Coverage Report

Created: 2025-11-24 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/dft/scalar/codelets/q1_8.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Nov 24 06:37:17 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */
29
30
/*
31
 * This function contains 528 FP additions, 288 FP multiplications,
32
 * (or, 352 additions, 112 multiplications, 176 fused multiply/add),
33
 * 152 stack variables, 1 constants, and 256 memory accesses
34
 */
35
#include "dft/scalar/q.h"
36
37
static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     {
41
    INT m;
42
    for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
43
         E T7, T1d, T1t, Tk, TD, TV, T18, TQ, T4F, T5L, T61, T4S, T5b, T5t, T5G;
44
         E T5o, T6b, T7h, T7x, T6o, T6H, T6Z, T7c, T6U, TaJ, TbP, Tc5, TaW, Tbf, Tbx;
45
         E TbK, Tbs, T1D, T2J, T2Z, T1Q, T29, T2r, T2E, T2m, T39, T4f, T4v, T3m, T3F;
46
         E T3X, T4a, T3S, T7H, T8N, T93, T7U, T8d, T8v, T8I, T8q, T9d, Taj, Taz, T9q;
47
         E T9J, Ta1, Tae, T9W, Te, T19, T1u, T1g, TE, TF, TW, Tv, TR, T4M, T5H;
48
         E T62, T5O, T5c, T5d, T5u, T53, T5p, T6i, T7d, T7y, T7k, T6I, T6J, T70, T6z;
49
         E T6V, TaQ, TbL, Tc6, TbS, Tbg, Tbh, Tby, Tb7, Tbt, T1K, T2F, T30, T2M, T2a;
50
         E T2b, T2s, T21, T2n, T3g, T4b, T4w, T4i, T3G, T3H, T3Y, T3x, T3T, T7O, T8J;
51
         E T94, T8Q, T8e, T8f, T8w, T85, T8r, T9k, Taf, TaA, Tam, T9K, T9L, Ta2, T9B;
52
         E T9X;
53
         {
54
        E T3, Tz, Tj, T16, T6, Tg, TC, T17;
55
        {
56
       E T1, T2, Th, Ti;
57
       T1 = rio[0];
58
       T2 = rio[WS(rs, 4)];
59
       T3 = T1 + T2;
60
       Tz = T1 - T2;
61
       Th = iio[0];
62
       Ti = iio[WS(rs, 4)];
63
       Tj = Th - Ti;
64
       T16 = Th + Ti;
65
        }
66
        {
67
       E T4, T5, TA, TB;
68
       T4 = rio[WS(rs, 2)];
69
       T5 = rio[WS(rs, 6)];
70
       T6 = T4 + T5;
71
       Tg = T4 - T5;
72
       TA = iio[WS(rs, 2)];
73
       TB = iio[WS(rs, 6)];
74
       TC = TA - TB;
75
       T17 = TA + TB;
76
        }
77
        T7 = T3 + T6;
78
        T1d = T3 - T6;
79
        T1t = T16 + T17;
80
        Tk = Tg + Tj;
81
        TD = Tz - TC;
82
        TV = Tj - Tg;
83
        T18 = T16 - T17;
84
        TQ = Tz + TC;
85
         }
86
         {
87
        E T4B, T57, T4R, T5E, T4E, T4O, T5a, T5F;
88
        {
89
       E T4z, T4A, T4P, T4Q;
90
       T4z = rio[WS(vs, 3)];
91
       T4A = rio[WS(vs, 3) + WS(rs, 4)];
92
       T4B = T4z + T4A;
93
       T57 = T4z - T4A;
94
       T4P = iio[WS(vs, 3)];
95
       T4Q = iio[WS(vs, 3) + WS(rs, 4)];
96
       T4R = T4P - T4Q;
97
       T5E = T4P + T4Q;
98
        }
99
        {
100
       E T4C, T4D, T58, T59;
101
       T4C = rio[WS(vs, 3) + WS(rs, 2)];
102
       T4D = rio[WS(vs, 3) + WS(rs, 6)];
103
       T4E = T4C + T4D;
104
       T4O = T4C - T4D;
105
       T58 = iio[WS(vs, 3) + WS(rs, 2)];
106
       T59 = iio[WS(vs, 3) + WS(rs, 6)];
107
       T5a = T58 - T59;
108
       T5F = T58 + T59;
109
        }
110
        T4F = T4B + T4E;
111
        T5L = T4B - T4E;
112
        T61 = T5E + T5F;
113
        T4S = T4O + T4R;
114
        T5b = T57 - T5a;
115
        T5t = T4R - T4O;
116
        T5G = T5E - T5F;
117
        T5o = T57 + T5a;
118
         }
119
         {
120
        E T67, T6D, T6n, T7a, T6a, T6k, T6G, T7b;
121
        {
122
       E T65, T66, T6l, T6m;
123
       T65 = rio[WS(vs, 4)];
124
       T66 = rio[WS(vs, 4) + WS(rs, 4)];
125
       T67 = T65 + T66;
126
       T6D = T65 - T66;
127
       T6l = iio[WS(vs, 4)];
128
       T6m = iio[WS(vs, 4) + WS(rs, 4)];
129
       T6n = T6l - T6m;
130
       T7a = T6l + T6m;
131
        }
132
        {
133
       E T68, T69, T6E, T6F;
134
       T68 = rio[WS(vs, 4) + WS(rs, 2)];
135
       T69 = rio[WS(vs, 4) + WS(rs, 6)];
136
       T6a = T68 + T69;
137
       T6k = T68 - T69;
138
       T6E = iio[WS(vs, 4) + WS(rs, 2)];
139
       T6F = iio[WS(vs, 4) + WS(rs, 6)];
140
       T6G = T6E - T6F;
141
       T7b = T6E + T6F;
142
        }
143
        T6b = T67 + T6a;
144
        T7h = T67 - T6a;
145
        T7x = T7a + T7b;
146
        T6o = T6k + T6n;
147
        T6H = T6D - T6G;
148
        T6Z = T6n - T6k;
149
        T7c = T7a - T7b;
150
        T6U = T6D + T6G;
151
         }
152
         {
153
        E TaF, Tbb, TaV, TbI, TaI, TaS, Tbe, TbJ;
154
        {
155
       E TaD, TaE, TaT, TaU;
156
       TaD = rio[WS(vs, 7)];
157
       TaE = rio[WS(vs, 7) + WS(rs, 4)];
158
       TaF = TaD + TaE;
159
       Tbb = TaD - TaE;
160
       TaT = iio[WS(vs, 7)];
161
       TaU = iio[WS(vs, 7) + WS(rs, 4)];
162
       TaV = TaT - TaU;
163
       TbI = TaT + TaU;
164
        }
165
        {
166
       E TaG, TaH, Tbc, Tbd;
167
       TaG = rio[WS(vs, 7) + WS(rs, 2)];
168
       TaH = rio[WS(vs, 7) + WS(rs, 6)];
169
       TaI = TaG + TaH;
170
       TaS = TaG - TaH;
171
       Tbc = iio[WS(vs, 7) + WS(rs, 2)];
172
       Tbd = iio[WS(vs, 7) + WS(rs, 6)];
173
       Tbe = Tbc - Tbd;
174
       TbJ = Tbc + Tbd;
175
        }
176
        TaJ = TaF + TaI;
177
        TbP = TaF - TaI;
178
        Tc5 = TbI + TbJ;
179
        TaW = TaS + TaV;
180
        Tbf = Tbb - Tbe;
181
        Tbx = TaV - TaS;
182
        TbK = TbI - TbJ;
183
        Tbs = Tbb + Tbe;
184
         }
185
         {
186
        E T1z, T25, T1P, T2C, T1C, T1M, T28, T2D;
187
        {
188
       E T1x, T1y, T1N, T1O;
189
       T1x = rio[WS(vs, 1)];
190
       T1y = rio[WS(vs, 1) + WS(rs, 4)];
191
       T1z = T1x + T1y;
192
       T25 = T1x - T1y;
193
       T1N = iio[WS(vs, 1)];
194
       T1O = iio[WS(vs, 1) + WS(rs, 4)];
195
       T1P = T1N - T1O;
196
       T2C = T1N + T1O;
197
        }
198
        {
199
       E T1A, T1B, T26, T27;
200
       T1A = rio[WS(vs, 1) + WS(rs, 2)];
201
       T1B = rio[WS(vs, 1) + WS(rs, 6)];
202
       T1C = T1A + T1B;
203
       T1M = T1A - T1B;
204
       T26 = iio[WS(vs, 1) + WS(rs, 2)];
205
       T27 = iio[WS(vs, 1) + WS(rs, 6)];
206
       T28 = T26 - T27;
207
       T2D = T26 + T27;
208
        }
209
        T1D = T1z + T1C;
210
        T2J = T1z - T1C;
211
        T2Z = T2C + T2D;
212
        T1Q = T1M + T1P;
213
        T29 = T25 - T28;
214
        T2r = T1P - T1M;
215
        T2E = T2C - T2D;
216
        T2m = T25 + T28;
217
         }
218
         {
219
        E T35, T3B, T3l, T48, T38, T3i, T3E, T49;
220
        {
221
       E T33, T34, T3j, T3k;
222
       T33 = rio[WS(vs, 2)];
223
       T34 = rio[WS(vs, 2) + WS(rs, 4)];
224
       T35 = T33 + T34;
225
       T3B = T33 - T34;
226
       T3j = iio[WS(vs, 2)];
227
       T3k = iio[WS(vs, 2) + WS(rs, 4)];
228
       T3l = T3j - T3k;
229
       T48 = T3j + T3k;
230
        }
231
        {
232
       E T36, T37, T3C, T3D;
233
       T36 = rio[WS(vs, 2) + WS(rs, 2)];
234
       T37 = rio[WS(vs, 2) + WS(rs, 6)];
235
       T38 = T36 + T37;
236
       T3i = T36 - T37;
237
       T3C = iio[WS(vs, 2) + WS(rs, 2)];
238
       T3D = iio[WS(vs, 2) + WS(rs, 6)];
239
       T3E = T3C - T3D;
240
       T49 = T3C + T3D;
241
        }
242
        T39 = T35 + T38;
243
        T4f = T35 - T38;
244
        T4v = T48 + T49;
245
        T3m = T3i + T3l;
246
        T3F = T3B - T3E;
247
        T3X = T3l - T3i;
248
        T4a = T48 - T49;
249
        T3S = T3B + T3E;
250
         }
251
         {
252
        E T7D, T89, T7T, T8G, T7G, T7Q, T8c, T8H;
253
        {
254
       E T7B, T7C, T7R, T7S;
255
       T7B = rio[WS(vs, 5)];
256
       T7C = rio[WS(vs, 5) + WS(rs, 4)];
257
       T7D = T7B + T7C;
258
       T89 = T7B - T7C;
259
       T7R = iio[WS(vs, 5)];
260
       T7S = iio[WS(vs, 5) + WS(rs, 4)];
261
       T7T = T7R - T7S;
262
       T8G = T7R + T7S;
263
        }
264
        {
265
       E T7E, T7F, T8a, T8b;
266
       T7E = rio[WS(vs, 5) + WS(rs, 2)];
267
       T7F = rio[WS(vs, 5) + WS(rs, 6)];
268
       T7G = T7E + T7F;
269
       T7Q = T7E - T7F;
270
       T8a = iio[WS(vs, 5) + WS(rs, 2)];
271
       T8b = iio[WS(vs, 5) + WS(rs, 6)];
272
       T8c = T8a - T8b;
273
       T8H = T8a + T8b;
274
        }
275
        T7H = T7D + T7G;
276
        T8N = T7D - T7G;
277
        T93 = T8G + T8H;
278
        T7U = T7Q + T7T;
279
        T8d = T89 - T8c;
280
        T8v = T7T - T7Q;
281
        T8I = T8G - T8H;
282
        T8q = T89 + T8c;
283
         }
284
         {
285
        E T99, T9F, T9p, Tac, T9c, T9m, T9I, Tad;
286
        {
287
       E T97, T98, T9n, T9o;
288
       T97 = rio[WS(vs, 6)];
289
       T98 = rio[WS(vs, 6) + WS(rs, 4)];
290
       T99 = T97 + T98;
291
       T9F = T97 - T98;
292
       T9n = iio[WS(vs, 6)];
293
       T9o = iio[WS(vs, 6) + WS(rs, 4)];
294
       T9p = T9n - T9o;
295
       Tac = T9n + T9o;
296
        }
297
        {
298
       E T9a, T9b, T9G, T9H;
299
       T9a = rio[WS(vs, 6) + WS(rs, 2)];
300
       T9b = rio[WS(vs, 6) + WS(rs, 6)];
301
       T9c = T9a + T9b;
302
       T9m = T9a - T9b;
303
       T9G = iio[WS(vs, 6) + WS(rs, 2)];
304
       T9H = iio[WS(vs, 6) + WS(rs, 6)];
305
       T9I = T9G - T9H;
306
       Tad = T9G + T9H;
307
        }
308
        T9d = T99 + T9c;
309
        Taj = T99 - T9c;
310
        Taz = Tac + Tad;
311
        T9q = T9m + T9p;
312
        T9J = T9F - T9I;
313
        Ta1 = T9p - T9m;
314
        Tae = Tac - Tad;
315
        T9W = T9F + T9I;
316
         }
317
         {
318
        E Ta, Tq, Tt, T1e, Td, Tl, To, T1f, Tp, Tu;
319
        {
320
       E T8, T9, Tr, Ts;
321
       T8 = rio[WS(rs, 1)];
322
       T9 = rio[WS(rs, 5)];
323
       Ta = T8 + T9;
324
       Tq = T8 - T9;
325
       Tr = iio[WS(rs, 1)];
326
       Ts = iio[WS(rs, 5)];
327
       Tt = Tr - Ts;
328
       T1e = Tr + Ts;
329
        }
330
        {
331
       E Tb, Tc, Tm, Tn;
332
       Tb = rio[WS(rs, 7)];
333
       Tc = rio[WS(rs, 3)];
334
       Td = Tb + Tc;
335
       Tl = Tb - Tc;
336
       Tm = iio[WS(rs, 7)];
337
       Tn = iio[WS(rs, 3)];
338
       To = Tm - Tn;
339
       T1f = Tm + Tn;
340
        }
341
        Te = Ta + Td;
342
        T19 = Td - Ta;
343
        T1u = T1e + T1f;
344
        T1g = T1e - T1f;
345
        TE = Tt - Tq;
346
        TF = Tl + To;
347
        TW = TE + TF;
348
        Tp = Tl - To;
349
        Tu = Tq + Tt;
350
        Tv = Tp - Tu;
351
        TR = Tu + Tp;
352
