | 0 | T6h = T6f - T6g; |
1749 | 0 | T6r = T6f + T6g; |
1750 | 0 | T5z = T5v - T5y; |
1751 | 0 | T5E = T5A + T5D; |
1752 | 0 | T5O = T5v + T5y; |
1753 | 0 | T6b = T5n - T5k; |
1754 | 0 | T5N = T5D - T5A; |
1755 | 0 | } |
1756 | 0 | { |
1757 | 0 | E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r; |
1758 | 0 | { |
1759 | 0 | E T6t, T6u, T6J, T6K; |
1760 | 0 | T6t = rio[WS(vs, 5)]; |
1761 | 0 | T6u = rio[WS(vs, 5) + WS(rs, 4)]; |
1762 | 0 | T6v = T6t + T6u; |
1763 | 0 | T70 = T6t - T6u; |
1764 | 0 | T6J = iio[WS(vs, 5)]; |
1765 | 0 | T6K = iio[WS(vs, 5) + WS(rs, 4)]; |
1766 | 0 | T6L = T6J - T6K; |
1767 | 0 | T7q = T6J + T6K; |
1768 | 0 | } |
1769 | 0 | { |
1770 | 0 | E T6w, T6x, T71, T72; |
1771 | 0 | T6w = rio[WS(vs, 5) + WS(rs, 2)]; |
1772 | 0 | T6x = rio[WS(vs, 5) + WS(rs, 6)]; |
1773 | 0 | T6y = T6w + T6x; |
1774 | 0 | T6I = T6w - T6x; |
1775 | 0 | T71 = iio[WS(vs, 5) + WS(rs, 2)]; |
1776 | 0 | T72 = iio[WS(vs, 5) + WS(rs, 6)]; |
1777 | 0 | T73 = T71 - T72; |
1778 | 0 | T7r = T71 + T72; |
1779 | 0 | } |
1780 | 0 | T6z = T6v + T6y; |
1781 | 0 | T7w = T6v - T6y; |
1782 | 0 | T7I = T7q + T7r; |
1783 | 0 | T6M = T6I + T6L; |
1784 | 0 | T74 = T70 - T73; |
1785 | 0 | T7i = T6L - T6I; |
1786 | 0 | T7s = T7q - T7r; |
1787 | 0 | T7e = T70 + T73; |
1788 | 0 | } |
1789 | 0 | rio[0] = T7 + Te; |
1790 | 0 | iio[0] = T1g + T1h; |
1791 | 0 | rio[WS(rs, 1)] = T1p + T1w; |
1792 | 0 | iio[WS(rs, 1)] = T2y + T2z; |
1793 | 0 | rio[WS(rs, 3)] = T3Z + T46; |
1794 | 0 | rio[WS(rs, 2)] = T2H + T2O; |
1795 | 0 | iio[WS(rs, 2)] = T3Q + T3R; |
1796 | 0 | iio[WS(rs, 3)] = T58 + T59; |
1797 | 0 | rio[WS(rs, 6)] = T7R + T7Y; |
1798 | 0 | iio[WS(rs, 6)] = T90 + T91; |
1799 | 0 | iio[WS(rs, 5)] = T7I + T7J; |
1800 | 0 | rio[WS(rs, 5)] = T6z + T6G; |
1801 | 0 | iio[WS(rs, 4)] = T6q + T6r; |
1802 | 0 | rio[WS(rs, 4)] = T5h + T5o; |
1803 | 0 | rio[WS(rs, 7)] = T99 + T9g; |
1804 | 0 | iio[WS(rs, 7)] = Tai + Taj; |
1805 | 0 | { |
1806 | 0 | E T12, T18, TX, T13; |
1807 | 0 | T12 = T10 - T11; |
1808 | 0 | T18 = T14 - T17; |
1809 | 0 | TX = W[10]; |
1810 | 0 | T13 = W[11]; |
1811 | 0 | iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12); |
1812 | 0 | rio[WS(vs, 6)] = FMA(T13, T12, TX * T18); |
1813 | 0 | } |
1814 | 0 | { |
1815 | 0 | E Tag, Tak, Taf, Tah; |
1816 | 0 | Tag = T99 - T9g; |
1817 | 0 | Tak = Tai - Taj; |
1818 | 0 | Taf = W[6]; |
1819 | 0 | Tah = W[7]; |
1820 | 0 | rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak); |
1821 | 0 | iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak); |
1822 | 0 | } |
1823 | 0 | { |
1824 | 0 | E T8M, T8S, T8H, T8N; |
1825 | 0 | T8M = T8K - T8L; |
1826 | 0 | T8S = T8O - T8R; |
1827 | 0 | T8H = W[10]; |
1828 | 0 | T8N = W[11]; |
1829 | 0 | iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M); |
1830 | 0 | rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S); |
1831 | 0 | } |
1832 | 0 | { |
1833 | 0 | E T2k, T2q, T2f, T2l; |
1834 | 0 | T2k = T2i - T2j; |
1835 | 0 | T2q = T2m - T2p; |
1836 | 0 | T2f = W[10]; |
1837 | 0 | T2l = W[11]; |
1838 | 0 | iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k); |
