/src/fftw3/dft/scalar/codelets/t2_64.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sat Jan 10 06:09:13 UTC 2026 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 1154 FP additions, 840 FP multiplications, |
32 | | * (or, 520 additions, 206 multiplications, 634 fused multiply/add), |
33 | | * 316 stack variables, 15 constants, and 256 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
40 | | DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
41 | | DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
42 | | DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
43 | | DK(KP098491403, +0.098491403357164253077197521291327432293052451); |
44 | | DK(KP820678790, +0.820678790828660330972281985331011598767386482); |
45 | | DK(KP303346683, +0.303346683607342391675883946941299872384187453); |
46 | | DK(KP534511135, +0.534511135950791641089685961295362908582039528); |
47 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
48 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
49 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
50 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
51 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
52 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
53 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
54 | | { |
55 | | INT m; |
56 | | for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { |
57 | | E T2, T3, Tc, T8, Te, T5, T6, Tr, T7, TJ, T14, T3d, T3i, TG, T10; |
58 | | E T3a, T3g, TL, TP, Tb, Td, T17, Tt, Tu, T1i, Ti, T2U, T1t, T7B, T5O; |
59 | | E T3N, T3U, T1I, T3G, T3R, T79, T1x, T3D, T2l, T3X, T2d, T1M, T4B, T4x, T4T; |
60 | | E T2h, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a, T6e, T7l, T60, T7R, T5A; |
61 | | E T6h, T6J, T7o, T5E, T6k, T6N, T7r, T2X, T6t, T6x, TO, TK, TQ, T7c, TU; |
62 | | E T2x, T2u, T2y, T7E, T2C, T4b, T48, T4c, T5R, T4g, T3m, T3j, T3n, T4W, T3r; |
63 | | E Tx, Ty, TC, T1Z, T23, T4s, T4p, T70, T6W, T19, T41, T44, T1a, T1e, T35; |
64 | | E T31, T59, T55, T1k, T1R, T1V, T1l, T1p, T2Q, T2N, T8i, T8e, Th, T4E, T4H; |
65 | | E Tj, Tn, T3A, T3w, T5n, T5j; |
66 | | { |
67 | | E T1H, Tg, Tw, T1s, T2g, TH, T2t, T47, T3h, T28, T4w, T3M, T2c, T4A, T3Q; |
68 | | E T1w, T2k, T1L, T5r, T80; |
69 | | { |
70 | | E TI, T13, TF, TZ, Ta, T4, T9, Ts; |
71 | | T2 = W[0]; |
72 | | T3 = W[2]; |
73 | | T4 = T2 * T3; |
74 | | Tc = W[5]; |
75 | | TI = T3 * Tc; |
76 | | T13 = T2 * Tc; |
77 | | T8 = W[4]; |
78 | | Te = W[6]; |
79 | | TF = T3 * T8; |
80 | | T1H = T8 * Te; |
81 | | TZ = T2 * T8; |
82 | | T5 = W[1]; |
83 | | T6 = W[3]; |
84 | | Ta = T2 * T6; |
85 | | Tr = FMA(T5, T6, T4); |
86 | | T7 = FNMS(T5, T6, T4); |
87 | | Tg = T7 * Tc; |
88 | | Tw = Tr * Tc; |
89 | | T1s = T3 * Te; |
90 | | T2g = T2 * Te; |
91 | | TJ = FMA(T6, T8, TI); |
92 | | T14 = FNMS(T5, T8, T13); |
93 | | T3d = FMA(T5, T8, T13); |
94 | | T3i = FNMS(T6, T8, TI); |
95 | | TG = FNMS(T6, Tc, TF); |
96 | | TH = TG * Te; |
97 | | T10 = FMA(T5, Tc, TZ); |
98 | | T2t = T10 * Te; |
99 | | T3a = FNMS(T5, Tc, TZ); |
100 | | T47 = T3a * Te; |
101 | | T3g = FMA(T6, Tc, TF); |
102 | | T3h = T3g * Te; |
103 | | TL = W[8]; |
104 | | T28 = T3 * TL; |
105 | | T4w = T8 * TL; |
106 | | T3M = T2 * TL; |
107 | | TP = W[9]; |
108 | | T2c = T3 * TP; |
109 | | T4A = T8 * TP; |
110 | | T3Q = T2 * TP; |
111 | | T9 = T7 * T8; |
112 | | Tb = FMA(T5, T3, Ta); |
113 | | Td = FMA(Tb, Tc, T9); |
114 | | T17 = FNMS(Tb, Tc, T9); |
115 | | Ts = Tr * T8; |
116 | | Tt = FNMS(T5, T3, Ta); |
117 | | Tu = FNMS(Tt, Tc, Ts); |
118 | | T1i = FMA(Tt, Tc, Ts); |
119 | | Ti = W[7]; |
120 | | T1w = T3 * Ti; |
121 | | T2k = T2 * Ti; |
122 | | T1L = T8 * Ti; |
123 | | T2U = FMA(Tc, Ti, T1H); |
124 | | } |
125 | | T1t = FMA(T6, Ti, T1s); |
126 | | T7B = FNMS(T14, Ti, T2t); |
127 | | T5O = FNMS(T3d, Ti, T47); |
128 | | T3N = FMA(T5, TP, T3M); |
129 | | T3U = FNMS(T6, Ti, T1s); |
130 | | T1I = FNMS(Tc, Ti, T1H); |
131 | | T3G = FNMS(T5, Te, T2k); |
132 | | T3R = FNMS(T5, TL, T3Q); |
133 | | T79 = FNMS(TJ, Ti, TH); |
134 | | T1x = FNMS(T6, Te, T1w); |
135 | | T3D = FMA(T5, Ti, T2g); |
136 | | T2l = FMA(T5, Te, T2k); |
137 | | T3X = FMA(T6, Te, T1w); |
138 | | T2d = FNMS(T6, TL, T2c); |
139 | | T1M = FMA(Tc, Te, T1L); |
140 | | T4B = FNMS(Tc, TL, T4A); |
141 | | T4x = FMA(Tc, TP, T4w); |
142 | | T4T = FNMS(T3i, Ti, T3h); |
143 | | T2h = FNMS(T5, Ti, T2g); |
144 | | T29 = FMA(T6, TP, T28); |
145 | | T5r = T3g * TL; |
146 | | T5s = FMA(T3i, TP, T5r); |
147 | | T80 = T7 * TP; |
148 | | T81 = FNMS(Tb, TL, T80); |
149 | | { |
150 | | E T5v, T7W, T7M, T7g, T63; |
151 | | T5v = T3g * TP; |
152 | | T5w = FNMS(T3i, TL, T5v); |
153 | | T7W = T7 * TL; |
154 | | T7X = FMA(Tb, TP, T7W); |
155 | | T7M = TG * TL; |
156 | | T7N = FMA(TJ, TP, T7M); |
157 | | T7g = T10 * TL; |
158 | | T7h = FMA(T14, TP, T7g); |
159 | | T63 = T3a * TP; |
160 | | T64 = FNMS(T3d, TL, T63); |
161 | | } |
162 | | { |
163 | | E T69, T6d, T7k, T5Z, T7Q, T5z; |
164 | | T69 = Tr * TL; |
165 | | T6a = FMA(Tt, TP, T69); |
166 | | T6d = Tr * TP; |
167 | | T6e = FNMS(Tt, TL, T6d); |
168 | | T7k = T10 * TP; |
169 | | T7l = FNMS(T14, TL, T7k); |
170 | | T5Z = T3a * TL; |
171 | | T60 = FMA(T3d, TP, T5Z); |
172 | | T7Q = TG * TP; |
173 | | T7R = FNMS(TJ, TL, T7Q); |
174 | | T5z = Tr * Te; |
175 | | T5A = FMA(Tt, Ti, T5z); |
176 | | T6h = FNMS(Tt, Ti, T5z); |
177 | | } |
178 | | { |
179 | | E T6I, T5D, T6M, T6s, T6w; |
180 | | T6I = T7 * Te; |
181 | | T6J = FNMS(Tb, Ti, T6I); |
182 | | T7o = FMA(Tb, Ti, T6I); |
183 | | T5D = Tr * Ti; |
184 | | T5E = FNMS(Tt, Te, T5D); |
185 | | T6k = FMA(Tt, Te, T5D); |
186 | | T6M = T7 * Ti; |
187 | | T6N = FMA(Tb, Te, T6M); |
188 | | T7r = FNMS(Tb, Te, T6M); |
189 | | T6s = T2U * TL; |
190 | | T6w = T2U * TP; |
191 | | T2X = FNMS(Tc, Te, T1L); |
192 | | T6t = FMA(T2X, TP, T6s); |
193 | | T6x = FNMS(T2X, TL, T6w); |
194 | | { |
195 | | E TN, TM, TT, T2w, T2v, T2B; |
196 | | TN = TG * Ti; |
197 | | TO = FNMS(TJ, Te, TN); |
198 | | TK = FMA(TJ, Ti, TH); |
199 | | TM = TK * TL; |
200 | | TT = TK * TP; |
201 | | TQ = FMA(TO, TP, TM); |
202 | | T7c = FMA(TJ, Te, TN); |
203 | | TU = FNMS(TO, TL, TT); |
204 | | T2w = T10 * Ti; |
205 | | T2x = FNMS(T14, Te, T2w); |
206 | | T2u = FMA(T14, Ti, T2t); |
207 | | T2v = T2u * TL; |
208 | | T2B = T2u * TP; |
209 | | T2y = FMA(T2x, TP, T2v); |
210 | | T7E = FMA(T14, Te, T2w); |
211 | | T2C = FNMS(T2x, TL, T2B); |
212 | | } |
213 | | } |
214 | | { |
215 | | E T4a, T49, T4f, T3l, T3k, T3q; |
216 | | T4a = T3a * Ti; |
217 | | T4b = FNMS(T3d, Te, T4a); |
218 | | T48 = FMA(T3d, Ti, T47); |
219 | | T49 = T48 * TL; |
220 | | T4f = T48 * TP; |
221 | | T4c = FMA(T4b, TP, T49); |
222 | | T5R = FMA(T3d, Te, T4a); |
223 | | T4g = FNMS(T4b, TL, T4f); |
224 | | T3l = T3g * Ti; |
225 | | T3m = FNMS(T3i, Te, T3l); |
226 | | T3j = FMA(T3i, Ti, T3h); |
227 | | T3k = T3j * TL; |
228 | | T3q = T3j * TP; |
229 | | T3n = FMA(T3m, TP, T3k); |
230 | | T4W = FMA(T3i, Te, T3l); |
231 | | T3r = FNMS(T3m, TL, T3q); |
232 | | { |
233 | | E T1Y, T22, Tv, TB, T6Z, T6V; |
234 | | T1Y = Tu * TL; |
235 | | T22 = Tu * TP; |
236 | | Tv = Tu * Te; |
237 | | TB = Tu * Ti; |
238 | | Tx = FMA(Tt, T8, Tw); |
239 | | Ty = FMA(Tx, Ti, Tv); |
240 | | TC = FNMS(Tx, Te, TB); |
241 | | T1Z = FMA(Tx, TP, T1Y); |
242 | | T23 = FNMS(Tx, TL, T22); |
243 | | T4s = FMA(Tx, Te, TB); |
244 | | T4p = FNMS(Tx, Ti, Tv); |
245 | | T6Z = Ty * TP; |
246 | | T70 = FNMS(TC, TL, T6Z); |
247 | | T6V = Ty * TL; |
248 | | T6W = FMA(TC, TP, T6V); |
249 | | } |
250 | | } |
251 | | { |
252 | | E T30, T34, T18, T1d, T58, T54; |
253 | | T30 = T17 * TL; |
254 | | T34 = T17 * TP; |
255 | | T18 = T17 * Te; |
256 | | T1d = T17 * Ti; |
257 | | T19 = FMA(Tb, T8, Tg); |
258 | | T41 = FMA(T19, Ti, T18); |
259 | | T44 = FNMS(T19, Te, T1d); |
260 | | T1a = FNMS(T19, Ti, T18); |
261 | | T1e = FMA(T19, Te, T1d); |
262 | | T35 = FNMS(T19, TL, T34); |
263 | | T31 = FMA(T19, TP, T30); |
264 | | T58 = T41 * TP; |
265 | | T59 = FNMS(T44, TL, T58); |
266 | | T54 = T41 * TL; |
267 | | T55 = FMA(T44, TP, T54); |
268 | | } |
269 | | { |
270 | | E T1j, T1o, T1Q, T1U, T8h, T8d; |
271 | | T1j = T1i * TL; |
272 | | T1o = T1i * TP; |
273 | | T1Q = T1i * Te; |
274 | | T1U = T1i * Ti; |
275 | | T1k = FNMS(Tt, T8, Tw); |
276 | | T1R = FMA(T1k, Ti, T1Q); |
277 | | T1V = FNMS(T1k, Te, T1U); |
278 | | T1l = FMA(T1k, TP, T1j); |
279 | | T1p = FNMS(T1k, TL, T1o); |
280 | | T2Q = FMA(T1k, Te, T1U); |
281 | | T2N = FNMS(T1k, Ti, T1Q); |
282 | | T8h = T1R * TP; |
283 | | T8i = FNMS(T1V, TL, T8h); |
284 | | T8d = T1R * TL; |
285 | | T8e = FMA(T1V, TP, T8d); |
286 | | } |
287 | | { |
288 | | E T3v, T3z, Tf, Tm, T5m, T5i; |
289 | | T3v = Td * TL; |
290 | | T3z = Td * TP; |
291 | | Tf = Td * Te; |
292 | | Tm = Td * Ti; |
293 | | Th = FNMS(Tb, T8, Tg); |
294 | | T4E = FMA(Th, Ti, Tf); |
295 | | T4H = FNMS(Th, Te, Tm); |
296 | | Tj = FNMS(Th, Ti, Tf); |
297 | | Tn = FMA(Th, Te, Tm); |
298 | | T3A = FNMS(Th, TL, T3z); |
299 | | T3w = FMA(Th, TP, T3v); |
300 | | T5m = T4E * TP; |
301 | | T5n = FNMS(T4H, TL, T5m); |
302 | | T5i = T4E * TL; |
303 | | T5j = FMA(T4H, TP, T5i); |
304 | | } |
305 | | } |
306 | | { |
307 | | E TY, Tg4, Tl9, TlD, T8w, TdS, Tkd, TkE, T2G, Tge, Tgh, TiK, T98, Te1, T9f; |
308 | | E Te0, T39, Tgq, Tgn, TiN, T9p, Te5, T9M, Te8, T74, Thr, Thc, Tja, TbI, TeE; |
309 | | E TcB, TeP, T1B, TkD, Tg7, Tk7, T8D, TdT, T8K, TdU, T27, Tg9, Tgc, TiJ, T8T; |
310 | | E TdY, T90, TdX, T4k, TgB, Tgy, TiT, T9Y, Tec, Tal, Tef, T5d, Th0, TgL, TiZ; |
311 | | E Taz, Tel, Tbs, Tew, T3K, Tgo, Tgt, TiO, T9E, Te9, T9P, Te6, T4L, Tgz, TgE; |
312 | | E TiU, Tad, Teg, Tao, Ted, T5I, TgM, Th3, Tj0, TaO, Tex, Tbv, Tem, T7v, Thd; |
313 | | E Thu, Tjb, TbX, TeQ, TcE, TeF, T68, Tj5, TgS, Th5, Tbj, Tez, Tbx, Teq, T6B; |
314 | | E Tj6, TgX, Th6, Tb4, TeA, Tby, Tet, T7V, Tjg, Thj, Thw, Tcs, TeS, TcG, TeJ; |
315 | | E T8m, Tjh, Tho, Thx, Tcd, TeT, TcH, TeM; |
316 | | { |
317 | | E T1, Tkb, Tp, Tka, TE, T8s, TW, T8u; |
318 | | T1 = ri[0]; |
319 | | Tkb = ii[0]; |
320 | | { |
321 | | E Tk, Tl, To, Tk9; |
322 | | Tk = ri[WS(rs, 32)]; |
323 | | Tl = Tj * Tk; |
324 | | To = ii[WS(rs, 32)]; |
325 | | Tk9 = Tj * To; |
326 | | Tp = FMA(Tn, To, Tl); |
327 | | Tka = FNMS(Tn, Tk, Tk9); |
328 | | } |
329 | | { |
330 | | E Tz, TA, TD, T8r; |
331 | | Tz = ri[WS(rs, 16)]; |
332 | | TA = Ty * Tz; |
333 | | TD = ii[WS(rs, 16)]; |
334 | | T8r = Ty * TD; |
335 | | TE = FMA(TC, TD, TA); |
336 | | T8s = FNMS(TC, Tz, T8r); |
337 | | } |
338 | | { |
339 | | E TR, TS, TV, T8t; |
340 | | TR = ri[WS(rs, 48)]; |
341 | | TS = TQ * TR; |
342 | | TV = ii[WS(rs, 48)]; |
343 | | T8t = TQ * TV; |
344 | | TW = FMA(TU, TV, TS); |
345 | | T8u = FNMS(TU, TR, T8t); |
346 | | } |
347 | | { |
348 | | E Tq, TX, Tl7, Tl8; |
349 | | Tq = T1 + Tp; |
350 | | TX = TE + TW; |
351 | | TY = Tq + TX; |
352 | | Tg4 = Tq - TX; |
353 | | Tl7 = Tkb - Tka; |
354 | | Tl8 = TE - TW; |
355 | | Tl9 = Tl7 - Tl8; |
356 | | TlD = Tl8 + Tl7; |
357 | | } |
358 | | { |
359 | | E T8q, T8v, Tk8, Tkc; |
360 | | T8q = T1 - Tp; |
361 | | T8v = T8s - T8u; |
362 | | T8w = T8q - T8v; |
363 | | TdS = T8q + T8v; |
364 | | Tk8 = T8s + T8u; |
365 | | Tkc = Tka + Tkb; |
366 | | Tkd = Tk8 + Tkc; |
367 | | TkE = Tkc - Tk8; |
368 | | } |
369 | | } |
370 | | { |
371 | | E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b; |
372 | | { |
373 | | E T2a, T2b, T2e, T92; |
374 | | T2a = ri[WS(rs, 60)]; |
375 | | T2b = T29 * T2a; |
376 | | T2e = ii[WS(rs, 60)]; |
377 | | T92 = T29 * T2e; |
378 | | T2f = FMA(T2d, T2e, T2b); |
379 | | T93 = FNMS(T2d, T2a, T92); |
380 | | } |
381 | | { |
382 | | E T2z, T2A, T2D, T9c; |
383 | | T2z = ri[WS(rs, 44)]; |
384 | | T2A = T2y * T2z; |
385 | | T2D = ii[WS(rs, 44)]; |
386 | | T9c = T2y * T2D; |
387 | | T2E = FMA(T2C, T2D, T2A); |
388 | | T9d = FNMS(T2C, T2z, T9c); |
389 | | } |
390 | | { |
391 | | E T2i, T2j, T2m, T94; |
392 | | T2i = ri[WS(rs, 28)]; |
393 | | T2j = T2h * T2i; |
394 | | T2m = ii[WS(rs, 28)]; |
395 | | T94 = T2h * T2m; |
396 | | T2n = FMA(T2l, T2m, T2j); |
397 | | T95 = FNMS(T2l, T2i, T94); |
398 | | } |
399 | | { |
400 | | E T2p, T2q, T2r, T9a; |
401 | | T2p = ri[WS(rs, 12)]; |
402 | | T2q = TG * T2p; |
403 | | T2r = ii[WS(rs, 12)]; |
404 | | T9a = TG * T2r; |
405 | | T2s = FMA(TJ, T2r, T2q); |
406 | | T9b = FNMS(TJ, T2p, T9a); |
407 | | } |
408 | | { |
409 | | E T2o, T2F, Tgf, Tgg; |
410 | | T2o = T2f + T2n; |
411 | | T2F = T2s + T2E; |
412 | | T2G = T2o + T2F; |
413 | | Tge = T2o - T2F; |
414 | | Tgf = T93 + T95; |
415 | | Tgg = T9b + T9d; |
416 | | Tgh = Tgf - Tgg; |
417 | | TiK = Tgf + Tgg; |
418 | | } |
419 | | { |
420 | | E T96, T97, T99, T9e; |
421 | | T96 = T93 - T95; |
422 | | T97 = T2s - T2E; |
423 | | T98 = T96 + T97; |
424 | | Te1 = T96 - T97; |
425 | | T99 = T2f - T2n; |
426 | | T9e = T9b - T9d; |
427 | | T9f = T99 - T9e; |
428 | | Te0 = T99 + T9e; |
429 | | } |
430 | | } |
431 | | { |
432 | | E T2M, T9k, T37, T9K, T2S, T9m, T2Z, T9I; |
433 | | { |
434 | | E T2J, T2K, T2L, T9j; |
435 | | T2J = ri[WS(rs, 2)]; |
436 | | T2K = Tr * T2J; |
437 | | T2L = ii[WS(rs, 2)]; |
438 | | T9j = Tr * T2L; |
439 | | T2M = FMA(Tt, T2L, T2K); |
440 | | T9k = FNMS(Tt, T2J, T9j); |
441 | | } |
442 | | { |
443 | | E T32, T33, T36, T9J; |
444 | | T32 = ri[WS(rs, 50)]; |
445 | | T33 = T31 * T32; |
446 | | T36 = ii[WS(rs, 50)]; |
447 | | T9J = T31 * T36; |
448 | | T37 = FMA(T35, T36, T33); |
449 | | T9K = FNMS(T35, T32, T9J); |
450 | | } |
451 | | { |
452 | | E T2O, T2P, T2R, T9l; |
453 | | T2O = ri[WS(rs, 34)]; |
454 | | T2P = T2N * T2O; |
455 | | T2R = ii[WS(rs, 34)]; |
456 | | T9l = T2N * T2R; |
457 | | T2S = FMA(T2Q, T2R, T2P); |
458 | | T9m = FNMS(T2Q, T2O, T9l); |
459 | | } |
460 | | { |
461 | | E T2V, T2W, T2Y, T9H; |
462 | | T2V = ri[WS(rs, 18)]; |
463 | | T2W = T2U * T2V; |
464 | | T2Y = ii[WS(rs, 18)]; |
465 | | T9H = T2U * T2Y; |
466 | | T2Z = FMA(T2X, T2Y, T2W); |
467 | | T9I = FNMS(T2X, T2V, T9H); |
468 | | } |
469 | | { |
470 | | E T2T, T38, Tgl, Tgm; |
471 | | T2T = T2M + T2S; |
472 | | T38 = T2Z + T37; |
473 | | T39 = T2T + T38; |
474 | | Tgq = T2T - T38; |
475 | | Tgl = T9k + T9m; |
476 | | Tgm = T9I + T9K; |
477 | | Tgn = Tgl - Tgm; |
478 | | TiN = Tgl + Tgm; |
479 | | } |
480 | | { |
481 | | E T9n, T9o, T9G, T9L; |
482 | | T9n = T9k - T9m; |
483 | | T9o = T2Z - T37; |
484 | | T9p = T9n + T9o; |
485 | | Te5 = T9n - T9o; |
486 | | T9G = T2M - T2S; |
487 | | T9L = T9I - T9K; |
488 | | T9M = T9G - T9L; |
489 | | Te8 = T9G + T9L; |
490 | | } |
491 | | } |
492 | | { |
493 | | E T6H, TbD, T72, Tcz, T6P, TbF, T6U, Tcx; |
494 | | { |
495 | | E T6E, T6F, T6G, TbC; |
496 | | T6E = ri[WS(rs, 63)]; |
497 | | T6F = TL * T6E; |
498 | | T6G = ii[WS(rs, 63)]; |
499 | | TbC = TL * T6G; |
500 | | T6H = FMA(TP, T6G, T6F); |
501 | | TbD = FNMS(TP, T6E, TbC); |
502 | | } |
503 | | { |
504 | | E T6X, T6Y, T71, Tcy; |
505 | | T6X = ri[WS(rs, 47)]; |
506 | | T6Y = T6W * T6X; |
507 | | T71 = ii[WS(rs, 47)]; |
508 | | Tcy = T6W * T71; |
509 | | T72 = FMA(T70, T71, T6Y); |
510 | | Tcz = FNMS(T70, T6X, Tcy); |
511 | | } |
512 | | { |
513 | | E T6K, T6L, T6O, TbE; |
514 | | T6K = ri[WS(rs, 31)]; |
515 | | T6L = T6J * T6K; |
516 | | T6O = ii[WS(rs, 31)]; |
517 | | TbE = T6J * T6O; |
518 | | T6P = FMA(T6N, T6O, T6L); |
519 | | TbF = FNMS(T6N, T6K, TbE); |
520 | | } |
521 | | { |
522 | | E T6R, T6S, T6T, Tcw; |
523 | | T6R = ri[WS(rs, 15)]; |
524 | | T6S = TK * T6R; |
525 | | T6T = ii[WS(rs, 15)]; |
526 | | Tcw = TK * T6T; |
527 | | T6U = FMA(TO, T6T, T6S); |
528 | | Tcx = FNMS(TO, T6R, Tcw); |
529 | | } |
530 | | { |
531 | | E T6Q, T73, Tha, Thb; |
532 | | T6Q = T6H + T6P; |
533 | | T73 = T6U + T72; |
534 | | T74 = T6Q + T73; |
535 | | Thr = T6Q - T73; |
536 | | Tha = TbD + TbF; |
537 | | Thb = Tcx + Tcz; |
538 | | Thc = Tha - Thb; |
539 | | Tja = Tha + Thb; |
540 | | } |
541 | | { |
542 | | E TbG, TbH, Tcv, TcA; |
543 | | TbG = TbD - TbF; |
544 | | TbH = T6U - T72; |
545 | | TbI = TbG + TbH; |
546 | | TeE = TbG - TbH; |
547 | | Tcv = T6H - T6P; |
548 | | TcA = Tcx - Tcz; |
549 | | TcB = Tcv - TcA; |
550 | | TeP = Tcv + TcA; |
551 | | } |
552 | | } |
553 | | { |
554 | | E T16, T8y, T1z, T8I, T1g, T8A, T1r, T8G; |
555 | | { |
556 | | E T11, T12, T15, T8x; |
557 | | T11 = ri[WS(rs, 8)]; |
558 | | T12 = T10 * T11; |
559 | | T15 = ii[WS(rs, 8)]; |
560 | | T8x = T10 * T15; |
561 | | T16 = FMA(T14, T15, T12); |
562 | | T8y = FNMS(T14, T11, T8x); |
563 | | } |
564 | | { |
565 | | E T1u, T1v, T1y, T8H; |
566 | | T1u = ri[WS(rs, 24)]; |
567 | | T1v = T1t * T1u; |
568 | | T1y = ii[WS(rs, 24)]; |
569 | | T8H = T1t * T1y; |
570 | | T1z = FMA(T1x, T1y, T1v); |
571 | | T8I = FNMS(T1x, T1u, T8H); |
572 | | } |
573 | | { |
574 | | E T1b, T1c, T1f, T8z; |
575 | | T1b = ri[WS(rs, 40)]; |
576 | | T1c = T1a * T1b; |
577 | | T1f = ii[WS(rs, 40)]; |
578 | | T8z = T1a * T1f; |
579 | | T1g = FMA(T1e, T1f, T1c); |
580 | | T8A = FNMS(T1e, T1b, T8z); |
581 | | } |
582 | | { |
583 | | E T1m, T1n, T1q, T8F; |
584 | | T1m = ri[WS(rs, 56)]; |
585 | | T1n = T1l * T1m; |
586 | | T1q = ii[WS(rs, 56)]; |
587 | | T8F = T1l * T1q; |
588 | | T1r = FMA(T1p, T1q, T1n); |
589 | | T8G = FNMS(T1p, T1m, T8F); |
590 | | } |
591 | | { |