         }
353
         {
354
        E T4I, T4Y, T51, T5M, T4L, T4T, T4W, T5N, T4X, T52;
355
        {
356
       E T4G, T4H, T4Z, T50;
357
       T4G = rio[WS(vs, 3) + WS(rs, 1)];
358
       T4H = rio[WS(vs, 3) + WS(rs, 5)];
359
       T4I = T4G + T4H;
360
       T4Y = T4G - T4H;
361
       T4Z = iio[WS(vs, 3) + WS(rs, 1)];
362
       T50 = iio[WS(vs, 3) + WS(rs, 5)];
363
       T51 = T4Z - T50;
364
       T5M = T4Z + T50;
365
        }
366
        {
367
       E T4J, T4K, T4U, T4V;
368
       T4J = rio[WS(vs, 3) + WS(rs, 7)];
369
       T4K = rio[WS(vs, 3) + WS(rs, 3)];
370
       T4L = T4J + T4K;
371
       T4T = T4J - T4K;
372
       T4U = iio[WS(vs, 3) + WS(rs, 7)];
373
       T4V = iio[WS(vs, 3) + WS(rs, 3)];
374
       T4W = T4U - T4V;
375
       T5N = T4U + T4V;
376
        }
377
        T4M = T4I + T4L;
378
        T5H = T4L - T4I;
379
        T62 = T5M + T5N;
380
        T5O = T5M - T5N;
381
        T5c = T51 - T4Y;
382
        T5d = T4T + T4W;
383
        T5u = T5c + T5d;
384
        T4X = T4T - T4W;
385
        T52 = T4Y + T51;
386
        T53 = T4X - T52;
387
        T5p = T52 + T4X;
388
         }
389
         {
390
        E T6e, T6u, T6x, T7i, T6h, T6p, T6s, T7j, T6t, T6y;
391
        {
392
       E T6c, T6d, T6v, T6w;
393
       T6c = rio[WS(vs, 4) + WS(rs, 1)];
394
       T6d = rio[WS(vs, 4) + WS(rs, 5)];
395
       T6e = T6c + T6d;
396
       T6u = T6c - T6d;
397
       T6v = iio[WS(vs, 4) + WS(rs, 1)];
398
       T6w = iio[WS(vs, 4) + WS(rs, 5)];
399
       T6x = T6v - T6w;
400
       T7i = T6v + T6w;
401
        }
402
        {
403
       E T6f, T6g, T6q, T6r;
404
       T6f = rio[WS(vs, 4) + WS(rs, 7)];
405
       T6g = rio[WS(vs, 4) + WS(rs, 3)];
406
       T6h = T6f + T6g;
407
       T6p = T6f - T6g;
408
       T6q = iio[WS(vs, 4) + WS(rs, 7)];
409
       T6r = iio[WS(vs, 4) + WS(rs, 3)];
410
       T6s = T6q - T6r;
411
       T7j = T6q + T6r;
412
        }
413
        T6i = T6e + T6h;
414
        T7d = T6h - T6e;
415
        T7y = T7i + T7j;
416
        T7k = T7i - T7j;
417
        T6I = T6x - T6u;
418
        T6J = T6p + T6s;
419
        T70 = T6I + T6J;
420
        T6t = T6p - T6s;
421
        T6y = T6u + T6x;
422
        T6z = T6t - T6y;
423
        T6V = T6y + T6t;
424
         }
425
         {
426
        E TaM, Tb2, Tb5, TbQ, TaP, TaX, Tb0, TbR, Tb1, Tb6;
427
        {
428
       E TaK, TaL, Tb3, Tb4;
429
       TaK = rio[WS(vs, 7) + WS(rs, 1)];
430
       TaL = rio[WS(vs, 7) + WS(rs, 5)];
431
       TaM = TaK + TaL;
432
       Tb2 = TaK - TaL;
433
       Tb3 = iio[WS(vs, 7) + WS(rs, 1)];
434
       Tb4 = iio[WS(vs, 7) + WS(rs, 5)];
435
       Tb5 = Tb3 - Tb4;
436
       TbQ = Tb3 + Tb4;
437
        }
438
        {
439
       E TaN, TaO, TaY, TaZ;
440
       TaN = rio[WS(vs, 7) + WS(rs, 7)];
441
       TaO = rio[WS(vs, 7) + WS(rs, 3)];
442
       TaP = TaN + TaO;
443
       TaX = TaN - TaO;
444
       TaY = iio[WS(vs, 7) + WS(rs, 7)];
445
       TaZ = iio[WS(vs, 7) + WS(rs, 3)];
446
       Tb0 = TaY - TaZ;
447
       TbR = TaY + TaZ;
448
        }
449
        TaQ = TaM + TaP;
450
        TbL = TaP - TaM;
451
        Tc6 = TbQ + TbR;
452
        TbS = TbQ - TbR;
453
        Tbg = Tb5 - Tb2;
454
        Tbh = TaX + Tb0;
455
        Tby = Tbg + Tbh;
456
        Tb1 = TaX - Tb0;
457
        Tb6 = Tb2 + Tb5;
458
        Tb7 = Tb1 - Tb6;
459
        Tbt = Tb6 + Tb1;
460
         }
461
         {
462
        E T1G, T1W, T1Z, T2K, T1J, T1R, T1U, T2L, T1V, T20;
463
        {
464
       E T1E, T1F, T1X, T1Y;
465
       T1E = rio[WS(vs, 1) + WS(rs, 1)];
466
       T1F = rio[WS(vs, 1) + WS(rs, 5)];
467
       T1G = T1E + T1F;
468
       T1W = T1E - T1F;
469
       T1X = iio[WS(vs, 1) + WS(rs, 1)];
470
       T1Y = iio[WS(vs, 1) + WS(rs, 5)];
471
       T1Z = T1X - T1Y;
472
       T2K = T1X + T1Y;
473
        }
474
        {
475
       E T1H, T1I, T1S, T1T;
476
       T1H = rio[WS(vs, 1) + WS(rs, 7)];
477
       T1I = rio[WS(vs, 1) + WS(rs, 3)];
478
       T1J = T1H + T1I;
479
       T1R = T1H - T1I;
480
       T1S = iio[WS(vs, 1) + WS(rs, 7)];
481
       T1T = iio[WS(vs, 1) + WS(rs, 3)];
482
       T1U = T1S - T1T;
483
       T2L = T1S + T1T;
484
        }
485
        T1K = T1G + T1J;
486
        T2F = T1J - T1G;
487
        T30 = T2K + T2L;
488
        T2M = T2K - T2L;
489
        T2a = T1Z - T1W;
490
        T2b = T1R + T1U;
491
        T2s = T2a + T2b;
492
        T1V = T1R - T1U;
493
        T20 = T1W + T1Z;
494
        T21 = T1V - T20;
495
        T2n = T20 + T1V;
496
         }
497
         {
498
        E T3c, T3s, T3v, T4g, T3f, T3n, T3q, T4h, T3r, T3w;
499
        {
500
       E T3a, T3b, T3t, T3u;
501
       T3a = rio[WS(vs, 2) + WS(rs, 1)];
502
       T3b = rio[WS(vs, 2) + WS(rs, 5)];
503
       T3c = T3a + T3b;
504
       T3s = T3a - T3b;
505
       T3t = iio[WS(vs, 2) + WS(rs, 1)];
506
       T3u = iio[WS(vs, 2) + WS(rs, 5)];
507
       T3v = T3t - T3u;
508
       T4g = T3t + T3u;
509
        }
510
        {
511
       E T3d, T3e, T3o, T3p;
512
       T3d = rio[WS(vs, 2) + WS(rs, 7)];
513
       T3e = rio[WS(vs, 2) + WS(rs, 3)];
514
       T3f = T3d + T3e;
515
       T3n = T3d - T3e;
516
       T3o = iio[WS(vs, 2) + WS(rs, 7)];
517
       T3p = iio[WS(vs, 2) + WS(rs, 3)];
518
       T3q = T3o - T3p;
519
       T4h = T3o + T3p;
520
        }
521
        T3g = T3c + T3f;
522
        T4b = T3f - T3c;
523
        T4w = T4g + T4h;
524
        T4i = T4g - T4h;
525
        T3G = T3v - T3s;
526
        T3H = T3n + T3q;
527
        T3Y = T3G + T3H;
528
        T3r = T3n - T3q;
529
        T3w = T3s + T3v;
530
        T3x = T3r - T3w;
531
        T3T = T3w + T3r;
532
         }
533
         {
534
        E T7K, T80, T83, T8O, T7N, T7V, T7Y, T8P, T7Z, T84;
535
        {
536
       E T7I, T7J, T81, T82;
537
       T7I = rio[WS(vs, 5) + WS(rs, 1)];
538
       T7J = rio[WS(vs, 5) + WS(rs, 5)];
539
       T7K = T7I + T7J;
540
       T80 = T7I - T7J;
541
       T81 = iio[WS(vs, 5) + WS(rs, 1)];
542
       T82 = iio[WS(vs, 5) + WS(rs, 5)];
543
       T83 = T81 - T82;
544
       T8O = T81 + T82;
545
        }
546
        {
547
       E T7L, T7M, T7W, T7X;
548
       T7L = rio[WS(vs, 5) + WS(rs, 7)];
549
       T7M = rio[WS(vs, 5) + WS(rs, 3)];
550
       T7N = T7L + T7M;
551
       T7V = T7L - T7M;
552
       T7W = iio[WS(vs, 5) + WS(rs, 7)];
553
       T7X = iio[WS(vs, 5) + WS(rs, 3)];
554
       T7Y = T7W - T7X;
555
       T8P = T7W + T7X;
556
        }
557
        T7O = T7K + T7N;
558
        T8J = T7N - T7K;
559
        T94 = T8O + T8P;
560
        T8Q = T8O - T8P;
561
        T8e = T83 - T80;
562
        T8f = T7V + T7Y;
563
        T8w = T8e + T8f;
564
        T7Z = T7V - T7Y;
565
        T84 = T80 + T83;
566
        T85 = T7Z - T84;
567
        T8r = T84 + T7Z;
568
         }
569
         {
570
        E T9g, T9w, T9z, Tak, T9j, T9r, T9u, Tal, T9v, T9A;
571
        {
572
       E T9e, T9f, T9x, T9y;
573
       T9e = rio[WS(vs, 6) + WS(rs, 1)];
574
       T9f = rio[WS(vs, 6) + WS(rs, 5)];
575
       T9g = T9e + T9f;
576
       T9w = T9e - T9f;
577
       T9x = iio[WS(vs, 6) + WS(rs, 1)];
578
       T9y = iio[WS(vs, 6) + WS(rs, 5)];
579
       T9z = T9x - T9y;
580
       Tak = T9x + T9y;
581
        }
582
        {
583
       E T9h, T9i, T9s, T9t;
584
       T9h = rio[WS(vs, 6) + WS(rs, 7)];
585
       T9i = rio[WS(vs, 6) + WS(rs, 3)];
586
       T9j = T9h + T9i;
587
       T9r = T9h - T9i;
588
       T9s = iio[WS(vs, 6) + WS(rs, 7)];
589
       T9t = iio[WS(vs, 6) + WS(rs, 3)];
590
       T9u = T9s - T9t;
591
       Tal = T9s + T9t;
592
        }
593
        T9k = T9g + T9j;
594
        Taf = T9j - T9g;
595
        TaA = Tak + Tal;
596
        Tam = Tak - Tal;
597
        T9K = T9z - T9w;
598
        T9L = T9r + T9u;
599
        Ta2 = T9K + T9L;
600
        T9v = T9r - T9u;
601
        T9A = T9w + T9z;
602
        T9B = T9v - T9A;
603
        T9X = T9A + T9v;
604
         }
605
         rio[0] = T7 + Te;
606
         iio[0] = T1t + T1u;
607
         rio[WS(rs, 1)] = T1D + T1K;
608
         iio[WS(rs, 1)] = T2Z + T30;
609
         rio[WS(rs, 2)] = T39 + T3g;
610
         iio[WS(rs, 2)] = T4v + T4w;
611
         rio[WS(rs, 3)] = T4F + T4M;
612
         iio[WS(rs, 3)] = T61 + T62;
613
         rio[WS(rs, 4)] = T6b + T6i;
614
         iio[WS(rs, 4)] = T7x + T7y;
615
         rio[WS(rs, 5)] = T7H + T7O;
616
         iio[WS(rs, 5)] = T93 + T94;
617
         rio[WS(rs, 6)] = T9d + T9k;
618
         iio[WS(rs, 6)] = Taz + TaA;
619
         rio[WS(rs, 7)] = TaJ + TaQ;
620
         iio[WS(rs, 7)] = Tc5 + Tc6;
621
         {
622
        E TS, TX, TT, TY, TP, TU;
623
        TS = FNMS(KP707106781, TR, TQ);
624
        TX = FNMS(KP707106781, TW, TV);
625
        TP = W[8];
626
        TT = TP * TS;
627
        TY = TP * TX;
628
        TU = W[9];
629
        rio[WS(vs, 5)] = FMA(TU, TX, TT);
630
        iio[WS(vs, 5)] = FNMS(TU, TS, TY);
631
         }
632
         {
633
        E T2N, T2B, T2H, T2I, T2O, T2G;
634
        T2N = T2J - T2M;
635
        T2G = T2E - T2F;
636
        T2B = W[10];
637
        T2H = T2B * T2G;
638
        T2I = W[11];
639
        T2O = T2I * T2G;
640
        iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H);
641
        rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O);
642
         }
643
         {
644
        E T1n, T1j, T1l, T1m, T1o, T1k;
645
        T1n = T1d + T1g;
646
        T1k = T19 + T18;
647
        T1j = W[2];
648
        T1l = T1j * T1k;
649
        T1m = W[3];
650
        T1o = T1m * T1k;
651
        iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l);
652
        rio[WS(vs, 2)] = FMA(T1j, T1n, T1o);
653
         }
654
         {
655
        E T1q, T1v, T1r, T1w, T1p, T1s;
656
        T1q = T7 - Te;
657
        T1v = T1t - T1u;
658
        T1p = W[6];
659
        T1r = T1p * T1q;
660
        T1w = T1p * T1v;
661
        T1s = W[7];
662
        rio[WS(vs, 4)] = FMA(T1s, T1v, T1r);
663
        iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w);
664
         }
665
         {
666
        E Tan, Tab, Tah, Tai, Tao, Tag;
667
        Tan = Taj - Tam;
668
        Tag = Tae - Taf;
669
        Tab = W[10];
670
        Tah = Tab * Tag;
671
        Tai = W[11];
672
        Tao = Tai * Tag;
673
        iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah);
674
        rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao);
675
         }
676
         {
677
        E Tc2, Tc7, Tc3, Tc8, Tc1, Tc4;
678
        Tc2 = TaJ - TaQ;
679
        Tc7 = Tc5 - Tc6;
680
        Tc1 = W[6];
681
        Tc3 = Tc1 * Tc2;
682
        Tc8 = Tc1 * Tc7;
683
        Tc4 = W[7];
684
        rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3);
685
        iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8);
686
         }
687
         {
688
        E Tbu, Tbz, Tbv, TbA, Tbr, Tbw;
689
        Tbu = FNMS(KP707106781, Tbt, Tbs);
690
        Tbz = FNMS(KP707106781, Tby, Tbx);
691
        Tbr = W[8];
692
        Tbv = Tbr * Tbu;
693
        TbA = Tbr * Tbz;
694
        Tbw = W[9];
695
        rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv);
696
        iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA);
697
         }
698
         {
699
        E TbC, TbF, TbD, TbG, TbB, TbE;
700
        TbC = FMA(KP707106781, Tbt, Tbs);
701
        TbF = FMA(KP707106781, Tby, Tbx);
702
        TbB = W[0];
703
        TbD = TbB * TbC;
704
        TbG = TbB * TbF;
705
        TbE = W[1];
706
        rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD);
707
        iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG);
708
         }
709
         {
710
        E T10, T13, T11, T14, TZ, T12;
711
        T10 = FMA(KP707106781, TR, TQ);
712
        T13 = FMA(KP707106781, TW, TV);
713
        TZ = W[0];
714
        T11 = TZ * T10;
715
        T14 = TZ * T13;
716
        T12 = W[1];
717
        rio[WS(vs, 1)] = FMA(T12, T13, T11);
718
        iio[WS(vs, 1)] = FNMS(T12, T10, T14);
719
         }
720
         {
721
        E T2w, T2z, T2x, T2A, T2v, T2y;
722
        T2w = FMA(KP707106781, T2n, T2m);
723
        T2z = FMA(KP707106781, T2s, T2r);
724
        T2v = W[0];
725
        T2x = T2v * T2w;
726
        T2A = T2v * T2z;
727
        T2y = W[1];
728
        rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x);
729
        iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A);
730
         }
731
         {
732
        E T1h, T15, T1b, T1c, T1i, T1a;
733
        T1h = T1d - T1g;
734
        T1a = T18 - T19;
735
        T15 = W[10];
736
        T1b = T15 * T1a;
737
        T1c = W[11];
738
        T1i = T1c * T1a;
739
        iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b);
740
        rio[WS(vs, 6)] = FMA(T15, T1h, T1i);
741
         }
742
         {
743
        E T2o, T2t, T2p, T2u, T2l, T2q;
744
        T2o = FNMS(KP707106781, T2n, T2m);
745
        T2t = FNMS(KP707106781, T2s, T2r);
746
        T2l = W[8];
747
        T2p = T2l * T2o;
748
        T2u = T2l * T2t;
749
        T2q = W[9];
750
        rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p);
751
        iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u);
752
         }
753
         {
754
        E Tat, Tap, Tar, Tas, Tau, Taq;
755
        Tat = Taj + Tam;
756
        Taq = Taf + Tae;
757
        Tap = W[2];
758
        Tar = Tap * Taq;
759
        Tas = W[3];
760
        Tau = Tas * Taq;
761
        iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar);
762
        rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau);
763
         }
764
         {
765
        E TbZ, TbV, TbX, TbY, Tc0, TbW;
766
        TbZ = TbP + TbS;
767
        TbW = TbL + TbK;
768
        TbV = W[2];
769
        TbX = TbV * TbW;
770
        TbY = W[3];
771
        Tc0 = TbY * TbW;
772
        iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX);
773
        rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0);
774
         }
775
         {
776
        E Taw, TaB, Tax, TaC, Tav, Tay;
777
        Taw = T9d - T9k;
778
        TaB = Taz - TaA;
779
        Tav = W[6];
780
        Tax = Tav * Taw;
781
        TaC = Tav * TaB;
782
        Tay = W[7];
783
        rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax);
784
        iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC);
785
         }
786
         {
787
        E TbT, TbH, TbN, TbO, TbU, TbM;
788
        TbT = TbP - TbS;
789
        TbM = TbK - TbL;
790
        TbH = W[10];
791
        TbN = TbH * TbM;
792
        TbO = W[11];
793
        TbU = TbO * TbM;
794
        iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN);
795
        rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU);
796
         }
797
         {
798
        E T2T, T2P, T2R, T2S, T2U, T2Q;
799
        T2T = T2J + T2M;
800
        T2Q = T2F + T2E;
801
        T2P = W[2];
802
        T2R = T2P * T2Q;
803
        T2S = W[3];
804
        T2U = T2S * T2Q;
805
        iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R);
806
        rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U);
807
         }
808
         {
809
        E T5Y, T63, T5Z, T64, T5X, T60;
810
        T5Y = T4F - T4M;
811
        T63 = T61 - T62;
812
        T5X = W[6];
813
        T5Z = T5X * T5Y;
814
        T64 = T5X * T63;
815
        T60 = W[7];
816
        rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z);
817
        iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64);
818
         }
819
         {
820
        E T42, T45, T43, T46, T41, T44;
821
        T42 = FMA(KP707106781, T3T, T3S);
822
        T45 = FMA(KP707106781, T3Y, T3X);
823
        T41 = W[0];
824
        T43 = T41 * T42;
825
        T46 = T41 * T45;
826
        T44 = W[1];
827
        rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43);
828
        iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46);
829
         }
830
         {
831
        E T5y, T5B, T5z, T5C, T5x, T5A;
832
        T5y = FMA(KP707106781, T5p, T5o);
833
        T5B = FMA(KP707106781, T5u, T5t);
834
        T5x = W[0];
835
        T5z = T5x * T5y;
836
        T5C = T5x * T5B;
837
        T5A = W[1];
838
        rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z);
839
        iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C);
840
         }
841
         {
842
        E T6W, T71, T6X, T72, T6T, T6Y;
843
        T6W = FNMS(KP707106781, T6V, T6U);
844
        T71 = FNMS(KP707106781, T70, T6Z);
845
        T6T = W[8];
846
        T6X = T6T * T6W;
847
        T72 = T6T * T71;
848
        T6Y = W[9];
849
        rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X);
850
        iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72);
851
         }
852
         {
853
        E Ta6, Ta9, Ta7, Taa, Ta5, Ta8;
854
        Ta6 = FMA(KP707106781, T9X, T9W);
855
        Ta9 = FMA(KP707106781, Ta2, Ta1);
856
        Ta5 = W[0];
857
        Ta7 = Ta5 * Ta6;
858
        Taa = Ta5 * Ta9;
859
        Ta8 = W[1];
860
        rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7);
861
        iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa);
862
         }
863
         {
864
        E T7r, T7n, T7p, T7q, T7s, T7o;
865
        T7r = T7h + T7k;
866
        T7o = T7d + T7c;
867
        T7n = W[2];
868
        T7p = T7n * T7o;
869
        T7q = W[3];
870
        T7s = T7q * T7o;
871
        iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p);
872
        rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s);
873
         }
874
         {
875
        E T8X, T8T, T8V, T8W, T8Y, T8U;
876
        T8X = T8N + T8Q;
877
        T8U = T8J + T8I;
878
        T8T = W[2];
879
        T8V = T8T * T8U;
880
        T8W = W[3];
881
        T8Y = T8W * T8U;
882
        iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V);
883
        rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y);
884
         }
885
         {
886
        E T2W, T31, T2X, T32, T2V, T2Y;
887
        T2W = T1D - T1K;
888
        T31 = T2Z - T30;
889
        T2V = W[6];
890
        T2X = T2V * T2W;
891
        T32 = T2V * T31;
892
        T2Y = W[7];
893
        rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X);
894
        iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32);
895
         }
896
         {
897
        E T5V, T5R, T5T, T5U, T5W, T5S;
898
        T5V = T5L + T5O;
899
        T5S = T5H + T5G;
900
        T5R = W[2];
901
        T5T = T5R * T5S;
902
        T5U = W[3];
903
        T5W = T5U * T5S;
904
        iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T);
905
        rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W);
906
         }
907
         {
908
        E T3U, T3Z, T3V, T40, T3R, T3W;
909
        T3U = FNMS(KP707106781, T3T, T3S);
910
        T3Z = FNMS(KP707106781, T3Y, T3X);
911
        T3R = W[8];
912
        T3V = T3R * T3U;
913
        T40 = T3R * T3Z;
914
        T3W = W[9];
915
        rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V);
916
        iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40);
917
         }
918
         {
919
        E T5P, T5D, T5J, T5K, T5Q, T5I;
920
        T5P = T5L - T5O;
921
        T5I = T5G - T5H;
922
        T5D = W[10];
923
        T5J = T5D * T5I;
924
        T5K = W[11];
925
        T5Q = T5K * T5I;
926
        iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J);
927
        rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q);
928
         }
929
         {
930
        E T74, T77, T75, T78, T73, T76;
931
        T74 = FMA(KP707106781, T6V, T6U);
932
        T77 = FMA(KP707106781, T70, T6Z);
933
        T73 = W[0];
934
        T75 = T73 * T74;
935
        T78 = T73 * T77;
936
        T76 = W[1];
937
        rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75);
938
        iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78);
939
         }
940
         {
941
        E T9Y, Ta3, T9Z, Ta4, T9V, Ta0;
942
        T9Y = FNMS(KP707106781, T9X, T9W);
943
        Ta3 = FNMS(KP707106781, Ta2, Ta1);
944
        T9V = W[8];
945
        T9Z = T9V * T9Y;
946
        Ta4 = T9V * Ta3;
947
        Ta0 = W[9];
948
        rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z);
949
        iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4);
950
         }
951
         {
952
        E T7l, T79, T7f, T7g, T7m, T7e;
953
        T7l = T7h - T7k;
954
        T7e = T7c - T7d;
955
        T79 = W[10];
956
        T7f = T79 * T7e;
957
        T7g = W[11];
958
        T7m = T7g * T7e;
959
        iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f);
960
        rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m);
961
         }
962
         {
963
        E T90, T95, T91, T96, T8Z, T92;
964
        T90 = T7H - T7O;
965
        T95 = T93 - T94;
966
        T8Z = W[6];
967
        T91 = T8Z * T90;
968
        T96 = T8Z * T95;
969
        T92 = W[7];
970
        rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91);
971
        iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96);
972
         }
973
         {
974
        E T4j, T47, T4d, T4e, T4k, T4c;
975
        T4j = T4f - T4i;
976
        T4c = T4a - T4b;
977
        T47 = W[10];
978
        T4d = T47 * T4c;
979
        T4e = W[11];
980
        T4k = T4e * T4c;
981
        iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d);
982
        rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k);
983
         }
984
         {
985
        E T5q, T5v, T5r, T5w, T5n, T5s;
986
        T5q = FNMS(KP707106781, T5p, T5o);
987
        T5v = FNMS(KP707106781, T5u, T5t);
988
        T5n = W[8];
989
        T5r = T5n * T5q;
990
        T5w = T5n * T5v;
991
        T5s = W[9];
992
        rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r);
993
        iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w);
994
         }
995
         {
996
        E T4p, T4l, T4n, T4o, T4q, T4m;
997
        T4p = T4f + T4i;
998
        T4m = T4b + T4a;
999
        T4l = W[2];
1000
        T4n = T4l * T4m;
1001
        T4o = W[3];
1002
        T4q = T4o * T4m;
1003
        iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n);
1004
        rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q);
1005
         }
1006
         {
1007
        E T4s, T4x, T4t, T4y, T4r, T4u;
1008
        T4s = T39 - T3g;
1009
        T4x = T4v - T4w;
1010
        T4r = W[6];
1011
        T4t = T4r * T4s;
1012
        T4y = T4r * T4x;
1013
        T4u = W[7];
1014
        rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t);
1015
        iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y);
1016
         }
1017
         {
1018
        E T7u, T7z, T7v, T7A, T7t, T7w;
1019
        T7u = T6b - T6i;
1020
        T7z = T7x - T7y;
1021
        T7t = W[6];
1022
        T7v = T7t * T7u;
1023
        T7A = T7t * T7z;
1024
        T7w = W[7];
1025
        rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v);
1026
        iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A);
1027
         }
1028
         {
1029
        E T8R, T8F, T8L, T8M, T8S, T8K;
1030
        T8R = T8N - T8Q;
1031
        T8K = T8I - T8J;
1032
        T8F = W[10];
1033
        T8L = T8F * T8K;
1034
        T8M = W[11];
1035
        T8S = T8M * T8K;
1036
        iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L);
1037
        rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S);
1038
         }
1039
         {
1040
        E T8s, T8x, T8t, T8y, T8p, T8u;
1041
        T8s = FNMS(KP707106781, T8r, T8q);
1042
        T8x = FNMS(KP707106781, T8w, T8v);
1043
        T8p = W[8];
1044
        T8t = T8p * T8s;
1045
        T8y = T8p * T8x;
1046
        T8u = W[9];
1047
        rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t);
1048
        iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y);
1049
         }
1050
         {
1051
        E T8A, T8D, T8B, T8E, T8z, T8C;
1052
        T8A = FMA(KP707106781, T8r, T8q);
1053
        T8D = FMA(KP707106781, T8w, T8v);
1054
        T8z = W[0];
1055
        T8B = T8z * T8A;
1056
        T8E = T8z * T8D;
1057
        T8C = W[1];
1058
        rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B);
1059
        iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E);
1060
         }
1061
         {
1062
        E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw;
1063
        TG = TE - TF;
1064
        TH = FNMS(KP707106781, TG, TD);
1065
        TN = FMA(KP707106781, TG, TD);
1066
        TK = FMA(KP707106781, Tv, Tk);
1067
        TJ = W[4];
1068
        TL = TJ * TK;
1069
        TM = W[5];
1070
        TO = TM * TK;
1071
        Tw = FNMS(KP707106781, Tv, Tk);
1072
        Tf = W[12];
1073
        Tx = Tf * Tw;
1074
        Ty = W[13];
1075
        TI = Ty * Tw;
1076
        iio[WS(vs, 7)] = FNMS(Ty, TH, Tx);
1077
        rio[WS(vs, 7)] = FMA(Tf, TH, TI);
1078
        iio[WS(vs, 3)] = FNMS(TM, TN, TL);
1079
        rio[WS(vs, 3)] = FMA(TJ, TN, TO);
1080
         }
1081
         {
1082
        E T5f, T5l, T5h, T5j, T5k, T5m, T4N, T55, T56, T5g, T5e, T5i, T54;
1083
        T5e = T5c - T5d;
1084
        T5f = FNMS(KP707106781, T5e, T5b);
1085
        T5l = FMA(KP707106781, T5e, T5b);
1086
        T5i = FMA(KP707106781, T53, T4S);
1087
        T5h = W[4];
1088
        T5j = T5h * T5i;
1089
        T5k = W[5];
1090
        T5m = T5k * T5i;
1091
        T54 = FNMS(KP707106781, T53, T4S);
1092
        T4N = W[12];
1093
        T55 = T4N * T54;
1094
        T56 = W[13];
1095
        T5g = T56 * T54;
1096
        iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55);
1097
        rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g);
1098
        iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j);
1099
        rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m);
1100
         }
1101
         {
1102
        E T2d, T2j, T2f, T2h, T2i, T2k, T1L, T23, T24, T2e, T2c, T2g, T22;
1103
        T2c = T2a - T2b;
1104
        T2d = FNMS(KP707106781, T2c, T29);
1105
        T2j = FMA(KP707106781, T2c, T29);
1106
        T2g = FMA(KP707106781, T21, T1Q);
1107
        T2f = W[4];
1108
        T2h = T2f * T2g;
1109
        T2i = W[5];
1110
        T2k = T2i * T2g;
1111
        T22 = FNMS(KP707106781, T21, T1Q);
1112
        T1L = W[12];
1113
        T23 = T1L * T22;
1114
        T24 = W[13];
1115
        T2e = T24 * T22;
1116
        iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23);
1117
        rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e);
1118
        iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h);
1119
        rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k);
1120
         }
1121
         {
1122
        E T3J, T3P, T3L, T3N, T3O, T3Q, T3h, T3z, T3A, T3K, T3I, T3M, T3y;
1123
        T3I = T3G - T3H;
1124
        T3J = FNMS(KP707106781, T3I, T3F);
1125
        T3P = FMA(KP707106781, T3I, T3F);
1126
        T3M = FMA(KP707106781, T3x, T3m);
1127
        T3L = W[4];
1128
        T3N = T3L * T3M;
1129
        T3O = W[5];
1130
        T3Q = T3O * T3M;
1131
        T3y = FNMS(KP707106781, T3x, T3m);
1132
        T3h = W[12];
1133
        T3z = T3h * T3y;
1134
        T3A = W[13];
1135
        T3K = T3A * T3y;
1136
        iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z);
1137
        rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K);
1138
        iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N);
1139
        rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q);
1140
         }
1141
         {
1142
        E T6L, T6R, T6N, T6P, T6Q, T6S, T6j, T6B, T6C, T6M, T6K, T6O, T6A;
1143
        T6K = T6I - T6J;
1144
        T6L = FNMS(KP707106781, T6K, T6H);
1145
        T6R = FMA(KP707106781, T6K, T6H);
1146
        T6O = FMA(KP707106781, T6z, T6o);
1147
        T6N = W[4];
1148
        T6P = T6N * T6O;
1149
        T6Q = W[5];
1150
        T6S = T6Q * T6O;
1151
        T6A = FNMS(KP707106781, T6z, T6o);
1152
        T6j = W[12];
1153
        T6B = T6j * T6A;
1154
        T6C = W[13];
1155
        T6M = T6C * T6A;
1156
        iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B);
1157
        rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M);
1158
        iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P);
1159
        rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S);
1160
         }
1161
         {
1162
        E Tbj, Tbp, Tbl, Tbn, Tbo, Tbq, TaR, Tb9, Tba, Tbk, Tbi, Tbm, Tb8;
1163
        Tbi = Tbg - Tbh;
1164
        Tbj = FNMS(KP707106781, Tbi, Tbf);
1165
        Tbp = FMA(KP707106781, Tbi, Tbf);
1166
        Tbm = FMA(KP707106781, Tb7, TaW);
1167
        Tbl = W[4];
1168
        Tbn = Tbl * Tbm;
1169
        Tbo = W[5];
1170
        Tbq = Tbo * Tbm;
1171
        Tb8 = FNMS(KP707106781, Tb7, TaW);
1172
        TaR = W[12];
1173
        Tb9 = TaR * Tb8;
1174
        Tba = W[13];
1175
        Tbk = Tba * Tb8;
1176
        iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9);
1177
        rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk);
1178
        iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn);
1179
        rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq);
1180
         }
1181
         {
1182
        E T8h, T8n, T8j, T8l, T8m, T8o, T7P, T87, T88, T8i, T8g, T8k, T86;
1183
        T8g = T8e - T8f;
1184
        T8h = FNMS(KP707106781, T8g, T8d);
1185
        T8n = FMA(KP707106781, T8g, T8d);
1186
        T8k = FMA(KP707106781, T85, T7U);
1187
        T8j = W[4];
1188
        T8l = T8j * T8k;
1189
        T8m = W[5];
1190
        T8o = T8m * T8k;
1191
        T86 = FNMS(KP707106781, T85, T7U);
1192
        T7P = W[12];
1193
        T87 = T7P * T86;
1194
        T88 = W[13];
1195
        T8i = T88 * T86;
1196
        iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87);
1197
        rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i);
1198
        iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l);
1199
        rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o);
1200
         }
1201
         {
1202
        E T9N, T9T, T9P, T9R, T9S, T9U, T9l, T9D, T9E, T9O, T9M, T9Q, T9C;
1203
        T9M = T9K - T9L;
1204
        T9N = FNMS(KP707106781, T9M, T9J);
1205
        T9T = FMA(KP707106781, T9M, T9J);
1206
        T9Q = FMA(KP707106781, T9B, T9q);
1207
        T9P = W[4];
1208
        T9R = T9P * T9Q;
1209
        T9S = W[5];
1210
        T9U = T9S * T9Q;
1211
        T9C = FNMS(KP707106781, T9B, T9q);
1212
        T9l = W[12];
1213
        T9D = T9l * T9C;
1214
        T9E = W[13];
1215
        T9O = T9E * T9C;
1216
        iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D);
1217
        rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O);
1218
        iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R);
