Coverage Report

Created: 2026-01-09 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/hb_5.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jan  9 06:25:16 UTC 2026 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 40 FP additions, 34 FP multiplications,
32
 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
33
 * 27 stack variables, 4 constants, and 20 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
46
         E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr;
47
         {
48
        E T4, Tu, T7, Tv;
49
        T1 = cr[0];
50
        {
51
       E T2, T3, T5, T6;
52
       T2 = cr[WS(rs, 1)];
53
       T3 = ci[0];
54
       T4 = T2 + T3;
55
       Tu = T2 - T3;
56
       T5 = cr[WS(rs, 2)];
57
       T6 = ci[WS(rs, 1)];
58
       T7 = T5 + T6;
59
       Tv = T5 - T6;
60
        }
61
        Tb = T4 - T7;
62
        TM = FNMS(KP618033988, Tu, Tv);
63
        Tw = FMA(KP618033988, Tv, Tu);
64
        T8 = T4 + T7;
65
        Ta = FNMS(KP250000000, T8, T1);
66
         }
67
         {
68
        E Tf, To, Ti, Tp;
69
        Tn = ci[WS(rs, 4)];
70
        {
71
       E Td, Te, Tg, Th;
72
       Td = ci[WS(rs, 3)];
73
       Te = cr[WS(rs, 4)];
74
       Tf = Td + Te;
75
       To = Td - Te;
76
       Tg = ci[WS(rs, 2)];
77
       Th = cr[WS(rs, 3)];
78
       Ti = Tg + Th;
79
       Tp = Tg - Th;
80
        }
81
        Tj = FMA(KP618033988, Ti, Tf);
82
        TH = FNMS(KP618033988, Tf, Ti);
83
        Ts = To - Tp;
84
        Tq = To + Tp;
85
        Tr = FNMS(KP250000000, Tq, Tn);
86
         }
87
         cr[0] = T1 + T8;
88
         ci[0] = Tn + Tq;
89
         {
90
        E Tk, TA, Tx, TD, Tc, Tt;
91
        Tc = FMA(KP559016994, Tb, Ta);
92
        Tk = FNMS(KP951056516, Tj, Tc);
93
        TA = FMA(KP951056516, Tj, Tc);
94
        Tt = FMA(KP559016994, Ts, Tr);
95
        Tx = FMA(KP951056516, Tw, Tt);
96
        TD = FNMS(KP951056516, Tw, Tt);
97
        {
98
       E T9, Tl, Tm, Ty;
99
       T9 = W[0];
100
       Tl = T9 * Tk;
101
       Tm = W[1];
102
       Ty = Tm * Tk;
103
       cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
104
       ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
105
        }
106
        {
107
       E Tz, TB, TC, TE;
108
       Tz = W[6];
109
       TB = Tz * TA;
110
       TC = W[7];
111
       TE = TC * TA;
112
       cr[WS(rs, 4)] = FNMS(TC, TD, TB);
113
       ci[WS(rs, 4)] = FMA(Tz, TD, TE);
114
        }
115
         }
116
         {
117
        E TI, TQ, TN, TT, TG, TL;
118
        TG = FNMS(KP559016994, Tb, Ta);
119
        TI = FMA(KP951056516, TH, TG);
120
        TQ = FNMS(KP951056516, TH, TG);
121
        TL = FNMS(KP559016994, Ts, Tr);
122
        TN = FNMS(KP951056516, TM, TL);
123
        TT = FMA(KP951056516, TM, TL);
124
        {
125
       E TF, TJ, TK, TO;
126
       TF = W[2];
127
       TJ = TF * TI;
128
       TK = W[3];
129
       TO = TK * TI;
130
       cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
131
       ci[WS(rs, 2)] = FMA(TF, TN, TO);
132
        }
133
        {
134
       E TP, TR, TS, TU;
135
       TP = W[4];
136
       TR = TP * TQ;
137
       TS = W[5];
138
       TU = TS * TQ;
139
       cr[WS(rs, 3)] = FNMS(TS, TT, TR);
140
       ci[WS(rs, 3)] = FMA(TP, TT, TU);
141
        }
142
         }
143
    }
144
     }
145
}
146
147
static const tw_instr twinstr[] = {
148
     { TW_FULL, 1, 5 },
149
     { TW_NEXT, 1, 0 }
150
};
151
152
static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 14, 8, 26, 0 } };
153
154
void X(codelet_hb_5) (planner *p) {
155
     X(khc2hc_register) (p, hb_5, &desc);
156
}
157
#else
158
159
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
160
161
/*
162