592 | | E T1h, T1A, Tg5, Tg6; |
593 | | T1h = T16 + T1g; |
594 | | T1A = T1r + T1z; |
595 | | T1B = T1h + T1A; |
596 | | TkD = T1A - T1h; |
597 | | Tg5 = T8y + T8A; |
598 | | Tg6 = T8G + T8I; |
599 | | Tg7 = Tg5 - Tg6; |
600 | | Tk7 = Tg5 + Tg6; |
601 | | } |
602 | | { |
603 | | E T8B, T8C, T8E, T8J; |
604 | | T8B = T8y - T8A; |
605 | | T8C = T16 - T1g; |
606 | | T8D = T8B - T8C; |
607 | | TdT = T8C + T8B; |
608 | | T8E = T1r - T1z; |
609 | | T8J = T8G - T8I; |
610 | | T8K = T8E + T8J; |
611 | | TdU = T8E - T8J; |
612 | | } |
613 | | } |
614 | | { |
615 | | E T1G, T8O, T25, T8Y, T1O, T8Q, T1X, T8W; |
616 | | { |
617 | | E T1D, T1E, T1F, T8N; |
618 | | T1D = ri[WS(rs, 4)]; |
619 | | T1E = T7 * T1D; |
620 | | T1F = ii[WS(rs, 4)]; |
621 | | T8N = T7 * T1F; |
622 | | T1G = FMA(Tb, T1F, T1E); |
623 | | T8O = FNMS(Tb, T1D, T8N); |
624 | | } |
625 | | { |
626 | | E T20, T21, T24, T8X; |
627 | | T20 = ri[WS(rs, 52)]; |
628 | | T21 = T1Z * T20; |
629 | | T24 = ii[WS(rs, 52)]; |
630 | | T8X = T1Z * T24; |
631 | | T25 = FMA(T23, T24, T21); |
632 | | T8Y = FNMS(T23, T20, T8X); |
633 | | } |
634 | | { |
635 | | E T1J, T1K, T1N, T8P; |
636 | | T1J = ri[WS(rs, 36)]; |
637 | | T1K = T1I * T1J; |
638 | | T1N = ii[WS(rs, 36)]; |
639 | | T8P = T1I * T1N; |
640 | | T1O = FMA(T1M, T1N, T1K); |
641 | | T8Q = FNMS(T1M, T1J, T8P); |
642 | | } |
643 | | { |
644 | | E T1S, T1T, T1W, T8V; |
645 | | T1S = ri[WS(rs, 20)]; |
646 | | T1T = T1R * T1S; |
647 | | T1W = ii[WS(rs, 20)]; |
648 | | T8V = T1R * T1W; |
649 | | T1X = FMA(T1V, T1W, T1T); |
650 | | T8W = FNMS(T1V, T1S, T8V); |
651 | | } |
652 | | { |
653 | | E T1P, T26, Tga, Tgb; |
654 | | T1P = T1G + T1O; |
655 | | T26 = T1X + T25; |
656 | | T27 = T1P + T26; |
657 | | Tg9 = T1P - T26; |
658 | | Tga = T8O + T8Q; |
659 | | Tgb = T8W + T8Y; |
660 | | Tgc = Tga - Tgb; |
661 | | TiJ = Tga + Tgb; |
662 | | } |
663 | | { |
664 | | E T8R, T8S, T8U, T8Z; |
665 | | T8R = T8O - T8Q; |
666 | | T8S = T1X - T25; |
667 | | T8T = T8R + T8S; |
668 | | TdY = T8R - T8S; |
669 | | T8U = T1G - T1O; |
670 | | T8Z = T8W - T8Y; |
671 | | T90 = T8U - T8Z; |
672 | | TdX = T8U + T8Z; |
673 | | } |
674 | | } |
675 | | { |
676 | | E T3T, T9T, T4i, Taj, T3Z, T9V, T46, Tah; |
677 | | { |
678 | | E T3O, T3P, T3S, T9S; |
679 | | T3O = ri[WS(rs, 62)]; |
680 | | T3P = T3N * T3O; |
681 | | T3S = ii[WS(rs, 62)]; |
682 | | T9S = T3N * T3S; |
683 | | T3T = FMA(T3R, T3S, T3P); |
684 | | T9T = FNMS(T3R, T3O, T9S); |
685 | | } |
686 | | { |
687 | | E T4d, T4e, T4h, Tai; |
688 | | T4d = ri[WS(rs, 46)]; |
689 | | T4e = T4c * T4d; |
690 | | T4h = ii[WS(rs, 46)]; |
691 | | Tai = T4c * T4h; |
692 | | T4i = FMA(T4g, T4h, T4e); |
693 | | Taj = FNMS(T4g, T4d, Tai); |
694 | | } |
695 | | { |
696 | | E T3V, T3W, T3Y, T9U; |
697 | | T3V = ri[WS(rs, 30)]; |
698 | | T3W = T3U * T3V; |
699 | | T3Y = ii[WS(rs, 30)]; |
700 | | T9U = T3U * T3Y; |
701 | | T3Z = FMA(T3X, T3Y, T3W); |
702 | | T9V = FNMS(T3X, T3V, T9U); |
703 | | } |
704 | | { |
705 | | E T42, T43, T45, Tag; |
706 | | T42 = ri[WS(rs, 14)]; |
707 | | T43 = T41 * T42; |
708 | | T45 = ii[WS(rs, 14)]; |
709 | | Tag = T41 * T45; |
710 | | T46 = FMA(T44, T45, T43); |
711 | | Tah = FNMS(T44, T42, Tag); |
712 | | } |
713 | | { |
714 | | E T40, T4j, Tgw, Tgx; |
715 | | T40 = T3T + T3Z; |
716 | | T4j = T46 + T4i; |
717 | | T4k = T40 + T4j; |
718 | | TgB = T40 - T4j; |
719 | | Tgw = T9T + T9V; |
720 | | Tgx = Tah + Taj; |
721 | | Tgy = Tgw - Tgx; |
722 | | TiT = Tgw + Tgx; |
723 | | } |
724 | | { |
725 | | E T9W, T9X, Taf, Tak; |
726 | | T9W = T9T - T9V; |
727 | | T9X = T46 - T4i; |
728 | | T9Y = T9W + T9X; |
729 | | Tec = T9W - T9X; |
730 | | Taf = T3T - T3Z; |
731 | | Tak = Tah - Taj; |
732 | | Tal = Taf - Tak; |
733 | | Tef = Taf + Tak; |
734 | | } |
735 | | } |
736 | | { |
737 | | E T4S, Tau, T5b, Tbq, T4Y, Taw, T53, Tbo; |
738 | | { |
739 | | E T4P, T4Q, T4R, Tat; |
740 | | T4P = ri[WS(rs, 1)]; |
741 | | T4Q = T2 * T4P; |
742 | | T4R = ii[WS(rs, 1)]; |
743 | | Tat = T2 * T4R; |
744 | | T4S = FMA(T5, T4R, T4Q); |
745 | | Tau = FNMS(T5, T4P, Tat); |
746 | | } |
747 | | { |
748 | | E T56, T57, T5a, Tbp; |
749 | | T56 = ri[WS(rs, 49)]; |
750 | | T57 = T55 * T56; |
751 | | T5a = ii[WS(rs, 49)]; |
752 | | Tbp = T55 * T5a; |
753 | | T5b = FMA(T59, T5a, T57); |
754 | | Tbq = FNMS(T59, T56, Tbp); |
755 | | } |
756 | | { |
757 | | E T4U, T4V, T4X, Tav; |
758 | | T4U = ri[WS(rs, 33)]; |
759 | | T4V = T4T * T4U; |
760 | | T4X = ii[WS(rs, 33)]; |
761 | | Tav = T4T * T4X; |
762 | | T4Y = FMA(T4W, T4X, T4V); |
763 | | Taw = FNMS(T4W, T4U, Tav); |
764 | | } |
765 | | { |
766 | | E T50, T51, T52, Tbn; |
767 | | T50 = ri[WS(rs, 17)]; |
768 | | T51 = T48 * T50; |
769 | | T52 = ii[WS(rs, 17)]; |
770 | | Tbn = T48 * T52; |
771 | | T53 = FMA(T4b, T52, T51); |
772 | | Tbo = FNMS(T4b, T50, Tbn); |
773 | | } |
774 | | { |
775 | | E T4Z, T5c, TgJ, TgK; |
776 | | T4Z = T4S + T4Y; |
777 | | T5c = T53 + T5b; |
778 | | T5d = T4Z + T5c; |
779 | | Th0 = T4Z - T5c; |
780 | | TgJ = Tau + Taw; |
781 | | TgK = Tbo + Tbq; |
782 | | TgL = TgJ - TgK; |
783 | | TiZ = TgJ + TgK; |
784 | | } |
785 | | { |
786 | | E Tax, Tay, Tbm, Tbr; |
787 | | Tax = Tau - Taw; |
788 | | Tay = T53 - T5b; |
789 | | Taz = Tax + Tay; |
790 | | Tel = Tax - Tay; |
791 | | Tbm = T4S - T4Y; |
792 | | Tbr = Tbo - Tbq; |
793 | | Tbs = Tbm - Tbr; |
794 | | Tew = Tbm + Tbr; |
795 | | } |
796 | | } |
797 | | { |
798 | | E T3f, T9s, T3I, T9B, T3t, T9u, T3C, T9z; |
799 | | { |
800 | | E T3b, T3c, T3e, T9r; |
801 | | T3b = ri[WS(rs, 10)]; |
802 | | T3c = T3a * T3b; |
803 | | T3e = ii[WS(rs, 10)]; |
804 | | T9r = T3a * T3e; |
805 | | T3f = FMA(T3d, T3e, T3c); |
806 | | T9s = FNMS(T3d, T3b, T9r); |
807 | | } |
808 | | { |
809 | | E T3E, T3F, T3H, T9A; |
810 | | T3E = ri[WS(rs, 26)]; |
811 | | T3F = T3D * T3E; |
812 | | T3H = ii[WS(rs, 26)]; |
813 | | T9A = T3D * T3H; |
814 | | T3I = FMA(T3G, T3H, T3F); |
815 | | T9B = FNMS(T3G, T3E, T9A); |
816 | | } |
817 | | { |
818 | | E T3o, T3p, T3s, T9t; |
819 | | T3o = ri[WS(rs, 42)]; |
820 | | T3p = T3n * T3o; |
821 | | T3s = ii[WS(rs, 42)]; |
822 | | T9t = T3n * T3s; |
823 | | T3t = FMA(T3r, T3s, T3p); |
824 | | T9u = FNMS(T3r, T3o, T9t); |
825 | | } |
826 | | { |
827 | | E T3x, T3y, T3B, T9y; |
828 | | T3x = ri[WS(rs, 58)]; |
829 | | T3y = T3w * T3x; |
830 | | T3B = ii[WS(rs, 58)]; |
831 | | T9y = T3w * T3B; |
832 | | T3C = FMA(T3A, T3B, T3y); |
833 | | T9z = FNMS(T3A, T3x, T9y); |
834 | | } |
835 | | { |
836 | | E T3u, T3J, Tgr, Tgs; |
837 | | T3u = T3f + T3t; |
838 | | T3J = T3C + T3I; |
839 | | T3K = T3u + T3J; |
840 | | Tgo = T3J - T3u; |
841 | | Tgr = T9s + T9u; |
842 | | Tgs = T9z + T9B; |
843 | | Tgt = Tgr - Tgs; |
844 | | TiO = Tgr + Tgs; |
845 | | { |
846 | | E T9w, T9O, T9D, T9N; |
847 | | { |
848 | | E T9q, T9v, T9x, T9C; |
849 | | T9q = T3f - T3t; |
850 | | T9v = T9s - T9u; |
851 | | T9w = T9q + T9v; |
852 | | T9O = T9v - T9q; |
853 | | T9x = T3C - T3I; |
854 | | T9C = T9z - T9B; |
855 | | T9D = T9x - T9C; |
856 | | T9N = T9x + T9C; |
857 | | } |
858 | | T9E = T9w - T9D; |
859 | | Te9 = T9w + T9D; |
860 | | T9P = T9N - T9O; |
861 | | Te6 = T9O + T9N; |
862 | | } |
863 | | } |
864 | | } |
865 | | { |
866 | | E T4o, Ta1, T4J, Taa, T4u, Ta3, T4D, Ta8; |
867 | | { |
868 | | E T4l, T4m, T4n, Ta0; |
869 | | T4l = ri[WS(rs, 6)]; |
870 | | T4m = T3g * T4l; |
871 | | T4n = ii[WS(rs, 6)]; |
872 | | Ta0 = T3g * T4n; |
873 | | T4o = FMA(T3i, T4n, T4m); |
874 | | Ta1 = FNMS(T3i, T4l, Ta0); |
875 | | } |
876 | | { |
877 | | E T4F, T4G, T4I, Ta9; |
878 | | T4F = ri[WS(rs, 22)]; |
879 | | T4G = T4E * T4F; |
880 | | T4I = ii[WS(rs, 22)]; |
881 | | Ta9 = T4E * T4I; |
882 | | T4J = FMA(T4H, T4I, T4G); |
883 | | Taa = FNMS(T4H, T4F, Ta9); |
884 | | } |
885 | | { |
886 | | E T4q, T4r, T4t, Ta2; |
887 | | T4q = ri[WS(rs, 38)]; |
888 | | T4r = T4p * T4q; |
889 | | T4t = ii[WS(rs, 38)]; |
890 | | Ta2 = T4p * T4t; |
891 | | T4u = FMA(T4s, T4t, T4r); |
892 | | Ta3 = FNMS(T4s, T4q, Ta2); |
893 | | } |
894 | | { |
895 | | E T4y, T4z, T4C, Ta7; |
896 | | T4y = ri[WS(rs, 54)]; |
897 | | T4z = T4x * T4y; |
898 | | T4C = ii[WS(rs, 54)]; |
899 | | Ta7 = T4x * T4C; |
900 | | T4D = FMA(T4B, T4C, T4z); |
901 | | Ta8 = FNMS(T4B, T4y, Ta7); |
902 | | } |
903 | | { |
904 | | E T4v, T4K, TgC, TgD; |
905 | | T4v = T4o + T4u; |
906 | | T4K = T4D + T4J; |
907 | | T4L = T4v + T4K; |
908 | | Tgz = T4K - T4v; |
909 | | TgC = Ta1 + Ta3; |
910 | | TgD = Ta8 + Taa; |
911 | | TgE = TgC - TgD; |
912 | | TiU = TgC + TgD; |
913 | | { |
914 | | E Ta5, Tan, Tac, Tam; |
915 | | { |
916 | | E T9Z, Ta4, Ta6, Tab; |
917 | | T9Z = T4o - T4u; |
918 | | Ta4 = Ta1 - Ta3; |
919 | | Ta5 = T9Z + Ta4; |
920 | | Tan = Ta4 - T9Z; |
921 | | Ta6 = T4D - T4J; |
922 | | Tab = Ta8 - Taa; |
923 | | Tac = Ta6 - Tab; |
924 | | Tam = Ta6 + Tab; |
925 | | } |
926 | | Tad = Ta5 - Tac; |
927 | | Teg = Ta5 + Tac; |
928 | | Tao = Tam - Tan; |
929 | | Ted = Tan + Tam; |
930 | | } |
931 | | } |
932 | | } |
933 | | { |
934 | | E T5h, TaC, T5G, TaL, T5p, TaE, T5y, TaJ; |
935 | | { |
936 | | E T5e, T5f, T5g, TaB; |
937 | | T5e = ri[WS(rs, 9)]; |
938 | | T5f = T8 * T5e; |
939 | | T5g = ii[WS(rs, 9)]; |
940 | | TaB = T8 * T5g; |
941 | | T5h = FMA(Tc, T5g, T5f); |
942 | | TaC = FNMS(Tc, T5e, TaB); |
943 | | } |
944 | | { |
945 | | E T5B, T5C, T5F, TaK; |
946 | | T5B = ri[WS(rs, 25)]; |
947 | | T5C = T5A * T5B; |
948 | | T5F = ii[WS(rs, 25)]; |
949 | | TaK = T5A * T5F; |
950 | | T5G = FMA(T5E, T5F, T5C); |
951 | | TaL = FNMS(T5E, T5B, TaK); |
952 | | } |
953 | | { |
954 | | E T5k, T5l, T5o, TaD; |
955 | | T5k = ri[WS(rs, 41)]; |
956 | | T5l = T5j * T5k; |
957 | | T5o = ii[WS(rs, 41)]; |
958 | | TaD = T5j * T5o; |
959 | | T5p = FMA(T5n, T5o, T5l); |
960 | | TaE = FNMS(T5n, T5k, TaD); |
961 | | } |
962 | | { |
963 | | E T5t, T5u, T5x, TaI; |
964 | | T5t = ri[WS(rs, 57)]; |
965 | | T5u = T5s * T5t; |
966 | | T5x = ii[WS(rs, 57)]; |
967 | | TaI = T5s * T5x; |
968 | | T5y = FMA(T5w, T5x, T5u); |
969 | | TaJ = FNMS(T5w, T5t, TaI); |
970 | | } |
971 | | { |
972 | | E T5q, T5H, Th1, Th2; |
973 | | T5q = T5h + T5p; |
974 | | T5H = T5y + T5G; |
975 | | T5I = T5q + T5H; |
976 | | TgM = T5H - T5q; |
977 | | Th1 = TaC + TaE; |
978 | | Th2 = TaJ + TaL; |
979 | | Th3 = Th1 - Th2; |
980 | | Tj0 = Th1 + Th2; |
981 | | { |
982 | | E TaG, Tbu, TaN, Tbt; |
983 | | { |
984 | | E TaA, TaF, TaH, TaM; |
985 | | TaA = T5h - T5p; |
986 | | TaF = TaC - TaE; |
987 | | TaG = TaA + TaF; |
988 | | Tbu = TaF - TaA; |
989 | | TaH = T5y - T5G; |
990 | | TaM = TaJ - TaL; |
991 | | TaN = TaH - TaM; |
992 | | Tbt = TaH + TaM; |
993 | | } |
994 | | TaO = TaG - TaN; |
995 | | Tex = TaG + TaN; |
996 | | Tbv = Tbt - Tbu; |
997 | | Tem = Tbu + Tbt; |
998 | | } |
999 | | } |
1000 | | } |
1001 | | { |
1002 | | E T78, TbL, T7t, TbU, T7e, TbN, T7n, TbS; |
1003 | | { |
1004 | | E T75, T76, T77, TbK; |
1005 | | T75 = ri[WS(rs, 7)]; |
1006 | | T76 = T1i * T75; |
1007 | | T77 = ii[WS(rs, 7)]; |
1008 | | TbK = T1i * T77; |
1009 | | T78 = FMA(T1k, T77, T76); |
1010 | | TbL = FNMS(T1k, T75, TbK); |
1011 | | } |
1012 | | { |
1013 | | E T7p, T7q, T7s, TbT; |
1014 | | T7p = ri[WS(rs, 23)]; |
1015 | | T7q = T7o * T7p; |
1016 | | T7s = ii[WS(rs, 23)]; |
1017 | | TbT = T7o * T7s; |
1018 | | T7t = FMA(T7r, T7s, T7q); |
1019 | | TbU = FNMS(T7r, T7p, TbT); |
1020 | | } |
1021 | | { |
1022 | | E T7a, T7b, T7d, TbM; |
1023 | | T7a = ri[WS(rs, 39)]; |
1024 | | T7b = T79 * T7a; |
1025 | | T7d = ii[WS(rs, 39)]; |
1026 | | TbM = T79 * T7d; |
1027 | | T7e = FMA(T7c, T7d, T7b); |
1028 | | TbN = FNMS(T7c, T7a, TbM); |
1029 | | } |
1030 | | { |
1031 | | E T7i, T7j, T7m, TbR; |
1032 | | T7i = ri[WS(rs, 55)]; |
1033 | | T7j = T7h * T7i; |
1034 | | T7m = ii[WS(rs, 55)]; |
1035 | | TbR = T7h * T7m; |
1036 | | T7n = FMA(T7l, T7m, T7j); |
1037 | | TbS = FNMS(T7l, T7i, TbR); |
1038 | | } |
1039 | | { |
1040 | | E T7f, T7u, Ths, Tht; |
1041 | | T7f = T78 + T7e; |
1042 | | T7u = T7n + T7t; |
1043 | | T7v = T7f + T7u; |
1044 | | Thd = T7u - T7f; |
1045 | | Ths = TbL + TbN; |
1046 | | Tht = TbS + TbU; |
1047 | | Thu = Ths - Tht; |
1048 | | Tjb = Ths + Tht; |
1049 | | { |
1050 | | E TbP, TcD, TbW, TcC; |
1051 | | { |
1052 | | E TbJ, TbO, TbQ, TbV; |
1053 | | TbJ = T78 - T7e; |
1054 | | TbO = TbL - TbN; |
1055 | | TbP = TbJ + TbO; |
1056 | | TcD = TbO - TbJ; |
1057 | | TbQ = T7n - T7t; |
1058 | | TbV = TbS - TbU; |
1059 | | TbW = TbQ - TbV; |
1060 | | TcC = TbQ + TbV; |
1061 | | } |
1062 | | TbX = TbP - TbW; |
1063 | | TeQ = TbP + TbW; |
1064 | | TcE = TcC - TcD; |
1065 | | TeF = TcD + TcC; |
1066 | | } |
1067 | | } |
1068 | | } |
1069 | | { |
1070 | | E T5N, Tbd, T66, Tb9, T5T, Tbf, T5Y, Tb7; |
1071 | | { |
1072 | | E T5K, T5L, T5M, Tbc; |
1073 | | T5K = ri[WS(rs, 5)]; |
1074 | | T5L = Td * T5K; |
1075 | | T5M = ii[WS(rs, 5)]; |
1076 | | Tbc = Td * T5M; |
1077 | | T5N = FMA(Th, T5M, T5L); |
1078 | | Tbd = FNMS(Th, T5K, Tbc); |
1079 | | } |
1080 | | { |
1081 | | E T61, T62, T65, Tb8; |
1082 | | T61 = ri[WS(rs, 53)]; |
1083 | | T62 = T60 * T61; |
1084 | | T65 = ii[WS(rs, 53)]; |
1085 | | Tb8 = T60 * T65; |
1086 | | T66 = FMA(T64, T65, T62); |
1087 | | Tb9 = FNMS(T64, T61, Tb8); |
1088 | | } |
1089 | | { |
1090 | | E T5P, T5Q, T5S, Tbe; |
1091 | | T5P = ri[WS(rs, 37)]; |
1092 | | T5Q = T5O * T5P; |
1093 | | T5S = ii[WS(rs, 37)]; |
1094 | | Tbe = T5O * T5S; |
1095 | | T5T = FMA(T5R, T5S, T5Q); |
1096 | | Tbf = FNMS(T5R, T5P, Tbe); |
1097 | | } |
1098 | | { |
1099 | | E T5V, T5W, T5X, Tb6; |
1100 | | T5V = ri[WS(rs, 21)]; |
1101 | | T5W = T3j * T5V; |
1102 | | T5X = ii[WS(rs, 21)]; |
1103 | | Tb6 = T3j * T5X; |
1104 | | T5Y = FMA(T3m, T5X, T5W); |
1105 | | Tb7 = FNMS(T3m, T5V, Tb6); |
1106 | | } |
1107 | | { |
1108 | | E T5U, T67, TgR, TgO, TgP, TgQ; |
1109 | | T5U = T5N + T5T; |
1110 | | T67 = T5Y + T66; |
1111 | | TgR = T5U - T67; |
1112 | | TgO = Tbd + Tbf; |
1113 | | TgP = Tb7 + Tb9; |
1114 | | TgQ = TgO - TgP; |
1115 | | T68 = T5U + T67; |
1116 | | Tj5 = TgO + TgP; |
1117 | | TgS = TgQ - TgR; |
1118 | | Th5 = TgR + TgQ; |
1119 | | } |
1120 | | { |
1121 | | E Tbb, Tep, Tbi, Teo; |
1122 | | { |
1123 | | E Tb5, Tba, Tbg, Tbh; |
1124 | | Tb5 = T5N - T5T; |
1125 | | Tba = Tb7 - Tb9; |
1126 | | Tbb = Tb5 - Tba; |
1127 | | Tep = Tb5 + Tba; |
1128 | | Tbg = Tbd - Tbf; |
1129 | | Tbh = T5Y - T66; |
1130 | | Tbi = Tbg + Tbh; |
1131 | | Teo = Tbg - Tbh; |
1132 | | } |
1133 | | Tbj = FNMS(KP414213562, Tbi, Tbb); |
1134 | | Tez = FMA(KP414213562, Teo, Tep); |
1135 | | Tbx = FMA(KP414213562, Tbb, Tbi); |
1136 | | Teq = FNMS(KP414213562, Tep, Teo); |
1137 | | } |
1138 | | } |
1139 | | { |
1140 | | E T6g, TaY, T6z, TaU, T6m, Tb0, T6r, TaS; |
1141 | | { |
1142 | | E T6b, T6c, T6f, TaX; |
1143 | | T6b = ri[WS(rs, 61)]; |
1144 | | T6c = T6a * T6b; |
1145 | | T6f = ii[WS(rs, 61)]; |
1146 | | TaX = T6a * T6f; |
1147 | | T6g = FMA(T6e, T6f, T6c); |
1148 | | TaY = FNMS(T6e, T6b, TaX); |
1149 | | } |
1150 | | { |
1151 | | E T6u, T6v, T6y, TaT; |
1152 | | T6u = ri[WS(rs, 45)]; |
1153 | | T6v = T6t * T6u; |
1154 | | T6y = ii[WS(rs, 45)]; |
1155 | | TaT = T6t * T6y; |
1156 | | T6z = FMA(T6x, T6y, T6v); |
1157 | | TaU = FNMS(T6x, T6u, TaT); |
1158 | | } |
1159 | | { |
1160 | | E T6i, T6j, T6l, TaZ; |
1161 | | T6i = ri[WS(rs, 29)]; |
1162 | | T6j = T6h * T6i; |
1163 | | T6l = ii[WS(rs, 29)]; |
1164 | | TaZ = T6h * T6l; |
1165 | | T6m = FMA(T6k, T6l, T6j); |
1166 | | Tb0 = FNMS(T6k, T6i, TaZ); |
1167 | | } |
1168 | | { |
1169 | | E T6o, T6p, T6q, TaR; |
1170 | | T6o = ri[WS(rs, 13)]; |
1171 | | T6p = T17 * T6o; |
1172 | | T6q = ii[WS(rs, 13)]; |
1173 | | TaR = T17 * T6q; |
1174 | | T6r = FMA(T19, T6q, T6p); |
1175 | | TaS = FNMS(T19, T6o, TaR); |
1176 | | } |
1177 | | { |
1178 | | E T6n, T6A, TgT, TgU, TgV, TgW; |
1179 | | T6n = T6g + T6m; |
1180 | | T6A = T6r + T6z; |
1181 | | TgT = T6n - T6A; |
1182 | | TgU = TaY + Tb0; |
1183 | | TgV = TaS + TaU; |
1184 | | TgW = TgU - TgV; |
1185 | | T6B = T6n + T6A; |
1186 | | Tj6 = TgU + TgV; |
1187 | | TgX = TgT + TgW; |
1188 | | Th6 = TgT - TgW; |
1189 | | } |
1190 | | { |
1191 | | E TaW, Tes, Tb3, Ter; |
1192 | | { |
1193 | | E TaQ, TaV, Tb1, Tb2; |
1194 | | TaQ = T6g - T6m; |
1195 | | TaV = TaS - TaU; |
1196 | | TaW = TaQ - TaV; |
1197 | | Tes = TaQ + TaV; |
1198 | | Tb1 = TaY - Tb0; |
1199 | | Tb2 = T6r - T6z; |
1200 | | Tb3 = Tb1 + Tb2; |
1201 | | Ter = Tb1 - Tb2; |
1202 | | } |
1203 | | Tb4 = FMA(KP414213562, Tb3, TaW); |
1204 | | TeA = FNMS(KP414213562, Ter, Tes); |
1205 | | Tby = FNMS(KP414213562, TaW, Tb3); |
1206 | | Tet = FMA(KP414213562, Tes, Ter); |
1207 | | } |
1208 | | } |
1209 | | { |
1210 | | E T7A, Tcm, T7T, Tci, T7G, Tco, T7L, Tcg; |
1211 | | { |
1212 | | E T7x, T7y, T7z, Tcl; |
1213 | | T7x = ri[WS(rs, 3)]; |
1214 | | T7y = T3 * T7x; |
1215 | | T7z = ii[WS(rs, 3)]; |
1216 | | Tcl = T3 * T7z; |
1217 | | T7A = FMA(T6, T7z, T7y); |
1218 | | Tcm = FNMS(T6, T7x, Tcl); |
1219 | | } |
1220 | | { |
1221 | | E T7O, T7P, T7S, Tch; |
1222 | | T7O = ri[WS(rs, 51)]; |
1223 | | T7P = T7N * T7O; |
1224 | | T7S = ii[WS(rs, 51)]; |
1225 | | Tch = T7N * T7S; |
1226 | | T7T = FMA(T7R, T7S, T7P); |
1227 | | Tci = FNMS(T7R, T7O, Tch); |
1228 | | } |
1229 | | { |
1230 | | E T7C, T7D, T7F, Tcn; |