1219
        rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U);
1220
         }
1221
    }
1222
     }
1223
}
1224
1225
static const tw_instr twinstr[] = {
1226
     { TW_FULL, 0, 8 },
1227
     { TW_NEXT, 1, 0 }
1228
};
1229
1230
static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 352, 112, 176, 0 }, 0, 0, 0 };
1231
1232
void X(codelet_q1_8) (planner *p) {
1233
     X(kdft_difsq_register) (p, q1_8, &desc);
1234
}
1235
#else
1236
1237
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */
1238
1239
/*
1240
 * This function contains 528 FP additions, 256 FP multiplications,
1241
 * (or, 416 additions, 144 multiplications, 112 fused multiply/add),
1242
 * 142 stack variables, 1 constants, and 256 memory accesses
1243
 */
1244
#include "dft/scalar/q.h"
1245
1246
static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
1247
0
{
1248
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1249
0
     {
1250
0
    INT m;
1251
0
    for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
1252
0
         E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j;
1253
0
         E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G;
1254
0
         E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U;
1255
0
         E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m;
1256
0
         E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59;
1257
0
         E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z;
1258
0
         E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z;
1259
0
         E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N;
1260
0
         E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e;
1261
0
         {
1262
0
        E T3, Ty, Tj, TY, T6, Tg, TB, TZ;
1263
0
        {
1264
0
       E T1, T2, Th, Ti;
1265
0
       T1 = rio[0];
1266
0
       T2 = rio[WS(rs, 4)];
1267
0
       T3 = T1 + T2;
1268
0
       Ty = T1 - T2;
1269
0
       Th = iio[0];
1270
0
       Ti = iio[WS(rs, 4)];
1271
0
       Tj = Th - Ti;
1272
0
       TY = Th + Ti;
1273
0
        }
1274
0
        {
1275
0
       E T4, T5, Tz, TA;
1276
0
       T4 = rio[WS(rs, 2)];
1277
0
       T5 = rio[WS(rs, 6)];
1278
0
       T6 = T4 + T5;
1279
0
       Tg = T4 - T5;
1280
0
       Tz = iio[WS(rs, 2)];
1281
0
       TA = iio[WS(rs, 6)];
1282
0
       TB = Tz - TA;
1283
0
       TZ = Tz + TA;
1284
0
        }
1285
0
        T7 = T3 + T6;
1286
0
        T14 = T3 - T6;
1287
0
        T1g = TY + TZ;
1288
0
        Tk = Tg + Tj;
1289
0
        TC = Ty - TB;
1290
0
        TQ = Tj - Tg;
1291
0
        T10 = TY - TZ;
1292
0
        TM = Ty + TB;
1293
0
         }
1294
0
         {
1295
0
        E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o;
1296
0
        {
1297
0
       E T1q, T1r, T1J, T1K;
1298
0
       T1q = rio[WS(vs, 1) + WS(rs, 1)];
1299
0
       T1r = rio[WS(vs, 1) + WS(rs, 5)];
1300
0
       T1s = T1q + T1r;
1301
0
       T1I = T1q - T1r;
1302
0
       T1J = iio[WS(vs, 1) + WS(rs, 1)];
1303
0
       T1K = iio[WS(vs, 1) + WS(rs, 5)];
1304
0
       T1L = T1J - T1K;
1305
0
       T2n = T1J + T1K;
1306
0
        }
1307
0
        {
1308
0
       E T1t, T1u, T1E, T1F;
1309
0
       T1t = rio[WS(vs, 1) + WS(rs, 7)];
1310
0
       T1u = rio[WS(vs, 1) + WS(rs, 3)];
1311
0
       T1v = T1t + T1u;
1312
0
       T1D = T1t - T1u;
1313
0
       T1E = iio[WS(vs, 1) + WS(rs, 7)];
1314
0
       T1F = iio[WS(vs, 1) + WS(rs, 3)];
1315
0
       T1G = T1E - T1F;
1316
0
       T2o = T1E + T1F;
1317
0
        }
1318
0
        T1w = T1s + T1v;
1319
0
        T2p = T2n - T2o;
1320
0
        T2z = T2n + T2o;
1321
0
        T1H = T1D - T1G;
1322
0
        T1M = T1I + T1L;
1323
0
        T1W = T1D + T1G;
1324
0
        T2j = T1v - T1s;
1325
0
        T1V = T1L - T1I;
1326
0
         }
1327
0
         {
1328
0
        E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J;
1329
0
        {
1330
0
       E T7L, T7M, T81, T82;
1331
0
       T7L = rio[WS(vs, 6)];
1332
0
       T7M = rio[WS(vs, 6) + WS(rs, 4)];
1333
0
       T7N = T7L + T7M;
1334
0
       T8i = T7L - T7M;
1335
0
       T81 = iio[WS(vs, 6)];
1336
0
       T82 = iio[WS(vs, 6) + WS(rs, 4)];
1337
0
       T83 = T81 - T82;
1338
0
       T8I = T81 + T82;
1339
0
        }
1340
0
        {
1341
0
       E T7O, T7P, T8j, T8k;
1342
0
       T7O = rio[WS(vs, 6) + WS(rs, 2)];
1343
0
       T7P = rio[WS(vs, 6) + WS(rs, 6)];
1344
0
       T7Q = T7O + T7P;
1345
0
       T80 = T7O - T7P;
1346
0
       T8j = iio[WS(vs, 6) + WS(rs, 2)];
1347
0
       T8k = iio[WS(vs, 6) + WS(rs, 6)];
1348
0
       T8l = T8j - T8k;
1349
0
       T8J = T8j + T8k;
1350
0
        }
1351
0
        T7R = T7N + T7Q;
1352
0
        T8O = T7N - T7Q;
1353
0
        T90 = T8I + T8J;
1354
0
        T84 = T80 + T83;
1355
0
        T8m = T8i - T8l;
1356
0
        T8A = T83 - T80;
1357
0
        T8K = T8I - T8J;
1358
0
        T8w = T8i + T8l;
1359
0
         }
1360
0
         {
1361
0
        E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8;
1362
0
        {
1363
0
       E T9a, T9b, T9t, T9u;
1364
0
       T9a = rio[WS(vs, 7) + WS(rs, 1)];
1365
0
       T9b = rio[WS(vs, 7) + WS(rs, 5)];
1366
0
       T9c = T9a + T9b;
1367
0
       T9s = T9a - T9b;
1368
0
       T9t = iio[WS(vs, 7) + WS(rs, 1)];
1369
0
       T9u = iio[WS(vs, 7) + WS(rs, 5)];
1370
0
       T9v = T9t - T9u;
1371
0
       Ta7 = T9t + T9u;
1372
0
        }
1373
0
        {
1374
0
       E T9d, T9e, T9o, T9p;
1375
0
       T9d = rio[WS(vs, 7) + WS(rs, 7)];
1376
0
       T9e = rio[WS(vs, 7) + WS(rs, 3)];
1377
0
       T9f = T9d + T9e;
1378
0
       T9n = T9d - T9e;
1379
0
       T9o = iio[WS(vs, 7) + WS(rs, 7)];
1380
0
       T9p = iio[WS(vs, 7) + WS(rs, 3)];
1381
0
       T9q = T9o - T9p;
1382
0
       Ta8 = T9o + T9p;
1383
0
        }
1384
0
        T9g = T9c + T9f;
1385
0
        Ta9 = Ta7 - Ta8;
1386
0
        Taj = Ta7 + Ta8;
1387
0
        T9r = T9n - T9q;
1388
0
        T9w = T9s + T9v;
1389
0
        T9G = T9n + T9q;
1390
0
        Ta3 = T9f - T9c;
1391
0
        T9F = T9v - T9s;
1392
0
         }
1393
0
         {
1394
0
        E Ta, Tq, Tt, T15, Td, Tl, To, T16;
1395
0
        {
1396
0
       E T8, T9, Tr, Ts;
1397
0
       T8 = rio[WS(rs, 1)];
1398
0
       T9 = rio[WS(rs, 5)];
1399
0
       Ta = T8 + T9;
1400
0
       Tq = T8 - T9;
1401
0
       Tr = iio[WS(rs, 1)];
1402
0
       Ts = iio[WS(rs, 5)];
1403
0
       Tt = Tr - Ts;
1404
0
       T15 = Tr + Ts;
1405
0
        }
1406
0
        {
1407
0
       E Tb, Tc, Tm, Tn;
1408
0
       Tb = rio[WS(rs, 7)];
1409
0
       Tc = rio[WS(rs, 3)];
1410
0
       Td = Tb + Tc;
1411
0
       Tl = Tb - Tc;
1412
0
       Tm = iio[WS(rs, 7)];
1413
0
       Tn = iio[WS(rs, 3)];
1414
0
       To = Tm - Tn;
1415
0
       T16 = Tm + Tn;
1416
0
        }
1417
0
        Te = Ta + Td;
1418
0
        T17 = T15 - T16;
1419
0
        T1h = T15 + T16;
1420
0
        Tp = Tl - To;
1421
0
        Tu = Tq + Tt;
1422
0
        TE = Tl + To;
1423
0
        T11 = Td - Ta;
1424
0
        TD = Tt - Tq;
1425
0
         }
1426
0
         {
1427
0
        E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h;
1428
0
        {
1429
0
       E T1j, T1k, T1z, T1A;
1430
0
       T1j = rio[WS(vs, 1)];
1431
0
       T1k = rio[WS(vs, 1) + WS(rs, 4)];
1432
0
       T1l = T1j + T1k;
1433
0
       T1Q = T1j - T1k;
1434
0
       T1z = iio[WS(vs, 1)];
1435
0
       T1A = iio[WS(vs, 1) + WS(rs, 4)];
1436
0
       T1B = T1z - T1A;
1437
0
       T2g = T1z + T1A;
1438
0
        }
1439
0
        {
1440
0
       E T1m, T1n, T1R, T1S;
1441
0
       T1m = rio[WS(vs, 1) + WS(rs, 2)];
1442
0
       T1n = rio[WS(vs, 1) + WS(rs, 6)];
1443
0
       T1o = T1m + T1n;
1444
0
       T1y = T1m - T1n;
1445
0
       T1R = iio[WS(vs, 1) + WS(rs, 2)];
1446
0
       T1S = iio[WS(vs, 1) + WS(rs, 6)];
1447
0
       T1T = T1R - T1S;
1448
0
       T2h = T1R + T1S;
1449
0
        }
1450
0
        T1p = T1l + T1o;
1451
0
        T2m = T1l - T1o;
1452
0
        T2y = T2g + T2h;
1453
0
        T1C = T1y + T1B;
1454
0
        T1U = T1Q - T1T;
1455
0
        T28 = T1B - T1y;
1456
0
        T2i = T2g - T2h;
1457
0
        T24 = T1Q + T1T;
1458
0
         }
1459
0
         {
1460
0
        E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q;
1461
0
        {
1462
0
       E T7S, T7T, T8b, T8c;
1463
0
       T7S = rio[WS(vs, 6) + WS(rs, 1)];
1464
0
       T7T = rio[WS(vs, 6) + WS(rs, 5)];
1465
0
       T7U = T7S + T7T;
1466
0
       T8a = T7S - T7T;
1467
0
       T8b = iio[WS(vs, 6) + WS(rs, 1)];
1468
0
       T8c = iio[WS(vs, 6) + WS(rs, 5)];
1469
0
       T8d = T8b - T8c;
1470
0
       T8P = T8b + T8c;
1471
0
        }
1472
0
        {
1473
0
       E T7V, T7W, T86, T87;
1474
0
       T7V = rio[WS(vs, 6) + WS(rs, 7)];
1475
0
       T7W = rio[WS(vs, 6) + WS(rs, 3)];
1476
0
       T7X = T7V + T7W;
1477
0
       T85 = T7V - T7W;
1478
0
       T86 = iio[WS(vs, 6) + WS(rs, 7)];
1479
0
       T87 = iio[WS(vs, 6) + WS(rs, 3)];
1480
0
       T88 = T86 - T87;
1481
0
       T8Q = T86 + T87;
1482
0
        }
1483
0
        T7Y = T7U + T7X;
1484
0
        T8R = T8P - T8Q;
1485
0
        T91 = T8P + T8Q;
1486
0
        T89 = T85 - T88;
1487
0
        T8e = T8a + T8d;
1488
0
        T8o = T85 + T88;
1489
0
        T8L = T7X - T7U;
1490
0
        T8n = T8d - T8a;
1491
0
         }
1492
0
         {
1493
0
        E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1;
1494
0
        {
1495
0
       E T93, T94, T9j, T9k;
1496
0
       T93 = rio[WS(vs, 7)];
1497
0
       T94 = rio[WS(vs, 7) + WS(rs, 4)];
1498
0
       T95 = T93 + T94;
1499
0
       T9A = T93 - T94;
1500
0
       T9j = iio[WS(vs, 7)];
1501
0
       T9k = iio[WS(vs, 7) + WS(rs, 4)];
1502
0
       T9l = T9j - T9k;
1503
0
       Ta0 = T9j + T9k;
1504
0
        }
1505
0
        {
1506
0
       E T96, T97, T9B, T9C;
1507
0
       T96 = rio[WS(vs, 7) + WS(rs, 2)];
1508
0
       T97 = rio[WS(vs, 7) + WS(rs, 6)];
1509
0
       T98 = T96 + T97;
1510
0
       T9i = T96 - T97;
1511
0
       T9B = iio[WS(vs, 7) + WS(rs, 2)];
1512
0
       T9C = iio[WS(vs, 7) + WS(rs, 6)];
1513
0
       T9D = T9B - T9C;
1514
0
       Ta1 = T9B + T9C;
1515
0
        }
1516
0
        T99 = T95 + T98;
1517
0
        Ta6 = T95 - T98;
1518
0
        Tai = Ta0 + Ta1;
1519
0
