/src/fftw3/rdft/scalar/r2cb/hb_5.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jan 9 06:25:16 UTC 2026 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 40 FP additions, 34 FP multiplications, |
32 | | * (or, 14 additions, 8 multiplications, 26 fused multiply/add), |
33 | | * 27 stack variables, 4 constants, and 20 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { |
46 | | E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr; |
47 | | { |
48 | | E T4, Tu, T7, Tv; |
49 | | T1 = cr[0]; |
50 | | { |
51 | | E T2, T3, T5, T6; |
52 | | T2 = cr[WS(rs, 1)]; |
53 | | T3 = ci[0]; |
54 | | T4 = T2 + T3; |
55 | | Tu = T2 - T3; |
56 | | T5 = cr[WS(rs, 2)]; |
57 | | T6 = ci[WS(rs, 1)]; |
58 | | T7 = T5 + T6; |
59 | | Tv = T5 - T6; |
60 | | } |
61 | | Tb = T4 - T7; |
62 | | TM = FNMS(KP618033988, Tu, Tv); |
63 | | Tw = FMA(KP618033988, Tv, Tu); |
64 | | T8 = T4 + T7; |
65 | | Ta = FNMS(KP250000000, T8, T1); |
66 | | } |
67 | | { |
68 | | E Tf, To, Ti, Tp; |
69 | | Tn = ci[WS(rs, 4)]; |
70 | | { |
71 | | E Td, Te, Tg, Th; |
72 | | Td = ci[WS(rs, 3)]; |
73 | | Te = cr[WS(rs, 4)]; |
74 | | Tf = Td + Te; |
75 | | To = Td - Te; |
76 | | Tg = ci[WS(rs, 2)]; |
77 | | Th = cr[WS(rs, 3)]; |
78 | | Ti = Tg + Th; |
79 | | Tp = Tg - Th; |
80 | | } |
81 | | Tj = FMA(KP618033988, Ti, Tf); |
82 | | TH = FNMS(KP618033988, Tf, Ti); |
83 | | Ts = To - Tp; |
84 | | Tq = To + Tp; |
85 | | Tr = FNMS(KP250000000, Tq, Tn); |
86 | | } |
87 | | cr[0] = T1 + T8; |
88 | | ci[0] = Tn + Tq; |
89 | | { |
90 | | E Tk, TA, Tx, TD, Tc, Tt; |
91 | | Tc = FMA(KP559016994, Tb, Ta); |
92 | | Tk = FNMS(KP951056516, Tj, Tc); |
93 | | TA = FMA(KP951056516, Tj, Tc); |
94 | | Tt = FMA(KP559016994, Ts, Tr); |
95 | | Tx = FMA(KP951056516, Tw, Tt); |
96 | | TD = FNMS(KP951056516, Tw, Tt); |
97 | | { |
98 | | E T9, Tl, Tm, Ty; |
99 | | T9 = W[0]; |
100 | | Tl = T9 * Tk; |
101 | | Tm = W[1]; |
102 | | Ty = Tm * Tk; |
103 | | cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl); |
104 | | ci[WS(rs, 1)] = FMA(T9, Tx, Ty); |
105 | | } |
106 | | { |
107 | | E Tz, TB, TC, TE; |
108 | | Tz = W[6]; |
109 | | TB = Tz * TA; |
110 | | TC = W[7]; |
111 | | TE = TC * TA; |
112 | | cr[WS(rs, 4)] = FNMS(TC, TD, TB); |
113 | | ci[WS(rs, 4)] = FMA(Tz, TD, TE); |
114 | | } |
115 | | } |
116 | | { |
117 | | E TI, TQ, TN, TT, TG, TL; |
118 | | TG = FNMS(KP559016994, Tb, Ta); |
119 | | TI = FMA(KP951056516, TH, TG); |
120 | | TQ = FNMS(KP951056516, TH, TG); |
121 | | TL = FNMS(KP559016994, Ts, Tr); |
122 | | TN = FNMS(KP951056516, TM, TL); |
123 | | TT = FMA(KP951056516, TM, TL); |
124 | | { |
125 | | E TF, TJ, TK, TO; |
126 | | TF = W[2]; |
127 | | TJ = TF * TI; |
128 | | TK = W[3]; |
129 | | TO = TK * TI; |
130 | | cr[WS(rs, 2)] = FNMS(TK, TN, TJ); |
131 | | ci[WS(rs, 2)] = FMA(TF, TN, TO); |
132 | | } |
133 | | { |
134 | | E TP, TR, TS, TU; |
135 | | TP = W[4]; |
136 | | TR = TP * TQ; |
137 | | TS = W[5]; |
138 | | TU = TS * TQ; |
139 | | cr[WS(rs, 3)] = FNMS(TS, TT, TR); |
140 | | ci[WS(rs, 3)] = FMA(TP, TT, TU); |
141 | | } |
142 | | } |
143 | | } |
144 | | } |
145 | | } |
146 | | |
147 | | static const tw_instr twinstr[] = { |
148 | | { TW_FULL, 1, 5 }, |
149 | | { TW_NEXT, 1, 0 } |
150 | | }; |
151 | | |
152 | | static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 14, 8, 26, 0 } }; |
153 | | |
154 | | void X(codelet_hb_5) (planner *p) { |
155 | | X(khc2hc_register) (p, hb_5, &desc); |
156 | | } |
157 | | #else |
158 | | |
159 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */ |
160 | | |
161 | | /* |
162 | | * This function contains 40 FP additions, 28 FP multiplications, |