1231 | | T7C = ri[WS(rs, 35)]; |
1232 | | T7D = T7B * T7C; |
1233 | | T7F = ii[WS(rs, 35)]; |
1234 | | Tcn = T7B * T7F; |
1235 | | T7G = FMA(T7E, T7F, T7D); |
1236 | | Tco = FNMS(T7E, T7C, Tcn); |
1237 | | } |
1238 | | { |
1239 | | E T7I, T7J, T7K, Tcf; |
1240 | | T7I = ri[WS(rs, 19)]; |
1241 | | T7J = T2u * T7I; |
1242 | | T7K = ii[WS(rs, 19)]; |
1243 | | Tcf = T2u * T7K; |
1244 | | T7L = FMA(T2x, T7K, T7J); |
1245 | | Tcg = FNMS(T2x, T7I, Tcf); |
1246 | | } |
1247 | | { |
1248 | | E T7H, T7U, Thi, Thf, Thg, Thh; |
1249 | | T7H = T7A + T7G; |
1250 | | T7U = T7L + T7T; |
1251 | | Thi = T7H - T7U; |
1252 | | Thf = Tcm + Tco; |
1253 | | Thg = Tcg + Tci; |
1254 | | Thh = Thf - Thg; |
1255 | | T7V = T7H + T7U; |
1256 | | Tjg = Thf + Thg; |
1257 | | Thj = Thh - Thi; |
1258 | | Thw = Thi + Thh; |
1259 | | } |
1260 | | { |
1261 | | E Tck, TeI, Tcr, TeH; |
1262 | | { |
1263 | | E Tce, Tcj, Tcp, Tcq; |
1264 | | Tce = T7A - T7G; |
1265 | | Tcj = Tcg - Tci; |
1266 | | Tck = Tce - Tcj; |
1267 | | TeI = Tce + Tcj; |
1268 | | Tcp = Tcm - Tco; |
1269 | | Tcq = T7L - T7T; |
1270 | | Tcr = Tcp + Tcq; |
1271 | | TeH = Tcp - Tcq; |
1272 | | } |
1273 | | Tcs = FNMS(KP414213562, Tcr, Tck); |
1274 | | TeS = FMA(KP414213562, TeH, TeI); |
1275 | | TcG = FMA(KP414213562, Tck, Tcr); |
1276 | | TeJ = FNMS(KP414213562, TeI, TeH); |
1277 | | } |
1278 | | } |
1279 | | { |
1280 | | E T83, Tc7, T8k, Tc3, T87, Tc9, T8c, Tc1; |
1281 | | { |
1282 | | E T7Y, T7Z, T82, Tc6; |
1283 | | T7Y = ri[WS(rs, 59)]; |
1284 | | T7Z = T7X * T7Y; |
1285 | | T82 = ii[WS(rs, 59)]; |
1286 | | Tc6 = T7X * T82; |
1287 | | T83 = FMA(T81, T82, T7Z); |
1288 | | Tc7 = FNMS(T81, T7Y, Tc6); |
1289 | | } |
1290 | | { |
1291 | | E T8f, T8g, T8j, Tc2; |
1292 | | T8f = ri[WS(rs, 43)]; |
1293 | | T8g = T8e * T8f; |
1294 | | T8j = ii[WS(rs, 43)]; |
1295 | | Tc2 = T8e * T8j; |
1296 | | T8k = FMA(T8i, T8j, T8g); |
1297 | | Tc3 = FNMS(T8i, T8f, Tc2); |
1298 | | } |
1299 | | { |
1300 | | E T84, T85, T86, Tc8; |
1301 | | T84 = ri[WS(rs, 27)]; |
1302 | | T85 = Te * T84; |
1303 | | T86 = ii[WS(rs, 27)]; |
1304 | | Tc8 = Te * T86; |
1305 | | T87 = FMA(Ti, T86, T85); |
1306 | | Tc9 = FNMS(Ti, T84, Tc8); |
1307 | | } |
1308 | | { |
1309 | | E T89, T8a, T8b, Tc0; |
1310 | | T89 = ri[WS(rs, 11)]; |
1311 | | T8a = Tu * T89; |
1312 | | T8b = ii[WS(rs, 11)]; |
1313 | | Tc0 = Tu * T8b; |
1314 | | T8c = FMA(Tx, T8b, T8a); |
1315 | | Tc1 = FNMS(Tx, T89, Tc0); |
1316 | | } |
1317 | | { |
1318 | | E T88, T8l, Thk, Thl, Thm, Thn; |
1319 | | T88 = T83 + T87; |
1320 | | T8l = T8c + T8k; |
1321 | | Thk = T88 - T8l; |
1322 | | Thl = Tc7 + Tc9; |
1323 | | Thm = Tc1 + Tc3; |
1324 | | Thn = Thl - Thm; |
1325 | | T8m = T88 + T8l; |
1326 | | Tjh = Thl + Thm; |
1327 | | Tho = Thk + Thn; |
1328 | | Thx = Thk - Thn; |
1329 | | } |
1330 | | { |
1331 | | E Tc5, TeL, Tcc, TeK; |
1332 | | { |
1333 | | E TbZ, Tc4, Tca, Tcb; |
1334 | | TbZ = T83 - T87; |
1335 | | Tc4 = Tc1 - Tc3; |
1336 | | Tc5 = TbZ - Tc4; |
1337 | | TeL = TbZ + Tc4; |
1338 | | Tca = Tc7 - Tc9; |
1339 | | Tcb = T8c - T8k; |
1340 | | Tcc = Tca + Tcb; |
1341 | | TeK = Tca - Tcb; |
1342 | | } |
1343 | | Tcd = FMA(KP414213562, Tcc, Tc5); |
1344 | | TeT = FNMS(KP414213562, TeK, TeL); |
1345 | | TcH = FNMS(KP414213562, Tc5, Tcc); |
1346 | | TeM = FMA(KP414213562, TeL, TeK); |
1347 | | } |
1348 | | } |
1349 | | { |
1350 | | E T2I, TjG, T4N, Tkj, Tkf, Tkk, TjJ, Tk5, T8o, Tk2, TjU, TjY, T6D, Tk1, TjP; |
1351 | | E TjX; |
1352 | | { |
1353 | | E T1C, T2H, TjH, TjI; |
1354 | | T1C = TY + T1B; |
1355 | | T2H = T27 + T2G; |
1356 | | T2I = T1C + T2H; |
1357 | | TjG = T1C - T2H; |
1358 | | { |
1359 | | E T3L, T4M, Tk6, Tke; |
1360 | | T3L = T39 + T3K; |
1361 | | T4M = T4k + T4L; |
1362 | | T4N = T3L + T4M; |
1363 | | Tkj = T4M - T3L; |
1364 | | Tk6 = TiJ + TiK; |
1365 | | Tke = Tk7 + Tkd; |
1366 | | Tkf = Tk6 + Tke; |
1367 | | Tkk = Tke - Tk6; |
1368 | | } |
1369 | | TjH = TiN + TiO; |
1370 | | TjI = TiT + TiU; |
1371 | | TjJ = TjH - TjI; |
1372 | | Tk5 = TjH + TjI; |
1373 | | { |
1374 | | E T7w, T8n, TjQ, TjR, TjS, TjT; |
1375 | | T7w = T74 + T7v; |
1376 | | T8n = T7V + T8m; |
1377 | | TjQ = T7w - T8n; |
1378 | | TjR = Tja + Tjb; |
1379 | | TjS = Tjg + Tjh; |
1380 | | TjT = TjR - TjS; |
1381 | | T8o = T7w + T8n; |
1382 | | Tk2 = TjR + TjS; |
1383 | | TjU = TjQ - TjT; |
1384 | | TjY = TjQ + TjT; |
1385 | | } |
1386 | | { |
1387 | | E T5J, T6C, TjL, TjM, TjN, TjO; |
1388 | | T5J = T5d + T5I; |
1389 | | T6C = T68 + T6B; |
1390 | | TjL = T5J - T6C; |
1391 | | TjM = TiZ + Tj0; |
1392 | | TjN = Tj5 + Tj6; |
1393 | | TjO = TjM - TjN; |
1394 | | T6D = T5J + T6C; |
1395 | | Tk1 = TjM + TjN; |
1396 | | TjP = TjL + TjO; |
1397 | | TjX = TjO - TjL; |
1398 | | } |
1399 | | } |
1400 | | { |
1401 | | E T4O, T8p, Tk4, Tkg; |
1402 | | T4O = T2I + T4N; |
1403 | | T8p = T6D + T8o; |
1404 | | ri[WS(rs, 32)] = T4O - T8p; |
1405 | | ri[0] = T4O + T8p; |
1406 | | Tk4 = Tk1 + Tk2; |
1407 | | Tkg = Tk5 + Tkf; |
1408 | | ii[0] = Tk4 + Tkg; |
1409 | | ii[WS(rs, 32)] = Tkg - Tk4; |
1410 | | } |
1411 | | { |
1412 | | E TjK, TjV, Tkl, Tkm; |
1413 | | TjK = TjG + TjJ; |
1414 | | TjV = TjP + TjU; |
1415 | | ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK); |
1416 | | ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK); |
1417 | | Tkl = Tkj + Tkk; |
1418 | | Tkm = TjX + TjY; |
1419 | | ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl); |
1420 | | ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl); |
1421 | | } |
1422 | | { |
1423 | | E TjW, TjZ, Tkn, Tko; |
1424 | | TjW = TjG - TjJ; |
1425 | | TjZ = TjX - TjY; |
1426 | | ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW); |
1427 | | ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW); |
1428 | | Tkn = Tkk - Tkj; |
1429 | | Tko = TjU - TjP; |
1430 | | ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn); |
1431 | | ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn); |
1432 | | } |
1433 | | { |
1434 | | E Tk0, Tk3, Tkh, Tki; |
1435 | | Tk0 = T2I - T4N; |
1436 | | Tk3 = Tk1 - Tk2; |
1437 | | ri[WS(rs, 48)] = Tk0 - Tk3; |
1438 | | ri[WS(rs, 16)] = Tk0 + Tk3; |
1439 | | Tkh = T8o - T6D; |
1440 | | Tki = Tkf - Tk5; |
1441 | | ii[WS(rs, 16)] = Tkh + Tki; |
1442 | | ii[WS(rs, 48)] = Tki - Tkh; |
1443 | | } |
1444 | | } |
1445 | | { |
1446 | | E TiM, Tjq, Tkr, Tkx, TiX, Tky, Tjt, Tks, Tj9, TjD, Tjn, Tjx, Tjk, TjE, Tjo; |
1447 | | E TjA; |
1448 | | { |
1449 | | E TiI, TiL, Tkp, Tkq; |
1450 | | TiI = TY - T1B; |
1451 | | TiL = TiJ - TiK; |
1452 | | TiM = TiI - TiL; |
1453 | | Tjq = TiI + TiL; |
1454 | | Tkp = T2G - T27; |
1455 | | Tkq = Tkd - Tk7; |
1456 | | Tkr = Tkp + Tkq; |
1457 | | Tkx = Tkq - Tkp; |
1458 | | } |
1459 | | { |
1460 | | E TiR, Tjr, TiW, Tjs; |
1461 | | { |
1462 | | E TiP, TiQ, TiS, TiV; |
1463 | | TiP = TiN - TiO; |
1464 | | TiQ = T39 - T3K; |
1465 | | TiR = TiP - TiQ; |
1466 | | Tjr = TiQ + TiP; |
1467 | | TiS = T4k - T4L; |
1468 | | TiV = TiT - TiU; |
1469 | | TiW = TiS + TiV; |
1470 | | Tjs = TiS - TiV; |
1471 | | } |
1472 | | TiX = TiR - TiW; |
1473 | | Tky = Tjs - Tjr; |
1474 | | Tjt = Tjr + Tjs; |
1475 | | Tks = TiR + TiW; |
1476 | | } |
1477 | | { |
1478 | | E Tj3, Tjw, Tj8, Tjv; |
1479 | | { |
1480 | | E Tj1, Tj2, Tj4, Tj7; |
1481 | | Tj1 = TiZ - Tj0; |
1482 | | Tj2 = T6B - T68; |
1483 | | Tj3 = Tj1 - Tj2; |
1484 | | Tjw = Tj1 + Tj2; |
1485 | | Tj4 = T5d - T5I; |
1486 | | Tj7 = Tj5 - Tj6; |
1487 | | Tj8 = Tj4 - Tj7; |
1488 | | Tjv = Tj4 + Tj7; |
1489 | | } |
1490 | | Tj9 = FMA(KP414213562, Tj8, Tj3); |
1491 | | TjD = FNMS(KP414213562, Tjv, Tjw); |
1492 | | Tjn = FNMS(KP414213562, Tj3, Tj8); |
1493 | | Tjx = FMA(KP414213562, Tjw, Tjv); |
1494 | | } |
1495 | | { |
1496 | | E Tje, Tjz, Tjj, Tjy; |
1497 | | { |
1498 | | E Tjc, Tjd, Tjf, Tji; |
1499 | | Tjc = Tja - Tjb; |
1500 | | Tjd = T8m - T7V; |
1501 | | Tje = Tjc - Tjd; |
1502 | | Tjz = Tjc + Tjd; |
1503 | | Tjf = T74 - T7v; |
1504 | | Tji = Tjg - Tjh; |
1505 | | Tjj = Tjf - Tji; |
1506 | | Tjy = Tjf + Tji; |
1507 | | } |
1508 | | Tjk = FNMS(KP414213562, Tjj, Tje); |
1509 | | TjE = FMA(KP414213562, Tjy, Tjz); |
1510 | | Tjo = FMA(KP414213562, Tje, Tjj); |
1511 | | TjA = FNMS(KP414213562, Tjz, Tjy); |
1512 | | } |
1513 | | { |
1514 | | E TiY, Tjl, Tkz, TkA; |
1515 | | TiY = FMA(KP707106781, TiX, TiM); |
1516 | | Tjl = Tj9 - Tjk; |
1517 | | ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY); |
1518 | | ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY); |
1519 | | Tkz = FMA(KP707106781, Tky, Tkx); |
1520 | | TkA = Tjo - Tjn; |
1521 | | ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz); |
1522 | | ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz); |
1523 | | } |
1524 | | { |
1525 | | E Tjm, Tjp, TkB, TkC; |
1526 | | Tjm = FNMS(KP707106781, TiX, TiM); |
1527 | | Tjp = Tjn + Tjo; |
1528 | | ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm); |
1529 | | ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm); |
1530 | | TkB = FNMS(KP707106781, Tky, Tkx); |
1531 | | TkC = Tj9 + Tjk; |
1532 | | ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB); |
1533 | | ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB); |
1534 | | } |
1535 | | { |
1536 | | E Tju, TjB, Tkt, Tku; |
1537 | | Tju = FMA(KP707106781, Tjt, Tjq); |
1538 | | TjB = Tjx + TjA; |
1539 | | ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju); |
1540 | | ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju); |
1541 | | Tkt = FMA(KP707106781, Tks, Tkr); |
1542 | | Tku = TjD + TjE; |
1543 | | ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt); |
1544 | | ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt); |
1545 | | } |
1546 | | { |
1547 | | E TjC, TjF, Tkv, Tkw; |
1548 | | TjC = FNMS(KP707106781, Tjt, Tjq); |
1549 | | TjF = TjD - TjE; |
1550 | | ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC); |
1551 | | ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC); |
1552 | | Tkv = FNMS(KP707106781, Tks, Tkr); |
1553 | | Tkw = TjA - Tjx; |
1554 | | ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv); |
1555 | | ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv); |
1556 | | } |
1557 | | } |
1558 | | { |
1559 | | E Tgk, Tl1, ThG, TkV, Ti0, TkN, Tis, TkH, TgH, TkO, ThJ, TkI, Tim, TiG, Tiq; |
1560 | | E TiC, Th9, ThT, ThD, ThN, Ti7, Tl2, Tiv, TkW, Tif, TiF, Tip, Tiz, ThA, ThU; |
1561 | | E ThE, ThQ; |
1562 | | { |
1563 | | E Tg8, TkT, Tgj, TkU, Tgd, Tgi; |
1564 | | Tg8 = Tg4 + Tg7; |
1565 | | TkT = TkE - TkD; |
1566 | | Tgd = Tg9 + Tgc; |
1567 | | Tgi = Tge - Tgh; |
1568 | | Tgj = Tgd + Tgi; |
1569 | | TkU = Tgi - Tgd; |
1570 | | Tgk = FNMS(KP707106781, Tgj, Tg8); |
1571 | | Tl1 = FNMS(KP707106781, TkU, TkT); |
1572 | | ThG = FMA(KP707106781, Tgj, Tg8); |
1573 | | TkV = FMA(KP707106781, TkU, TkT); |
1574 | | } |
1575 | | { |
1576 | | E ThW, TkF, ThZ, TkG, ThX, ThY; |
1577 | | ThW = Tg4 - Tg7; |
1578 | | TkF = TkD + TkE; |
1579 | | ThX = Tgc - Tg9; |
1580 | | ThY = Tge + Tgh; |
1581 | | ThZ = ThX - ThY; |
1582 | | TkG = ThX + ThY; |
1583 | | Ti0 = FMA(KP707106781, ThZ, ThW); |
1584 | | TkN = FNMS(KP707106781, TkG, TkF); |
1585 | | Tis = FNMS(KP707106781, ThZ, ThW); |
1586 | | TkH = FMA(KP707106781, TkG, TkF); |
1587 | | } |
1588 | | { |
1589 | | E Tgv, ThH, TgG, ThI; |
1590 | | { |
1591 | | E Tgp, Tgu, TgA, TgF; |
1592 | | Tgp = Tgn + Tgo; |
1593 | | Tgu = Tgq + Tgt; |
1594 | | Tgv = FNMS(KP414213562, Tgu, Tgp); |
1595 | | ThH = FMA(KP414213562, Tgp, Tgu); |
1596 | | TgA = Tgy + Tgz; |
1597 | | TgF = TgB + TgE; |
1598 | | TgG = FMA(KP414213562, TgF, TgA); |
1599 | | ThI = FNMS(KP414213562, TgA, TgF); |
1600 | | } |
1601 | | TgH = Tgv - TgG; |
1602 | | TkO = ThI - ThH; |
1603 | | ThJ = ThH + ThI; |
1604 | | TkI = Tgv + TgG; |
1605 | | } |
1606 | | { |
1607 | | E Tii, TiB, Til, TiA; |
1608 | | { |
1609 | | E Tig, Tih, Tij, Tik; |
1610 | | Tig = Thr - Thu; |
1611 | | Tih = Tho - Thj; |
1612 | | Tii = FNMS(KP707106781, Tih, Tig); |
1613 | | TiB = FMA(KP707106781, Tih, Tig); |
1614 | | Tij = Thc - Thd; |
1615 | | Tik = Thw - Thx; |
1616 | | Til = FNMS(KP707106781, Tik, Tij); |
1617 | | TiA = FMA(KP707106781, Tik, Tij); |
1618 | | } |
1619 | | Tim = FNMS(KP668178637, Til, Tii); |
1620 | | TiG = FMA(KP198912367, TiA, TiB); |
1621 | | Tiq = FMA(KP668178637, Tii, Til); |
1622 | | TiC = FNMS(KP198912367, TiB, TiA); |
1623 | | } |
1624 | | { |
1625 | | E TgZ, ThM, Th8, ThL; |
1626 | | { |
1627 | | E TgN, TgY, Th4, Th7; |
1628 | | TgN = TgL + TgM; |
1629 | | TgY = TgS + TgX; |
1630 | | TgZ = FNMS(KP707106781, TgY, TgN); |
1631 | | ThM = FMA(KP707106781, TgY, TgN); |
1632 | | Th4 = Th0 + Th3; |
1633 | | Th7 = Th5 + Th6; |
1634 | | Th8 = FNMS(KP707106781, Th7, Th4); |
1635 | | ThL = FMA(KP707106781, Th7, Th4); |
1636 | | } |
1637 | | Th9 = FMA(KP668178637, Th8, TgZ); |
1638 | | ThT = FNMS(KP198912367, ThL, ThM); |
1639 | | ThD = FNMS(KP668178637, TgZ, Th8); |
1640 | | ThN = FMA(KP198912367, ThM, ThL); |
1641 | | } |
1642 | | { |
1643 | | E Ti3, Tit, Ti6, Tiu; |
1644 | | { |
1645 | | E Ti1, Ti2, Ti4, Ti5; |
1646 | | Ti1 = Tgn - Tgo; |
1647 | | Ti2 = Tgq - Tgt; |
1648 | | Ti3 = FMA(KP414213562, Ti2, Ti1); |
1649 | | Tit = FNMS(KP414213562, Ti1, Ti2); |
1650 | | Ti4 = Tgy - Tgz; |
1651 | | Ti5 = TgB - TgE; |
1652 | | Ti6 = FNMS(KP414213562, Ti5, Ti4); |
1653 | | Tiu = FMA(KP414213562, Ti4, Ti5); |
1654 | | } |
1655 | | Ti7 = Ti3 - Ti6; |
1656 | | Tl2 = Ti3 + Ti6; |
1657 | | Tiv = Tit + Tiu; |
1658 | | TkW = Tiu - Tit; |
1659 | | } |
1660 | | { |
1661 | | E Tib, Tiy, Tie, Tix; |
1662 | | { |
1663 | | E Ti9, Tia, Tic, Tid; |
1664 | | Ti9 = Th0 - Th3; |
1665 | | Tia = TgX - TgS; |
1666 | | Tib = FNMS(KP707106781, Tia, Ti9); |
1667 | | Tiy = FMA(KP707106781, Tia, Ti9); |
1668 | | Tic = TgL - TgM; |
1669 | | Tid = Th5 - Th6; |
1670 | | Tie = FNMS(KP707106781, Tid, Tic); |
1671 | | Tix = FMA(KP707106781, Tid, Tic); |
1672 | | } |
1673 | | Tif = FMA(KP668178637, Tie, Tib); |
1674 | | TiF = FNMS(KP198912367, Tix, Tiy); |
1675 | | Tip = FNMS(KP668178637, Tib, Tie); |
1676 | | Tiz = FMA(KP198912367, Tiy, Tix); |
1677 | | } |
1678 | | { |
1679 | | E Thq, ThP, Thz, ThO; |
1680 | | { |
1681 | | E The, Thp, Thv, Thy; |
1682 | | The = Thc + Thd; |
1683 | | Thp = Thj + Tho; |
1684 | | Thq = FNMS(KP707106781, Thp, The); |
1685 | | ThP = FMA(KP707106781, Thp, The); |
1686 | | Thv = Thr + Thu; |
1687 | | Thy = Thw + Thx; |
1688 | | Thz = FNMS(KP707106781, Thy, Thv); |
1689 | | ThO = FMA(KP707106781, Thy, Thv); |
1690 | | } |
1691 | | ThA = FNMS(KP668178637, Thz, Thq); |
1692 | | ThU = FMA(KP198912367, ThO, ThP); |
1693 | | ThE = FMA(KP668178637, Thq, Thz); |
1694 | | ThQ = FNMS(KP198912367, ThP, ThO); |
1695 | | } |
1696 | | { |
1697 | | E TgI, ThB, TkP, TkQ; |
1698 | | TgI = FMA(KP923879532, TgH, Tgk); |
1699 | | ThB = Th9 - ThA; |
1700 | | ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI); |
1701 | | ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI); |
1702 | | TkP = FMA(KP923879532, TkO, TkN); |
1703 | | TkQ = ThE - ThD; |
1704 | | ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP); |
1705 | | ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP); |
1706 | | } |
1707 | | { |
1708 | | E ThC, ThF, TkR, TkS; |
1709 | | ThC = FNMS(KP923879532, TgH, Tgk); |
1710 | | ThF = ThD + ThE; |
1711 | | ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC); |
1712 | | ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC); |
1713 | | TkR = FNMS(KP923879532, TkO, TkN); |
1714 | | TkS = Th9 + ThA; |
1715 | | ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR); |
1716 | | ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR); |
1717 | | } |
1718 | | { |
1719 | | E ThK, ThR, TkJ, TkK; |
1720 | | ThK = FMA(KP923879532, ThJ, ThG); |
1721 | | ThR = ThN + ThQ; |
1722 | | ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK); |
1723 | | ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK); |
1724 | | TkJ = FMA(KP923879532, TkI, TkH); |
1725 | | TkK = ThT + ThU; |
1726 | | ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ); |
1727 | | ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ); |
1728 | | } |
1729 | | { |
1730 | | E ThS, ThV, TkL, TkM; |
1731 | | ThS = FNMS(KP923879532, ThJ, ThG); |
1732 | | ThV = ThT - ThU; |
1733 | | ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS); |
1734 | | ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS); |
1735 | | TkL = FNMS(KP923879532, TkI, TkH); |
1736 | | TkM = ThQ - ThN; |
1737 | | ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL); |
1738 | | ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL); |
1739 | | } |
1740 | | { |
1741 | | E Ti8, Tin, TkX, TkY; |
1742 | | Ti8 = FMA(KP923879532, Ti7, Ti0); |
1743 | | Tin = Tif + Tim; |
1744 | | ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8); |
1745 | | ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8); |
1746 | | TkX = FMA(KP923879532, TkW, TkV); |
1747 | | TkY = Tip + Tiq; |
1748 | | ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX); |
1749 | | ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX); |
1750 | | } |
1751 | | { |
1752 | | E Tio, Tir, TkZ, Tl0; |
1753 | | Tio = FNMS(KP923879532, Ti7, Ti0); |
1754 | | Tir = Tip - Tiq; |