        T9m = T9i + T9l;
1520
0
        T9E = T9A - T9D;
1521
0
        T9S = T9l - T9i;
1522
0
        Ta2 = Ta0 - Ta1;
1523
0
        T9O = T9A + T9D;
1524
0
         }
1525
0
         {
1526
0
        E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z;
1527
0
        {
1528
0
       E T2B, T2C, T2R, T2S;
1529
0
       T2B = rio[WS(vs, 2)];
1530
0
       T2C = rio[WS(vs, 2) + WS(rs, 4)];
1531
0
       T2D = T2B + T2C;
1532
0
       T38 = T2B - T2C;
1533
0
       T2R = iio[WS(vs, 2)];
1534
0
       T2S = iio[WS(vs, 2) + WS(rs, 4)];
1535
0
       T2T = T2R - T2S;
1536
0
       T3y = T2R + T2S;
1537
0
        }
1538
0
        {
1539
0
       E T2E, T2F, T39, T3a;
1540
0
       T2E = rio[WS(vs, 2) + WS(rs, 2)];
1541
0
       T2F = rio[WS(vs, 2) + WS(rs, 6)];
1542
0
       T2G = T2E + T2F;
1543
0
       T2Q = T2E - T2F;
1544
0
       T39 = iio[WS(vs, 2) + WS(rs, 2)];
1545
0
       T3a = iio[WS(vs, 2) + WS(rs, 6)];
1546
0
       T3b = T39 - T3a;
1547
0
       T3z = T39 + T3a;
1548
0
        }
1549
0
        T2H = T2D + T2G;
1550
0
        T3E = T2D - T2G;
1551
0
        T3Q = T3y + T3z;
1552
0
        T2U = T2Q + T2T;
1553
0
        T3c = T38 - T3b;
1554
0
        T3q = T2T - T2Q;
1555
0
        T3A = T3y - T3z;
1556
0
        T3m = T38 + T3b;
1557
0
         }
1558
0
         {
1559
0
        E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y;
1560
0
        {
1561
0
       E T40, T41, T4j, T4k;
1562
0
       T40 = rio[WS(vs, 3) + WS(rs, 1)];
1563
0
       T41 = rio[WS(vs, 3) + WS(rs, 5)];
1564
0
       T42 = T40 + T41;
1565
0
       T4i = T40 - T41;
1566
0
       T4j = iio[WS(vs, 3) + WS(rs, 1)];
1567
0
       T4k = iio[WS(vs, 3) + WS(rs, 5)];
1568
0
       T4l = T4j - T4k;
1569
0
       T4X = T4j + T4k;
1570
0
        }
1571
0
        {
1572
0
       E T43, T44, T4e, T4f;
1573
0
       T43 = rio[WS(vs, 3) + WS(rs, 7)];
1574
0
       T44 = rio[WS(vs, 3) + WS(rs, 3)];
1575
0
       T45 = T43 + T44;
1576
0
       T4d = T43 - T44;
1577
0
       T4e = iio[WS(vs, 3) + WS(rs, 7)];
1578
0
       T4f = iio[WS(vs, 3) + WS(rs, 3)];
1579
0
       T4g = T4e - T4f;
1580
0
       T4Y = T4e + T4f;
1581
0
        }
1582
0
        T46 = T42 + T45;
1583
0
        T4Z = T4X - T4Y;
1584
0
        T59 = T4X + T4Y;
1585
0
        T4h = T4d - T4g;
1586
0
        T4m = T4i + T4l;
1587
0
        T4w = T4d + T4g;
1588
0
        T4T = T45 - T42;
1589
0
        T4v = T4l - T4i;
1590
0
         }
1591
0
         {
1592
0
        E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69;
1593
0
        {
1594
0
       E T5b, T5c, T5r, T5s;
1595
0
       T5b = rio[WS(vs, 4)];
1596
0
       T5c = rio[WS(vs, 4) + WS(rs, 4)];
1597
0
       T5d = T5b + T5c;
1598
0
       T5I = T5b - T5c;
1599
0
       T5r = iio[WS(vs, 4)];
1600
0
       T5s = iio[WS(vs, 4) + WS(rs, 4)];
1601
0
       T5t = T5r - T5s;
1602
0
       T68 = T5r + T5s;
1603
0
        }
1604
0
        {
1605
0
       E T5e, T5f, T5J, T5K;
1606
0
       T5e = rio[WS(vs, 4) + WS(rs, 2)];
1607
0
       T5f = rio[WS(vs, 4) + WS(rs, 6)];
1608
0
       T5g = T5e + T5f;
1609
0
       T5q = T5e - T5f;
1610
0
       T5J = iio[WS(vs, 4) + WS(rs, 2)];
1611
0
       T5K = iio[WS(vs, 4) + WS(rs, 6)];
1612
0
       T5L = T5J - T5K;
1613
0
       T69 = T5J + T5K;
1614
0
        }
1615
0
        T5h = T5d + T5g;
1616
0
        T6e = T5d - T5g;
1617
0
        T6q = T68 + T69;
1618
0
        T5u = T5q + T5t;
1619
0
        T5M = T5I - T5L;
1620
0
        T60 = T5t - T5q;
1621
0
        T6a = T68 - T69;
1622
0
        T5W = T5I + T5L;
1623
0
         }
1624
0
         {
1625
0
        E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y;
1626
0
        {
1627
0
       E T6A, T6B, T6T, T6U;
1628
0
       T6A = rio[WS(vs, 5) + WS(rs, 1)];
1629
0
       T6B = rio[WS(vs, 5) + WS(rs, 5)];
1630
0
       T6C = T6A + T6B;
1631
0
       T6S = T6A - T6B;
1632
0
       T6T = iio[WS(vs, 5) + WS(rs, 1)];
1633
0
       T6U = iio[WS(vs, 5) + WS(rs, 5)];
1634
0
       T6V = T6T - T6U;
1635
0
       T7x = T6T + T6U;
1636
0
        }
1637
0
        {
1638
0
       E T6D, T6E, T6O, T6P;
1639
0
       T6D = rio[WS(vs, 5) + WS(rs, 7)];
1640
0
       T6E = rio[WS(vs, 5) + WS(rs, 3)];
1641
0
       T6F = T6D + T6E;
1642
0
       T6N = T6D - T6E;
1643
0
       T6O = iio[WS(vs, 5) + WS(rs, 7)];
1644
0
       T6P = iio[WS(vs, 5) + WS(rs, 3)];
1645
0
       T6Q = T6O - T6P;
1646
0
       T7y = T6O + T6P;
1647
0
        }
1648
0
        T6G = T6C + T6F;
1649
0
        T7z = T7x - T7y;
1650
0
        T7J = T7x + T7y;
1651
0
        T6R = T6N - T6Q;
1652
0
        T6W = T6S + T6V;
1653
0
        T76 = T6N + T6Q;
1654
0
        T7t = T6F - T6C;
1655
0
        T75 = T6V - T6S;
1656
0
         }
1657
0
         {
1658
0
        E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G;
1659
0
        {
1660
0
       E T2I, T2J, T31, T32;
1661
0
       T2I = rio[WS(vs, 2) + WS(rs, 1)];
1662
0
       T2J = rio[WS(vs, 2) + WS(rs, 5)];
1663
0
       T2K = T2I + T2J;
1664
0
       T30 = T2I - T2J;
1665
0
       T31 = iio[WS(vs, 2) + WS(rs, 1)];
1666
0
       T32 = iio[WS(vs, 2) + WS(rs, 5)];
1667
0
       T33 = T31 - T32;
1668
0
       T3F = T31 + T32;
1669
0
        }
1670
0
        {
1671
0
       E T2L, T2M, T2W, T2X;
1672
0
       T2L = rio[WS(vs, 2) + WS(rs, 7)];
1673
0
       T2M = rio[WS(vs, 2) + WS(rs, 3)];
1674
0
       T2N = T2L + T2M;
1675
0
       T2V = T2L - T2M;
1676
0
       T2W = iio[WS(vs, 2) + WS(rs, 7)];
1677
0
       T2X = iio[WS(vs, 2) + WS(rs, 3)];
1678
0
       T2Y = T2W - T2X;
1679
0
       T3G = T2W + T2X;
1680
0
        }
1681
0
        T2O = T2K + T2N;
1682
0
        T3H = T3F - T3G;
1683
0
        T3R = T3F + T3G;
1684
0
        T2Z = T2V - T2Y;
1685
0
        T34 = T30 + T33;
1686
0
        T3e = T2V + T2Y;
1687
0
        T3B = T2N - T2K;
1688
0
        T3d = T33 - T30;
1689
0
         }
1690
0
         {
1691
0
        E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R;
1692
0
        {
1693
0
       E T3T, T3U, T49, T4a;
1694
0
       T3T = rio[WS(vs, 3)];
1695
0
       T3U = rio[WS(vs, 3) + WS(rs, 4)];
1696
0
       T3V = T3T + T3U;
1697
0
       T4q = T3T - T3U;
1698
0
       T49 = iio[WS(vs, 3)];
1699
0
       T4a = iio[WS(vs, 3) + WS(rs, 4)];
1700
0
       T4b = T49 - T4a;
1701
0
       T4Q = T49 + T4a;
1702
0
        }
1703
0
        {
1704
0
       E T3W, T3X, T4r, T4s;
1705
0
       T3W = rio[WS(vs, 3) + WS(rs, 2)];
1706
0
       T3X = rio[WS(vs, 3) + WS(rs, 6)];
1707
0
       T3Y = T3W + T3X;
1708
0
       T48 = T3W - T3X;
1709
0
       T4r = iio[WS(vs, 3) + WS(rs, 2)];
1710
0
       T4s = iio[WS(vs, 3) + WS(rs, 6)];
1711
0
       T4t = T4r - T4s;
1712
0
       T4R = T4r + T4s;
1713
0
        }
1714
0
        T3Z = T3V + T3Y;
1715
0
        T4W = T3V - T3Y;
1716
0
        T58 = T4Q + T4R;
1717
0
        T4c = T48 + T4b;
1718
0
        T4u = T4q - T4t;
1719
0
        T4I = T4b - T48;
1720
0
        T4S = T4Q - T4R;
1721
0
        T4E = T4q + T4t;
1722
0
         }
1723
0
         {
1724
0
        E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g;
1725
0
        {
1726
0
       E T5i, T5j, T5B, T5C;
1727
0
       T5i = rio[WS(vs, 4) + WS(rs, 1)];
1728
0
       T5j = rio[WS(vs, 4) + WS(rs, 5)];
1729
0
       T5k = T5i + T5j;
1730
0
       T5A = T5i - T5j;
1731
0
       T5B = iio[WS(vs, 4) + WS(rs, 1)];
1732
0
       T5C = iio[WS(vs, 4) + WS(rs, 5)];
1733
0
       T5D = T5B - T5C;
1734
0
       T6f = T5B + T5C;
1735
0
        }
1736
0
        {
1737
0
       E T5l, T5m, T5w, T5x;
1738
0
       T5l = rio[WS(vs, 4) + WS(rs, 7)];
1739
0
       T5m = rio[WS(vs, 4) + WS(rs, 3)];
1740
0
       T5n = T5l + T5m;
1741
0
       T5v = T5l - T5m;
1742
0
       T5w = iio[WS(vs, 4) + WS(rs, 7)];
1743
0
       T5x = iio[WS(vs, 4) + WS(rs, 3)];
1744
0
       T5y = T5w - T5x;
1745
0
       T6g = T5w + T5x;
1746
0
        }
1747
0
        T5o = T5k + T5n;
1748
0
        T6h = T6f - T6g;
1749
0
        T6r = T6f + T6g;
1750
0
        T5z = T5v - T5y;
1751
0
        T5E = T5A + T5D;
1752
0
        T5O = T5v + T5y;
1753
0
        T6b = T5n - T5k;
1754
0
        T5N = T5D - T5A;
1755
0
         }
1756
0
         {
1757
0
        E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r;
1758
0
        {
1759
0
       E T6t, T6u, T6J, T6K;
1760
0
       T6t = rio[WS(vs, 5)];
1761
0
       T6u = rio[WS(vs, 5) + WS(rs, 4)];
1762
0
       T6v = T6t + T6u;
1763
0
       T70 = T6t - T6u;
1764
0
       T6J = iio[WS(vs, 5)];
1765
0
       T6K = iio[WS(vs, 5) + WS(rs, 4)];
1766
0
       T6L = T6J - T6K;
1767
0
       T7q = T6J + T6K;
1768
0
        }
1769
0
        {
1770
0
       E T6w, T6x, T71, T72;
1771
0
       T6w = rio[WS(vs, 5) + WS(rs, 2)];
1772
0
       T6x = rio[WS(vs, 5) + WS(rs, 6)];
1773
0
       T6y = T6w + T6x;
1774
0
       T6I = T6w - T6x;
1775
0
       T71 = iio[WS(vs, 5) + WS(rs, 2)];
1776
0
       T72 = iio[WS(vs, 5) + WS(rs, 6)];
1777
0
       T73 = T71 - T72;
1778
0
       T7r = T71 + T72;
1779
0
        }
1780
0
        T6z = T6v + T6y;
1781
0
        T7w = T6v - T6y;
1782
0
        T7I = T7q + T7r;
1783
0
        T6M = T6I + T6L;
1784
0
        T74 = T70 - T73;
1785
0
        T7i = T6L - T6I;
1786
0
        T7s = T7q - T7r;
1787
0
        T7e = T70 + T73;
1788
0
         }
1789
0
         rio[0] = T7 + Te;
1790
0
         iio[0] = T1g + T1h;
1791
0
         rio[WS(rs, 1)] = T1p + T1w;
1792
0
         iio[WS(rs, 1)] = T2y + T2z;
1793
0
         rio[WS(rs, 3)] = T3Z + T46;
1794
0
         rio[WS(rs, 2)] = T2H + T2O;
1795
0
         iio[WS(rs, 2)] = T3Q + T3R;
1796
0
         iio[WS(rs, 3)] = T58 + T59;
1797
0
         rio[WS(rs, 6)] = T7R + T7Y;
1798
0
         iio[WS(rs, 6)] = T90 + T91;
1799
0
         iio[WS(rs, 5)] = T7I + T7J;
1800
0
         rio[WS(rs, 5)] = T6z + T6G;
1801
0
         iio[WS(rs, 4)] = T6q + T6r;
1802
0
         rio[WS(rs, 4)] = T5h + T5o;
1803
0
         rio[WS(rs, 7)] = T99 + T9g;
1804
0
         iio[WS(rs, 7)] = Tai + Taj;
1805
0
         {
1806
0
        E T12, T18, TX, T13;
1807
0
        T12 = T10 - T11;
1808
0
        T18 = T14 - T17;
1809
0
        TX = W[10];
1810
0
        T13 = W[11];
1811
0
        iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12);
1812
0
        rio[WS(vs, 6)] = FMA(T13, T12, TX * T18);
1813
0
         }
1814
0
