Coverage Report

Created: 2025-11-24 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cf/r2cf_12.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Mon Nov 24 06:38:46 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cf_12 -include rdft/scalar/r2cf.h */
29
30
/*
31
 * This function contains 38 FP additions, 10 FP multiplications,
32
 * (or, 30 additions, 2 multiplications, 8 fused multiply/add),
33
 * 21 stack variables, 2 constants, and 24 memory accesses
34
 */
35
#include "rdft/scalar/r2cf.h"
36
37
static void r2cf_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT i;
43
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
44
         E T5, Tp, Tm, Tk, Ty, Tt, Ta, Tq, Tn, Tf, Tz, Tu, Tl, To;
45
         {
46
        E T1, T2, T3, T4;
47
        T1 = R0[0];
48
        T2 = R0[WS(rs, 2)];
49
        T3 = R0[WS(rs, 4)];
50
        T4 = T2 + T3;
51
        T5 = T1 + T4;
52
        Tp = FNMS(KP500000000, T4, T1);
53
        Tm = T3 - T2;
54
         }
55
         {
56
        E Tg, Th, Ti, Tj;
57
        Tg = R1[WS(rs, 1)];
58
        Th = R1[WS(rs, 3)];
59
        Ti = R1[WS(rs, 5)];
60
        Tj = Th + Ti;
61
        Tk = FNMS(KP500000000, Tj, Tg);
62
        Ty = Ti - Th;
63
        Tt = Tg + Tj;
64
         }
65
         {
66
        E T6, T7, T8, T9;
67
        T6 = R0[WS(rs, 3)];
68
        T7 = R0[WS(rs, 5)];
69
        T8 = R0[WS(rs, 1)];
70
        T9 = T7 + T8;
71
        Ta = T6 + T9;
72
        Tq = FNMS(KP500000000, T9, T6);
73
        Tn = T8 - T7;
74
         }
75
         {
76
        E Tb, Tc, Td, Te;
77
        Tb = R1[WS(rs, 4)];
78
        Tc = R1[0];
79
        Td = R1[WS(rs, 2)];
80
        Te = Tc + Td;
81
        Tf = FNMS(KP500000000, Te, Tb);
82
        Tz = Td - Tc;
83
        Tu = Tb + Te;
84
         }
85
         Cr[WS(csr, 3)] = T5 - Ta;
86
         Ci[WS(csi, 3)] = Tt - Tu;
87
         Tl = Tf - Tk;
88
         To = Tm - Tn;
89
         Ci[WS(csi, 1)] = FMA(KP866025403, To, Tl);
90
         Ci[WS(csi, 5)] = FNMS(KP866025403, To, Tl);
91
         {
92
        E Tx, TA, Tv, Tw;
93
        Tx = Tp - Tq;
94
        TA = Ty - Tz;
95
        Cr[WS(csr, 5)] = FNMS(KP866025403, TA, Tx);
96
        Cr[WS(csr, 1)] = FMA(KP866025403, TA, Tx);
97
        Tv = T5 + Ta;
98
        Tw = Tt + Tu;
99
        Cr[WS(csr, 6)] = Tv - Tw;
100
        Cr[0] = Tv + Tw;
101
         }
102
         {
103
        E Tr, Ts, TB, TC;
104
        Tr = Tp + Tq;
105
        Ts = Tk + Tf;
106
        Cr[WS(csr, 2)] = Tr - Ts;
107
        Cr[WS(csr, 4)] = Tr + Ts;
108
        TB = Ty + Tz;
109
        TC = Tm + Tn;
110
        Ci[WS(csi, 2)] = KP866025403 * (TB - TC);
111
        Ci[WS(csi, 4)] = KP866025403 * (TC + TB);
112
         }
113
    }
114
     }
115
}
116
117
static const kr2c_desc desc = { 12, "r2cf_12", { 30, 2, 8, 0 }, &GENUS };
118
119
void X(codelet_r2cf_12) (planner *p) { X(kr2c_register) (p, r2cf_12, &desc);
120
}
121
122
#else
123
124
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cf_12 -include rdft/scalar/r2cf.h */