1755 | | ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio); |
1756 | | ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio); |
1757 | | TkZ = FNMS(KP923879532, TkW, TkV); |
1758 | | Tl0 = Tim - Tif; |
1759 | | ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ); |
1760 | | ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ); |
1761 | | } |
1762 | | { |
1763 | | E Tiw, TiD, Tl3, Tl4; |
1764 | | Tiw = FNMS(KP923879532, Tiv, Tis); |
1765 | | TiD = Tiz - TiC; |
1766 | | ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw); |
1767 | | ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw); |
1768 | | Tl3 = FNMS(KP923879532, Tl2, Tl1); |
1769 | | Tl4 = TiG - TiF; |
1770 | | ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3); |
1771 | | ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3); |
1772 | | } |
1773 | | { |
1774 | | E TiE, TiH, Tl5, Tl6; |
1775 | | TiE = FMA(KP923879532, Tiv, Tis); |
1776 | | TiH = TiF + TiG; |
1777 | | ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE); |
1778 | | ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE); |
1779 | | Tl5 = FMA(KP923879532, Tl2, Tl1); |
1780 | | Tl6 = Tiz + TiC; |
1781 | | ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5); |
1782 | | ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5); |
1783 | | } |
1784 | | } |
1785 | | { |
1786 | | E Tar, TlO, TcT, TlI, TbB, Td3, TcN, TcX, Tdw, TdQ, TdA, TdM, Tdp, TdP, Tdz; |
1787 | | E TdJ, Tdh, Tm2, TdF, TlW, TcK, Td4, TcO, Td0, T9i, TlV, Tm1, TcQ, Tda, TlH; |
1788 | | E TlN, TdC; |
1789 | | { |
1790 | | E T9R, TcR, Taq, TcS; |
1791 | | { |
1792 | | E T9F, T9Q, Tae, Tap; |
1793 | | T9F = FNMS(KP707106781, T9E, T9p); |
1794 | | T9Q = FNMS(KP707106781, T9P, T9M); |
1795 | | T9R = FNMS(KP668178637, T9Q, T9F); |
1796 | | TcR = FMA(KP668178637, T9F, T9Q); |
1797 | | Tae = FNMS(KP707106781, Tad, T9Y); |
1798 | | Tap = FNMS(KP707106781, Tao, Tal); |
1799 | | Taq = FMA(KP668178637, Tap, Tae); |
1800 | | TcS = FNMS(KP668178637, Tae, Tap); |
1801 | | } |
1802 | | Tar = T9R - Taq; |
1803 | | TlO = TcS - TcR; |
1804 | | TcT = TcR + TcS; |
1805 | | TlI = T9R + Taq; |
1806 | | } |
1807 | | { |
1808 | | E Tbl, TcW, TbA, TcV; |
1809 | | { |
1810 | | E TaP, Tbk, Tbw, Tbz; |
1811 | | TaP = FNMS(KP707106781, TaO, Taz); |
1812 | | Tbk = Tb4 - Tbj; |
1813 | | Tbl = FNMS(KP923879532, Tbk, TaP); |
1814 | | TcW = FMA(KP923879532, Tbk, TaP); |
1815 | | Tbw = FNMS(KP707106781, Tbv, Tbs); |
1816 | | Tbz = Tbx - Tby; |
1817 | | TbA = FNMS(KP923879532, Tbz, Tbw); |
1818 | | TcV = FMA(KP923879532, Tbz, Tbw); |
1819 | | } |
1820 | | TbB = FMA(KP534511135, TbA, Tbl); |
1821 | | Td3 = FNMS(KP303346683, TcV, TcW); |
1822 | | TcN = FNMS(KP534511135, Tbl, TbA); |
1823 | | TcX = FMA(KP303346683, TcW, TcV); |
1824 | | } |
1825 | | { |
1826 | | E Tds, TdL, Tdv, TdK; |
1827 | | { |
1828 | | E Tdq, Tdr, Tdt, Tdu; |
1829 | | Tdq = FMA(KP707106781, TcE, TcB); |
1830 | | Tdr = Tcs + Tcd; |
1831 | | Tds = FNMS(KP923879532, Tdr, Tdq); |
1832 | | TdL = FMA(KP923879532, Tdr, Tdq); |
1833 | | Tdt = FMA(KP707106781, TbX, TbI); |
1834 | | Tdu = TcG + TcH; |
1835 | | Tdv = FNMS(KP923879532, Tdu, Tdt); |
1836 | | TdK = FMA(KP923879532, Tdu, Tdt); |
1837 | | } |
1838 | | Tdw = FNMS(KP820678790, Tdv, Tds); |
1839 | | TdQ = FMA(KP098491403, TdK, TdL); |
1840 | | TdA = FMA(KP820678790, Tds, Tdv); |
1841 | | TdM = FNMS(KP098491403, TdL, TdK); |
1842 | | } |
1843 | | { |
1844 | | E Tdl, TdI, Tdo, TdH; |
1845 | | { |
1846 | | E Tdj, Tdk, Tdm, Tdn; |
1847 | | Tdj = FMA(KP707106781, Tbv, Tbs); |
1848 | | Tdk = Tbj + Tb4; |
1849 | | Tdl = FNMS(KP923879532, Tdk, Tdj); |
1850 | | TdI = FMA(KP923879532, Tdk, Tdj); |
1851 | | Tdm = FMA(KP707106781, TaO, Taz); |
1852 | | Tdn = Tbx + Tby; |
1853 | | Tdo = FNMS(KP923879532, Tdn, Tdm); |
1854 | | TdH = FMA(KP923879532, Tdn, Tdm); |
1855 | | } |
1856 | | Tdp = FMA(KP820678790, Tdo, Tdl); |
1857 | | TdP = FNMS(KP098491403, TdH, TdI); |
1858 | | Tdz = FNMS(KP820678790, Tdl, Tdo); |
1859 | | TdJ = FMA(KP098491403, TdI, TdH); |
1860 | | } |
1861 | | { |
1862 | | E Tdd, TdD, Tdg, TdE; |
1863 | | { |
1864 | | E Tdb, Tdc, Tde, Tdf; |
1865 | | Tdb = FMA(KP707106781, T9E, T9p); |
1866 | | Tdc = FMA(KP707106781, T9P, T9M); |
1867 | | Tdd = FMA(KP198912367, Tdc, Tdb); |
1868 | | TdD = FNMS(KP198912367, Tdb, Tdc); |
1869 | | Tde = FMA(KP707106781, Tad, T9Y); |
1870 | | Tdf = FMA(KP707106781, Tao, Tal); |
1871 | | Tdg = FNMS(KP198912367, Tdf, Tde); |
1872 | | TdE = FMA(KP198912367, Tde, Tdf); |
1873 | | } |
1874 | | Tdh = Tdd - Tdg; |
1875 | | Tm2 = Tdd + Tdg; |
1876 | | TdF = TdD + TdE; |
1877 | | TlW = TdE - TdD; |
1878 | | } |
1879 | | { |
1880 | | E Tcu, TcZ, TcJ, TcY; |
1881 | | { |
1882 | | E TbY, Tct, TcF, TcI; |
1883 | | TbY = FNMS(KP707106781, TbX, TbI); |
1884 | | Tct = Tcd - Tcs; |
1885 | | Tcu = FNMS(KP923879532, Tct, TbY); |
1886 | | TcZ = FMA(KP923879532, Tct, TbY); |
1887 | | TcF = FNMS(KP707106781, TcE, TcB); |
1888 | | TcI = TcG - TcH; |
1889 | | TcJ = FNMS(KP923879532, TcI, TcF); |
1890 | | TcY = FMA(KP923879532, TcI, TcF); |
1891 | | } |
1892 | | TcK = FNMS(KP534511135, TcJ, Tcu); |
1893 | | Td4 = FMA(KP303346683, TcY, TcZ); |
1894 | | TcO = FMA(KP534511135, Tcu, TcJ); |
1895 | | Td0 = FNMS(KP303346683, TcZ, TcY); |
1896 | | } |
1897 | | { |
1898 | | E T8M, Td6, TlF, TlT, T9h, TlU, Td9, TlG, T8L, TlE; |
1899 | | T8L = T8D - T8K; |
1900 | | T8M = FMA(KP707106781, T8L, T8w); |
1901 | | Td6 = FNMS(KP707106781, T8L, T8w); |
1902 | | TlE = TdU - TdT; |
1903 | | TlF = FMA(KP707106781, TlE, TlD); |
1904 | | TlT = FNMS(KP707106781, TlE, TlD); |
1905 | | { |
1906 | | E T91, T9g, Td7, Td8; |
1907 | | T91 = FMA(KP414213562, T90, T8T); |
1908 | | T9g = FNMS(KP414213562, T9f, T98); |
1909 | | T9h = T91 - T9g; |
1910 | | TlU = T91 + T9g; |
1911 | | Td7 = FNMS(KP414213562, T8T, T90); |
1912 | | Td8 = FMA(KP414213562, T98, T9f); |
1913 | | Td9 = Td7 + Td8; |
1914 | | TlG = Td8 - Td7; |
1915 | | } |
1916 | | T9i = FNMS(KP923879532, T9h, T8M); |
1917 | | TlV = FNMS(KP923879532, TlU, TlT); |
1918 | | Tm1 = FMA(KP923879532, TlU, TlT); |
1919 | | TcQ = FMA(KP923879532, T9h, T8M); |
1920 | | Tda = FNMS(KP923879532, Td9, Td6); |
1921 | | TlH = FMA(KP923879532, TlG, TlF); |
1922 | | TlN = FNMS(KP923879532, TlG, TlF); |
1923 | | TdC = FMA(KP923879532, Td9, Td6); |
1924 | | } |
1925 | | { |
1926 | | E Tas, TcL, TlP, TlQ; |
1927 | | Tas = FMA(KP831469612, Tar, T9i); |
1928 | | TcL = TbB - TcK; |
1929 | | ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas); |
1930 | | ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas); |
1931 | | TlP = FMA(KP831469612, TlO, TlN); |
1932 | | TlQ = TcO - TcN; |
1933 | | ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP); |
1934 | | ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP); |
1935 | | } |
1936 | | { |
1937 | | E TcM, TcP, TlR, TlS; |
1938 | | TcM = FNMS(KP831469612, Tar, T9i); |
1939 | | TcP = TcN + TcO; |
1940 | | ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM); |
1941 | | ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM); |
1942 | | TlR = FNMS(KP831469612, TlO, TlN); |
1943 | | TlS = TbB + TcK; |
1944 | | ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR); |
1945 | | ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR); |
1946 | | } |
1947 | | { |
1948 | | E TcU, Td1, TlJ, TlK; |
1949 | | TcU = FMA(KP831469612, TcT, TcQ); |
1950 | | Td1 = TcX + Td0; |
1951 | | ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU); |
1952 | | ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU); |
1953 | | TlJ = FMA(KP831469612, TlI, TlH); |
1954 | | TlK = Td3 + Td4; |
1955 | | ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ); |
1956 | | ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ); |
1957 | | } |
1958 | | { |
1959 | | E Td2, Td5, TlL, TlM; |
1960 | | Td2 = FNMS(KP831469612, TcT, TcQ); |
1961 | | Td5 = Td3 - Td4; |
1962 | | ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2); |
1963 | | ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2); |
1964 | | TlL = FNMS(KP831469612, TlI, TlH); |
1965 | | TlM = Td0 - TcX; |
1966 | | ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL); |
1967 | | ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL); |
1968 | | } |
1969 | | { |
1970 | | E Tdi, Tdx, TlX, TlY; |
1971 | | Tdi = FMA(KP980785280, Tdh, Tda); |
1972 | | Tdx = Tdp + Tdw; |
1973 | | ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi); |
1974 | | ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi); |
1975 | | TlX = FMA(KP980785280, TlW, TlV); |
1976 | | TlY = Tdz + TdA; |
1977 | | ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX); |
1978 | | ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX); |
1979 | | } |
1980 | | { |
1981 | | E Tdy, TdB, TlZ, Tm0; |
1982 | | Tdy = FNMS(KP980785280, Tdh, Tda); |
1983 | | TdB = Tdz - TdA; |
1984 | | ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy); |
1985 | | ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy); |
1986 | | TlZ = FNMS(KP980785280, TlW, TlV); |
1987 | | Tm0 = Tdw - Tdp; |
1988 | | ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ); |
1989 | | ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ); |
1990 | | } |
1991 | | { |
1992 | | E TdG, TdN, Tm3, Tm4; |
1993 | | TdG = FNMS(KP980785280, TdF, TdC); |
1994 | | TdN = TdJ - TdM; |
1995 | | ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG); |
1996 | | ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG); |
1997 | | Tm3 = FNMS(KP980785280, Tm2, Tm1); |
1998 | | Tm4 = TdQ - TdP; |
1999 | | ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3); |
2000 | | ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3); |
2001 | | } |
2002 | | { |
2003 | | E TdO, TdR, Tm5, Tm6; |
2004 | | TdO = FMA(KP980785280, TdF, TdC); |
2005 | | TdR = TdP + TdQ; |
2006 | | ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO); |
2007 | | ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO); |
2008 | | Tm5 = FMA(KP980785280, Tm2, Tm1); |
2009 | | Tm6 = TdJ + TdM; |
2010 | | ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5); |
2011 | | ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5); |
2012 | | } |
2013 | | } |
2014 | | { |
2015 | | E Tej, Tlk, Tf5, Tle, TeD, Tff, TeZ, Tf9, TfI, Tg2, TfM, TfY, TfB, Tg1, TfL; |
2016 | | E TfV, Tft, Tly, TfR, Tls, TeW, Tfg, Tf0, Tfc, Te4, Tlr, Tlx, Tf2, Tfm, Tld; |
2017 | | E Tlj, TfO; |
2018 | | { |
2019 | | E Teb, Tf3, Tei, Tf4; |
2020 | | { |
2021 | | E Te7, Tea, Tee, Teh; |
2022 | | Te7 = FMA(KP707106781, Te6, Te5); |
2023 | | Tea = FMA(KP707106781, Te9, Te8); |
2024 | | Teb = FNMS(KP198912367, Tea, Te7); |
2025 | | Tf3 = FMA(KP198912367, Te7, Tea); |
2026 | | Tee = FMA(KP707106781, Ted, Tec); |
2027 | | Teh = FMA(KP707106781, Teg, Tef); |
2028 | | Tei = FMA(KP198912367, Teh, Tee); |
2029 | | Tf4 = FNMS(KP198912367, Tee, Teh); |
2030 | | } |
2031 | | Tej = Teb - Tei; |
2032 | | Tlk = Tf4 - Tf3; |
2033 | | Tf5 = Tf3 + Tf4; |
2034 | | Tle = Teb + Tei; |
2035 | | } |
2036 | | { |
2037 | | E Tev, Tf8, TeC, Tf7; |
2038 | | { |
2039 | | E Ten, Teu, Tey, TeB; |
2040 | | Ten = FMA(KP707106781, Tem, Tel); |
2041 | | Teu = Teq + Tet; |
2042 | | Tev = FNMS(KP923879532, Teu, Ten); |
2043 | | Tf8 = FMA(KP923879532, Teu, Ten); |
2044 | | Tey = FMA(KP707106781, Tex, Tew); |
2045 | | TeB = Tez + TeA; |
2046 | | TeC = FNMS(KP923879532, TeB, Tey); |
2047 | | Tf7 = FMA(KP923879532, TeB, Tey); |
2048 | | } |
2049 | | TeD = FMA(KP820678790, TeC, Tev); |
2050 | | Tff = FNMS(KP098491403, Tf7, Tf8); |
2051 | | TeZ = FNMS(KP820678790, Tev, TeC); |
2052 | | Tf9 = FMA(KP098491403, Tf8, Tf7); |
2053 | | } |
2054 | | { |
2055 | | E TfE, TfX, TfH, TfW; |
2056 | | { |
2057 | | E TfC, TfD, TfF, TfG; |
2058 | | TfC = FNMS(KP707106781, TeQ, TeP); |
2059 | | TfD = TeM - TeJ; |
2060 | | TfE = FNMS(KP923879532, TfD, TfC); |
2061 | | TfX = FMA(KP923879532, TfD, TfC); |
2062 | | TfF = FNMS(KP707106781, TeF, TeE); |
2063 | | TfG = TeS - TeT; |
2064 | | TfH = FNMS(KP923879532, TfG, TfF); |
2065 | | TfW = FMA(KP923879532, TfG, TfF); |
2066 | | } |
2067 | | TfI = FNMS(KP534511135, TfH, TfE); |
2068 | | Tg2 = FMA(KP303346683, TfW, TfX); |
2069 | | TfM = FMA(KP534511135, TfE, TfH); |
2070 | | TfY = FNMS(KP303346683, TfX, TfW); |
2071 | | } |
2072 | | { |
2073 | | E Tfx, TfU, TfA, TfT; |
2074 | | { |
2075 | | E Tfv, Tfw, Tfy, Tfz; |
2076 | | Tfv = FNMS(KP707106781, Tex, Tew); |
2077 | | Tfw = Tet - Teq; |
2078 | | Tfx = FNMS(KP923879532, Tfw, Tfv); |
2079 | | TfU = FMA(KP923879532, Tfw, Tfv); |
2080 | | Tfy = FNMS(KP707106781, Tem, Tel); |
2081 | | Tfz = Tez - TeA; |
2082 | | TfA = FNMS(KP923879532, Tfz, Tfy); |
2083 | | TfT = FMA(KP923879532, Tfz, Tfy); |
2084 | | } |
2085 | | TfB = FMA(KP534511135, TfA, Tfx); |
2086 | | Tg1 = FNMS(KP303346683, TfT, TfU); |
2087 | | TfL = FNMS(KP534511135, Tfx, TfA); |
2088 | | TfV = FMA(KP303346683, TfU, TfT); |
2089 | | } |
2090 | | { |
2091 | | E Tfp, TfP, Tfs, TfQ; |
2092 | | { |
2093 | | E Tfn, Tfo, Tfq, Tfr; |
2094 | | Tfn = FNMS(KP707106781, Te6, Te5); |
2095 | | Tfo = FNMS(KP707106781, Te9, Te8); |
2096 | | Tfp = FMA(KP668178637, Tfo, Tfn); |
2097 | | TfP = FNMS(KP668178637, Tfn, Tfo); |
2098 | | Tfq = FNMS(KP707106781, Ted, Tec); |
2099 | | Tfr = FNMS(KP707106781, Teg, Tef); |
2100 | | Tfs = FNMS(KP668178637, Tfr, Tfq); |
2101 | | TfQ = FMA(KP668178637, Tfq, Tfr); |
2102 | | } |
2103 | | Tft = Tfp - Tfs; |
2104 | | Tly = Tfp + Tfs; |
2105 | | TfR = TfP + TfQ; |
2106 | | Tls = TfQ - TfP; |
2107 | | } |
2108 | | { |
2109 | | E TeO, Tfb, TeV, Tfa; |
2110 | | { |
2111 | | E TeG, TeN, TeR, TeU; |
2112 | | TeG = FMA(KP707106781, TeF, TeE); |
2113 | | TeN = TeJ + TeM; |
2114 | | TeO = FNMS(KP923879532, TeN, TeG); |
2115 | | Tfb = FMA(KP923879532, TeN, TeG); |
2116 | | TeR = FMA(KP707106781, TeQ, TeP); |
2117 | | TeU = TeS + TeT; |
2118 | | TeV = FNMS(KP923879532, TeU, TeR); |
2119 | | Tfa = FMA(KP923879532, TeU, TeR); |
2120 | | } |
2121 | | TeW = FNMS(KP820678790, TeV, TeO); |
2122 | | Tfg = FMA(KP098491403, Tfa, Tfb); |
2123 | | Tf0 = FMA(KP820678790, TeO, TeV); |
2124 | | Tfc = FNMS(KP098491403, Tfb, Tfa); |
2125 | | } |
2126 | | { |
2127 | | E TdW, Tfi, Tlb, Tlp, Te3, Tlq, Tfl, Tlc, TdV, Tla; |
2128 | | TdV = TdT + TdU; |
2129 | | TdW = FMA(KP707106781, TdV, TdS); |
2130 | | Tfi = FNMS(KP707106781, TdV, TdS); |
2131 | | Tla = T8D + T8K; |
2132 | | Tlb = FMA(KP707106781, Tla, Tl9); |
2133 | | Tlp = FNMS(KP707106781, Tla, Tl9); |
2134 | | { |
2135 | | E TdZ, Te2, Tfj, Tfk; |
2136 | | TdZ = FMA(KP414213562, TdY, TdX); |
2137 | | Te2 = FNMS(KP414213562, Te1, Te0); |
2138 | | Te3 = TdZ + Te2; |
2139 | | Tlq = Te2 - TdZ; |
2140 | | Tfj = FNMS(KP414213562, TdX, TdY); |
2141 | | Tfk = FMA(KP414213562, Te0, Te1); |
2142 | | Tfl = Tfj - Tfk; |
2143 | | Tlc = Tfj + Tfk; |
2144 | | } |
2145 | | Te4 = FNMS(KP923879532, Te3, TdW); |
2146 | | Tlr = FMA(KP923879532, Tlq, Tlp); |
2147 | | Tlx = FNMS(KP923879532, Tlq, Tlp); |
2148 | | Tf2 = FMA(KP923879532, Te3, TdW); |
2149 | | Tfm = FMA(KP923879532, Tfl, Tfi); |
2150 | | Tld = FMA(KP923879532, Tlc, Tlb); |
2151 | | Tlj = FNMS(KP923879532, Tlc, Tlb); |
2152 | | TfO = FNMS(KP923879532, Tfl, Tfi); |
2153 | | } |
2154 | | { |
2155 | | E Tek, TeX, Tll, Tlm; |
2156 | | Tek = FMA(KP980785280, Tej, Te4); |
2157 | | TeX = TeD - TeW; |
2158 | | ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek); |
2159 | | ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek); |
2160 | | Tll = FMA(KP980785280, Tlk, Tlj); |
2161 | | Tlm = Tf0 - TeZ; |
2162 | | ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll); |
2163 | | ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll); |
2164 | | } |
2165 | | { |
2166 | | E TeY, Tf1, Tln, Tlo; |
2167 | | TeY = FNMS(KP980785280, Tej, Te4); |
2168 | | Tf1 = TeZ + Tf0; |
2169 | | ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY); |
2170 | | ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY); |
2171 | | Tln = FNMS(KP980785280, Tlk, Tlj); |
2172 | | Tlo = TeD + TeW; |
2173 | | ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln); |
2174 | | ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln); |
2175 | | } |
2176 | | { |
2177 | | E Tf6, Tfd, Tlf, Tlg; |
2178 | | Tf6 = FMA(KP980785280, Tf5, Tf2); |
2179 | | Tfd = Tf9 + Tfc; |
2180 | | ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6); |
2181 | | ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6); |
2182 | | Tlf = FMA(KP980785280, Tle, Tld); |
2183 | | Tlg = Tff + Tfg; |
2184 | | ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf); |
2185 | | ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf); |
2186 | | } |
2187 | | { |
2188 | | E Tfe, Tfh, Tlh, Tli; |
2189 | | Tfe = FNMS(KP980785280, Tf5, Tf2); |
2190 | | Tfh = Tff - Tfg; |
2191 | | ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe); |
2192 | | ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe); |
2193 | | Tlh = FNMS(KP980785280, Tle, Tld); |
2194 | | Tli = Tfc - Tf9; |
2195 | | ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh); |
2196 | | ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh); |
2197 | | } |
2198 | | { |
2199 | | E Tfu, TfJ, Tlt, Tlu; |
