Coverage Report

Created: 2025-11-24 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/direct-r2r.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
/* direct RDFT solver, using r2r codelets */
23
24
#include "rdft/rdft.h"
25
26
typedef struct {
27
     solver super;
28
     const kr2r_desc *desc;
29
     kr2r k;
30
} S;
31
32
typedef struct {
33
     plan_rdft super;
34
35
     INT vl, ivs, ovs;
36
     stride is, os;
37
     kr2r k;
38
     const S *slv;
39
} P;
40
41
static void apply(const plan *ego_, R *I, R *O)
42
0
{
43
0
     const P *ego = (const P *) ego_;
44
0
     ASSERT_ALIGNED_DOUBLE;
45
0
     ego->k(I, O, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
46
0
}
47
48
static void destroy(plan *ego_)
49
0
{
50
0
     P *ego = (P *) ego_;
51
0
     X(stride_destroy)(ego->is);
52
0
     X(stride_destroy)(ego->os);
53
0
}
54
55
static void print(const plan *ego_, printer *p)
56
0
{
57
0
     const P *ego = (const P *) ego_;
58
0
     const S *s = ego->slv;
59
60
0
     p->print(p, "(rdft-%s-direct-r2r-%D%v \"%s\")", 
61
0
        X(rdft_kind_str)(s->desc->kind), s->desc->n,
62
0
        ego->vl, s->desc->nam);
63
0
}
64
65
static int applicable(const solver *ego_, const problem *p_)
66
658
{
67
658
     const S *ego = (const S *) ego_;
68
658
     const problem_rdft *p = (const problem_rdft *) p_;
69
658
     INT vl;
70
658
     INT ivs, ovs;
71
72
658
     return (
73
658
    1
74
658
    && p->sz->rnk == 1
75
0
    && p->vecsz->rnk <= 1
76
0
    && p->sz->dims[0].n == ego->desc->n
77
0
    && p->kind[0] == ego->desc->kind
78
79
    /* check strides etc */
80
0
    && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
81
82
0
    && (0
83
        /* can operate out-of-place */
84
0
        || p->I != p->O
85
86
        /* computing one transform */
87
0
        || vl == 1
88
89
        /* can operate in-place as long as strides are the same */
90
0
        || X(tensor_inplace_strides2)(p->sz, p->vecsz)
91
0
         )
92
658
    );
93
658
}
94
95
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
96
658
{
97
658
     const S *ego = (const S *) ego_;
98
658
     P *pln;
99
658
     const problem_rdft *p;
100
658
     iodim *d;
101
102
658
     static const plan_adt padt = {
103
658
    X(rdft_solve), X(null_awake), print, destroy
104
658
     };
105
106
658
     UNUSED(plnr);
107
108
658
     if (!applicable(ego_, p_))
109
658
          return (plan *)0;
110
111
0
     p = (const problem_rdft *) p_;
112
113
114
0
     pln = MKPLAN_RDFT(P, &padt, apply);
115
116
0
     d = p->sz->dims;
117
118
0
     pln->k = ego->k;
119
120
0
     pln->is = X(mkstride)(d->n, d->is);
121
0
     pln->os = X(mkstride)(d->n, d->os);
122
123
0
     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
124
125
0
     pln->slv = ego;
126
0
     X(ops_zero)(&pln->super.super.ops);
127
0
     X(ops_madd2)(pln->vl / ego->desc->genus->vl,
128
0
      &ego->desc->ops,
129
0
      &pln->super.super.ops);
130
131
0
     pln->super.super.could_prune_now_p = 1;
132
133
0
     return &(pln->super.super);
134
658
}
135
136
/* constructor */
137
solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc)
138
2
{
139
2
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
140
2
     S *slv = MKSOLVER(S, &sadt);
141
2
     slv->k = k;
142
2
     slv->desc = desc;
143
2
     return &(slv->super);
144
2
}
145