125
126
/*
127
 * This function contains 38 FP additions, 8 FP multiplications,
128
 * (or, 34 additions, 4 multiplications, 4 fused multiply/add),
129
 * 21 stack variables, 2 constants, and 24 memory accesses
130
 */
131
#include "rdft/scalar/r2cf.h"
132
133
static void r2cf_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
134
0
{
135
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
136
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
137
0
     {
138
0
    INT i;
139
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
140
0
         E T5, Tp, Tb, Tn, Ty, Tt, Ta, Tq, Tc, Ti, Tz, Tu, Td, To;
141
0
         {
142
0
        E T1, T2, T3, T4;
143
0
        T1 = R0[0];
144
0
        T2 = R0[WS(rs, 2)];
145
0
        T3 = R0[WS(rs, 4)];
146
0
        T4 = T2 + T3;
147
0
        T5 = T1 + T4;
148
0
        Tp = FNMS(KP500000000, T4, T1);
149
0
        Tb = T3 - T2;
150
0
         }
151
0
         {
152
0
        E Tj, Tk, Tl, Tm;
153
0
        Tj = R1[WS(rs, 1)];
154
0
        Tk = R1[WS(rs, 3)];
155
0
        Tl = R1[WS(rs, 5)];
156
0
        Tm = Tk + Tl;
157
0
        Tn = FNMS(KP500000000, Tm, Tj);
158
0
        Ty = Tl - Tk;
159
0
        Tt = Tj + Tm;
160
0
         }
161
0
         {
162
0
        E T6, T7, T8, T9;
163
0
        T6 = R0[WS(rs, 3)];
164
0
        T7 = R0[WS(rs, 5)];
165
0
        T8 = R0[WS(rs, 1)];
166
0
        T9 = T7 + T8;
167
0
        Ta = T6 + T9;
168
0
        Tq = FNMS(KP500000000, T9, T6);
169
0
        Tc = T8 - T7;
170
0
         }
171
0
         {
172
0
        E Te, Tf, Tg, Th;
173
0
        Te = R1[WS(rs, 4)];
174
0
        Tf = R1[0];
175
0
        Tg = R1[WS(rs, 2)];
176
0
        Th = Tf + Tg;
177
0
        Ti = FNMS(KP500000000, Th, Te);
178
0
        Tz = Tg - Tf;
179
0
        Tu = Te + Th;
180
0
         }
181
0
         Cr[WS(csr, 3)] = T5 - Ta;
182
0
         Ci[WS(csi, 3)] = Tt - Tu;
183
0
         Td = KP866025403 * (Tb - Tc);
184
0
         To = Ti - Tn;
185
0
         Ci[WS(csi, 1)] = Td + To;
186
0
         Ci[WS(csi, 5)] = To - Td;
187
0
         {
188
0
        E Tx, TA, Tv, Tw;
189
0
        Tx = Tp - Tq;
190
0
        TA = KP866025403 * (Ty - Tz);
191
0
        Cr[WS(csr, 5)] = Tx - TA;
192
0
        Cr[WS(csr, 1)] = Tx + TA;
193
0
        Tv = T5 + Ta;
194
0
        Tw = Tt + Tu;
195
0
        Cr[WS(csr, 6)] = Tv - Tw;
196
0
        Cr[0] = Tv + Tw;
197
0
         }
198
0
         {
199
0
        E Tr, Ts, TB, TC;
200
0
        Tr = Tp + Tq;
201
0
        Ts = Tn + Ti;
202
0
        Cr[WS(csr, 2)] = Tr - Ts;
203
0
        Cr[WS(csr, 4)] = Tr + Ts;
204
0
        TB = Ty + Tz;
205
0
        TC = Tb + Tc;
206
0
        Ci[WS(csi, 2)] = KP866025403 * (TB - TC);
207
0
        Ci[WS(csi, 4)] = KP866025403 * (TC + TB);
208
0
         }
209
0
    }
210
0
     }
211
0
}
212
213
static const kr2c_desc desc = { 12, "r2cf_12", { 34, 4, 4, 0 }, &GENUS };
214
215
1
void X(codelet_r2cf_12) (planner *p) { X(kr2c_register) (p, r2cf_12, &desc);
216
1
}
217
218
#endif