2200 | | Tfu = FMA(KP831469612, Tft, Tfm); |
2201 | | TfJ = TfB + TfI; |
2202 | | ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu); |
2203 | | ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu); |
2204 | | Tlt = FMA(KP831469612, Tls, Tlr); |
2205 | | Tlu = TfL + TfM; |
2206 | | ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt); |
2207 | | ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt); |
2208 | | } |
2209 | | { |
2210 | | E TfK, TfN, Tlv, Tlw; |
2211 | | TfK = FNMS(KP831469612, Tft, Tfm); |
2212 | | TfN = TfL - TfM; |
2213 | | ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK); |
2214 | | ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK); |
2215 | | Tlv = FNMS(KP831469612, Tls, Tlr); |
2216 | | Tlw = TfI - TfB; |
2217 | | ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv); |
2218 | | ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv); |
2219 | | } |
2220 | | { |
2221 | | E TfS, TfZ, Tlz, TlA; |
2222 | | TfS = FNMS(KP831469612, TfR, TfO); |
2223 | | TfZ = TfV - TfY; |
2224 | | ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS); |
2225 | | ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS); |
2226 | | Tlz = FNMS(KP831469612, Tly, Tlx); |
2227 | | TlA = Tg2 - Tg1; |
2228 | | ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz); |
2229 | | ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz); |
2230 | | } |
2231 | | { |
2232 | | E Tg0, Tg3, TlB, TlC; |
2233 | | Tg0 = FMA(KP831469612, TfR, TfO); |
2234 | | Tg3 = Tg1 + Tg2; |
2235 | | ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0); |
2236 | | ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0); |
2237 | | TlB = FMA(KP831469612, Tly, Tlx); |
2238 | | TlC = TfV + TfY; |
2239 | | ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB); |
2240 | | ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB); |
2241 | | } |
2242 | | } |
2243 | | } |
2244 | | } |
2245 | | } |
2246 | | } |
2247 | | |
2248 | | static const tw_instr twinstr[] = { |
2249 | | { TW_CEXP, 0, 1 }, |
2250 | | { TW_CEXP, 0, 3 }, |
2251 | | { TW_CEXP, 0, 9 }, |
2252 | | { TW_CEXP, 0, 27 }, |
2253 | | { TW_CEXP, 0, 63 }, |
2254 | | { TW_NEXT, 1, 0 } |
2255 | | }; |
2256 | | |
2257 | | static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, { 520, 206, 634, 0 }, 0, 0, 0 }; |
2258 | | |
2259 | | void X(codelet_t2_64) (planner *p) { |
2260 | | X(kdft_dit_register) (p, t2_64, &desc); |
2261 | | } |
2262 | | #else |
2263 | | |
2264 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */ |
2265 | | |
2266 | | /* |
2267 | | * This function contains 1154 FP additions, 660 FP multiplications, |
2268 | | * (or, 880 additions, 386 multiplications, 274 fused multiply/add), |
2269 | | * 302 stack variables, 15 constants, and 256 memory accesses |
2270 | | */ |
2271 | | #include "dft/scalar/t.h" |
2272 | | |
2273 | | static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
2274 | 0 | { |
2275 | 0 | DK(KP471396736, +0.471396736825997648556387625905254377657460319); |
2276 | 0 | DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
2277 | 0 | DK(KP290284677, +0.290284677254462367636192375817395274691476278); |
2278 | 0 | DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
2279 | 0 | DK(KP634393284, +0.634393284163645498215171613225493370675687095); |
2280 | 0 | DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
2281 | 0 | DK(KP098017140, +0.098017140329560601994195563888641845861136673); |
2282 | 0 | DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
2283 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
2284 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
2285 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
2286 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
2287 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
2288 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
2289 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
2290 | 0 | { |
2291 | 0 | INT m; |
2292 | 0 | for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { |
2293 | 0 | E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8; |
2294 | 0 | E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q; |
2295 | 0 | E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j; |
2296 | 0 | E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H; |
2297 | 0 | E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m; |
2298 | 0 | E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69; |
2299 | 0 | E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32; |
2300 | 0 | E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D; |
2301 | 0 | E T3F, T5r, T3s, T4W, T3Z, T5p; |
2302 | 0 | { |
2303 | 0 | E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A; |
2304 | 0 | E T1F, T2p, T2k, T1U, T1P; |
2305 | 0 | { |
2306 | 0 | E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN; |
2307 | 0 | T2 = W[0]; |
2308 | 0 | T5 = W[1]; |
2309 | 0 | T3 = W[2]; |
2310 | 0 | T6 = W[3]; |
2311 | 0 | Te = W[5]; |
2312 | 0 | T9 = W[4]; |
2313 | 0 | T4 = T2 * T3; |
2314 | 0 | T1d = T5 * T9; |
2315 | 0 | T19 = T5 * Te; |
2316 | 0 | Tb = T2 * T6; |
2317 | 0 | T1c = T2 * Te; |
2318 | 0 | T7 = T5 * T6; |
2319 | 0 | Tc = T5 * T3; |
2320 | 0 | T18 = T2 * T9; |
2321 | 0 | TR = T3 * Te; |
2322 | 0 | TO = T6 * Te; |
2323 | 0 | TS = T6 * T9; |
2324 | 0 | TN = T3 * T9; |
2325 | 0 | TP = TN - TO; |
2326 | 0 | T3e = TR - TS; |
2327 | 0 | T1e = T1c - T1d; |
2328 | 0 | T39 = T1c + T1d; |
2329 | 0 | T3c = TN + TO; |
2330 | 0 | TT = TR + TS; |
2331 | 0 | T1a = T18 + T19; |
2332 | 0 | T37 = T18 - T19; |
2333 | 0 | T8 = T4 - T7; |
2334 | 0 | Ta = T8 * T9; |
2335 | 0 | Tj = T8 * Te; |
2336 | 0 | Tw = T4 + T7; |
2337 | 0 | Tx = Tw * T9; |
2338 | 0 | TC = Tw * Te; |
2339 | 0 | Td = Tb + Tc; |
2340 | 0 | Tf = Td * Te; |
2341 | 0 | Tk = Td * T9; |
2342 | 0 | Ty = Tb - Tc; |
2343 | 0 | Tz = Ty * Te; |
2344 | 0 | TD = Ty * T9; |
2345 | 0 | Tm = W[7]; |
2346 | 0 | T1B = T6 * Tm; |
2347 | 0 | T1E = T3 * Tm; |
2348 | 0 | T2o = T2 * Tm; |
2349 | 0 | T2l = T5 * Tm; |
2350 | 0 | T1T = T9 * Tm; |
2351 | 0 | T1Q = Te * Tm; |
2352 | 0 | Th = W[6]; |
2353 | 0 | T1A = T3 * Th; |
2354 | 0 | T1F = T6 * Th; |
2355 | 0 | T2p = T5 * Th; |
2356 | 0 | T2k = T2 * Th; |
2357 | 0 | T1U = Te * Th; |
2358 | 0 | T1P = T9 * Th; |
2359 | 0 | } |
2360 | 0 | T1C = T1A + T1B; |
2361 | 0 | T3K = T1E + T1F; |
2362 | 0 | T1V = T1T + T1U; |
2363 | 0 | T3x = T2o - T2p; |
2364 | 0 | T3I = T1A - T1B; |
2365 | 0 | T1G = T1E - T1F; |
2366 | 0 | T1R = T1P - T1Q; |
2367 | 0 | { |
2368 | 0 | E T5W, T5X, T55, T56; |
2369 | 0 | T3v = T2k + T2l; |
2370 | 0 | T2m = T2k - T2l; |
2371 | 0 | T2q = T2o + T2p; |
2372 | 0 | T5W = T8 * Th; |
2373 | 0 | T5X = Td * Tm; |
2374 | 0 | T5Y = T5W - T5X; |
2375 | 0 | T6u = T5W + T5X; |
2376 | 0 | { |
2377 | 0 | E T51, T52, T60, T61; |
2378 | 0 | T51 = Tw * Th; |
2379 | 0 | T52 = Ty * Tm; |
2380 | 0 | T53 = T51 + T52; |
2381 | 0 | T5B = T51 - T52; |
2382 | 0 | T60 = T8 * Tm; |
2383 | 0 | T61 = Td * Th; |
2384 | 0 | T62 = T60 + T61; |
2385 | 0 | T6w = T60 - T61; |
2386 | 0 | } |
2387 | 0 | T55 = Tw * Tm; |
2388 | 0 | T56 = Ty * Th; |
2389 | 0 | T57 = T55 - T56; |
2390 | 0 | T5D = T55 + T56; |
2391 | 0 | { |
2392 | 0 | E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d; |
2393 | 0 | E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY; |
2394 | 0 | E T1i, T1n; |
2395 | 0 | T2V = T1P + T1Q; |
2396 | 0 | T2X = T1T - T1U; |
2397 | 0 | Tg = Ta + Tf; |
2398 | 0 | Ti = Tg * Th; |
2399 | 0 | Tq = Tg * Tm; |
2400 | 0 | TE = TC + TD; |
2401 | 0 | TF = TE * Tm; |
2402 | 0 | TJ = TE * Th; |
2403 | 0 | T3W = T37 * Tm; |
2404 | 0 | T3X = T39 * Th; |
2405 | 0 | T3Y = T3W - T3X; |
2406 | 0 | T3T = T37 * Th; |
2407 | 0 | T3U = T39 * Tm; |
2408 | 0 | T3V = T3T + T3U; |
2409 | 0 | T3h = T3c * Tm; |
2410 | 0 | T3i = T3e * Th; |
2411 | 0 | T3j = T3h - T3i; |
2412 | 0 | Tl = Tj - Tk; |
2413 | 0 | Tn = Tl * Tm; |
2414 | 0 | Tr = Tl * Th; |
2415 | 0 | TA = Tx - Tz; |
2416 | 0 | TB = TA * Th; |
2417 | 0 | TI = TA * Tm; |
2418 | 0 | T3d = T3c * Th; |
2419 | 0 | T3f = T3e * Tm; |
2420 | 0 | T3g = T3d + T3f; |
2421 | 0 | T1j = Tj + Tk; |
2422 | 0 | T1k = T1j * Tm; |
2423 | 0 | T1o = T1j * Th; |
2424 | 0 | T1t = Tx + Tz; |
2425 | 0 | T1Z = T1t * Th; |
2426 | 0 | T23 = T1t * Tm; |
2427 | 0 | TQ = TP * Th; |
2428 | 0 | TU = TT * Tm; |
2429 | 0 | TV = TQ + TU; |
2430 | 0 | T2A = T1a * Tm; |
2431 | 0 | T2B = T1e * Th; |
2432 | 0 | T2C = T2A - T2B; |
2433 | 0 | T2x = T1a * Th; |
2434 | 0 | T2y = T1e * Tm; |
2435 | 0 | T2z = T2x + T2y; |
2436 | 0 | T1u = TC - TD; |
2437 | 0 | T20 = T1u * Tm; |
2438 | 0 | T24 = T1u * Th; |
2439 | 0 | TX = TP * Tm; |
2440 | 0 | TY = TT * Th; |
2441 | 0 | TZ = TX - TY; |
2442 | 0 | T1h = Ta - Tf; |
2443 | 0 | T1i = T1h * Th; |
2444 | 0 | T1n = T1h * Tm; |
2445 | 0 | To = Ti - Tn; |
2446 | 0 | T1p = T1n + T1o; |
2447 | 0 | T6j = TQ - TU; |
2448 | 0 | T6H = T2A + T2B; |
2449 | 0 | Ts = Tq + Tr; |
2450 | 0 | T1l = T1i - T1k; |
2451 | 0 | T6l = TX + TY; |
2452 | 0 | T6F = T2x - T2y; |
2453 | 0 | T2P = T1Z - T20; |
2454 | 0 | T4b = TI + TJ; |
2455 | 0 | T4x = T3d - T3f; |
2456 | 0 | T5i = T3W + T3X; |
2457 | 0 | T2R = T23 + T24; |
2458 | 0 | T49 = TB - TF; |
2459 | 0 | T4z = T3h + T3i; |
2460 | 0 | T5g = T3T - T3U; |
2461 | 0 | TG = TB + TF; |
2462 | 0 | T4k = Ti + Tn; |
2463 | 0 | T4m = Tq - Tr; |
2464 | 0 | TK = TI - TJ; |
2465 | 0 | T21 = T1Z + T20; |
2466 | 0 | T3O = T1i + T1k; |
2467 | 0 | T3Q = T1n - T1o; |
2468 | 0 | T25 = T23 - T24; |
2469 | 0 | TW = W[8]; |
2470 | 0 | T10 = W[9]; |
2471 | 0 | T11 = FMA(TV, TW, TZ * T10); |
2472 | 0 | T79 = FNMS(T25, TW, T21 * T10); |
2473 | 0 | T6X = FNMS(Td, TW, T8 * T10); |
2474 | 0 | T5M = FNMS(T2X, TW, T2V * T10); |
2475 | 0 | T6b = FNMS(TK, TW, TG * T10); |
2476 | 0 | T1v = FMA(T1t, TW, T1u * T10); |
2477 | 0 | T30 = FMA(T1h, TW, T1j * T10); |
2478 | 0 | T69 = FMA(TG, TW, TK * T10); |
2479 | 0 | T77 = FMA(T21, TW, T25 * T10); |
2480 | 0 | T13 = FNMS(TZ, TW, TV * T10); |
2481 | 0 | T2F = FNMS(T2C, TW, T2z * T10); |
2482 | 0 | T2D = FMA(T2z, TW, T2C * T10); |
2483 | 0 | T6p = FMA(T1a, TW, T1e * T10); |
2484 | 0 | T6O = FMA(TP, TW, TT * T10); |
2485 | 0 | T1x = FNMS(T1u, TW, T1t * T10); |
2486 | 0 | T2a = FNMS(TE, TW, TA * T10); |
2487 | 0 | T2f = FMA(T3, TW, T6 * T10); |
2488 | 0 | T6V = FMA(T8, TW, Td * T10); |
2489 | 0 | T28 = FMA(TA, TW, TE * T10); |
2490 | 0 | T6r = FNMS(T1e, TW, T1a * T10); |
2491 | 0 | T2h = FNMS(T6, TW, T3 * T10); |
2492 | 0 | T6Q = FNMS(TT, TW, TP * T10); |
2493 | 0 | T32 = FNMS(T1j, TW, T1h * T10); |
2494 | 0 | T5K = FMA(T2V, TW, T2X * T10); |
2495 | 0 | T5w = FMA(Tw, TW, Ty * T10); |
2496 | 0 | T4G = FMA(T3O, TW, T3Q * T10); |
2497 | 0 | T4Q = FMA(T4k, TW, T4m * T10); |
2498 | 0 | T3m = FNMS(T3j, TW, T3g * T10); |
2499 | 0 | T4h = FNMS(Te, TW, T9 * T10); |
2500 | 0 | T4I = FNMS(T3Q, TW, T3O * T10); |
2501 | 0 | T5y = FNMS(Ty, TW, Tw * T10); |
2502 | 0 | T3k = FMA(T3g, TW, T3j * T10); |
2503 | 0 | T4f = FMA(T9, TW, Te * T10); |
2504 | 0 | T41 = FNMS(T3Y, TW, T3V * T10); |
2505 | 0 | T4S = FNMS(T4m, TW, T4k * T10); |
2506 | 0 | T4Y = FNMS(T3e, TW, T3c * T10); |
2507 | 0 | T3q = FMA(Tg, TW, Tl * T10); |
2508 | 0 | T3D = FMA(T2, TW, T5 * T10); |
2509 | 0 | T3F = FNMS(T5, TW, T2 * T10); |
2510 | 0 | T5r = FNMS(T39, TW, T37 * T10); |
2511 | 0 | T3s = FNMS(Tl, TW, Tg * T10); |
2512 | 0 | T4W = FMA(T3c, TW, T3e * T10); |
2513 | 0 | T3Z = FMA(T3V, TW, T3Y * T10); |
2514 | 0 | T5p = FMA(T37, TW, T39 * T10); |
2515 | 0 | } |
2516 | 0 | } |
2517 | 0 | } |
2518 | 0 | { |
2519 | 0 | E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM; |
2520 | 0 | E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb; |
2521 | 0 | E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k; |
2522 | 0 | E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW; |
2523 | 0 | E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N; |
2524 | 0 | E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD; |
2525 | 0 | E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY; |
2526 | 0 | E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn; |
2527 | 0 | E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK; |
2528 | 0 | { |
2529 | 0 | E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt; |
2530 | 0 | T1 = ri[0]; |
2531 | 0 | Ti1 = ii[0]; |
2532 | 0 | Tp = ri[WS(rs, 32)]; |
2533 | 0 | Tt = ii[WS(rs, 32)]; |
2534 | 0 | Tu = FMA(To, Tp, Ts * Tt); |
2535 | 0 | Ti0 = FNMS(Ts, Tp, To * Tt); |
2536 | 0 | { |
2537 | 0 | E TH, TL, T12, T14; |
2538 | 0 | TH = ri[WS(rs, 16)]; |
2539 | 0 | TL = ii[WS(rs, 16)]; |
2540 | 0 | TM = FMA(TG, TH, TK * TL); |
2541 | 0 | T7i = FNMS(TK, TH, TG * TL); |
2542 | 0 | T12 = ri[WS(rs, 48)]; |
2543 | 0 | T14 = ii[WS(rs, 48)]; |
2544 | 0 | T15 = FMA(T11, T12, T13 * T14); |
2545 | 0 | T7j = FNMS(T13, T12, T11 * T14); |
2546 | 0 | } |
2547 | 0 | { |
2548 | 0 | E Tv, T16, Tj1, Tj2; |
2549 | 0 | Tv = T1 + Tu; |
2550 | 0 | T16 = TM + T15; |
2551 | 0 | T17 = Tv + T16; |
2552 | 0 | TdV = Tv - T16; |
2553 | 0 | Tj1 = Ti1 - Ti0; |
2554 | 0 | Tj2 = TM - T15; |
2555 | 0 | Tj3 = Tj1 - Tj2; |
2556 | 0 | Tjx = Tj2 + Tj1; |
2557 | 0 | } |
2558 | 0 | { |
2559 | 0 | E T7h, T7k, ThZ, Ti2; |
2560 | 0 | T7h = T1 - Tu; |
2561 | 0 | T7k = T7i - T7j; |
2562 | 0 | T7l = T7h - T7k; |
2563 | 0 | TbJ = T7h + T7k; |
2564 | 0 | ThZ = T7i + T7j; |
2565 | 0 | Ti2 = Ti0 + Ti1; |
2566 | 0 | Ti3 = ThZ + Ti2; |
2567 | 0 | Tix = Ti2 - ThZ; |
2568 | 0 | } |
2569 | 0 | } |
2570 | 0 | { |
2571 | 0 | E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u; |
2572 | 0 | { |
2573 | 0 | E T1b, T1f, T1m, T1q; |
2574 | 0 | T1b = ri[WS(rs, 8)]; |
2575 | 0 | T1f = ii[WS(rs, 8)]; |
2576 | 0 | T1g = FMA(T1a, T1b, T1e * T1f); |
2577 | 0 | T7m = FNMS(T1e, T1b, T1a * T1f); |
2578 | 0 | T1m = ri[WS(rs, 40)]; |
2579 | 0 | T1q = ii[WS(rs, 40)]; |
2580 | 0 | T1r = FMA(T1l, T1m, T1p * T1q); |
2581 | 0 | T7n = FNMS(T1p, T1m, T1l * T1q); |
2582 | 0 | } |
2583 | 0 | T7o = T7m - T7n; |
2584 | 0 | T7p = T1g - T1r; |
2585 | 0 | { |
2586 | 0 | E T1w, T1y, T1D, T1H; |
2587 | 0 | T1w = ri[WS(rs, 56)]; |
2588 | 0 | T1y = ii[WS(rs, 56)]; |
2589 | 0 | T1z = FMA(T1v, T1w, T1x * T1y); |
2590 | 0 | T7s = FNMS(T1x, T1w, T1v * T1y); |
2591 | 0 | T1D = ri[WS(rs, 24)]; |
2592 | 0 | T1H = ii[WS(rs, 24)]; |
2593 | 0 | T1I = FMA(T1C, T1D, T1G * T1H); |
2594 | 0 | T7t = FNMS(T1G, T1D, T1C * T1H); |
2595 | 0 | } |
2596 | 0 | T7r = T1z - T1I; |
2597 | 0 | T7u = T7s - T7t; |
2598 | 0 | { |
2599 | 0 | E T1s, T1J, TdW, TdX; |
2600 | 0 | T1s = T1g + T1r; |
2601 | 0 | T1J = T1z + T1I; |
2602 | 0 | T1K = T1s + T1J; |
2603 | 0 | Tiw = T1J - T1s; |
2604 | 0 | TdW = T7m + T7n; |
2605 | 0 | TdX = T7s + T7t; |
2606 | 0 | TdY = TdW - TdX; |
2607 | 0 | ThY = TdW + TdX; |
2608 | 0 | } |
2609 | 0 | { |
2610 | 0 | E T7q, T7v, TbK, TbL; |
2611 | 0 | T7q = T7o - T7p; |
2612 | 0 | T7v = T7r + T7u; |
2613 | 0 | T7w = KP707106781 * (T7q - T7v); |
2614 | 0 | Tj0 = KP707106781 * (T7q + T7v); |
2615 | 0 | TbK = T7p + T7o; |
2616 | 0 | TbL = T7r - T7u; |
2617 | 0 | TbM = KP707106781 * (TbK + TbL); |
2618 | 0 | Tjw = KP707106781 * (TbL - TbK); |
2619 | 0 | } |
2620 | 0 | } |
2621 | 0 | { |
2622 | 0 | E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H; |
2623 | 0 | { |
2624 | 0 | E T1O, T7y, T1X, T7z; |
2625 | 0 | { |
2626 | 0 | E T1M, T1N, T1S, T1W; |
2627 | 0 | T1M = ri[WS(rs, 4)]; |
2628 | 0 | T1N = ii[WS(rs, 4)]; |
2629 | 0 | T1O = FMA(T8, T1M, Td * T1N); |
2630 | 0 | T7y = FNMS(Td, T1M, T8 * T1N); |
2631 | 0 | T1S = ri[WS(rs, 36)]; |
2632 | 0 | T1W = ii[WS(rs, 36)]; |
2633 | 0 | T1X = FMA(T1R, T1S, T1V * T1W); |
2634 | 0 | T7z = FNMS(T1V, T1S, T1R * T1W); |
2635 | 0 | } |
2636 | 0 | T1Y = T1O + T1X; |
2637 | 0 | Te0 = T7y + T7z; |
2638 | 0 | T7A = T7y - T7z; |
2639 | 0 | T7D = T1O - T1X; |
2640 | 0 | } |
2641 | 0 | { |
2642 | 0 | E T27, T7E, T2c, T7F; |
2643 | 0 | { |
2644 | 0 | E T22, T26, T29, T2b; |
2645 | 0 | T22 = ri[WS(rs, 20)]; |
2646 | 0 | T26 = ii[WS(rs, 20)]; |
2647 | 0 | T27 = FMA(T21, T22, T25 * T26); |
2648 | 0 | T7E = FNMS(T25, T22, T21 * T26); |
2649 | 0 | T29 = ri[WS(rs, 52)]; |
2650 | 0 | T2b = ii[WS(rs, 52)]; |
2651 | 0 | T2c = FMA(T28, T29, T2a * T2b); |
2652 | 0 | T7F = FNMS(T2a, T29, T28 * T2b); |
2653 | 0 | } |
2654 | 0 | T2d = T27 + T2c; |
2655 | 0 | Te1 = T7E + T7F; |
2656 | 0 | T7B = T27 - T2c; |
2657 | 0 | T7G = T7E - T7F; |
2658 | 0 | } |
2659 | 0 | T2e = T1Y + T2d; |
2660 | 0 | TgA = Te0 + Te1; |
2661 | 0 | T7C = T7A + T7B; |
2662 | 0 | T7H = T7D - T7G; |
2663 | 0 | T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); |
2664 | 0 | TaY = FMA(KP923879532, T7C, KP382683432 * T7H); |
2665 | 0 | { |
2666 | 0 | E TbO, TbP, Te2, Te3; |
2667 | 0 | TbO = T7A - T7B; |
2668 | 0 | TbP = T7D + T7G; |
2669 | 0 | TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); |
2670 | 0 | Tda = FMA(KP382683432, TbO, KP923879532 * TbP); |
2671 | 0 | Te2 = Te0 - Te1; |
2672 | 0 | Te3 = T1Y - T2d; |
2673 | 0 | Te4 = Te2 - Te3; |
2674 | 0 | TfO = Te3 + Te2; |
2675 | 0 | } |
2676 | 0 | } |
2677 | 0 | { |
2678 | 0 | E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S; |
2679 | 0 | { |
2680 | 0 | E T2j, T7J, T2s, T7K; |
2681 | 0 | { |
2682 | 0 | E T2g, T2i, T2n, T2r; |