 * This function contains 40 FP additions, 28 FP multiplications,
163
 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
164
 * 27 stack variables, 4 constants, and 20 memory accesses
165
 */
166
#include "rdft/scalar/hb.h"
167
168
static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
169
0
{
170
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
171
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
172
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
173
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
174
0
     {
175
0
    INT m;
176
0
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
177
0
         E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
178
0
         {
179
0
        E T4, Tq, T7, Tr;
180
0
        T1 = cr[0];
181
0
        {
182
0
       E T2, T3, T5, T6;
183
0
       T2 = cr[WS(rs, 1)];
184
0
       T3 = ci[0];
185
0
       T4 = T2 + T3;
186
0
       Tq = T2 - T3;
187
0
       T5 = cr[WS(rs, 2)];
188
0
       T6 = ci[WS(rs, 1)];
189
0
       T7 = T5 + T6;
190
0
       Tr = T5 - T6;
191
0
        }
192
0
        Tj = KP559016994 * (T4 - T7);
193
0
        TG = FMA(KP951056516, Tq, KP587785252 * Tr);
194
0
        Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
195
0
        T8 = T4 + T7;
196
0
        Ti = FNMS(KP250000000, T8, T1);
197
0
         }
198
0
         {
199
0
        E Tc, Tl, Tf, Tm;
200
0
        T9 = ci[WS(rs, 4)];
201
0
        {
202
0
       E Ta, Tb, Td, Te;
203
0
       Ta = ci[WS(rs, 3)];
204
0
       Tb = cr[WS(rs, 4)];
205
0
       Tc = Ta - Tb;
206
0
       Tl = Ta + Tb;
207
0
       Td = ci[WS(rs, 2)];
208
0
       Te = cr[WS(rs, 3)];
209
0
       Tf = Td - Te;
210
0
       Tm = Td + Te;
211
0
        }
212
0
        Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
213
0
        TD = FMA(KP951056516, Tl, KP587785252 * Tm);
214
0
        Tu = KP559016994 * (Tc - Tf);
215
0
        Tg = Tc + Tf;
216
0
        Tt = FNMS(KP250000000, Tg, T9);
217
0
         }
218
0
         cr[0] = T1 + T8;
219
0
         ci[0] = T9 + Tg;
220
0
         {
221
0
        E To, Ty, Tw, TA, Tk, Tv;
222
0
        Tk = Ti - Tj;
223
0
        To = Tk - Tn;
224
0
        Ty = Tk + Tn;
225
0
        Tv = Tt - Tu;
226
0
        Tw = Ts + Tv;
227
0
        TA = Tv - Ts;
228
0
        {
229
0
       E Th, Tp, Tx, Tz;
230
0
       Th = W[2];
231
0
       Tp = W[3];
232
0
       cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
233
0
       ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
234
0
       Tx = W[4];
235
0
       Tz = W[5];
236
0
       cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
237
0
       ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
238
0
        }
239
0
         }
240
0
         {
241
0
        E TE, TK, TI, TM, TC, TH;
242
0
        TC = Tj + Ti;
243
0
        TE = TC - TD;
244
0
        TK = TC + TD;
245
0
        TH = Tu + Tt;
246
0
        TI = TG + TH;
247
0
        TM = TH - TG;
248
0
        {
249
0
       E TB, TF, TJ, TL;
250
0
       TB = W[0];
251
0
       TF = W[1];
252
0
       cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
253
0
       ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
254
0
       TJ = W[6];
255
0
       TL = W[7];
256
0
       cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
257
0
       ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
258
0
        }
259
0
         }
260
0
    }
261
0
     }
262
0
}
263
264
static const tw_instr twinstr[] = {
265
     { TW_FULL, 1, 5 },
266
     { TW_NEXT, 1, 0 }
267
};
268
269
static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 26, 14, 14, 0 } };
270
271
1
void X(codelet_hb_5) (planner *p) {
272
1
     X(khc2hc_register) (p, hb_5, &desc);
273
1
}
274
#endif