1839 | 0 | rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q); |
1840 | 0 | } |
1841 | 0 | { |
1842 | 0 | E Ta4, Taa, T9Z, Ta5; |
1843 | 0 | Ta4 = Ta2 - Ta3; |
1844 | 0 | Taa = Ta6 - Ta9; |
1845 | 0 | T9Z = W[10]; |
1846 | 0 | Ta5 = W[11]; |
1847 | 0 | iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4); |
1848 | 0 | rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa); |
1849 | 0 | } |
1850 | 0 | { |
1851 | 0 | E T8Y, T92, T8X, T8Z; |
1852 | 0 | T8Y = T7R - T7Y; |
1853 | 0 | T92 = T90 - T91; |
1854 | 0 | T8X = W[6]; |
1855 | 0 | T8Z = W[7]; |
1856 | 0 | rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92); |
1857 | 0 | iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92); |
1858 | 0 | } |
1859 | 0 | { |
1860 | 0 | E T2w, T2A, T2v, T2x; |
1861 | 0 | T2w = T1p - T1w; |
1862 | 0 | T2A = T2y - T2z; |
1863 | 0 | T2v = W[6]; |
1864 | 0 | T2x = W[7]; |
1865 | 0 | rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A); |
1866 | 0 | iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A); |
1867 | 0 | } |
1868 | 0 | { |
1869 | 0 | E Tac, Tae, Tab, Tad; |
1870 | 0 | Tac = Ta3 + Ta2; |
1871 | 0 | Tae = Ta6 + Ta9; |
1872 | 0 | Tab = W[2]; |
1873 | 0 | Tad = W[3]; |
1874 | 0 | iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac); |
1875 | 0 | rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae); |
1876 | 0 | } |
1877 | 0 | { |
1878 | 0 | E T8U, T8W, T8T, T8V; |
1879 | 0 | T8U = T8L + T8K; |
1880 | 0 | T8W = T8O + T8R; |
1881 | 0 | T8T = W[2]; |
1882 | 0 | T8V = W[3]; |
1883 | 0 | iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U); |
1884 | 0 | rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W); |
1885 | 0 | } |
1886 | 0 | { |
1887 | 0 | E T1a, T1c, T19, T1b; |
1888 | 0 | T1a = T11 + T10; |
1889 | 0 | T1c = T14 + T17; |
1890 | 0 | T19 = W[2]; |
1891 | 0 | T1b = W[3]; |
1892 | 0 | iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a); |
1893 | 0 | rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c); |
1894 | 0 | } |
1895 | 0 | { |
1896 | 0 | E T1e, T1i, T1d, T1f; |
1897 | 0 | T1e = T7 - Te; |
1898 | 0 | T1i = T1g - T1h; |
1899 | 0 | T1d = W[6]; |
1900 | 0 | T1f = W[7]; |
1901 | 0 | rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i); |
1902 | 0 | iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i); |
1903 | 0 | } |
1904 | 0 | { |
1905 | 0 | E T2s, T2u, T2r, T2t; |
1906 | 0 | T2s = T2j + T2i; |
1907 | 0 | T2u = T2m + T2p; |
1908 | 0 | T2r = W[2]; |
1909 | 0 | T2t = W[3]; |
1910 | 0 | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s); |
1911 | 0 | rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u); |
1912 | 0 | } |
1913 | 0 | { |
1914 | 0 | E T3C, T3I, T3x, T3D; |
1915 | 0 | T3C = T3A - T3B; |
1916 | 0 | T3I = T3E - T3H; |
1917 | 0 | T3x = W[10]; |
1918 | 0 | T3D = W[11]; |
1919 | 0 | iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C); |
1920 | 0 | rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I); |
1921 | 0 | } |
1922 | 0 | { |
1923 | 0 | E T4U, T50, T4P, T4V; |
1924 | 0 | T4U = T4S - T4T; |
1925 | 0 | T50 = T4W - T4Z; |
1926 | 0 | T4P = W[10]; |
1927 | 0 | T4V = W[11]; |