2683 | 0 | T2g = ri[WS(rs, 60)]; |
2684 | 0 | T2i = ii[WS(rs, 60)]; |
2685 | 0 | T2j = FMA(T2f, T2g, T2h * T2i); |
2686 | 0 | T7J = FNMS(T2h, T2g, T2f * T2i); |
2687 | 0 | T2n = ri[WS(rs, 28)]; |
2688 | 0 | T2r = ii[WS(rs, 28)]; |
2689 | 0 | T2s = FMA(T2m, T2n, T2q * T2r); |
2690 | 0 | T7K = FNMS(T2q, T2n, T2m * T2r); |
2691 | 0 | } |
2692 | 0 | T2t = T2j + T2s; |
2693 | 0 | Te6 = T7J + T7K; |
2694 | 0 | T7L = T7J - T7K; |
2695 | 0 | T7O = T2j - T2s; |
2696 | 0 | } |
2697 | 0 | { |
2698 | 0 | E T2w, T7P, T2H, T7Q; |
2699 | 0 | { |
2700 | 0 | E T2u, T2v, T2E, T2G; |
2701 | 0 | T2u = ri[WS(rs, 12)]; |
2702 | 0 | T2v = ii[WS(rs, 12)]; |
2703 | 0 | T2w = FMA(TP, T2u, TT * T2v); |
2704 | 0 | T7P = FNMS(TT, T2u, TP * T2v); |
2705 | 0 | T2E = ri[WS(rs, 44)]; |
2706 | 0 | T2G = ii[WS(rs, 44)]; |
2707 | 0 | T2H = FMA(T2D, T2E, T2F * T2G); |
2708 | 0 | T7Q = FNMS(T2F, T2E, T2D * T2G); |
2709 | 0 | } |
2710 | 0 | T2I = T2w + T2H; |
2711 | 0 | Te7 = T7P + T7Q; |
2712 | 0 | T7M = T2w - T2H; |
2713 | 0 | T7R = T7P - T7Q; |
2714 | 0 | } |
2715 | 0 | T2J = T2t + T2I; |
2716 | 0 | TgB = Te6 + Te7; |
2717 | 0 | T7N = T7L + T7M; |
2718 | 0 | T7S = T7O - T7R; |
2719 | 0 | T7T = FMA(KP382683432, T7N, KP923879532 * T7S); |
2720 | 0 | TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); |
2721 | 0 | { |
2722 | 0 | E TbR, TbS, Te5, Te8; |
2723 | 0 | TbR = T7L - T7M; |
2724 | 0 | TbS = T7O + T7R; |
2725 | 0 | TbT = FMA(KP923879532, TbR, KP382683432 * TbS); |
2726 | 0 | Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); |
2727 | 0 | Te5 = T2t - T2I; |
2728 | 0 | Te8 = Te6 - Te7; |
2729 | 0 | Te9 = Te5 + Te8; |
2730 | 0 | TfP = Te5 - Te8; |
2731 | 0 | } |
2732 | 0 | } |
2733 | 0 | { |
2734 | 0 | E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86; |
2735 | 0 | E T89, T3A, Tej, T81, T84; |
2736 | 0 | { |
2737 | 0 | E T2M, T2N, T2Q, T2S; |
2738 | 0 | T2M = ri[WS(rs, 2)]; |
2739 | 0 | T2N = ii[WS(rs, 2)]; |
2740 | 0 | T2O = FMA(Tw, T2M, Ty * T2N); |
2741 | 0 | T7W = FNMS(Ty, T2M, Tw * T2N); |
2742 | 0 | T2Q = ri[WS(rs, 34)]; |
2743 | 0 | T2S = ii[WS(rs, 34)]; |
2744 | 0 | T2T = FMA(T2P, T2Q, T2R * T2S); |
2745 | 0 | T7X = FNMS(T2R, T2Q, T2P * T2S); |
2746 | 0 | } |
2747 | 0 | T2U = T2O + T2T; |
2748 | 0 | Tec = T7W + T7X; |
2749 | 0 | { |
2750 | 0 | E T2W, T2Y, T31, T33; |
2751 | 0 | T2W = ri[WS(rs, 18)]; |
2752 | 0 | T2Y = ii[WS(rs, 18)]; |
2753 | 0 | T2Z = FMA(T2V, T2W, T2X * T2Y); |
2754 | 0 | T8e = FNMS(T2X, T2W, T2V * T2Y); |
2755 | 0 | T31 = ri[WS(rs, 50)]; |
2756 | 0 | T33 = ii[WS(rs, 50)]; |
2757 | 0 | T34 = FMA(T30, T31, T32 * T33); |
2758 | 0 | T8f = FNMS(T32, T31, T30 * T33); |
2759 | 0 | } |
2760 | 0 | T35 = T2Z + T34; |
2761 | 0 | Ted = T8e + T8f; |
2762 | 0 | { |
2763 | 0 | E T3b, T87, T3o, T88; |
2764 | 0 | { |
2765 | 0 | E T38, T3a, T3l, T3n; |
2766 | 0 | T38 = ri[WS(rs, 10)]; |
2767 | 0 | T3a = ii[WS(rs, 10)]; |
2768 | 0 | T3b = FMA(T37, T38, T39 * T3a); |
2769 | 0 | T87 = FNMS(T39, T38, T37 * T3a); |
2770 | 0 | T3l = ri[WS(rs, 42)]; |
2771 | 0 | T3n = ii[WS(rs, 42)]; |
2772 | 0 | T3o = FMA(T3k, T3l, T3m * T3n); |
2773 | 0 | T88 = FNMS(T3m, T3l, T3k * T3n); |
2774 | 0 | } |
2775 | 0 | T3p = T3b + T3o; |
2776 | 0 | Tei = T87 + T88; |
2777 | 0 | T86 = T3b - T3o; |
2778 | 0 | T89 = T87 - T88; |
2779 | 0 | } |
2780 | 0 | { |
2781 | 0 | E T3u, T82, T3z, T83; |
2782 | 0 | { |
2783 | 0 | E T3r, T3t, T3w, T3y; |
2784 | 0 | T3r = ri[WS(rs, 58)]; |
2785 | 0 | T3t = ii[WS(rs, 58)]; |
2786 | 0 | T3u = FMA(T3q, T3r, T3s * T3t); |
2787 | 0 | T82 = FNMS(T3s, T3r, T3q * T3t); |
2788 | 0 | T3w = ri[WS(rs, 26)]; |
2789 | 0 | T3y = ii[WS(rs, 26)]; |
2790 | 0 | T3z = FMA(T3v, T3w, T3x * T3y); |
2791 | 0 | T83 = FNMS(T3x, T3w, T3v * T3y); |
2792 | 0 | } |
2793 | 0 | T3A = T3u + T3z; |
2794 | 0 | Tej = T82 + T83; |
2795 | 0 | T81 = T3u - T3z; |
2796 | 0 | T84 = T82 - T83; |
2797 | 0 | } |
2798 | 0 | T36 = T2U + T35; |
2799 | 0 | T3B = T3p + T3A; |
2800 | 0 | TgH = T36 - T3B; |
2801 | 0 | TgE = Tec + Ted; |
2802 | 0 | TgF = Tei + Tej; |
2803 | 0 | TgG = TgE - TgF; |
2804 | 0 | { |
2805 | 0 | E T7Y, T7Z, Teh, Tek; |
2806 | 0 | T7Y = T7W - T7X; |
2807 | 0 | T7Z = T2Z - T34; |
2808 | 0 | T80 = T7Y + T7Z; |
2809 | 0 | TbW = T7Y - T7Z; |
2810 | 0 | Teh = T2U - T35; |
2811 | 0 | Tek = Tei - Tej; |
2812 | 0 | Tel = Teh - Tek; |
2813 | 0 | TfT = Teh + Tek; |
2814 | 0 | } |
2815 | 0 | { |
2816 | 0 | E T85, T8a, T8i, T8j; |
2817 | 0 | T85 = T81 - T84; |
2818 | 0 | T8a = T86 + T89; |
2819 | 0 | T8b = KP707106781 * (T85 - T8a); |
2820 | 0 | Tc0 = KP707106781 * (T8a + T85); |
2821 | 0 | T8i = T89 - T86; |
2822 | 0 | T8j = T81 + T84; |
2823 | 0 | T8k = KP707106781 * (T8i - T8j); |
2824 | 0 | TbX = KP707106781 * (T8i + T8j); |
2825 | 0 | } |
2826 | 0 | { |
2827 | 0 | E Tee, Tef, T8d, T8g; |
2828 | 0 | Tee = Tec - Ted; |
2829 | 0 | Tef = T3A - T3p; |
2830 | 0 | Teg = Tee - Tef; |
2831 | 0 | TfS = Tee + Tef; |
2832 | 0 | T8d = T2O - T2T; |
2833 | 0 | T8g = T8e - T8f; |
2834 | 0 | T8h = T8d - T8g; |
2835 | 0 | TbZ = T8d + T8g; |
2836 | 0 | } |
2837 | 0 | } |
2838 | 0 | { |
2839 | 0 | E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x; |
2840 | 0 | E T8A, T4p, Teu, T8s, T8v; |
2841 | 0 | { |
2842 | 0 | E T3E, T3G, T3J, T3L; |
2843 | 0 | T3E = ri[WS(rs, 62)]; |
2844 | 0 | T3G = ii[WS(rs, 62)]; |
2845 | 0 | T3H = FMA(T3D, T3E, T3F * T3G); |
2846 | 0 | T8n = FNMS(T3F, T3E, T3D * T3G); |
2847 | 0 | T3J = ri[WS(rs, 30)]; |
2848 | 0 | T3L = ii[WS(rs, 30)]; |
2849 | 0 | T3M = FMA(T3I, T3J, T3K * T3L); |
2850 | 0 | T8o = FNMS(T3K, T3J, T3I * T3L); |
2851 | 0 | } |
2852 | 0 | T3N = T3H + T3M; |
2853 | 0 | Ten = T8n + T8o; |
2854 | 0 | { |
2855 | 0 | E T3P, T3R, T40, T42; |
2856 | 0 | T3P = ri[WS(rs, 14)]; |
2857 | 0 | T3R = ii[WS(rs, 14)]; |
2858 | 0 | T3S = FMA(T3O, T3P, T3Q * T3R); |
2859 | 0 | T8F = FNMS(T3Q, T3P, T3O * T3R); |
2860 | 0 | T40 = ri[WS(rs, 46)]; |
2861 | 0 | T42 = ii[WS(rs, 46)]; |
2862 | 0 | T43 = FMA(T3Z, T40, T41 * T42); |
2863 | 0 | T8G = FNMS(T41, T40, T3Z * T42); |
2864 | 0 | } |
2865 | 0 | T44 = T3S + T43; |
2866 | 0 | Teo = T8F + T8G; |
2867 | 0 | { |
2868 | 0 | E T48, T8y, T4d, T8z; |
2869 | 0 | { |
2870 | 0 | E T46, T47, T4a, T4c; |
2871 | 0 | T46 = ri[WS(rs, 6)]; |
2872 | 0 | T47 = ii[WS(rs, 6)]; |
2873 | 0 | T48 = FMA(T3c, T46, T3e * T47); |
2874 | 0 | T8y = FNMS(T3e, T46, T3c * T47); |
2875 | 0 | T4a = ri[WS(rs, 38)]; |
2876 | 0 | T4c = ii[WS(rs, 38)]; |
2877 | 0 | T4d = FMA(T49, T4a, T4b * T4c); |
2878 | 0 | T8z = FNMS(T4b, T4a, T49 * T4c); |
2879 | 0 | } |
2880 | 0 | T4e = T48 + T4d; |
2881 | 0 | Tet = T8y + T8z; |
2882 | 0 | T8x = T48 - T4d; |
2883 | 0 | T8A = T8y - T8z; |
2884 | 0 | } |
2885 | 0 | { |
2886 | 0 | E T4j, T8t, T4o, T8u; |
2887 | 0 | { |
2888 | 0 | E T4g, T4i, T4l, T4n; |
2889 | 0 | T4g = ri[WS(rs, 54)]; |
2890 | 0 | T4i = ii[WS(rs, 54)]; |
2891 | 0 | T4j = FMA(T4f, T4g, T4h * T4i); |
2892 | 0 | T8t = FNMS(T4h, T4g, T4f * T4i); |
2893 | 0 | T4l = ri[WS(rs, 22)]; |
2894 | 0 | T4n = ii[WS(rs, 22)]; |
2895 | 0 | T4o = FMA(T4k, T4l, T4m * T4n); |
2896 | 0 | T8u = FNMS(T4m, T4l, T4k * T4n); |
2897 | 0 | } |
2898 | 0 | T4p = T4j + T4o; |
2899 | 0 | Teu = T8t + T8u; |
2900 | 0 | T8s = T4j - T4o; |
2901 | 0 | T8v = T8t - T8u; |
2902 | 0 | } |
2903 | 0 | T45 = T3N + T44; |
2904 | 0 | T4q = T4e + T4p; |
2905 | 0 | TgJ = T45 - T4q; |
2906 | 0 | TgK = Ten + Teo; |
2907 | 0 | TgL = Tet + Teu; |
2908 | 0 | TgM = TgK - TgL; |
2909 | 0 | { |
2910 | 0 | E T8p, T8q, Tes, Tev; |
2911 | 0 | T8p = T8n - T8o; |
2912 | 0 | T8q = T3S - T43; |
2913 | 0 | T8r = T8p + T8q; |
2914 | 0 | Tc6 = T8p - T8q; |
2915 | 0 | Tes = T3N - T44; |
2916 | 0 | Tev = Tet - Teu; |
2917 | 0 | Tew = Tes - Tev; |
2918 | 0 | TfW = Tes + Tev; |
2919 | 0 | } |
2920 | 0 | { |
2921 | 0 | E T8w, T8B, T8J, T8K; |
2922 | 0 | T8w = T8s - T8v; |
2923 | 0 | T8B = T8x + T8A; |
2924 | 0 | T8C = KP707106781 * (T8w - T8B); |
2925 | 0 | Tc4 = KP707106781 * (T8B + T8w); |
2926 | 0 | T8J = T8A - T8x; |
2927 | 0 | T8K = T8s + T8v; |
2928 | 0 | T8L = KP707106781 * (T8J - T8K); |
2929 | 0 | Tc7 = KP707106781 * (T8J + T8K); |
2930 | 0 | } |
2931 | 0 | { |
2932 | 0 | E Tep, Teq, T8E, T8H; |
2933 | 0 | Tep = Ten - Teo; |
2934 | 0 | Teq = T4p - T4e; |
2935 | 0 | Ter = Tep - Teq; |
2936 | 0 | TfV = Tep + Teq; |
2937 | 0 | T8E = T3H - T3M; |
2938 | 0 | T8H = T8F - T8G; |
2939 | 0 | T8I = T8E - T8H; |
2940 | 0 | Tc3 = T8E + T8H; |
2941 | 0 | } |
2942 | 0 | } |
2943 | 0 | { |
2944 | 0 | E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q; |
2945 | 0 | E T9R, T6z, Tf3, T9T, T9W; |
2946 | 0 | { |
2947 | 0 | E T5T, T5U, T5Z, T63; |
2948 | 0 | T5T = ri[WS(rs, 63)]; |
2949 | 0 | T5U = ii[WS(rs, 63)]; |
2950 | 0 | T5V = FMA(TW, T5T, T10 * T5U); |
2951 | 0 | Tao = FNMS(T10, T5T, TW * T5U); |
2952 | 0 | T5Z = ri[WS(rs, 31)]; |
2953 | 0 | T63 = ii[WS(rs, 31)]; |
2954 | 0 | T64 = FMA(T5Y, T5Z, T62 * T63); |
2955 | 0 | Tap = FNMS(T62, T5Z, T5Y * T63); |
2956 | 0 | } |
2957 | 0 | T65 = T5V + T64; |
2958 | 0 | Tfi = Tao + Tap; |
2959 | 0 | { |
2960 | 0 | E T66, T67, T6a, T6c; |
2961 | 0 | T66 = ri[WS(rs, 15)]; |
2962 | 0 | T67 = ii[WS(rs, 15)]; |
2963 | 0 | T68 = FMA(TV, T66, TZ * T67); |
2964 | 0 | T9K = FNMS(TZ, T66, TV * T67); |
2965 | 0 | T6a = ri[WS(rs, 47)]; |
2966 | 0 | T6c = ii[WS(rs, 47)]; |
2967 | 0 | T6d = FMA(T69, T6a, T6b * T6c); |
2968 | 0 | T9L = FNMS(T6b, T6a, T69 * T6c); |
2969 | 0 | } |
2970 | 0 | T6e = T68 + T6d; |
2971 | 0 | Tfj = T9K + T9L; |
2972 | 0 | { |
2973 | 0 | E T6i, T9O, T6n, T9P; |
2974 | 0 | { |
2975 | 0 | E T6g, T6h, T6k, T6m; |
2976 | 0 | T6g = ri[WS(rs, 7)]; |
2977 | 0 | T6h = ii[WS(rs, 7)]; |
2978 | 0 | T6i = FMA(T1t, T6g, T1u * T6h); |
2979 | 0 | T9O = FNMS(T1u, T6g, T1t * T6h); |
2980 | 0 | T6k = ri[WS(rs, 39)]; |
2981 | 0 | T6m = ii[WS(rs, 39)]; |
2982 | 0 | T6n = FMA(T6j, T6k, T6l * T6m); |
2983 | 0 | T9P = FNMS(T6l, T6k, T6j * T6m); |
2984 | 0 | } |
2985 | 0 | T6o = T6i + T6n; |
2986 | 0 | Tf2 = T9O + T9P; |
2987 | 0 | T9Q = T9O - T9P; |
2988 | 0 | T9R = T6i - T6n; |
2989 | 0 | } |
2990 | 0 | { |
2991 | 0 | E T6t, T9U, T6y, T9V; |
2992 | 0 | { |
2993 | 0 | E T6q, T6s, T6v, T6x; |
2994 | 0 | T6q = ri[WS(rs, 55)]; |
2995 | 0 | T6s = ii[WS(rs, 55)]; |
2996 | 0 | T6t = FMA(T6p, T6q, T6r * T6s); |
2997 | 0 | T9U = FNMS(T6r, T6q, T6p * T6s); |
2998 | 0 | T6v = ri[WS(rs, 23)]; |
2999 | 0 | T6x = ii[WS(rs, 23)]; |
3000 | 0 | T6y = FMA(T6u, T6v, T6w * T6x); |
3001 | 0 | T9V = FNMS(T6w, T6v, T6u * T6x); |
3002 | 0 | } |
3003 | 0 | T6z = T6t + T6y; |
3004 | 0 | Tf3 = T9U + T9V; |
3005 | 0 | T9T = T6t - T6y; |
3006 | 0 | T9W = T9U - T9V; |
3007 | 0 | } |
3008 | 0 | { |
3009 | 0 | E T6f, T6A, Tfk, Tfl; |
3010 | 0 | T6f = T65 + T6e; |
3011 | 0 | T6A = T6o + T6z; |
3012 | 0 | T6B = T6f + T6A; |
3013 | 0 | Th1 = T6f - T6A; |
3014 | 0 | Tfk = Tfi - Tfj; |
3015 | 0 | Tfl = T6z - T6o; |
3016 | 0 | Tfm = Tfk - Tfl; |
3017 | 0 | Tga = Tfk + Tfl; |
3018 | 0 | } |
3019 | 0 | { |
3020 | 0 | E Th6, Th7, T9J, T9M; |
3021 | 0 | Th6 = Tfi + Tfj; |
3022 | 0 | Th7 = Tf2 + Tf3; |
3023 | 0 | Th8 = Th6 - Th7; |
3024 | 0 | ThI = Th6 + Th7; |
3025 | 0 | T9J = T5V - T64; |
3026 | 0 | T9M = T9K - T9L; |
3027 | 0 | T9N = T9J - T9M; |
3028 | 0 | Tcv = T9J + T9M; |
3029 | 0 | } |
3030 | 0 | { |
3031 | 0 | E T9S, T9X, Tat, Tau; |
3032 | 0 | T9S = T9Q - T9R; |
3033 | 0 | T9X = T9T + T9W; |
3034 | 0 | T9Y = KP707106781 * (T9S - T9X); |
3035 | 0 | TcH = KP707106781 * (T9S + T9X); |
3036 | 0 | Tat = T9T - T9W; |
3037 | 0 | Tau = T9R + T9Q; |
3038 | 0 | Tav = KP707106781 * (Tat - Tau); |
3039 | 0 | Tcw = KP707106781 * (Tau + Tat); |
3040 | 0 | } |
3041 | 0 | { |
3042 | 0 | E Tf1, Tf4, Taq, Tar; |
3043 | 0 | Tf1 = T65 - T6e; |
3044 | 0 | Tf4 = Tf2 - Tf3; |
3045 | 0 | Tf5 = Tf1 - Tf4; |
3046 | 0 | Tg7 = Tf1 + Tf4; |
3047 | 0 | Taq = Tao - Tap; |
3048 | 0 | Tar = T68 - T6d; |
3049 | 0 | Tas = Taq + Tar; |
3050 | 0 | TcG = Taq - Tar; |
3051 | 0 | } |
3052 | 0 | } |
3053 | 0 | { |
3054 | 0 | E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90; |
3055 | 0 | E T93, T5a, TeT, T8V, T8Y; |
3056 | 0 | { |
3057 | 0 | E T4u, T4v, T4y, T4A; |
3058 | 0 | T4u = ri[WS(rs, 1)]; |
3059 | 0 | T4v = ii[WS(rs, 1)]; |
3060 | 0 | T4w = FMA(T2, T4u, T5 * T4v); |
3061 | 0 | T8Q = FNMS(T5, T4u, T2 * T4v); |
3062 | 0 | T4y = ri[WS(rs, 33)]; |
3063 | 0 | T4A = ii[WS(rs, 33)]; |
3064 | 0 | T4B = FMA(T4x, T4y, T4z * T4A); |
3065 | 0 | T8R = FNMS(T4z, T4y, T4x * T4A); |
3066 | 0 | } |
3067 | 0 | T4C = T4w + T4B; |
3068 | 0 | TeA = T8Q + T8R; |
3069 | 0 | { |
3070 | 0 | E T4D, T4E, T4H, T4J; |
3071 | 0 | T4D = ri[WS(rs, 17)]; |
3072 | 0 | T4E = ii[WS(rs, 17)]; |
3073 | 0 | T4F = FMA(T3V, T4D, T3Y * T4E); |
3074 | 0 | T9w = FNMS(T3Y, T4D, T3V * T4E); |
3075 | 0 | T4H = ri[WS(rs, 49)]; |
3076 | 0 | T4J = ii[WS(rs, 49)]; |
3077 | 0 | T4K = FMA(T4G, T4H, T4I * T4J); |
3078 | 0 | T9x = FNMS(T4I, T4H, T4G * T4J); |
3079 | 0 | } |
3080 | 0 | T4L = T4F + T4K; |
3081 | 0 | TeB = T9w + T9x; |
3082 | 0 | { |
3083 | 0 | E T4P, T91, T4U, T92; |
3084 | 0 | { |
3085 | 0 | E T4N, T4O, T4R, T4T; |
3086 | 0 | T4N = ri[WS(rs, 9)]; |
3087 | 0 | T4O = ii[WS(rs, 9)]; |
3088 | 0 | T4P = FMA(T9, T4N, Te * T4O); |
3089 | 0 | T91 = FNMS(Te, T4N, T9 * T4O); |
3090 | 0 | T4R = ri[WS(rs, 41)]; |
3091 | 0 | T4T = ii[WS(rs, 41)]; |
3092 | 0 | T4U = FMA(T4Q, T4R, T4S * T4T); |
3093 | 0 | T92 = FNMS(T4S, T4R, T4Q * T4T); |
3094 | 0 | } |
3095 | 0 | T4V = T4P + T4U; |
3096 | 0 | TeS = T91 + T92; |
3097 | 0 | T90 = T4P - T4U; |
3098 | 0 | T93 = T91 - T92; |
3099 | 0 | } |
3100 | 0 | { |
3101 | 0 | E T50, T8W, T59, T8X; |
3102 | 0 | { |
3103 | 0 | E T4X, T4Z, T54, T58; |
3104 | 0 | T4X = ri[WS(rs, 57)]; |
3105 | 0 | T4Z = ii[WS(rs, 57)]; |
3106 | 0 | T50 = FMA(T4W, T4X, T4Y * T4Z); |
3107 | 0 | T8W = FNMS(T4Y, T4X, T4W * T4Z); |
3108 | 0 | T54 = ri[WS(rs, 25)]; |
3109 | 0 | T58 = ii[WS(rs, 25)]; |
3110 | 0 | T59 = FMA(T53, T54, T57 * T58); |
3111 | 0 | T8X = FNMS(T57, T54, T53 * T58); |
3112 | 0 | } |
3113 | 0 | T5a = T50 + T59; |
3114 | 0 | TeT = T8W + T8X; |
3115 | 0 | T8V = T50 - T59; |
3116 | 0 | T8Y = T8W - T8X; |
3117 | 0 | } |
3118 | 0 | { |
3119 | 0 | E T4M, T5b, TeR, TeU; |
3120 | 0 | T4M = T4C + T4L; |
3121 | 0 | T5b = T4V + T5a; |
3122 | 0 | T5c = T4M + T5b; |
3123 | 0 | TgV = T4M - T5b; |
3124 | 0 | TeR = T4C - T4L; |
3125 | 0 | TeU = TeS - TeT; |
3126 | 0 | TeV = TeR - TeU; |
3127 | 0 | Tg0 = TeR + TeU; |
3128 | 0 | } |
3129 | 0 | { |
3130 | 0 | E TgQ, TgR, T8S, T8T; |
3131 | 0 | TgQ = TeA + TeB; |
3132 | 0 | TgR = TeS + TeT; |
3133 | 0 | TgS = TgQ - TgR; |
3134 | 0 | ThD = TgQ + TgR; |
3135 | 0 | T8S = T8Q - T8R; |
3136 | 0 | T8T = T4F - T4K; |
3137 | 0 | T8U = T8S + T8T; |
3138 | 0 | Tcc = T8S - T8T; |
3139 | 0 | } |
3140 | 0 | { |
3141 | 0 | E T8Z, T94, T9A, T9B; |
3142 | 0 | T8Z = T8V - T8Y; |
3143 | 0 | T94 = T90 + T93; |
3144 | 0 | T95 = KP707106781 * (T8Z - T94); |
3145 | 0 | Tco = KP707106781 * (T94 + T8Z); |
3146 | 0 | T9A = T93 - T90; |
3147 | 0 | T9B = T8V + T8Y; |
3148 | 0 | T9C = KP707106781 * (T9A - T9B); |
3149 | 0 | Tcd = KP707106781 * (T9A + T9B); |
3150 | 0 | } |
3151 | 0 | { |
3152 | 0 | E TeC, TeD, T9v, T9y; |
3153 | 0 | TeC = TeA - TeB; |
3154 | 0 | TeD = T5a - T4V; |
3155 | 0 | TeE = TeC - TeD; |
3156 | 0 | Tg3 = TeC + TeD; |
3157 | 0 | T9v = T4w - T4B; |
3158 | 0 | T9y = T9w - T9x; |
3159 | 0 | T9z = T9v - T9y; |
3160 | 0 | Tcn = T9v + T9y; |
3161 | 0 | } |
3162 | 0 | } |
3163 | 0 | { |
3164 | 0 | E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97; |
3165 | 0 | E T9e; |
3166 | 0 | { |
3167 | 0 | E T5f, T9i, T5k, T9j; |
3168 | 0 | { |
3169 | 0 | E T5d, T5e, T5h, T5j; |
3170 | 0 | T5d = ri[WS(rs, 5)]; |
3171 | 0 | T5e = ii[WS(rs, 5)]; |
3172 | 0 | T5f = FMA(Tg, T5d, Tl * T5e); |
3173 | 0 | T9i = FNMS(Tl, T5d, Tg * T5e); |
3174 | 0 | T5h = ri[WS(rs, 37)]; |
3175 | 0 | T5j = ii[WS(rs, 37)]; |
3176 | 0 | T5k = FMA(T5g, T5h, T5i * T5j); |
3177 | 0 | T9j = FNMS(T5i, T5h, T5g * T5j); |
3178 | 0 | } |
3179 | 0 | T5l = T5f + T5k; |
3180 | 0 | TeL = T9i + T9j; |
3181 | 0 | T9k = T9i - T9j; |
3182 | 0 | T9n = T5f - T5k; |
3183 | 0 | } |
3184 | 0 | { |
3185 | 0 | E T5J, T98, T5O, T99; |
3186 | 0 | { |
3187 | 0 | E T5H, T5I, T5L, T5N; |
3188 | 0 | T5H = ri[WS(rs, 13)]; |
3189 | 0 | T5I = ii[WS(rs, 13)]; |
3190 | 0 | T5J = FMA(T1h, T5H, T1j * T5I); |
3191 | 0 | T98 = FNMS(T1j, T5H, T1h * T5I); |
3192 | 0 | T5L = ri[WS(rs, 45)]; |
3193 | 0 | T5N = ii[WS(rs, 45)]; |
3194 | 0 | T5O = FMA(T5K, T5L, T5M * T5N); |
3195 | 0 | T99 = FNMS(T5M, T5L, T5K * T5N); |
3196 | 0 | } |
3197 | 0 | T5P = T5J + T5O; |
3198 | 0 | TeH = T98 + T99; |
3199 | 0 | T9a = T98 - T99; |
3200 | 0 | T9f = T5J - T5O; |
3201 | 0 | } |
3202 | 0 | { |
3203 | 0 | E T5o, T9o, T5t, T9p; |
3204 | 0 | { |
3205 | 0 | E T5m, T5n, T5q, T5s; |
3206 | 0 | T5m = ri[WS(rs, 21)]; |
3207 | 0 | T5n = ii[WS(rs, 21)]; |
3208 | 0 | T5o = FMA(T3g, T5m, T3j * T5n); |
3209 | 0 | T9o = FNMS(T3j, T5m, T3g * T5n); |
3210 | 0 | T5q = ri[WS(rs, 53)]; |
3211 | 0 | T5s = ii[WS(rs, 53)]; |
3212 | 0 | T5t = FMA(T5p, T5q, T5r * T5s); |
3213 | 0 | T9p = FNMS(T5r, T5q, T5p * T5s); |
3214 | 0 | } |
3215 | 0 | T5u = T5o + T5t; |
3216 | 0 | TeM = T9o + T9p; |
3217 | 0 | T9l = T5o - T5t; |
3218 | 0 | T9q = T9o - T9p; |