         {
1815
0
        E Tag, Tak, Taf, Tah;
1816
0
        Tag = T99 - T9g;
1817
0
        Tak = Tai - Taj;
1818
0
        Taf = W[6];
1819
0
        Tah = W[7];
1820
0
        rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak);
1821
0
        iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak);
1822
0
         }
1823
0
         {
1824
0
        E T8M, T8S, T8H, T8N;
1825
0
        T8M = T8K - T8L;
1826
0
        T8S = T8O - T8R;
1827
0
        T8H = W[10];
1828
0
        T8N = W[11];
1829
0
        iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M);
1830
0
        rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S);
1831
0
         }
1832
0
         {
1833
0
        E T2k, T2q, T2f, T2l;
1834
0
        T2k = T2i - T2j;
1835
0
        T2q = T2m - T2p;
1836
0
        T2f = W[10];
1837
0
        T2l = W[11];
1838
0
        iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k);
1839
0
        rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q);
1840
0
         }
1841
0
         {
1842
0
        E Ta4, Taa, T9Z, Ta5;
1843
0
        Ta4 = Ta2 - Ta3;
1844
0
        Taa = Ta6 - Ta9;
1845
0
        T9Z = W[10];
1846
0
        Ta5 = W[11];
1847
0
        iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4);
1848
0
        rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa);
1849
0
         }
1850
0
         {
1851
0
        E T8Y, T92, T8X, T8Z;
1852
0
        T8Y = T7R - T7Y;
1853
0
        T92 = T90 - T91;
1854
0
        T8X = W[6];
1855
0
        T8Z = W[7];
1856
0
        rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92);
1857
0
        iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92);
1858
0
         }
1859
0
         {
1860
0
        E T2w, T2A, T2v, T2x;
1861
0
        T2w = T1p - T1w;
1862
0
        T2A = T2y - T2z;
1863
0
        T2v = W[6];
1864
0
        T2x = W[7];
1865
0
        rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A);
1866
0
        iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A);
1867
0
         }
1868
0
         {
1869
0
        E Tac, Tae, Tab, Tad;
1870
0
        Tac = Ta3 + Ta2;
1871
0
        Tae = Ta6 + Ta9;
1872
0
        Tab = W[2];
1873
0
        Tad = W[3];
1874
0
        iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac);
1875
0
        rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae);
1876
0
         }
1877
0
         {
1878
0
        E T8U, T8W, T8T, T8V;
1879
0
        T8U = T8L + T8K;
1880
0
        T8W = T8O + T8R;
1881
0
        T8T = W[2];
1882
0
        T8V = W[3];
1883
0
        iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U);
1884
0
        rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W);
1885
0
         }
1886
0
         {
1887
0
        E T1a, T1c, T19, T1b;
1888
0
        T1a = T11 + T10;
1889
0
        T1c = T14 + T17;
1890
0
        T19 = W[2];
1891
0
        T1b = W[3];
1892
0
        iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a);
1893
0
        rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c);
1894
0
         }
1895
0
         {
1896
0
        E T1e, T1i, T1d, T1f;
1897
0
        T1e = T7 - Te;
1898
0
        T1i = T1g - T1h;
1899
0
        T1d = W[6];
1900
0
        T1f = W[7];
1901
0
        rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i);
1902
0
        iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i);
1903
0
         }
1904
0
         {
1905
0
        E T2s, T2u, T2r, T2t;
1906
0
        T2s = T2j + T2i;
1907
0
        T2u = T2m + T2p;
1908
0
        T2r = W[2];
1909
0
        T2t = W[3];
1910
0
        iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s);
1911
0
        rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u);
1912
0
         }
1913
0
         {
1914
0
        E T3C, T3I, T3x, T3D;
1915
0
        T3C = T3A - T3B;
1916
0
        T3I = T3E - T3H;
1917
0
        T3x = W[10];
1918
0
        T3D = W[11];
1919
0
        iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C);
1920
0
        rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I);
1921
0
         }
1922
0
         {
1923
0
        E T4U, T50, T4P, T4V;
1924
0
        T4U = T4S - T4T;
1925
0
        T50 = T4W - T4Z;
1926
0
        T4P = W[10];
1927
0
        T4V = W[11];
1928
0
        iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U);
1929
0
        rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50);
1930
0
         }
1931
0
         {
1932
0
        E T56, T5a, T55, T57;
1933
0
        T56 = T3Z - T46;
1934
0
        T5a = T58 - T59;
1935
0
        T55 = W[6];
1936
0
        T57 = W[7];
1937
0
        rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a);
1938
0
        iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a);
1939
0
         }
1940
0
         {
1941
0
        E T6o, T6s, T6n, T6p;
1942
0
        T6o = T5h - T5o;
1943
0
        T6s = T6q - T6r;
1944
0
        T6n = W[6];
1945
0
        T6p = W[7];
1946
0
        rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s);
1947
0
        iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s);
1948
0
         }
1949
0
         {
1950
0
        E T7u, T7A, T7p, T7v;
1951
0
        T7u = T7s - T7t;
1952
0
        T7A = T7w - T7z;
1953
0
        T7p = W[10];
1954
0
        T7v = W[11];
1955
0
        iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u);
1956
0
        rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A);
1957
0
         }
1958
0
         {
1959
0
        E T6c, T6i, T67, T6d;
1960
0
        T6c = T6a - T6b;
1961
0
        T6i = T6e - T6h;
1962
0
        T67 = W[10];
1963
0
        T6d = W[11];
1964
0
        iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c);
1965
0
        rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i);
1966
0
         }
1967
0
         {
1968
0
        E T7G, T7K, T7F, T7H;
1969
0
        T7G = T6z - T6G;
1970
0
        T7K = T7I - T7J;
1971
0
        T7F = W[6];
1972
0
        T7H = W[7];
1973
0
        rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K);
1974
0
        iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K);
1975
0
         }
1976
0
         {
1977
0
        E T3O, T3S, T3N, T3P;
1978
0
        T3O = T2H - T2O;
1979
0
        T3S = T3Q - T3R;
1980
0
        T3N = W[6];
1981
0
        T3P = W[7];
1982
0
        rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S);
1983
0
        iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S);
1984
0
         }
1985
0
         {
1986
0
        E T3K, T3M, T3J, T3L;
1987
0
        T3K = T3B + T3A;
1988
0
        T3M = T3E + T3H;
1989
0
        T3J = W[2];
1990
0
        T3L = W[3];
1991
0
        iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K);
1992
0
        rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M);
1993
0
         }
1994
0
         {
1995
0
        E T7C, T7E, T7B, T7D;
1996
0
        T7C = T7t + T7s;
1997
0
        T7E = T7w + T7z;
1998
0
        T7B = W[2];
1999
0
        T7D = W[3];
2000
0
        iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C);
2001
0
        rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E);
2002
0
         }
2003
0
         {
2004
0
        E T6k, T6m, T6j, T6l;
2005
0
        T6k = T6b + T6a;
2006
0
        T6m = T6e + T6h;
2007
0
        T6j = W[2];
2008
0
        T6l = W[3];
2009
0
        iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k);
2010
0
        rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m);
2011
0
         }
2012
0
         {
2013
0
        E T52, T54, T51, T53;
2014
0
        T52 = T4T + T4S;
2015
0
        T54 = T4W + T4Z;
2016
0
        T51 = W[2];
2017
0
        T53 = W[3];
2018
0
        iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52);
2019
0
        rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54);
2020
0
         }
2021
0
         {
2022
0
        E T5G, T5S, T5Q, T5U, T5F, T5P;
2023
0
        T5F = KP707106781 * (T5z - T5E);
2024
0
        T5G = T5u - T5F;
2025
0
        T5S = T5u + T5F;
2026
0
        T5P = KP707106781 * (T5N - T5O);
2027
0
        T5Q = T5M - T5P;
2028
0
        T5U = T5M + T5P;
2029
0
        {
2030
0
       E T5p, T5H, T5R, T5T;
2031
0
       T5p = W[12];
2032
0
       T5H = W[13];
2033
0
       iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G);
2034
0
       rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q);
2035
0
       T5R = W[4];
2036
0
       T5T = W[5];
2037
0
       iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S);
2038
0
       rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U);
2039
0
        }
2040
0
         }
2041
0
         {
2042
0
        E Tw, TI, TG, TK, Tv, TF;
2043
0
        Tv = KP707106781 * (Tp - Tu);
2044
0
        Tw = Tk - Tv;
2045
0
        TI = Tk + Tv;
2046
0
        TF = KP707106781 * (TD - TE);
2047
0
        TG = TC - TF;
2048
0
        TK = TC + TF;
2049
0
        {
2050
0
       E Tf, Tx, TH, TJ;
2051
0
       Tf = W[12];
2052
0
       Tx = W[13];
2053
0
       iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw);
2054
0
       rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG);
2055
0
       TH = W[4];
2056
0
       TJ = W[5];
2057
0
       iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI);
2058
0
       rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK);
2059
0
        }
2060
0
         }
2061
0
         {
2062
0
        E T9Q, T9W, T9U, T9Y, T9P, T9T;
2063
0
        T9P = KP707106781 * (T9w + T9r);
2064
0
        T9Q = T9O - T9P;
2065
0
        T9W = T9O + T9P;
2066
0
        T9T = KP707106781 * (T9F + T9G);
2067
0
        T9U = T9S - T9T;
2068
0
        T9Y = T9S + T9T;
2069
0
        {
2070
0
       E T9N, T9R, T9V, T9X;
2071
0
       T9N = W[8];
2072
0
       T9R = W[9];
2073
0
       rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U);
2074
0
       iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U);
2075
0
       T9V = W[0];
2076
0
       T9X = W[1];
2077
0
       rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y);
2078
0
       iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y);
2079
0
        }
2080
0
         }
2081
0
         {
2082
0
        E T36, T3i, T3g, T3k, T35, T3f;
2083
0
        T35 = KP707106781 * (T2Z - T34);
2084
0
        T36 = T2U - T35;