1928 | 0 | iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U); |
1929 | 0 | rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50); |
1930 | 0 | } |
1931 | 0 | { |
1932 | 0 | E T56, T5a, T55, T57; |
1933 | 0 | T56 = T3Z - T46; |
1934 | 0 | T5a = T58 - T59; |
1935 | 0 | T55 = W[6]; |
1936 | 0 | T57 = W[7]; |
1937 | 0 | rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a); |
1938 | 0 | iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a); |
1939 | 0 | } |
1940 | 0 | { |
1941 | 0 | E T6o, T6s, T6n, T6p; |
1942 | 0 | T6o = T5h - T5o; |
1943 | 0 | T6s = T6q - T6r; |
1944 | 0 | T6n = W[6]; |
1945 | 0 | T6p = W[7]; |
1946 | 0 | rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s); |
1947 | 0 | iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s); |
1948 | 0 | } |
1949 | 0 | { |
1950 | 0 | E T7u, T7A, T7p, T7v; |
1951 | 0 | T7u = T7s - T7t; |
1952 | 0 | T7A = T7w - T7z; |
1953 | 0 | T7p = W[10]; |
1954 | 0 | T7v = W[11]; |
1955 | 0 | iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u); |
1956 | 0 | rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A); |
1957 | 0 | } |
1958 | 0 | { |
1959 | 0 | E T6c, T6i, T67, T6d; |
1960 | 0 | T6c = T6a - T6b; |
1961 | 0 | T6i = T6e - T6h; |
1962 | 0 | T67 = W[10]; |
1963 | 0 | T6d = W[11]; |
1964 | 0 | iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c); |
1965 | 0 | rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i); |
1966 | 0 | } |
1967 | 0 | { |
1968 | 0 | E T7G, T7K, T7F, T7H; |
1969 | 0 | T7G = T6z - T6G; |
1970 | 0 | T7K = T7I - T7J; |
1971 | 0 | T7F = W[6]; |
1972 | 0 | T7H = W[7]; |
1973 | 0 | rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K); |
1974 | 0 | iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K); |
1975 | 0 | } |
1976 | 0 | { |
1977 | 0 | E T3O, T3S, T3N, T3P; |
1978 | 0 | T3O = T2H - T2O; |
1979 | 0 | T3S = T3Q - T3R; |
1980 | 0 | T3N = W[6]; |
1981 | 0 | T3P = W[7]; |
1982 | 0 | rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S); |
1983 | 0 | iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S); |
1984 | 0 | } |
1985 | 0 | { |
1986 | 0 | E T3K, T3M, T3J, T3L; |
1987 | 0 | T3K = T3B + T3A; |
1988 | 0 | T3M = T3E + T3H; |
1989 | 0 | T3J = W[2]; |
1990 | 0 | T3L = W[3]; |
1991 | 0 | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K); |
1992 | 0 | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M); |
1993 | 0 | } |
1994 | 0 | { |
1995 | 0 | E T7C, T7E, T7B, T7D; |
1996 | 0 | T7C = T7t + T7s; |
1997 | 0 | T7E = T7w + T7z; |
1998 | 0 | T7B = W[2]; |
1999 | 0 | T7D = W[3]; |
2000 | 0 | iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C); |
2001 | 0 | rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E); |
2002 | 0 | } |
2003 | 0 | { |
2004 | 0 | E T6k, T6m, T6j, T6l; |
2005 | 0 | T6k = T6b + T6a; |
2006 | 0 | T6m = T6e + T6h; |
2007 | 0 | T6j = W[2]; |
2008 | 0 | T6l = W[3]; |
2009 | 0 | iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k); |
2010 | 0 | rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m); |
2011 | 0 | } |
2012 | 0 | { |
2013 | 0 | E T52, T54, T51, T53; |
2014 | 0 | T52 = T4T + T4S; |