163 | | * (or, 26 additions, 14 multiplications, 14 fused multiply/add), |
164 | | * 27 stack variables, 4 constants, and 20 memory accesses |
165 | | */ |
166 | | #include "rdft/scalar/hb.h" |
167 | | |
168 | | static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
169 | 0 | { |
170 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
171 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
172 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
173 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
174 | 0 | { |
175 | 0 | INT m; |
176 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) { |
177 | 0 | E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt; |
178 | 0 | { |
179 | 0 | E T4, Tq, T7, Tr; |
180 | 0 | T1 = cr[0]; |
181 | 0 | { |
182 | 0 | E T2, T3, T5, T6; |
183 | 0 | T2 = cr[WS(rs, 1)]; |
184 | 0 | T3 = ci[0]; |
185 | 0 | T4 = T2 + T3; |
186 | 0 | Tq = T2 - T3; |
187 | 0 | T5 = cr[WS(rs, 2)]; |
188 | 0 | T6 = ci[WS(rs, 1)]; |
189 | 0 | T7 = T5 + T6; |
190 | 0 | Tr = T5 - T6; |
191 | 0 | } |
192 | 0 | Tj = KP559016994 * (T4 - T7); |
193 | 0 | TG = FMA(KP951056516, Tq, KP587785252 * Tr); |
194 | 0 | Ts = FNMS(KP951056516, Tr, KP587785252 * Tq); |
195 | 0 | T8 = T4 + T7; |
196 | 0 | Ti = FNMS(KP250000000, T8, T1); |
197 | 0 | } |
198 | 0 | { |
199 | 0 | E Tc, Tl, Tf, Tm; |
200 | 0 | T9 = ci[WS(rs, 4)]; |
201 | 0 | { |
202 | 0 | E Ta, Tb, Td, Te; |
203 | 0 | Ta = ci[WS(rs, 3)]; |
204 | 0 | Tb = cr[WS(rs, 4)]; |
205 | 0 | Tc = Ta - Tb; |
206 | 0 | Tl = Ta + Tb; |
207 | 0 | Td = ci[WS(rs, 2)]; |
208 | 0 | Te = cr[WS(rs, 3)]; |
209 | 0 | Tf = Td - Te; |
210 | 0 | Tm = Td + Te; |
211 | 0 | } |
212 | 0 | Tn = FNMS(KP951056516, Tm, KP587785252 * Tl); |
213 | 0 | TD = FMA(KP951056516, Tl, KP587785252 * Tm); |
214 | 0 | Tu = KP559016994 * (Tc - Tf); |
215 | 0 | Tg = Tc + Tf; |
216 | 0 | Tt = FNMS(KP250000000, Tg, T9); |
217 | 0 | } |
218 | 0 | cr[0] = T1 + T8; |
219 | 0 | ci[0] = T9 + Tg; |
220 | 0 | { |
221 | 0 | E To, Ty, Tw, TA, Tk, Tv; |
222 | 0 | Tk = Ti - Tj; |
223 | 0 | To = Tk - Tn; |
224 | 0 | Ty = Tk + Tn; |
225 | 0 | Tv = Tt - Tu; |
226 | 0 | Tw = Ts + Tv; |
227 | 0 | TA = Tv - Ts; |
228 | 0 | { |
229 | 0 | E Th, Tp, Tx, Tz; |
230 | 0 | Th = W[2]; |
231 | 0 | Tp = W[3]; |
232 | 0 | cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To); |
233 | 0 | ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To); |
234 | 0 | Tx = W[4]; |
235 | 0 | Tz = W[5]; |
236 | 0 | cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty); |
237 | 0 | ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty); |
238 | 0 | } |
239 | 0 | } |
240 | 0 | { |
241 | 0 | E TE, TK, TI, TM, TC, TH; |
242 | 0 | TC = Tj + Ti; |
243 | 0 | TE = TC - TD; |
244 | 0 | TK = TC + TD; |
245 | 0 | TH = Tu + Tt; |
246 | 0 | TI = TG + TH; |
247 | 0 | TM = TH - TG; |
248 | 0 | { |
249 | 0 | E TB, TF, TJ, TL; |
250 | 0 | TB = W[0]; |
251 | 0 | TF = W[1]; |
252 | 0 | cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE); |
253 | 0 | ci[WS(rs, 1)] = FMA(TB, TI, TF * TE); |
254 | 0 | TJ = W[6]; |
255 | 0 | TL = W[7]; |
256 | 0 | cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK); |
257 | 0 | ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK); |
258 | 0 | } |
259 | 0 | } |
260 | 0 | } |
261 | 0 | } |
262 | 0 | } |
263 | | |
264 | | static const tw_instr twinstr[] = { |
265 | | { TW_FULL, 1, 5 }, |
266 | | { TW_NEXT, 1, 0 } |
267 | | }; |
268 | | |
269 | | static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 26, 14, 14, 0 } }; |
270 | | |
271 | 1 | void X(codelet_hb_5) (planner *p) { |
272 | 1 | X(khc2hc_register) (p, hb_5, &desc); |
273 | 1 | } |
274 | | #endif |