/src/fftw3/rdft/scalar/r2cf/r2cf_12.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Mon Nov 24 06:38:46 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cf_12 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 38 FP additions, 10 FP multiplications, |
32 | | * (or, 30 additions, 2 multiplications, 8 fused multiply/add), |
33 | | * 21 stack variables, 2 constants, and 24 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT i; |
43 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { |
44 | | E T5, Tp, Tm, Tk, Ty, Tt, Ta, Tq, Tn, Tf, Tz, Tu, Tl, To; |
45 | | { |
46 | | E T1, T2, T3, T4; |
47 | | T1 = R0[0]; |
48 | | T2 = R0[WS(rs, 2)]; |
49 | | T3 = R0[WS(rs, 4)]; |
50 | | T4 = T2 + T3; |
51 | | T5 = T1 + T4; |
52 | | Tp = FNMS(KP500000000, T4, T1); |
53 | | Tm = T3 - T2; |
54 | | } |
55 | | { |
56 | | E Tg, Th, Ti, Tj; |
57 | | Tg = R1[WS(rs, 1)]; |
58 | | Th = R1[WS(rs, 3)]; |
59 | | Ti = R1[WS(rs, 5)]; |
60 | | Tj = Th + Ti; |
61 | | Tk = FNMS(KP500000000, Tj, Tg); |
62 | | Ty = Ti - Th; |
63 | | Tt = Tg + Tj; |
64 | | } |
65 | | { |
66 | | E T6, T7, T8, T9; |
67 | | T6 = R0[WS(rs, 3)]; |
68 | | T7 = R0[WS(rs, 5)]; |
69 | | T8 = R0[WS(rs, 1)]; |
70 | | T9 = T7 + T8; |
71 | | Ta = T6 + T9; |
72 | | Tq = FNMS(KP500000000, T9, T6); |
73 | | Tn = T8 - T7; |
74 | | } |
75 | | { |
76 | | E Tb, Tc, Td, Te; |
77 | | Tb = R1[WS(rs, 4)]; |
78 | | Tc = R1[0]; |
79 | | Td = R1[WS(rs, 2)]; |
80 | | Te = Tc + Td; |
81 | | Tf = FNMS(KP500000000, Te, Tb); |
82 | | Tz = Td - Tc; |
83 | | Tu = Tb + Te; |
84 | | } |
85 | | Cr[WS(csr, 3)] = T5 - Ta; |
86 | | Ci[WS(csi, 3)] = Tt - Tu; |
87 | | Tl = Tf - Tk; |
88 | | To = Tm - Tn; |
89 | | Ci[WS(csi, 1)] = FMA(KP866025403, To, Tl); |
90 | | Ci[WS(csi, 5)] = FNMS(KP866025403, To, Tl); |
91 | | { |
92 | | E Tx, TA, Tv, Tw; |
93 | | Tx = Tp - Tq; |
94 | | TA = Ty - Tz; |
95 | | Cr[WS(csr, 5)] = FNMS(KP866025403, TA, Tx); |
96 | | Cr[WS(csr, 1)] = FMA(KP866025403, TA, Tx); |
97 | | Tv = T5 + Ta; |
98 | | Tw = Tt + Tu; |
99 | | Cr[WS(csr, 6)] = Tv - Tw; |
100 | | Cr[0] = Tv + Tw; |
101 | | } |
102 | | { |
103 | | E Tr, Ts, TB, TC; |
104 | | Tr = Tp + Tq; |
105 | | Ts = Tk + Tf; |
106 | | Cr[WS(csr, 2)] = Tr - Ts; |
107 | | Cr[WS(csr, 4)] = Tr + Ts; |
108 | | TB = Ty + Tz; |
109 | | TC = Tm + Tn; |
110 | | Ci[WS(csi, 2)] = KP866025403 * (TB - TC); |
111 | | Ci[WS(csi, 4)] = KP866025403 * (TC + TB); |
112 | | } |
113 | | } |
114 | | } |
115 | | } |
116 | | |
117 | | static const kr2c_desc desc = { 12, "r2cf_12", { 30, 2, 8, 0 }, &GENUS }; |
118 | | |
119 | | void X(codelet_r2cf_12) (planner *p) { X(kr2c_register) (p, r2cf_12, &desc); |
120 | | } |
121 | | |
122 | | #else |
123 | | |
124 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cf_12 -include rdft/scalar/r2cf.h */ |
125 | | |
126 | | /* |
127 | | * This function contains 38 FP additions, 8 FP multiplications, |