2015 | 0 | T54 = T4W + T4Z; |
2016 | 0 | T51 = W[2]; |
2017 | 0 | T53 = W[3]; |
2018 | 0 | iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52); |
2019 | 0 | rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54); |
2020 | 0 | } |
2021 | 0 | { |
2022 | 0 | E T5G, T5S, T5Q, T5U, T5F, T5P; |
2023 | 0 | T5F = KP707106781 * (T5z - T5E); |
2024 | 0 | T5G = T5u - T5F; |
2025 | 0 | T5S = T5u + T5F; |
2026 | 0 | T5P = KP707106781 * (T5N - T5O); |
2027 | 0 | T5Q = T5M - T5P; |
2028 | 0 | T5U = T5M + T5P; |
2029 | 0 | { |
2030 | 0 | E T5p, T5H, T5R, T5T; |
2031 | 0 | T5p = W[12]; |
2032 | 0 | T5H = W[13]; |
2033 | 0 | iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G); |
2034 | 0 | rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q); |
2035 | 0 | T5R = W[4]; |
2036 | 0 | T5T = W[5]; |
2037 | 0 | iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S); |
2038 | 0 | rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U); |
2039 | 0 | } |
2040 | 0 | } |
2041 | 0 | { |
2042 | 0 | E Tw, TI, TG, TK, Tv, TF; |
2043 | 0 | Tv = KP707106781 * (Tp - Tu); |
2044 | 0 | Tw = Tk - Tv; |
2045 | 0 | TI = Tk + Tv; |
2046 | 0 | TF = KP707106781 * (TD - TE); |
2047 | 0 | TG = TC - TF; |
2048 | 0 | TK = TC + TF; |
2049 | 0 | { |
2050 | 0 | E Tf, Tx, TH, TJ; |
2051 | 0 | Tf = W[12]; |
2052 | 0 | Tx = W[13]; |
2053 | 0 | iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw); |
2054 | 0 | rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG); |
2055 | 0 | TH = W[4]; |
2056 | 0 | TJ = W[5]; |
2057 | 0 | iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI); |
2058 | 0 | rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK); |
2059 | 0 | } |
2060 | 0 | } |
2061 | 0 | { |
2062 | 0 | E T9Q, T9W, T9U, T9Y, T9P, T9T; |
2063 | 0 | T9P = KP707106781 * (T9w + T9r); |
2064 | 0 | T9Q = T9O - T9P; |
2065 | 0 | T9W = T9O + T9P; |
2066 | 0 | T9T = KP707106781 * (T9F + T9G); |
2067 | 0 | T9U = T9S - T9T; |
2068 | 0 | T9Y = T9S + T9T; |
2069 | 0 | { |
2070 | 0 | E T9N, T9R, T9V, T9X; |
2071 | 0 | T9N = W[8]; |
2072 | 0 | T9R = W[9]; |
2073 | 0 | rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U); |
2074 | 0 | iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U); |
2075 | 0 | T9V = W[0]; |
2076 | 0 | T9X = W[1]; |
2077 | 0 | rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y); |
2078 | 0 | iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y); |
2079 | 0 | } |
2080 | 0 | } |
2081 | 0 | { |
2082 | 0 | E T36, T3i, T3g, T3k, T35, T3f; |
2083 | 0 | T35 = KP707106781 * (T2Z - T34); |
2084 | 0 | T36 = T2U - T35; |
2085 | 0 | T3i = T2U + T35; |
2086 | 0 | T3f = KP707106781 * (T3d - T3e); |
2087 | 0 | T3g = T3c - T3f; |
2088 | 0 | T3k = T3c + T3f; |
2089 | 0 | { |
2090 | 0 | E T2P, T37, T3h, T3j; |
2091 | 0 | T2P = W[12]; |
2092 | 0 | T37 = W[13]; |
2093 | 0 | iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36); |
2094 | 0 | rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g); |
2095 | 0 | T3h = W[4]; |
2096 | 0 | T3j = W[5]; |
2097 | 0 | iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i); |