3219 | 0 | } |
3220 | 0 | { |
3221 | 0 | E T5A, T9c, T5F, T9d; |
3222 | 0 | { |
3223 | 0 | E T5x, T5z, T5C, T5E; |
3224 | 0 | T5x = ri[WS(rs, 61)]; |
3225 | 0 | T5z = ii[WS(rs, 61)]; |
3226 | 0 | T5A = FMA(T5w, T5x, T5y * T5z); |
3227 | 0 | T9c = FNMS(T5y, T5x, T5w * T5z); |
3228 | 0 | T5C = ri[WS(rs, 29)]; |
3229 | 0 | T5E = ii[WS(rs, 29)]; |
3230 | 0 | T5F = FMA(T5B, T5C, T5D * T5E); |
3231 | 0 | T9d = FNMS(T5D, T5C, T5B * T5E); |
3232 | 0 | } |
3233 | 0 | T5G = T5A + T5F; |
3234 | 0 | TeG = T9c + T9d; |
3235 | 0 | T97 = T5A - T5F; |
3236 | 0 | T9e = T9c - T9d; |
3237 | 0 | } |
3238 | 0 | { |
3239 | 0 | E T5v, T5Q, TeK, TeN; |
3240 | 0 | T5v = T5l + T5u; |
3241 | 0 | T5Q = T5G + T5P; |
3242 | 0 | T5R = T5v + T5Q; |
3243 | 0 | TgT = T5Q - T5v; |
3244 | 0 | TeK = T5l - T5u; |
3245 | 0 | TeN = TeL - TeM; |
3246 | 0 | TeO = TeK + TeN; |
3247 | 0 | TeW = TeN - TeK; |
3248 | 0 | } |
3249 | 0 | { |
3250 | 0 | E TgW, TgX, T9b, T9g; |
3251 | 0 | TgW = TeL + TeM; |
3252 | 0 | TgX = TeG + TeH; |
3253 | 0 | TgY = TgW - TgX; |
3254 | 0 | ThE = TgW + TgX; |
3255 | 0 | T9b = T97 - T9a; |
3256 | 0 | T9g = T9e + T9f; |
3257 | 0 | T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); |
3258 | 0 | T9F = FMA(KP382683432, T9g, KP923879532 * T9b); |
3259 | 0 | } |
3260 | 0 | { |
3261 | 0 | E T9m, T9r, Tci, Tcj; |
3262 | 0 | T9m = T9k + T9l; |
3263 | 0 | T9r = T9n - T9q; |
3264 | 0 | T9s = FMA(KP923879532, T9m, KP382683432 * T9r); |
3265 | 0 | T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); |
3266 | 0 | Tci = T9k - T9l; |
3267 | 0 | Tcj = T9n + T9q; |
3268 | 0 | Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); |
3269 | 0 | Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); |
3270 | 0 | } |
3271 | 0 | { |
3272 | 0 | E TeF, TeI, Tcf, Tcg; |
3273 | 0 | TeF = T5G - T5P; |
3274 | 0 | TeI = TeG - TeH; |
3275 | 0 | TeJ = TeF - TeI; |
3276 | 0 | TeX = TeF + TeI; |
3277 | 0 | Tcf = T97 + T9a; |
3278 | 0 | Tcg = T9e - T9f; |
3279 | 0 | Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); |
3280 | 0 | Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); |
3281 | 0 | } |
3282 | 0 | } |
3283 | 0 | { |
3284 | 0 | E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad; |
3285 | 0 | E Tag; |
3286 | 0 | { |
3287 | 0 | E T6E, Ta0, T6J, Ta1; |
3288 | 0 | { |
3289 | 0 | E T6C, T6D, T6G, T6I; |
3290 | 0 | T6C = ri[WS(rs, 3)]; |
3291 | 0 | T6D = ii[WS(rs, 3)]; |
3292 | 0 | T6E = FMA(T3, T6C, T6 * T6D); |
3293 | 0 | Ta0 = FNMS(T6, T6C, T3 * T6D); |
3294 | 0 | T6G = ri[WS(rs, 35)]; |
3295 | 0 | T6I = ii[WS(rs, 35)]; |
3296 | 0 | T6J = FMA(T6F, T6G, T6H * T6I); |
3297 | 0 | Ta1 = FNMS(T6H, T6G, T6F * T6I); |
3298 | 0 | } |
3299 | 0 | T6K = T6E + T6J; |
3300 | 0 | Tf6 = Ta0 + Ta1; |
3301 | 0 | Ta2 = Ta0 - Ta1; |
3302 | 0 | Ta5 = T6E - T6J; |
3303 | 0 | } |
3304 | 0 | { |
3305 | 0 | E T76, Tah, T7b, Tai; |
3306 | 0 | { |
3307 | 0 | E T74, T75, T78, T7a; |
3308 | 0 | T74 = ri[WS(rs, 11)]; |
3309 | 0 | T75 = ii[WS(rs, 11)]; |
3310 | 0 | T76 = FMA(TA, T74, TE * T75); |
3311 | 0 | Tah = FNMS(TE, T74, TA * T75); |
3312 | 0 | T78 = ri[WS(rs, 43)]; |
3313 | 0 | T7a = ii[WS(rs, 43)]; |
3314 | 0 | T7b = FMA(T77, T78, T79 * T7a); |
3315 | 0 | Tai = FNMS(T79, T78, T77 * T7a); |
3316 | 0 | } |
3317 | 0 | T7c = T76 + T7b; |
3318 | 0 | Tfd = Tah + Tai; |
3319 | 0 | Tae = T76 - T7b; |
3320 | 0 | Taj = Tah - Tai; |
3321 | 0 | } |
3322 | 0 | { |
3323 | 0 | E T6N, Ta6, T6S, Ta7; |
3324 | 0 | { |
3325 | 0 | E T6L, T6M, T6P, T6R; |
3326 | 0 | T6L = ri[WS(rs, 19)]; |
3327 | 0 | T6M = ii[WS(rs, 19)]; |
3328 | 0 | T6N = FMA(T2z, T6L, T2C * T6M); |
3329 | 0 | Ta6 = FNMS(T2C, T6L, T2z * T6M); |
3330 | 0 | T6P = ri[WS(rs, 51)]; |
3331 | 0 | T6R = ii[WS(rs, 51)]; |
3332 | 0 | T6S = FMA(T6O, T6P, T6Q * T6R); |
3333 | 0 | Ta7 = FNMS(T6Q, T6P, T6O * T6R); |
3334 | 0 | } |
3335 | 0 | T6T = T6N + T6S; |
3336 | 0 | Tf7 = Ta6 + Ta7; |
3337 | 0 | Ta3 = T6N - T6S; |
3338 | 0 | Ta8 = Ta6 - Ta7; |
3339 | 0 | } |
3340 | 0 | { |
3341 | 0 | E T6Z, Tab, T72, Tac; |
3342 | 0 | { |
3343 | 0 | E T6W, T6Y, T70, T71; |
3344 | 0 | T6W = ri[WS(rs, 59)]; |
3345 | 0 | T6Y = ii[WS(rs, 59)]; |
3346 | 0 | T6Z = FMA(T6V, T6W, T6X * T6Y); |
3347 | 0 | Tab = FNMS(T6X, T6W, T6V * T6Y); |
3348 | 0 | T70 = ri[WS(rs, 27)]; |
3349 | 0 | T71 = ii[WS(rs, 27)]; |
3350 | 0 | T72 = FMA(Th, T70, Tm * T71); |
3351 | 0 | Tac = FNMS(Tm, T70, Th * T71); |
3352 | 0 | } |
3353 | 0 | T73 = T6Z + T72; |
3354 | 0 | Tfc = Tab + Tac; |
3355 | 0 | Tad = Tab - Tac; |
3356 | 0 | Tag = T6Z - T72; |
3357 | 0 | } |
3358 | 0 | { |
3359 | 0 | E T6U, T7d, Tfb, Tfe; |
3360 | 0 | T6U = T6K + T6T; |
3361 | 0 | T7d = T73 + T7c; |
3362 | 0 | T7e = T6U + T7d; |
3363 | 0 | Th9 = T7d - T6U; |
3364 | 0 | Tfb = T73 - T7c; |
3365 | 0 | Tfe = Tfc - Tfd; |
3366 | 0 | Tff = Tfb + Tfe; |
3367 | 0 | Tfn = Tfb - Tfe; |
3368 | 0 | } |
3369 | 0 | { |
3370 | 0 | E Th2, Th3, Ta4, Ta9; |
3371 | 0 | Th2 = Tf6 + Tf7; |
3372 | 0 | Th3 = Tfc + Tfd; |
3373 | 0 | Th4 = Th2 - Th3; |
3374 | 0 | ThJ = Th2 + Th3; |
3375 | 0 | Ta4 = Ta2 + Ta3; |
3376 | 0 | Ta9 = Ta5 - Ta8; |
3377 | 0 | Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); |
3378 | 0 | Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); |
3379 | 0 | } |
3380 | 0 | { |
3381 | 0 | E Taf, Tak, TcB, TcC; |
3382 | 0 | Taf = Tad + Tae; |
3383 | 0 | Tak = Tag - Taj; |
3384 | 0 | Tal = FMA(KP382683432, Taf, KP923879532 * Tak); |
3385 | 0 | Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); |
3386 | 0 | TcB = Tad - Tae; |
3387 | 0 | TcC = Tag + Taj; |
3388 | 0 | TcD = FMA(KP923879532, TcB, KP382683432 * TcC); |
3389 | 0 | TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); |
3390 | 0 | } |
3391 | 0 | { |
3392 | 0 | E Tf8, Tf9, Tcy, Tcz; |
3393 | 0 | Tf8 = Tf6 - Tf7; |
3394 | 0 | Tf9 = T6K - T6T; |
3395 | 0 | Tfa = Tf8 - Tf9; |
3396 | 0 | Tfo = Tf9 + Tf8; |
3397 | 0 | Tcy = Ta2 - Ta3; |
3398 | 0 | Tcz = Ta5 + Ta8; |
3399 | 0 | TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); |
3400 | 0 | TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); |
3401 | 0 | } |
3402 | 0 | } |
3403 | 0 | { |
3404 | 0 | E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA; |
3405 | 0 | E ThW; |
3406 | 0 | { |
3407 | 0 | E T1L, T2K, ThS, ThT; |
3408 | 0 | T1L = T17 + T1K; |
3409 | 0 | T2K = T2e + T2J; |
3410 | 0 | T2L = T1L + T2K; |
3411 | 0 | Thx = T1L - T2K; |
3412 | 0 | ThS = ThD + ThE; |
3413 | 0 | ThT = ThI + ThJ; |
3414 | 0 | ThU = ThS - ThT; |
3415 | 0 | ThV = ThS + ThT; |
3416 | 0 | } |
3417 | 0 | { |
3418 | 0 | E ThX, Ti4, T3C, T4r; |
3419 | 0 | ThX = TgA + TgB; |
3420 | 0 | Ti4 = ThY + Ti3; |
3421 | 0 | Ti5 = ThX + Ti4; |
3422 | 0 | Tib = Ti4 - ThX; |
3423 | 0 | T3C = T36 + T3B; |
3424 | 0 | T4r = T45 + T4q; |
3425 | 0 | T4s = T3C + T4r; |
3426 | 0 | Tia = T4r - T3C; |
3427 | 0 | } |
3428 | 0 | { |
3429 | 0 | E T5S, T7f, ThC, ThF; |
3430 | 0 | T5S = T5c + T5R; |
3431 | 0 | T7f = T6B + T7e; |
3432 | 0 | T7g = T5S + T7f; |
3433 | 0 | Ti7 = T7f - T5S; |
3434 | 0 | ThC = T5c - T5R; |
3435 | 0 | ThF = ThD - ThE; |
3436 | 0 | ThG = ThC + ThF; |
3437 | 0 | ThO = ThF - ThC; |
3438 | 0 | } |
3439 | 0 | { |
3440 | 0 | E ThH, ThK, Thy, Thz; |
3441 | 0 | ThH = T6B - T7e; |
3442 | 0 | ThK = ThI - ThJ; |
3443 | 0 | ThL = ThH - ThK; |
3444 | 0 | ThP = ThH + ThK; |
3445 | 0 | Thy = TgE + TgF; |
3446 | 0 | Thz = TgK + TgL; |
3447 | 0 | ThA = Thy - Thz; |
3448 | 0 | ThW = Thy + Thz; |
3449 | 0 | } |
3450 | 0 | { |
3451 | 0 | E T4t, Ti6, ThR, Ti8; |
3452 | 0 | T4t = T2L + T4s; |
3453 | 0 | ri[WS(rs, 32)] = T4t - T7g; |
3454 | 0 | ri[0] = T4t + T7g; |
3455 | 0 | Ti6 = ThW + Ti5; |
3456 | 0 | ii[0] = ThV + Ti6; |
3457 | 0 | ii[WS(rs, 32)] = Ti6 - ThV; |
3458 | 0 | ThR = T2L - T4s; |
3459 | 0 | ri[WS(rs, 48)] = ThR - ThU; |
3460 | 0 | ri[WS(rs, 16)] = ThR + ThU; |
3461 | 0 | Ti8 = Ti5 - ThW; |
3462 | 0 | ii[WS(rs, 16)] = Ti7 + Ti8; |
3463 | 0 | ii[WS(rs, 48)] = Ti8 - Ti7; |
3464 | 0 | } |
3465 | 0 | { |
3466 | 0 | E ThB, ThM, Ti9, Tic; |
3467 | 0 | ThB = Thx + ThA; |
3468 | 0 | ThM = KP707106781 * (ThG + ThL); |
3469 | 0 | ri[WS(rs, 40)] = ThB - ThM; |
3470 | 0 | ri[WS(rs, 8)] = ThB + ThM; |
3471 | 0 | Ti9 = KP707106781 * (ThO + ThP); |
3472 | 0 | Tic = Tia + Tib; |
3473 | 0 | ii[WS(rs, 8)] = Ti9 + Tic; |
3474 | 0 | ii[WS(rs, 40)] = Tic - Ti9; |
3475 | 0 | } |
3476 | 0 | { |
3477 | 0 | E ThN, ThQ, Tid, Tie; |
3478 | 0 | ThN = Thx - ThA; |
3479 | 0 | ThQ = KP707106781 * (ThO - ThP); |
3480 | 0 | ri[WS(rs, 56)] = ThN - ThQ; |
3481 | 0 | ri[WS(rs, 24)] = ThN + ThQ; |
3482 | 0 | Tid = KP707106781 * (ThL - ThG); |
3483 | 0 | Tie = Tib - Tia; |
3484 | 0 | ii[WS(rs, 24)] = Tid + Tie; |
3485 | 0 | ii[WS(rs, 56)] = Tie - Tid; |
3486 | 0 | } |
3487 | 0 | } |
3488 | 0 | { |
3489 | 0 | E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb; |
3490 | 0 | E Thf; |
3491 | 0 | { |
3492 | 0 | E Tgz, TgC, Thp, Thq; |
3493 | 0 | Tgz = T17 - T1K; |
3494 | 0 | TgC = TgA - TgB; |
3495 | 0 | TgD = Tgz - TgC; |
3496 | 0 | Thh = Tgz + TgC; |
3497 | 0 | Thp = Th1 + Th4; |
3498 | 0 | Thq = Th8 + Th9; |
3499 | 0 | Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); |
3500 | 0 | Thv = FMA(KP923879532, Thq, KP382683432 * Thp); |
3501 | 0 | } |
3502 | 0 | { |
3503 | 0 | E Tih, Tii, TgI, TgN; |
3504 | 0 | Tih = T2J - T2e; |
3505 | 0 | Tii = Ti3 - ThY; |
3506 | 0 | Tij = Tih + Tii; |
3507 | 0 | Tip = Tii - Tih; |
3508 | 0 | TgI = TgG - TgH; |
3509 | 0 | TgN = TgJ + TgM; |
3510 | 0 | TgO = KP707106781 * (TgI - TgN); |
3511 | 0 | Tig = KP707106781 * (TgI + TgN); |
3512 | 0 | } |
3513 | 0 | { |
3514 | 0 | E TgU, TgZ, Thi, Thj; |
3515 | 0 | TgU = TgS - TgT; |
3516 | 0 | TgZ = TgV - TgY; |
3517 | 0 | Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); |
3518 | 0 | The = FNMS(KP923879532, TgZ, KP382683432 * TgU); |
3519 | 0 | Thi = TgH + TgG; |
3520 | 0 | Thj = TgJ - TgM; |
3521 | 0 | Thk = KP707106781 * (Thi + Thj); |
3522 | 0 | Tio = KP707106781 * (Thj - Thi); |
3523 | 0 | } |
3524 | 0 | { |
3525 | 0 | E Thm, Thn, Th5, Tha; |
3526 | 0 | Thm = TgS + TgT; |
3527 | 0 | Thn = TgV + TgY; |
3528 | 0 | Tho = FMA(KP382683432, Thm, KP923879532 * Thn); |
3529 | 0 | Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); |
3530 | 0 | Th5 = Th1 - Th4; |
3531 | 0 | Tha = Th8 - Th9; |
3532 | 0 | Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); |
3533 | 0 | Thf = FMA(KP382683432, Tha, KP923879532 * Th5); |
3534 | 0 | } |
3535 | 0 | { |
3536 | 0 | E TgP, Thc, Tin, Tiq; |
3537 | 0 | TgP = TgD + TgO; |
3538 | 0 | Thc = Th0 + Thb; |
3539 | 0 | ri[WS(rs, 44)] = TgP - Thc; |
3540 | 0 | ri[WS(rs, 12)] = TgP + Thc; |
3541 | 0 | Tin = The + Thf; |
3542 | 0 | Tiq = Tio + Tip; |
3543 | 0 | ii[WS(rs, 12)] = Tin + Tiq; |
3544 | 0 | ii[WS(rs, 44)] = Tiq - Tin; |
3545 | 0 | } |
3546 | 0 | { |
3547 | 0 | E Thd, Thg, Tir, Tis; |
3548 | 0 | Thd = TgD - TgO; |
3549 | 0 | Thg = The - Thf; |
3550 | 0 | ri[WS(rs, 60)] = Thd - Thg; |
3551 | 0 | ri[WS(rs, 28)] = Thd + Thg; |
3552 | 0 | Tir = Thb - Th0; |
3553 | 0 | Tis = Tip - Tio; |
3554 | 0 | ii[WS(rs, 28)] = Tir + Tis; |
3555 | 0 | ii[WS(rs, 60)] = Tis - Tir; |
3556 | 0 | } |
3557 | 0 | { |
3558 | 0 | E Thl, Ths, Tif, Tik; |
3559 | 0 | Thl = Thh + Thk; |
3560 | 0 | Ths = Tho + Thr; |
3561 | 0 | ri[WS(rs, 36)] = Thl - Ths; |
3562 | 0 | ri[WS(rs, 4)] = Thl + Ths; |
3563 | 0 | Tif = Thu + Thv; |
3564 | 0 | Tik = Tig + Tij; |
3565 | 0 | ii[WS(rs, 4)] = Tif + Tik; |
3566 | 0 | ii[WS(rs, 36)] = Tik - Tif; |
3567 | 0 | } |
3568 | 0 | { |
3569 | 0 | E Tht, Thw, Til, Tim; |
3570 | 0 | Tht = Thh - Thk; |
3571 | 0 | Thw = Thu - Thv; |
3572 | 0 | ri[WS(rs, 52)] = Tht - Thw; |
3573 | 0 | ri[WS(rs, 20)] = Tht + Thw; |
3574 | 0 | Til = Thr - Tho; |
3575 | 0 | Tim = Tij - Tig; |
3576 | 0 | ii[WS(rs, 20)] = Til + Tim; |
3577 | 0 | ii[WS(rs, 52)] = Tim - Til; |
3578 | 0 | } |
3579 | 0 | } |
3580 | 0 | { |
3581 | 0 | E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu; |
3582 | 0 | E TfE; |
3583 | 0 | { |
3584 | 0 | E TdZ, Tea, Tfy, Tfz; |
3585 | 0 | TdZ = TdV - TdY; |
3586 | 0 | Tea = KP707106781 * (Te4 - Te9); |
3587 | 0 | Teb = TdZ - Tea; |
3588 | 0 | Tfx = TdZ + Tea; |
3589 | 0 | { |
3590 | 0 | E Tem, Tex, TiL, TiM; |
3591 | 0 | Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); |
3592 | 0 | Tex = FMA(KP382683432, Ter, KP923879532 * Tew); |
3593 | 0 | Tey = Tem - Tex; |
3594 | 0 | TiK = Tem + Tex; |
3595 | 0 | TiL = KP707106781 * (TfP - TfO); |
3596 | 0 | TiM = Tix - Tiw; |
3597 | 0 | TiN = TiL + TiM; |
3598 | 0 | TiT = TiM - TiL; |
3599 | 0 | } |
3600 | 0 | Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); |
3601 | 0 | Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); |
3602 | 0 | TfA = Tfy + Tfz; |
3603 | 0 | TiS = Tfz - Tfy; |
3604 | 0 | { |
3605 | 0 | E Tfh, TfF, Tfq, TfG, Tfg, Tfp; |
3606 | 0 | Tfg = KP707106781 * (Tfa - Tff); |
3607 | 0 | Tfh = Tf5 - Tfg; |
3608 | 0 | TfF = Tf5 + Tfg; |
3609 | 0 | Tfp = KP707106781 * (Tfn - Tfo); |
3610 | 0 | Tfq = Tfm - Tfp; |
3611 | 0 | TfG = Tfm + Tfp; |
3612 | 0 | Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); |
3613 | 0 | TfL = FMA(KP831469612, TfG, KP555570233 * TfF); |
3614 | 0 | Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); |
3615 | 0 | TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); |
3616 | 0 | } |
3617 | 0 | { |
3618 | 0 | E TeQ, TfC, TeZ, TfD, TeP, TeY; |
3619 | 0 | TeP = KP707106781 * (TeJ - TeO); |
3620 | 0 | TeQ = TeE - TeP; |
3621 | 0 | TfC = TeE + TeP; |
3622 | 0 | TeY = KP707106781 * (TeW - TeX); |
3623 | 0 | TeZ = TeV - TeY; |
3624 | 0 | TfD = TeV + TeY; |
3625 | 0 | Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); |
3626 | 0 | TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); |
3627 | 0 | Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); |
3628 | 0 | TfE = FMA(KP555570233, TfC, KP831469612 * TfD); |
3629 | 0 | } |
3630 | 0 | } |
3631 | 0 | { |
3632 | 0 | E Tez, Tfs, TiR, TiU; |
3633 | 0 | Tez = Teb + Tey; |
3634 | 0 | Tfs = Tf0 + Tfr; |
3635 | 0 | ri[WS(rs, 46)] = Tez - Tfs; |
3636 | 0 | ri[WS(rs, 14)] = Tez + Tfs; |
3637 | 0 | TiR = Tfu + Tfv; |
3638 | 0 | TiU = TiS + TiT; |
3639 | 0 | ii[WS(rs, 14)] = TiR + TiU; |
3640 | 0 | ii[WS(rs, 46)] = TiU - TiR; |
3641 | 0 | } |
3642 | 0 | { |
3643 | 0 | E Tft, Tfw, TiV, TiW; |
3644 | 0 | Tft = Teb - Tey; |
3645 | 0 | Tfw = Tfu - Tfv; |
3646 | 0 | ri[WS(rs, 62)] = Tft - Tfw; |
3647 | 0 | ri[WS(rs, 30)] = Tft + Tfw; |
3648 | 0 | TiV = Tfr - Tf0; |
3649 | 0 | TiW = TiT - TiS; |
3650 | 0 | ii[WS(rs, 30)] = TiV + TiW; |
3651 | 0 | ii[WS(rs, 62)] = TiW - TiV; |
3652 | 0 | } |
3653 | 0 | { |
3654 | 0 | E TfB, TfI, TiJ, TiO; |
3655 | 0 | TfB = Tfx + TfA; |
3656 | 0 | TfI = TfE + TfH; |
3657 | 0 | ri[WS(rs, 38)] = TfB - TfI; |
3658 | 0 | ri[WS(rs, 6)] = TfB + TfI; |
3659 | 0 | TiJ = TfK + TfL; |
3660 | 0 | TiO = TiK + TiN; |
3661 | 0 | ii[WS(rs, 6)] = TiJ + TiO; |
3662 | 0 | ii[WS(rs, 38)] = TiO - TiJ; |
3663 | 0 | } |
3664 | 0 | { |
3665 | 0 | E TfJ, TfM, TiP, TiQ; |
3666 | 0 | TfJ = Tfx - TfA; |
3667 | 0 | TfM = TfK - TfL; |
3668 | 0 | ri[WS(rs, 54)] = TfJ - TfM; |
3669 | 0 | ri[WS(rs, 22)] = TfJ + TfM; |
3670 | 0 | TiP = TfH - TfE; |
3671 | 0 | TiQ = TiN - TiK; |
3672 | 0 | ii[WS(rs, 22)] = TiP + TiQ; |
3673 | 0 | ii[WS(rs, 54)] = TiQ - TiP; |
3674 | 0 | } |
3675 | 0 | } |
3676 | 0 | { |
3677 | 0 | E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg; |
3678 | 0 | E Tgq; |
3679 | 0 | { |
3680 | 0 | E TfN, TfQ, Tgk, Tgl; |
3681 | 0 | TfN = TdV + TdY; |
3682 | 0 | TfQ = KP707106781 * (TfO + TfP); |
3683 | 0 | TfR = TfN - TfQ; |
3684 | 0 | Tgj = TfN + TfQ; |
3685 | 0 | { |
3686 | 0 | E TfU, TfX, Tiv, Tiy; |
3687 | 0 | TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); |
3688 | 0 | TfX = FMA(KP923879532, TfV, KP382683432 * TfW); |
3689 | 0 | TfY = TfU - TfX; |
3690 | 0 | Tiu = TfU + TfX; |
3691 | 0 | Tiv = KP707106781 * (Te4 + Te9); |
3692 | 0 | Tiy = Tiw + Tix; |
3693 | 0 | Tiz = Tiv + Tiy; |
3694 | 0 | TiF = Tiy - Tiv; |
3695 | 0 | } |
3696 | 0 | Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); |
3697 | 0 | Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); |
3698 | 0 | Tgm = Tgk + Tgl; |
3699 | 0 | TiE = Tgl - Tgk; |
3700 | 0 | { |
3701 | 0 | E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb; |
3702 | 0 | Tg8 = KP707106781 * (Tfo + Tfn); |
3703 | 0 | Tg9 = Tg7 - Tg8; |
3704 | 0 | Tgr = Tg7 + Tg8; |
3705 | 0 | Tgb = KP707106781 * (Tfa + Tff); |
3706 | 0 | Tgc = Tga - Tgb; |
3707 | 0 | Tgs = Tga + Tgb; |
3708 | 0 | Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); |
3709 | 0 | Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); |
3710 | 0 | Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); |
3711 | 0 | Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); |
3712 | 0 | } |
3713 | 0 | { |
3714 | 0 | E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4; |
3715 | 0 | Tg1 = KP707106781 * (TeO + TeJ); |
3716 | 0 | Tg2 = Tg0 - Tg1; |
3717 | 0 | Tgo = Tg0 + Tg1; |
3718 | 0 | Tg4 = KP707106781 * (TeW + TeX); |
3719 | 0 | Tg5 = Tg3 - Tg4; |
3720 | 0 | Tgp = Tg3 + Tg4; |
3721 | 0 | Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); |
3722 | 0 | Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); |
3723 | 0 | Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); |