128 | | * (or, 34 additions, 4 multiplications, 4 fused multiply/add), |
129 | | * 21 stack variables, 2 constants, and 24 memory accesses |
130 | | */ |
131 | | #include "rdft/scalar/r2cf.h" |
132 | | |
133 | | static void r2cf_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
134 | 0 | { |
135 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
136 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
137 | 0 | { |
138 | 0 | INT i; |
139 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { |
140 | 0 | E T5, Tp, Tb, Tn, Ty, Tt, Ta, Tq, Tc, Ti, Tz, Tu, Td, To; |
141 | 0 | { |
142 | 0 | E T1, T2, T3, T4; |
143 | 0 | T1 = R0[0]; |
144 | 0 | T2 = R0[WS(rs, 2)]; |
145 | 0 | T3 = R0[WS(rs, 4)]; |
146 | 0 | T4 = T2 + T3; |
147 | 0 | T5 = T1 + T4; |
148 | 0 | Tp = FNMS(KP500000000, T4, T1); |
149 | 0 | Tb = T3 - T2; |
150 | 0 | } |
151 | 0 | { |
152 | 0 | E Tj, Tk, Tl, Tm; |
153 | 0 | Tj = R1[WS(rs, 1)]; |
154 | 0 | Tk = R1[WS(rs, 3)]; |
155 | 0 | Tl = R1[WS(rs, 5)]; |
156 | 0 | Tm = Tk + Tl; |
157 | 0 | Tn = FNMS(KP500000000, Tm, Tj); |
158 | 0 | Ty = Tl - Tk; |
159 | 0 | Tt = Tj + Tm; |
160 | 0 | } |
161 | 0 | { |
162 | 0 | E T6, T7, T8, T9; |
163 | 0 | T6 = R0[WS(rs, 3)]; |
164 | 0 | T7 = R0[WS(rs, 5)]; |
165 | 0 | T8 = R0[WS(rs, 1)]; |
166 | 0 | T9 = T7 + T8; |
167 | 0 | Ta = T6 + T9; |
168 | 0 | Tq = FNMS(KP500000000, T9, T6); |
169 | 0 | Tc = T8 - T7; |
170 | 0 | } |
171 | 0 | { |
172 | 0 | E Te, Tf, Tg, Th; |
173 | 0 | Te = R1[WS(rs, 4)]; |
174 | 0 | Tf = R1[0]; |
175 | 0 | Tg = R1[WS(rs, 2)]; |
176 | 0 | Th = Tf + Tg; |
177 | 0 | Ti = FNMS(KP500000000, Th, Te); |
178 | 0 | Tz = Tg - Tf; |
179 | 0 | Tu = Te + Th; |
180 | 0 | } |
181 | 0 | Cr[WS(csr, 3)] = T5 - Ta; |
182 | 0 | Ci[WS(csi, 3)] = Tt - Tu; |
183 | 0 | Td = KP866025403 * (Tb - Tc); |
184 | 0 | To = Ti - Tn; |
185 | 0 | Ci[WS(csi, 1)] = Td + To; |
186 | 0 | Ci[WS(csi, 5)] = To - Td; |
187 | 0 | { |
188 | 0 | E Tx, TA, Tv, Tw; |
189 | 0 | Tx = Tp - Tq; |
190 | 0 | TA = KP866025403 * (Ty - Tz); |
191 | 0 | Cr[WS(csr, 5)] = Tx - TA; |
192 | 0 | Cr[WS(csr, 1)] = Tx + TA; |
193 | 0 | Tv = T5 + Ta; |
194 | 0 | Tw = Tt + Tu; |
195 | 0 | Cr[WS(csr, 6)] = Tv - Tw; |
196 | 0 | Cr[0] = Tv + Tw; |
197 | 0 | } |
198 | 0 | { |
199 | 0 | E Tr, Ts, TB, TC; |
200 | 0 | Tr = Tp + Tq; |
201 | 0 | Ts = Tn + Ti; |
202 | 0 | Cr[WS(csr, 2)] = Tr - Ts; |
203 | 0 | Cr[WS(csr, 4)] = Tr + Ts; |
204 | 0 | TB = Ty + Tz; |
205 | 0 | TC = Tb + Tc; |
206 | 0 | Ci[WS(csi, 2)] = KP866025403 * (TB - TC); |
207 | 0 | Ci[WS(csi, 4)] = KP866025403 * (TC + TB); |
208 | 0 | } |
209 | 0 | } |
210 | 0 | } |
211 | 0 | } |
212 | | |
213 | | static const kr2c_desc desc = { 12, "r2cf_12", { 34, 4, 4, 0 }, &GENUS }; |
214 | | |
215 | 1 | void X(codelet_r2cf_12) (planner *p) { X(kr2c_register) (p, r2cf_12, &desc); |
216 | 1 | } |
217 | | |
218 | | #endif |