/src/fftw3/dft/scalar/codelets/q1_2.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sat Jan 10 06:09:25 UTC 2026 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 2 -name q1_2 -include dft/scalar/q.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 12 FP additions, 8 FP multiplications, |
32 | | * (or, 8 additions, 4 multiplications, 4 fused multiply/add), |
33 | | * 17 stack variables, 0 constants, and 16 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/q.h" |
36 | | |
37 | | static void q1_2(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
38 | | { |
39 | | { |
40 | | INT m; |
41 | | for (m = mb, W = W + (mb * 2); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 2, MAKE_VOLATILE_STRIDE(4, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
42 | | E T1, T2, T4, T7, T8, T9, Tb, Tc, Te, Th, Ti, Tj; |
43 | | T1 = rio[0]; |
44 | | T2 = rio[WS(rs, 1)]; |
45 | | T4 = T1 - T2; |
46 | | T7 = iio[0]; |
47 | | T8 = iio[WS(rs, 1)]; |
48 | | T9 = T7 - T8; |
49 | | Tb = rio[WS(vs, 1)]; |
50 | | Tc = rio[WS(vs, 1) + WS(rs, 1)]; |
51 | | Te = Tb - Tc; |
52 | | Th = iio[WS(vs, 1)]; |
53 | | Ti = iio[WS(vs, 1) + WS(rs, 1)]; |
54 | | Tj = Th - Ti; |
55 | | rio[0] = T1 + T2; |
56 | | iio[0] = T7 + T8; |
57 | | rio[WS(rs, 1)] = Tb + Tc; |
58 | | iio[WS(rs, 1)] = Th + Ti; |
59 | | { |
60 | | E Tf, Tk, Td, Tg; |
61 | | Td = W[0]; |
62 | | Tf = Td * Te; |
63 | | Tk = Td * Tj; |
64 | | Tg = W[1]; |
65 | | rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tg, Tj, Tf); |
66 | | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tg, Te, Tk); |
67 | | } |
68 | | { |
69 | | E T5, Ta, T3, T6; |
70 | | T3 = W[0]; |
71 | | T5 = T3 * T4; |
72 | | Ta = T3 * T9; |
73 | | T6 = W[1]; |
74 | | rio[WS(vs, 1)] = FMA(T6, T9, T5); |
75 | | iio[WS(vs, 1)] = FNMS(T6, T4, Ta); |
76 | | } |
77 | | } |
78 | | } |
79 | | } |
80 | | |
81 | | static const tw_instr twinstr[] = { |
82 | | { TW_FULL, 0, 2 }, |
83 | | { TW_NEXT, 1, 0 } |
84 | | }; |
85 | | |
86 | | static const ct_desc desc = { 2, "q1_2", twinstr, &GENUS, { 8, 4, 4, 0 }, 0, 0, 0 }; |
87 | | |
88 | | void X(codelet_q1_2) (planner *p) { |
89 | | X(kdft_difsq_register) (p, q1_2, &desc); |
90 | | } |
91 | | #else |
92 | | |
93 | | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 2 -name q1_2 -include dft/scalar/q.h */ |
94 | | |
95 | | /* |
96 | | * This function contains 12 FP additions, 8 FP multiplications, |
97 | | * (or, 8 additions, 4 multiplications, 4 fused multiply/add), |
98 | | * 17 stack variables, 0 constants, and 16 memory accesses |
99 | | */ |
100 | | #include "dft/scalar/q.h" |
101 | | |
102 | | static void q1_2(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
103 | 0 | { |
104 | 0 | { |
105 | 0 | INT m; |
106 | 0 | for (m = mb, W = W + (mb * 2); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 2, MAKE_VOLATILE_STRIDE(4, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
107 | 0 | E T1, T2, T4, T6, T7, T8, T9, Ta, Tc, Te, Tf, Tg; |
108 | 0 | T1 = rio[0]; |
109 | 0 | T2 = rio[WS(rs, 1)]; |
110 | 0 | T4 = T1 - T2; |
111 | 0 | T6 = iio[0]; |
112 | 0 | T7 = iio[WS(rs, 1)]; |
113 | 0 | T8 = T6 - T7; |
114 | 0 | T9 = rio[WS(vs, 1)]; |
115 | 0 | Ta = rio[WS(vs, 1) + WS(rs, 1)]; |
116 | 0 | Tc = T9 - Ta; |
117 | 0 | Te = iio[WS(vs, 1)]; |
118 | 0 | Tf = iio[WS(vs, 1) + WS(rs, 1)]; |
119 | 0 | Tg = Te - Tf; |
120 | 0 | rio[0] = T1 + T2; |
121 | 0 | iio[0] = T6 + T7; |
122 | 0 | rio[WS(rs, 1)] = T9 + Ta; |
123 | 0 | iio[WS(rs, 1)] = Te + Tf; |
124 | 0 | { |
125 | 0 | E Tb, Td, T3, T5; |
126 | 0 | Tb = W[0]; |
127 | 0 | Td = W[1]; |
128 | 0 | rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tb, Tc, Td * Tg); |
129 | 0 | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Td, Tc, Tb * Tg); |
130 | 0 | T3 = W[0]; |
131 | 0 | T5 = W[1]; |
132 | 0 | rio[WS(vs, 1)] = FMA(T3, T4, T5 * T8); |
133 | 0 | iio[WS(vs, 1)] = FNMS(T5, T4, T3 * T8); |
134 | 0 | } |
135 | 0 | } |
136 | 0 | } |
137 | 0 | } |
138 | | |
139 | | static const tw_instr twinstr[] = { |
140 | | { TW_FULL, 0, 2 }, |
141 | | { TW_NEXT, 1, 0 } |
142 | | }; |
143 | | |
144 | | static const ct_desc desc = { 2, "q1_2", twinstr, &GENUS, { 8, 4, 4, 0 }, 0, 0, 0 }; |
145 | | |
146 | 1 | void X(codelet_q1_2) (planner *p) { |
147 | 1 | X(kdft_difsq_register) (p, q1_2, &desc); |
148 | 1 | } |
149 | | #endif |