2085
0
        T3i = T2U + T35;
2086
0
        T3f = KP707106781 * (T3d - T3e);
2087
0
        T3g = T3c - T3f;
2088
0
        T3k = T3c + T3f;
2089
0
        {
2090
0
       E T2P, T37, T3h, T3j;
2091
0
       T2P = W[12];
2092
0
       T37 = W[13];
2093
0
       iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36);
2094
0
       rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g);
2095
0
       T3h = W[4];
2096
0
       T3j = W[5];
2097
0
       iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i);
2098
0
       rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k);
2099
0
        }
2100
0
         }
2101
0
         {
2102
0
        E T5Y, T64, T62, T66, T5X, T61;
2103
0
        T5X = KP707106781 * (T5E + T5z);
2104
0
        T5Y = T5W - T5X;
2105
0
        T64 = T5W + T5X;
2106
0
        T61 = KP707106781 * (T5N + T5O);
2107
0
        T62 = T60 - T61;
2108
0
        T66 = T60 + T61;
2109
0
        {
2110
0
       E T5V, T5Z, T63, T65;
2111
0
       T5V = W[8];
2112
0
       T5Z = W[9];
2113
0
       rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62);
2114
0
       iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62);
2115
0
       T63 = W[0];
2116
0
       T65 = W[1];
2117
0
       rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66);
2118
0
       iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66);
2119
0
        }
2120
0
         }
2121
0
         {
2122
0
        E T7g, T7m, T7k, T7o, T7f, T7j;
2123
0
        T7f = KP707106781 * (T6W + T6R);
2124
0
        T7g = T7e - T7f;
2125
0
        T7m = T7e + T7f;
2126
0
        T7j = KP707106781 * (T75 + T76);
2127
0
        T7k = T7i - T7j;
2128
0
        T7o = T7i + T7j;
2129
0
        {
2130
0
       E T7d, T7h, T7l, T7n;
2131
0
       T7d = W[8];
2132
0
       T7h = W[9];
2133
0
       rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k);
2134
0
       iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k);
2135
0
       T7l = W[0];
2136
0
       T7n = W[1];
2137
0
       rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o);
2138
0
       iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o);
2139
0
        }
2140
0
         }
2141
0
         {
2142
0
        E T8g, T8s, T8q, T8u, T8f, T8p;
2143
0
        T8f = KP707106781 * (T89 - T8e);
2144
0
        T8g = T84 - T8f;
2145
0
        T8s = T84 + T8f;
2146
0
        T8p = KP707106781 * (T8n - T8o);
2147
0
        T8q = T8m - T8p;
2148
0
        T8u = T8m + T8p;
2149
0
        {
2150
0
       E T7Z, T8h, T8r, T8t;
2151
0
       T7Z = W[12];
2152
0
       T8h = W[13];
2153
0
       iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g);
2154
0
       rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q);
2155
0
       T8r = W[4];
2156
0
       T8t = W[5];
2157
0
       iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s);
2158
0
       rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u);
2159
0
        }
2160
0
         }
2161
0
         {
2162
0
        E T4G, T4M, T4K, T4O, T4F, T4J;
2163
0
        T4F = KP707106781 * (T4m + T4h);
2164
0
        T4G = T4E - T4F;
2165
0
        T4M = T4E + T4F;
2166
0
        T4J = KP707106781 * (T4v + T4w);
2167
0
        T4K = T4I - T4J;
2168
0
        T4O = T4I + T4J;
2169
0
        {
2170
0
       E T4D, T4H, T4L, T4N;
2171
0
       T4D = W[8];
2172
0
       T4H = W[9];
2173
0
       rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K);
2174
0
       iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K);
2175
0
       T4L = W[0];
2176
0
       T4N = W[1];
2177
0
       rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O);
2178
0
       iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O);
2179
0
        }
2180
0
         }
2181
0
         {
2182
0
        E TO, TU, TS, TW, TN, TR;
2183
0
        TN = KP707106781 * (Tu + Tp);
2184
0
        TO = TM - TN;
2185
0
        TU = TM + TN;
2186
0
        TR = KP707106781 * (TD + TE);
2187
0
        TS = TQ - TR;
2188
0
        TW = TQ + TR;
2189
0
        {
2190
0
       E TL, TP, TT, TV;
2191
0
       TL = W[8];
2192
0
       TP = W[9];
2193
0
       rio[WS(vs, 5)] = FMA(TL, TO, TP * TS);
2194
0
       iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS);
2195
0
       TT = W[0];
2196
0
       TV = W[1];
2197
0
       rio[WS(vs, 1)] = FMA(TT, TU, TV * TW);
2198
0
       iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW);
2199
0
        }
2200
0
         }
2201
0
         {
2202
0
        E T26, T2c, T2a, T2e, T25, T29;
2203
0
        T25 = KP707106781 * (T1M + T1H);
2204
0
        T26 = T24 - T25;
2205
0
        T2c = T24 + T25;
2206
0
        T29 = KP707106781 * (T1V + T1W);
2207
0
        T2a = T28 - T29;
2208
0
        T2e = T28 + T29;
2209
0
        {
2210
0
       E T23, T27, T2b, T2d;
2211
0
       T23 = W[8];
2212
0
       T27 = W[9];
2213
0
       rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a);
2214
0
       iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a);
2215
0
       T2b = W[0];
2216
0
       T2d = W[1];
2217
0
       rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e);
2218
0
       iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e);
2219
0
        }
2220
0
         }
2221
0
         {
2222
0
        E T9y, T9K, T9I, T9M, T9x, T9H;
2223
0
        T9x = KP707106781 * (T9r - T9w);
2224
0
        T9y = T9m - T9x;
2225
0
        T9K = T9m + T9x;
2226
0
        T9H = KP707106781 * (T9F - T9G);
2227
0
        T9I = T9E - T9H;
2228
0
        T9M = T9E + T9H;
2229
0
        {
2230
0
       E T9h, T9z, T9J, T9L;
2231
0
       T9h = W[12];
2232
0
       T9z = W[13];
2233
0
       iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y);
2234
0
       rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I);
2235
0
       T9J = W[4];
2236
0
       T9L = W[5];
2237
0
       iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K);
2238
0
       rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M);
2239
0
        }
2240
0
         }
2241
0
         {
2242
0
        E T6Y, T7a, T78, T7c, T6X, T77;
2243
0
        T6X = KP707106781 * (T6R - T6W);
2244
0
        T6Y = T6M - T6X;
2245
0
        T7a = T6M + T6X;
2246
0
        T77 = KP707106781 * (T75 - T76);
2247
0
        T78 = T74 - T77;
2248
0
        T7c = T74 + T77;
2249
0
        {
2250
0
       E T6H, T6Z, T79, T7b;
2251
0
       T6H = W[12];
2252
0
       T6Z = W[13];
2253
0
       iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y);
2254
0
       rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78);
2255
0
       T79 = W[4];
2256
0
       T7b = W[5];
2257
0
       iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a);
2258
0
       rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c);
2259
0
        }
2260
0
         }
2261
0
         {
2262
0
        E T1O, T20, T1Y, T22, T1N, T1X;
2263
0
        T1N = KP707106781 * (T1H - T1M);
2264
0
        T1O = T1C - T1N;
2265
0
        T20 = T1C + T1N;
2266
0
        T1X = KP707106781 * (T1V - T1W);
2267
0
        T1Y = T1U - T1X;
2268
0
        T22 = T1U + T1X;
2269
0
        {
2270
0
       E T1x, T1P, T1Z, T21;
2271
0
       T1x = W[12];
2272
0
       T1P = W[13];
2273
0
       iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O);
2274
0
       rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y);
2275
0
       T1Z = W[4];
2276
0
       T21 = W[5];
2277
0
       iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20);
2278
0
       rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22);
2279
0
        }
2280
0
         }
2281
0
         {
2282
0
        E T4o, T4A, T4y, T4C, T4n, T4x;
2283
0
        T4n = KP707106781 * (T4h - T4m);
2284
0
        T4o = T4c - T4n;
2285
0
        T4A = T4c + T4n;
2286
0
        T4x = KP707106781 * (T4v - T4w);
2287
0
        T4y = T4u - T4x;
2288
0
        T4C = T4u + T4x;
2289
0
        {
2290
0
       E T47, T4p, T4z, T4B;
2291
0
       T47 = W[12];
2292
0
       T4p = W[13];
2293
0
       iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o);
2294
0
       rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y);
2295
0
       T4z = W[4];
2296
0
       T4B = W[5];
2297
0
       iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A);
2298
0
       rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C);
2299
0
        }
2300
0
         }
2301
0
         {
2302
0
        E T3o, T3u, T3s, T3w, T3n, T3r;
2303
0
        T3n = KP707106781 * (T34 + T2Z);
2304
0
        T3o = T3m - T3n;
2305
0
        T3u = T3m + T3n;
2306
0
        T3r = KP707106781 * (T3d + T3e);
2307
0
        T3s = T3q - T3r;
2308
0
        T3w = T3q + T3r;
2309
0
        {
2310
0
       E T3l, T3p, T3t, T3v;
2311
0
       T3l = W[8];
2312
0
       T3p = W[9];
2313
0
       rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s);
2314
0
       iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s);
2315
0
       T3t = W[0];
2316
0
       T3v = W[1];
2317
0
       rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w);
2318
0
       iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w);
2319
0
        }
2320
0
         }
2321
0
         {
2322
0
        E T8y, T8E, T8C, T8G, T8x, T8B;
2323
0
        T8x = KP707106781 * (T8e + T89);
2324
0
        T8y = T8w - T8x;
2325
0
        T8E = T8w + T8x;
2326
0
        T8B = KP707106781 * (T8n + T8o);
2327
0
        T8C = T8A - T8B;
2328
0
        T8G = T8A + T8B;
2329
0
        {
2330
0
       E T8v, T8z, T8D, T8F;
2331
0
       T8v = W[8];
2332
0
       T8z = W[9];
2333
0
       rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C);
2334
0
       iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C);
2335
0
       T8D = W[0];
2336
0
       T8F = W[1];
2337
0
       rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G);
2338
0
       iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G);
2339
0
        }
2340
0
         }
2341
0
    }
2342
0
     }
2343
0
}
2344
2345
static const tw_instr twinstr[] = {
2346
     { TW_FULL, 0, 8 },
2347
     { TW_NEXT, 1, 0 }
2348
};
2349
2350
static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 416, 144, 112, 0 }, 0, 0, 0 };
2351
2352
1
void X(codelet_q1_8) (planner *p) {
2353
1
     X(kdft_difsq_register) (p, q1_8, &desc);
2354
1
}
2355
#endif