2098 | 0 | rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k); |
2099 | 0 | } |
2100 | 0 | } |
2101 | 0 | { |
2102 | 0 | E T5Y, T64, T62, T66, T5X, T61; |
2103 | 0 | T5X = KP707106781 * (T5E + T5z); |
2104 | 0 | T5Y = T5W - T5X; |
2105 | 0 | T64 = T5W + T5X; |
2106 | 0 | T61 = KP707106781 * (T5N + T5O); |
2107 | 0 | T62 = T60 - T61; |
2108 | 0 | T66 = T60 + T61; |
2109 | 0 | { |
2110 | 0 | E T5V, T5Z, T63, T65; |
2111 | 0 | T5V = W[8]; |
2112 | 0 | T5Z = W[9]; |
2113 | 0 | rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62); |
2114 | 0 | iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62); |
2115 | 0 | T63 = W[0]; |
2116 | 0 | T65 = W[1]; |
2117 | 0 | rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66); |
2118 | 0 | iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66); |
2119 | 0 | } |
2120 | 0 | } |
2121 | 0 | { |
2122 | 0 | E T7g, T7m, T7k, T7o, T7f, T7j; |
2123 | 0 | T7f = KP707106781 * (T6W + T6R); |
2124 | 0 | T7g = T7e - T7f; |
2125 | 0 | T7m = T7e + T7f; |
2126 | 0 | T7j = KP707106781 * (T75 + T76); |
2127 | 0 | T7k = T7i - T7j; |
2128 | 0 | T7o = T7i + T7j; |
2129 | 0 | { |
2130 | 0 | E T7d, T7h, T7l, T7n; |
2131 | 0 | T7d = W[8]; |
2132 | 0 | T7h = W[9]; |
2133 | 0 | rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k); |
2134 | 0 | iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k); |
2135 | 0 | T7l = W[0]; |
2136 | 0 | T7n = W[1]; |
2137 | 0 | rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o); |
2138 | 0 | iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o); |
2139 | 0 | } |
2140 | 0 | } |
2141 | 0 | { |
2142 | 0 | E T8g, T8s, T8q, T8u, T8f, T8p; |
2143 | 0 | T8f = KP707106781 * (T89 - T8e); |
2144 | 0 | T8g = T84 - T8f; |
2145 | 0 | T8s = T84 + T8f; |
2146 | 0 | T8p = KP707106781 * (T8n - T8o); |
2147 | 0 | T8q = T8m - T8p; |
2148 | 0 | T8u = T8m + T8p; |
2149 | 0 | { |
2150 | 0 | E T7Z, T8h, T8r, T8t; |
2151 | 0 | T7Z = W[12]; |
2152 | 0 | T8h = W[13]; |
2153 | 0 | iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g); |
2154 | 0 | rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q); |
2155 | 0 | T8r = W[4]; |
2156 | 0 | T8t = W[5]; |
2157 | 0 | iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s); |
2158 | 0 | rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u); |
2159 | 0 | } |
2160 | 0 | } |
2161 | 0 | { |
2162 | 0 | E T4G, T4M, T4K, T4O, T4F, T4J; |
2163 | 0 | T4F = KP707106781 * (T4m + T4h); |
2164 | 0 | T4G = T4E - T4F; |
2165 | 0 | T4M = T4E + T4F; |
2166 | 0 | T4J = KP707106781 * (T4v + T4w); |
2167 | 0 | T4K = T4I - T4J; |
2168 | 0 | T4O = T4I + T4J; |
2169 | 0 | { |
2170 | 0 | E T4D, T4H, T4L, T4N; |
2171 | 0 | T4D = W[8]; |
2172 | 0 | T4H = W[9]; |
2173 | 0 | rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K); |
2174 | 0 | iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K); |
2175 | 0 | T4L = W[0]; |
2176 | 0 | T4N = W[1]; |
2177 | 0 | rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O); |
2178 | 0 | iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O); |
2179 | 0 | } |
2180 | 0 | } |
2181 | 0 | { |
2182 | 0 | E TO, TU, TS, TW, TN, TR; |