3724 | 0 | Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); |
3725 | 0 | } |
3726 | 0 | } |
3727 | 0 | { |
3728 | 0 | E TfZ, Tge, TiD, TiG; |
3729 | 0 | TfZ = TfR + TfY; |
3730 | 0 | Tge = Tg6 + Tgd; |
3731 | 0 | ri[WS(rs, 42)] = TfZ - Tge; |
3732 | 0 | ri[WS(rs, 10)] = TfZ + Tge; |
3733 | 0 | TiD = Tgg + Tgh; |
3734 | 0 | TiG = TiE + TiF; |
3735 | 0 | ii[WS(rs, 10)] = TiD + TiG; |
3736 | 0 | ii[WS(rs, 42)] = TiG - TiD; |
3737 | 0 | } |
3738 | 0 | { |
3739 | 0 | E Tgf, Tgi, TiH, TiI; |
3740 | 0 | Tgf = TfR - TfY; |
3741 | 0 | Tgi = Tgg - Tgh; |
3742 | 0 | ri[WS(rs, 58)] = Tgf - Tgi; |
3743 | 0 | ri[WS(rs, 26)] = Tgf + Tgi; |
3744 | 0 | TiH = Tgd - Tg6; |
3745 | 0 | TiI = TiF - TiE; |
3746 | 0 | ii[WS(rs, 26)] = TiH + TiI; |
3747 | 0 | ii[WS(rs, 58)] = TiI - TiH; |
3748 | 0 | } |
3749 | 0 | { |
3750 | 0 | E Tgn, Tgu, Tit, TiA; |
3751 | 0 | Tgn = Tgj + Tgm; |
3752 | 0 | Tgu = Tgq + Tgt; |
3753 | 0 | ri[WS(rs, 34)] = Tgn - Tgu; |
3754 | 0 | ri[WS(rs, 2)] = Tgn + Tgu; |
3755 | 0 | Tit = Tgw + Tgx; |
3756 | 0 | TiA = Tiu + Tiz; |
3757 | 0 | ii[WS(rs, 2)] = Tit + TiA; |
3758 | 0 | ii[WS(rs, 34)] = TiA - Tit; |
3759 | 0 | } |
3760 | 0 | { |
3761 | 0 | E Tgv, Tgy, TiB, TiC; |
3762 | 0 | Tgv = Tgj - Tgm; |
3763 | 0 | Tgy = Tgw - Tgx; |
3764 | 0 | ri[WS(rs, 50)] = Tgv - Tgy; |
3765 | 0 | ri[WS(rs, 18)] = Tgv + Tgy; |
3766 | 0 | TiB = Tgt - Tgq; |
3767 | 0 | TiC = Tiz - Tiu; |
3768 | 0 | ii[WS(rs, 18)] = TiB + TiC; |
3769 | 0 | ii[WS(rs, 50)] = TiC - TiB; |
3770 | 0 | } |
3771 | 0 | } |
3772 | 0 | { |
3773 | 0 | E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF; |
3774 | 0 | E TaR; |
3775 | 0 | { |
3776 | 0 | E T7x, T7U, TjL, TjM; |
3777 | 0 | T7x = T7l - T7w; |
3778 | 0 | T7U = T7I - T7T; |
3779 | 0 | T7V = T7x - T7U; |
3780 | 0 | TaH = T7x + T7U; |
3781 | 0 | TjL = TaZ - TaY; |
3782 | 0 | TjM = Tjx - Tjw; |
3783 | 0 | TjN = TjL + TjM; |
3784 | 0 | TjT = TjM - TjL; |
3785 | 0 | } |
3786 | 0 | { |
3787 | 0 | E T8m, TaI, T8N, TaJ; |
3788 | 0 | { |
3789 | 0 | E T8c, T8l, T8D, T8M; |
3790 | 0 | T8c = T80 - T8b; |
3791 | 0 | T8l = T8h - T8k; |
3792 | 0 | T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); |
3793 | 0 | TaI = FMA(KP980785280, T8c, KP195090322 * T8l); |
3794 | 0 | T8D = T8r - T8C; |
3795 | 0 | T8M = T8I - T8L; |
3796 | 0 | T8N = FMA(KP195090322, T8D, KP980785280 * T8M); |
3797 | 0 | TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); |
3798 | 0 | } |
3799 | 0 | T8O = T8m - T8N; |
3800 | 0 | TjS = TaJ - TaI; |
3801 | 0 | TaK = TaI + TaJ; |
3802 | 0 | TjK = T8m + T8N; |
3803 | 0 | } |
3804 | 0 | { |
3805 | 0 | E T9u, TaM, T9H, TaN; |
3806 | 0 | { |
3807 | 0 | E T96, T9t, T9D, T9G; |
3808 | 0 | T96 = T8U - T95; |
3809 | 0 | T9t = T9h - T9s; |
3810 | 0 | T9u = T96 - T9t; |
3811 | 0 | TaM = T96 + T9t; |
3812 | 0 | T9D = T9z - T9C; |
3813 | 0 | T9G = T9E - T9F; |
3814 | 0 | T9H = T9D - T9G; |
3815 | 0 | TaN = T9D + T9G; |
3816 | 0 | } |
3817 | 0 | T9I = FMA(KP995184726, T9u, KP098017140 * T9H); |
3818 | 0 | TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); |
3819 | 0 | TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); |
3820 | 0 | TaO = FMA(KP634393284, TaM, KP773010453 * TaN); |
3821 | 0 | } |
3822 | 0 | { |
3823 | 0 | E Tan, TaP, TaA, TaQ; |
3824 | 0 | { |
3825 | 0 | E T9Z, Tam, Taw, Taz; |
3826 | 0 | T9Z = T9N - T9Y; |
3827 | 0 | Tam = Taa - Tal; |
3828 | 0 | Tan = T9Z - Tam; |
3829 | 0 | TaP = T9Z + Tam; |
3830 | 0 | Taw = Tas - Tav; |
3831 | 0 | Taz = Tax - Tay; |
3832 | 0 | TaA = Taw - Taz; |
3833 | 0 | TaQ = Taw + Taz; |
3834 | 0 | } |
3835 | 0 | TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); |
3836 | 0 | TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); |
3837 | 0 | TaF = FMA(KP098017140, TaA, KP995184726 * Tan); |
3838 | 0 | TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); |
3839 | 0 | } |
3840 | 0 | { |
3841 | 0 | E T8P, TaC, TjR, TjU; |
3842 | 0 | T8P = T7V + T8O; |
3843 | 0 | TaC = T9I + TaB; |
3844 | 0 | ri[WS(rs, 47)] = T8P - TaC; |
3845 | 0 | ri[WS(rs, 15)] = T8P + TaC; |
3846 | 0 | TjR = TaE + TaF; |
3847 | 0 | TjU = TjS + TjT; |
3848 | 0 | ii[WS(rs, 15)] = TjR + TjU; |
3849 | 0 | ii[WS(rs, 47)] = TjU - TjR; |
3850 | 0 | } |
3851 | 0 | { |
3852 | 0 | E TaD, TaG, TjV, TjW; |
3853 | 0 | TaD = T7V - T8O; |
3854 | 0 | TaG = TaE - TaF; |
3855 | 0 | ri[WS(rs, 63)] = TaD - TaG; |
3856 | 0 | ri[WS(rs, 31)] = TaD + TaG; |
3857 | 0 | TjV = TaB - T9I; |
3858 | 0 | TjW = TjT - TjS; |
3859 | 0 | ii[WS(rs, 31)] = TjV + TjW; |
3860 | 0 | ii[WS(rs, 63)] = TjW - TjV; |
3861 | 0 | } |
3862 | 0 | { |
3863 | 0 | E TaL, TaS, TjJ, TjO; |
3864 | 0 | TaL = TaH + TaK; |
3865 | 0 | TaS = TaO + TaR; |
3866 | 0 | ri[WS(rs, 39)] = TaL - TaS; |
3867 | 0 | ri[WS(rs, 7)] = TaL + TaS; |
3868 | 0 | TjJ = TaU + TaV; |
3869 | 0 | TjO = TjK + TjN; |
3870 | 0 | ii[WS(rs, 7)] = TjJ + TjO; |
3871 | 0 | ii[WS(rs, 39)] = TjO - TjJ; |
3872 | 0 | } |
3873 | 0 | { |
3874 | 0 | E TaT, TaW, TjP, TjQ; |
3875 | 0 | TaT = TaH - TaK; |
3876 | 0 | TaW = TaU - TaV; |
3877 | 0 | ri[WS(rs, 55)] = TaT - TaW; |
3878 | 0 | ri[WS(rs, 23)] = TaT + TaW; |
3879 | 0 | TjP = TaR - TaO; |
3880 | 0 | TjQ = TjN - TjK; |
3881 | 0 | ii[WS(rs, 23)] = TjP + TjQ; |
3882 | 0 | ii[WS(rs, 55)] = TjQ - TjP; |
3883 | 0 | } |
3884 | 0 | } |
3885 | 0 | { |
3886 | 0 | E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR; |
3887 | 0 | E Td3; |
3888 | 0 | { |
3889 | 0 | E TbN, TbU, Tjh, Tji; |
3890 | 0 | TbN = TbJ - TbM; |
3891 | 0 | TbU = TbQ - TbT; |
3892 | 0 | TbV = TbN - TbU; |
3893 | 0 | TcT = TbN + TbU; |
3894 | 0 | Tjh = Tdb - Tda; |
3895 | 0 | Tji = Tj3 - Tj0; |
3896 | 0 | Tjj = Tjh + Tji; |
3897 | 0 | Tjp = Tji - Tjh; |
3898 | 0 | } |
3899 | 0 | { |
3900 | 0 | E Tc2, TcU, Tc9, TcV; |
3901 | 0 | { |
3902 | 0 | E TbY, Tc1, Tc5, Tc8; |
3903 | 0 | TbY = TbW - TbX; |
3904 | 0 | Tc1 = TbZ - Tc0; |
3905 | 0 | Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); |
3906 | 0 | TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); |
3907 | 0 | Tc5 = Tc3 - Tc4; |
3908 | 0 | Tc8 = Tc6 - Tc7; |
3909 | 0 | Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); |
3910 | 0 | TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); |
3911 | 0 | } |
3912 | 0 | Tca = Tc2 - Tc9; |
3913 | 0 | Tjo = TcV - TcU; |
3914 | 0 | TcW = TcU + TcV; |
3915 | 0 | Tjg = Tc2 + Tc9; |
3916 | 0 | } |
3917 | 0 | { |
3918 | 0 | E Tcm, TcY, Tct, TcZ; |
3919 | 0 | { |
3920 | 0 | E Tce, Tcl, Tcp, Tcs; |
3921 | 0 | Tce = Tcc - Tcd; |
3922 | 0 | Tcl = Tch - Tck; |
3923 | 0 | Tcm = Tce - Tcl; |
3924 | 0 | TcY = Tce + Tcl; |
3925 | 0 | Tcp = Tcn - Tco; |
3926 | 0 | Tcs = Tcq - Tcr; |
3927 | 0 | Tct = Tcp - Tcs; |
3928 | 0 | TcZ = Tcp + Tcs; |
3929 | 0 | } |
3930 | 0 | Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); |
3931 | 0 | Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); |
3932 | 0 | TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); |
3933 | 0 | Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); |
3934 | 0 | } |
3935 | 0 | { |
3936 | 0 | E TcF, Td1, TcM, Td2; |
3937 | 0 | { |
3938 | 0 | E Tcx, TcE, TcI, TcL; |
3939 | 0 | Tcx = Tcv - Tcw; |
3940 | 0 | TcE = TcA - TcD; |
3941 | 0 | TcF = Tcx - TcE; |
3942 | 0 | Td1 = Tcx + TcE; |
3943 | 0 | TcI = TcG - TcH; |
3944 | 0 | TcL = TcJ - TcK; |
3945 | 0 | TcM = TcI - TcL; |
3946 | 0 | Td2 = TcI + TcL; |
3947 | 0 | } |
3948 | 0 | TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); |
3949 | 0 | Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); |
3950 | 0 | TcR = FMA(KP290284677, TcM, KP956940335 * TcF); |
3951 | 0 | Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); |
3952 | 0 | } |
3953 | 0 | { |
3954 | 0 | E Tcb, TcO, Tjn, Tjq; |
3955 | 0 | Tcb = TbV + Tca; |
3956 | 0 | TcO = Tcu + TcN; |
3957 | 0 | ri[WS(rs, 45)] = Tcb - TcO; |
3958 | 0 | ri[WS(rs, 13)] = Tcb + TcO; |
3959 | 0 | Tjn = TcQ + TcR; |
3960 | 0 | Tjq = Tjo + Tjp; |
3961 | 0 | ii[WS(rs, 13)] = Tjn + Tjq; |
3962 | 0 | ii[WS(rs, 45)] = Tjq - Tjn; |
3963 | 0 | } |
3964 | 0 | { |
3965 | 0 | E TcP, TcS, Tjr, Tjs; |
3966 | 0 | TcP = TbV - Tca; |
3967 | 0 | TcS = TcQ - TcR; |
3968 | 0 | ri[WS(rs, 61)] = TcP - TcS; |
3969 | 0 | ri[WS(rs, 29)] = TcP + TcS; |
3970 | 0 | Tjr = TcN - Tcu; |
3971 | 0 | Tjs = Tjp - Tjo; |
3972 | 0 | ii[WS(rs, 29)] = Tjr + Tjs; |
3973 | 0 | ii[WS(rs, 61)] = Tjs - Tjr; |
3974 | 0 | } |
3975 | 0 | { |
3976 | 0 | E TcX, Td4, Tjf, Tjk; |
3977 | 0 | TcX = TcT + TcW; |
3978 | 0 | Td4 = Td0 + Td3; |
3979 | 0 | ri[WS(rs, 37)] = TcX - Td4; |
3980 | 0 | ri[WS(rs, 5)] = TcX + Td4; |
3981 | 0 | Tjf = Td6 + Td7; |
3982 | 0 | Tjk = Tjg + Tjj; |
3983 | 0 | ii[WS(rs, 5)] = Tjf + Tjk; |
3984 | 0 | ii[WS(rs, 37)] = Tjk - Tjf; |
3985 | 0 | } |
3986 | 0 | { |
3987 | 0 | E Td5, Td8, Tjl, Tjm; |
3988 | 0 | Td5 = TcT - TcW; |
3989 | 0 | Td8 = Td6 - Td7; |
3990 | 0 | ri[WS(rs, 53)] = Td5 - Td8; |
3991 | 0 | ri[WS(rs, 21)] = Td5 + Td8; |
3992 | 0 | Tjl = Td3 - Td0; |
3993 | 0 | Tjm = Tjj - Tjg; |
3994 | 0 | ii[WS(rs, 21)] = Tjl + Tjm; |
3995 | 0 | ii[WS(rs, 53)] = Tjm - Tjl; |
3996 | 0 | } |
3997 | 0 | } |
3998 | 0 | { |
3999 | 0 | E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD; |
4000 | 0 | E TdP; |
4001 | 0 | { |
4002 | 0 | E Td9, Tdc, TiZ, Tj4; |
4003 | 0 | Td9 = TbJ + TbM; |
4004 | 0 | Tdc = Tda + Tdb; |
4005 | 0 | Tdd = Td9 - Tdc; |
4006 | 0 | TdF = Td9 + Tdc; |
4007 | 0 | TiZ = TbQ + TbT; |
4008 | 0 | Tj4 = Tj0 + Tj3; |
4009 | 0 | Tj5 = TiZ + Tj4; |
4010 | 0 | Tjb = Tj4 - TiZ; |
4011 | 0 | } |
4012 | 0 | { |
4013 | 0 | E Tdg, TdG, Tdj, TdH; |
4014 | 0 | { |
4015 | 0 | E Tde, Tdf, Tdh, Tdi; |
4016 | 0 | Tde = TbW + TbX; |
4017 | 0 | Tdf = TbZ + Tc0; |
4018 | 0 | Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); |
4019 | 0 | TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); |
4020 | 0 | Tdh = Tc3 + Tc4; |
4021 | 0 | Tdi = Tc6 + Tc7; |
4022 | 0 | Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); |
4023 | 0 | TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); |
4024 | 0 | } |
4025 | 0 | Tdk = Tdg - Tdj; |
4026 | 0 | Tja = TdH - TdG; |
4027 | 0 | TdI = TdG + TdH; |
4028 | 0 | TiY = Tdg + Tdj; |
4029 | 0 | } |
4030 | 0 | { |
4031 | 0 | E Tdo, TdK, Tdr, TdL; |
4032 | 0 | { |
4033 | 0 | E Tdm, Tdn, Tdp, Tdq; |
4034 | 0 | Tdm = Tcn + Tco; |
4035 | 0 | Tdn = Tck + Tch; |
4036 | 0 | Tdo = Tdm - Tdn; |
4037 | 0 | TdK = Tdm + Tdn; |
4038 | 0 | Tdp = Tcc + Tcd; |
4039 | 0 | Tdq = Tcq + Tcr; |
4040 | 0 | Tdr = Tdp - Tdq; |
4041 | 0 | TdL = Tdp + Tdq; |
4042 | 0 | } |
4043 | 0 | Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); |
4044 | 0 | TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); |
4045 | 0 | TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); |
4046 | 0 | TdM = FMA(KP995184726, TdK, KP098017140 * TdL); |
4047 | 0 | } |
4048 | 0 | { |
4049 | 0 | E Tdv, TdN, Tdy, TdO; |
4050 | 0 | { |
4051 | 0 | E Tdt, Tdu, Tdw, Tdx; |
4052 | 0 | Tdt = Tcv + Tcw; |
4053 | 0 | Tdu = TcK + TcJ; |
4054 | 0 | Tdv = Tdt - Tdu; |
4055 | 0 | TdN = Tdt + Tdu; |
4056 | 0 | Tdw = TcG + TcH; |
4057 | 0 | Tdx = TcA + TcD; |
4058 | 0 | Tdy = Tdw - Tdx; |
4059 | 0 | TdO = Tdw + Tdx; |
4060 | 0 | } |
4061 | 0 | Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); |
4062 | 0 | TdT = FMA(KP098017140, TdN, KP995184726 * TdO); |
4063 | 0 | TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); |
4064 | 0 | TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); |
4065 | 0 | } |
4066 | 0 | { |
4067 | 0 | E Tdl, TdA, Tj9, Tjc; |
4068 | 0 | Tdl = Tdd + Tdk; |
4069 | 0 | TdA = Tds + Tdz; |
4070 | 0 | ri[WS(rs, 41)] = Tdl - TdA; |
4071 | 0 | ri[WS(rs, 9)] = Tdl + TdA; |
4072 | 0 | Tj9 = TdC + TdD; |
4073 | 0 | Tjc = Tja + Tjb; |
4074 | 0 | ii[WS(rs, 9)] = Tj9 + Tjc; |
4075 | 0 | ii[WS(rs, 41)] = Tjc - Tj9; |
4076 | 0 | } |
4077 | 0 | { |
4078 | 0 | E TdB, TdE, Tjd, Tje; |
4079 | 0 | TdB = Tdd - Tdk; |
4080 | 0 | TdE = TdC - TdD; |
4081 | 0 | ri[WS(rs, 57)] = TdB - TdE; |
4082 | 0 | ri[WS(rs, 25)] = TdB + TdE; |
4083 | 0 | Tjd = Tdz - Tds; |
4084 | 0 | Tje = Tjb - Tja; |
4085 | 0 | ii[WS(rs, 25)] = Tjd + Tje; |
4086 | 0 | ii[WS(rs, 57)] = Tje - Tjd; |
4087 | 0 | } |
4088 | 0 | { |
4089 | 0 | E TdJ, TdQ, TiX, Tj6; |
4090 | 0 | TdJ = TdF + TdI; |
4091 | 0 | TdQ = TdM + TdP; |
4092 | 0 | ri[WS(rs, 33)] = TdJ - TdQ; |
4093 | 0 | ri[WS(rs, 1)] = TdJ + TdQ; |
4094 | 0 | TiX = TdS + TdT; |
4095 | 0 | Tj6 = TiY + Tj5; |
4096 | 0 | ii[WS(rs, 1)] = TiX + Tj6; |
4097 | 0 | ii[WS(rs, 33)] = Tj6 - TiX; |
4098 | 0 | } |
4099 | 0 | { |
4100 | 0 | E TdR, TdU, Tj7, Tj8; |
4101 | 0 | TdR = TdF - TdI; |
4102 | 0 | TdU = TdS - TdT; |
4103 | 0 | ri[WS(rs, 49)] = TdR - TdU; |
4104 | 0 | ri[WS(rs, 17)] = TdR + TdU; |
4105 | 0 | Tj7 = TdP - TdM; |
4106 | 0 | Tj8 = Tj5 - TiY; |
4107 | 0 | ii[WS(rs, 17)] = Tj7 + Tj8; |
4108 | 0 | ii[WS(rs, 49)] = Tj8 - Tj7; |
4109 | 0 | } |
4110 | 0 | } |
4111 | 0 | { |
4112 | 0 | E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr; |
4113 | 0 | E TbD; |
4114 | 0 | { |
4115 | 0 | E TaX, Tb0, Tjv, Tjy; |
4116 | 0 | TaX = T7l + T7w; |
4117 | 0 | Tb0 = TaY + TaZ; |
4118 | 0 | Tb1 = TaX - Tb0; |
4119 | 0 | Tbt = TaX + Tb0; |
4120 | 0 | Tjv = T7I + T7T; |
4121 | 0 | Tjy = Tjw + Tjx; |
4122 | 0 | Tjz = Tjv + Tjy; |
4123 | 0 | TjF = Tjy - Tjv; |
4124 | 0 | } |
4125 | 0 | { |
4126 | 0 | E Tb4, Tbu, Tb7, Tbv; |
4127 | 0 | { |
4128 | 0 | E Tb2, Tb3, Tb5, Tb6; |
4129 | 0 | Tb2 = T80 + T8b; |
4130 | 0 | Tb3 = T8h + T8k; |
4131 | 0 | Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); |
4132 | 0 | Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); |
4133 | 0 | Tb5 = T8r + T8C; |
4134 | 0 | Tb6 = T8I + T8L; |
4135 | 0 | Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); |
4136 | 0 | Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); |
4137 | 0 | } |
4138 | 0 | Tb8 = Tb4 - Tb7; |
4139 | 0 | TjE = Tbv - Tbu; |
4140 | 0 | Tbw = Tbu + Tbv; |
4141 | 0 | Tju = Tb4 + Tb7; |
4142 | 0 | } |
4143 | 0 | { |
4144 | 0 | E Tbc, Tby, Tbf, Tbz; |
4145 | 0 | { |
4146 | 0 | E Tba, Tbb, Tbd, Tbe; |
4147 | 0 | Tba = T9z + T9C; |
4148 | 0 | Tbb = T9s + T9h; |
4149 | 0 | Tbc = Tba - Tbb; |
4150 | 0 | Tby = Tba + Tbb; |
4151 | 0 | Tbd = T8U + T95; |
4152 | 0 | Tbe = T9E + T9F; |
4153 | 0 | Tbf = Tbd - Tbe; |
4154 | 0 | Tbz = Tbd + Tbe; |
4155 | 0 | } |
4156 | 0 | Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); |
4157 | 0 | TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); |
4158 | 0 | Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); |
4159 | 0 | TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); |
4160 | 0 | } |
4161 | 0 | { |
4162 | 0 | E Tbj, TbB, Tbm, TbC; |
4163 | 0 | { |
4164 | 0 | E Tbh, Tbi, Tbk, Tbl; |
4165 | 0 | Tbh = T9N + T9Y; |
4166 | 0 | Tbi = Tay + Tax; |
4167 | 0 | Tbj = Tbh - Tbi; |
4168 | 0 | TbB = Tbh + Tbi; |
4169 | 0 | Tbk = Tas + Tav; |
4170 | 0 | Tbl = Taa + Tal; |
4171 | 0 | Tbm = Tbk - Tbl; |
4172 | 0 | TbC = Tbk + Tbl; |
4173 | 0 | } |
4174 | 0 | Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); |
4175 | 0 | TbH = FMA(KP290284677, TbB, KP956940335 * TbC); |
4176 | 0 | Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); |
4177 | 0 | TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); |
4178 | 0 | } |
4179 | 0 | { |
4180 | 0 | E Tb9, Tbo, TjD, TjG; |
4181 | 0 | Tb9 = Tb1 + Tb8; |
4182 | 0 | Tbo = Tbg + Tbn; |
4183 | 0 | ri[WS(rs, 43)] = Tb9 - Tbo; |
4184 | 0 | ri[WS(rs, 11)] = Tb9 + Tbo; |
4185 | 0 | TjD = Tbq + Tbr; |
4186 | 0 | TjG = TjE + TjF; |
4187 | 0 | ii[WS(rs, 11)] = TjD + TjG; |
4188 | 0 | ii[WS(rs, 43)] = TjG - TjD; |
4189 | 0 | } |
4190 | 0 | { |
4191 | 0 | E Tbp, Tbs, TjH, TjI; |
4192 | 0 | Tbp = Tb1 - Tb8; |
4193 | 0 | Tbs = Tbq - Tbr; |
4194 | 0 | ri[WS(rs, 59)] = Tbp - Tbs; |
4195 | 0 | ri[WS(rs, 27)] = Tbp + Tbs; |
4196 | 0 | TjH = Tbn - Tbg; |
4197 | 0 | TjI = TjF - TjE; |
4198 | 0 | ii[WS(rs, 27)] = TjH + TjI; |
4199 | 0 | ii[WS(rs, 59)] = TjI - TjH; |
4200 | 0 | } |
4201 | 0 | { |
4202 | 0 | E Tbx, TbE, Tjt, TjA; |
4203 | 0 | Tbx = Tbt + Tbw; |
4204 | 0 | TbE = TbA + TbD; |
4205 | 0 | ri[WS(rs, 35)] = Tbx - TbE; |
4206 | 0 | ri[WS(rs, 3)] = Tbx + TbE; |
4207 | 0 | Tjt = TbG + TbH; |
4208 | 0 | TjA = Tju + Tjz; |
4209 | 0 | ii[WS(rs, 3)] = Tjt + TjA; |
4210 | 0 | ii[WS(rs, 35)] = TjA - Tjt; |
4211 | 0 | } |
4212 | 0 | { |
4213 | 0 | E TbF, TbI, TjB, TjC; |
4214 | 0 | TbF = Tbt - Tbw; |
4215 | 0 | TbI = TbG - TbH; |
4216 | 0 | ri[WS(rs, 51)] = TbF - TbI; |
4217 | 0 | ri[WS(rs, 19)] = TbF + TbI; |
4218 | 0 | TjB = TbD - TbA; |
4219 | 0 | TjC = Tjz - Tju; |
4220 | 0 | ii[WS(rs, 19)] = TjB + TjC; |
4221 | 0 | ii[WS(rs, 51)] = TjC - TjB; |
4222 | 0 | } |
4223 | 0 | } |
4224 | 0 | } |
4225 | 0 | } |
4226 | 0 | } |
4227 | 0 | } |
4228 | | |
4229 | | static const tw_instr twinstr[] = { |
4230 | | { TW_CEXP, 0, 1 }, |
4231 | | { TW_CEXP, 0, 3 }, |
4232 | | { TW_CEXP, 0, 9 }, |
4233 | | { TW_CEXP, 0, 27 }, |
4234 | | { TW_CEXP, 0, 63 }, |
4235 | | { TW_NEXT, 1, 0 } |
4236 | | }; |
4237 | | |
4238 | | static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, { 880, 386, 274, 0 }, 0, 0, 0 }; |
4239 | | |
4240 | 1 | void X(codelet_t2_64) (planner *p) { |
4241 | 1 | X(kdft_dit_register) (p, t2_64, &desc); |
4242 | 1 | } |
4243 | | #endif |