2183 | 0 | TN = KP707106781 * (Tu + Tp); |
2184 | 0 | TO = TM - TN; |
2185 | 0 | TU = TM + TN; |
2186 | 0 | TR = KP707106781 * (TD + TE); |
2187 | 0 | TS = TQ - TR; |
2188 | 0 | TW = TQ + TR; |
2189 | 0 | { |
2190 | 0 | E TL, TP, TT, TV; |
2191 | 0 | TL = W[8]; |
2192 | 0 | TP = W[9]; |
2193 | 0 | rio[WS(vs, 5)] = FMA(TL, TO, TP * TS); |
2194 | 0 | iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS); |
2195 | 0 | TT = W[0]; |
2196 | 0 | TV = W[1]; |
2197 | 0 | rio[WS(vs, 1)] = FMA(TT, TU, TV * TW); |
2198 | 0 | iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW); |
2199 | 0 | } |
2200 | 0 | } |
2201 | 0 | { |
2202 | 0 | E T26, T2c, T2a, T2e, T25, T29; |
2203 | 0 | T25 = KP707106781 * (T1M + T1H); |
2204 | 0 | T26 = T24 - T25; |
2205 | 0 | T2c = T24 + T25; |
2206 | 0 | T29 = KP707106781 * (T1V + T1W); |
2207 | 0 | T2a = T28 - T29; |
2208 | 0 | T2e = T28 + T29; |
2209 | 0 | { |
2210 | 0 | E T23, T27, T2b, T2d; |
2211 | 0 | T23 = W[8]; |
2212 | 0 | T27 = W[9]; |
2213 | 0 | rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a); |
2214 | 0 | iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a); |
2215 | 0 | T2b = W[0]; |
2216 | 0 | T2d = W[1]; |
2217 | 0 | rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e); |
2218 | 0 | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e); |
2219 | 0 | } |
2220 | 0 | } |
2221 | 0 | { |
2222 | 0 | E T9y, T9K, T9I, T9M, T9x, T9H; |
2223 | 0 | T9x = KP707106781 * (T9r - T9w); |
2224 | 0 | T9y = T9m - T9x; |
2225 | 0 | T9K = T9m + T9x; |
2226 | 0 | T9H = KP707106781 * (T9F - T9G); |
2227 | 0 | T9I = T9E - T9H; |
2228 | 0 | T9M = T9E + T9H; |
2229 | 0 | { |
2230 | 0 | E T9h, T9z, T9J, T9L; |
2231 | 0 | T9h = W[12]; |
2232 | 0 | T9z = W[13]; |
2233 | 0 | iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y); |
2234 | 0 | rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I); |
2235 | 0 | T9J = W[4]; |
2236 | 0 | T9L = W[5]; |
2237 | 0 | iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K); |
2238 | 0 | rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M); |
2239 | 0 | } |
2240 | 0 | } |
2241 | 0 | { |
2242 | 0 | E T6Y, T7a, T78, T7c, T6X, T77; |
2243 | 0 | T6X = KP707106781 * (T6R - T6W); |
2244 | 0 | T6Y = T6M - T6X; |
2245 | 0 | T7a = T6M + T6X; |
2246 | 0 | T77 = KP707106781 * (T75 - T76); |
2247 | 0 | T78 = T74 - T77; |
2248 | 0 | T7c = T74 + T77; |
2249 | 0 | { |
2250 | 0 | E T6H, T6Z, T79, T7b; |
2251 | 0 | T6H = W[12]; |
2252 | 0 | T6Z = W[13]; |
2253 | 0 | iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y); |
2254 | 0 | rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78); |
2255 | 0 | T79 = W[4]; |
2256 | 0 | T7b = W[5]; |
2257 | 0 | iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a); |
2258 | 0 | rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c); |
2259 | 0 | } |
2260 | 0 | } |
2261 | 0 | { |
2262 | 0 | E T1O, T20, T1Y, T22, T1N, T1X; |
2263 | 0 | T1N = KP707106781 * (T1H - T1M); |
2264 | 0 | T1O = T1C - T1N; |
2265 | 0 | T20 = T1C + T1N; |
2266 | 0 | T1X = KP707106781 * (T1V - T1W); |
2267 | 0 | T1Y = T1U - T1X; |
2268 | 0 | T22 = T1U + T1X; |
2269 | 0 | { |
2270 | 0 | E T1x, T1P, T1Z, T21; |
2271 | 0 | T1x = W[12]; |
2272 | 0 | T1P = W[13]; |
2273 | 0 | iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O); |
2274 | 0 | rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y); |
2275 | 0 | T1Z = W[4]; |
2276 | 0 | T21 = W[5]; |
2277 | 0 | iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20); |
2278 | 0 | rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22); |
2279 | 0 | } |
2280 | 0 | } |
2281 | 0 | { |
2282 | 0 | E T4o, T4A, T4y, T4C, T4n, T4x; |
2283 | 0 | T4n = KP707106781 * (T4h - T4m); |
2284 | 0 | T4o = T4c - T4n; |
2285 | 0 | T4A = T4c + T4n; |
2286 | 0 | T4x = KP707106781 * (T4v - T4w); |
2287 | 0 | T4y = T4u - T4x; |
2288 | 0 | T4C = T4u + T4x; |
2289 | 0 | { |
2290 | 0 | E T47, T4p, T4z, T4B; |
2291 | 0 | T47 = W[12]; |
2292 | 0 | T4p = W[13]; |
2293 | 0 | iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o); |
2294 | 0 | rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y); |
2295 | 0 | T4z = W[4]; |
2296 | 0 | T4B = W[5]; |
2297 | 0 | iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A); |
2298 | 0 | rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C); |
2299 | 0 | } |
2300 | 0 | } |
2301 | 0 | { |
2302 | 0 | E T3o, T3u, T3s, T3w, T3n, T3r; |
2303 | 0 | T3n = KP707106781 * (T34 + T2Z); |
2304 | 0 | T3o = T3m - T3n; |
2305 | 0 | T3u = T3m + T3n; |
2306 | 0 | T3r = KP707106781 * (T3d + T3e); |
2307 | 0 | T3s = T3q - T3r; |
2308 | 0 | T3w = T3q + T3r; |
2309 | 0 | { |
2310 | 0 | E T3l, T3p, T3t, T3v; |
2311 | 0 | T3l = W[8]; |
2312 | 0 | T3p = W[9]; |
2313 | 0 | rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s); |
2314 | 0 | iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s); |
2315 | 0 | T3t = W[0]; |
2316 | 0 | T3v = W[1]; |
2317 | 0 | rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w); |
2318 | 0 | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w); |
2319 | 0 | } |
2320 | 0 | } |
2321 | 0 | { |
2322 | 0 | E T8y, T8E, T8C, T8G, T8x, T8B; |
2323 | 0 | T8x = KP707106781 * (T8e + T89); |
2324 | 0 | T8y = T8w - T8x; |
2325 | 0 | T8E = T8w + T8x; |
2326 | 0 | T8B = KP707106781 * (T8n + T8o); |
2327 | 0 | T8C = T8A - T8B; |
2328 | 0 | T8G = T8A + T8B; |
2329 | 0 | { |
2330 | 0 | E T8v, T8z, T8D, T8F; |
2331 | 0 | T8v = W[8]; |
2332 | 0 | T8z = W[9]; |
2333 | 0 | rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C); |
2334 | 0 | iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C); |
2335 | 0 | T8D = W[0]; |
2336 | 0 | T8F = W[1]; |
2337 | 0 | rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G); |
2338 | 0 | iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G); |
2339 | 0 | } |
2340 | 0 | } |
2341 | 0 | } |
2342 | 0 | } |
2343 | 0 | } |
2344 | | |
2345 | | static const tw_instr twinstr[] = { |
2346 | | { TW_FULL, 0, 8 }, |
2347 | | { TW_NEXT, 1, 0 } |
2348 | | }; |
2349 | | |
2350 | | static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 416, 144, 112, 0 }, 0, 0, 0 }; |
2351 | | |
2352 | 1 | void X(codelet_q1_8) (planner *p) { |
2353 | 1 | X(kdft_difsq_register) (p, q1_8, &desc); |
2354 | 1 | } |
2355 | | #endif |