/src/fftw3/rdft/scalar/r2cb/hc2cbdft2_20.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sat Jan 10 06:13:17 UTC 2026 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft2_20 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 286 FP additions, 148 FP multiplications, |
32 | | * (or, 176 additions, 38 multiplications, 110 fused multiply/add), |
33 | | * 104 stack variables, 4 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cbdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
46 | | E T27, T2o, T3T, T41, T2p, T40, T1N, T2Q, T1w, T2L, T4n, T59, T4A, T5e, T24; |
47 | | E T2m, T2h, T2Z, T3P, T4J, T3W, T3Y, T7, TC, T2c, T2d, T3y, T3F, T3G, T3H; |
48 | | E T46, T4d, T4e, T4f, T4r, T4u, T4v, T4w, T1E, T1H, T1I, T1J, TJ, T16, T17; |
49 | | E T18; |
50 | | { |
51 | | E T3, T1A, TI, T25, T6, TF, T1D, T26, Te, T47, T4k, TO, T1e, T3z, T3M; |
52 | | E T1S, Tt, T4a, T4h, TZ, T1p, T3C, T3J, T1Z, TA, T4b, T4i, T14, T1u, T3D; |
53 | | E T3K, T22, Tl, T48, T4l, TT, T1j, T3A, T3N, T1V; |
54 | | { |
55 | | E T1, T2, TG, TH; |
56 | | T1 = Rp[0]; |
57 | | T2 = Rm[WS(rs, 9)]; |
58 | | T3 = T1 + T2; |
59 | | T1A = T1 - T2; |
60 | | TG = Ip[0]; |
61 | | TH = Im[WS(rs, 9)]; |
62 | | TI = TG + TH; |
63 | | T25 = TG - TH; |
64 | | } |
65 | | { |
66 | | E T4, T5, T1B, T1C; |
67 | | T4 = Rp[WS(rs, 5)]; |
68 | | T5 = Rm[WS(rs, 4)]; |
69 | | T6 = T4 + T5; |
70 | | TF = T4 - T5; |
71 | | T1B = Ip[WS(rs, 5)]; |
72 | | T1C = Im[WS(rs, 4)]; |
73 | | T1D = T1B + T1C; |
74 | | T26 = T1B - T1C; |
75 | | } |
76 | | { |
77 | | E Ta, T1a, TN, T1Q, Td, TK, T1d, T1R; |
78 | | { |
79 | | E T8, T9, TL, TM; |
80 | | T8 = Rp[WS(rs, 4)]; |
81 | | T9 = Rm[WS(rs, 5)]; |
82 | | Ta = T8 + T9; |
83 | | T1a = T8 - T9; |
84 | | TL = Ip[WS(rs, 4)]; |
85 | | TM = Im[WS(rs, 5)]; |
86 | | TN = TL + TM; |
87 | | T1Q = TL - TM; |
88 | | } |
89 | | { |
90 | | E Tb, Tc, T1b, T1c; |
91 | | Tb = Rp[WS(rs, 9)]; |
92 | | Tc = Rm[0]; |
93 | | Td = Tb + Tc; |
94 | | TK = Tb - Tc; |
95 | | T1b = Ip[WS(rs, 9)]; |
96 | | T1c = Im[0]; |
97 | | T1d = T1b + T1c; |
98 | | T1R = T1b - T1c; |
99 | | } |
100 | | Te = Ta + Td; |
101 | | T47 = TN - TK; |
102 | | T4k = T1a + T1d; |
103 | | TO = TK + TN; |
104 | | T1e = T1a - T1d; |
105 | | T3z = Ta - Td; |
106 | | T3M = T1Q - T1R; |
107 | | T1S = T1Q + T1R; |
108 | | } |
109 | | { |
110 | | E Tp, T1l, TY, T1X, Ts, TV, T1o, T1Y; |
111 | | { |
112 | | E Tn, To, TW, TX; |
113 | | Tn = Rp[WS(rs, 8)]; |
114 | | To = Rm[WS(rs, 1)]; |
115 | | Tp = Tn + To; |
116 | | T1l = Tn - To; |
117 | | TW = Ip[WS(rs, 8)]; |
118 | | TX = Im[WS(rs, 1)]; |
119 | | TY = TW + TX; |
120 | | T1X = TW - TX; |
121 | | } |
122 | | { |
123 | | E Tq, Tr, T1m, T1n; |
124 | | Tq = Rm[WS(rs, 6)]; |
125 | | Tr = Rp[WS(rs, 3)]; |
126 | | Ts = Tq + Tr; |
127 | | TV = Tq - Tr; |
128 | | T1m = Im[WS(rs, 6)]; |
129 | | T1n = Ip[WS(rs, 3)]; |
130 | | T1o = T1m + T1n; |
131 | | T1Y = T1n - T1m; |
132 | | } |
133 | | Tt = Tp + Ts; |
134 | | T4a = TY - TV; |
135 | | T4h = T1l - T1o; |
136 | | TZ = TV + TY; |
137 | | T1p = T1l + T1o; |
138 | | T3C = Tp - Ts; |
139 | | T3J = T1X - T1Y; |
140 | | T1Z = T1X + T1Y; |
141 | | } |
142 | | { |
143 | | E Tw, T1q, T13, T20, Tz, T10, T1t, T21; |
144 | | { |
145 | | E Tu, Tv, T11, T12; |
146 | | Tu = Rm[WS(rs, 7)]; |
147 | | Tv = Rp[WS(rs, 2)]; |
148 | | Tw = Tu + Tv; |
149 | | T1q = Tu - Tv; |
150 | | T11 = Im[WS(rs, 7)]; |
151 | | T12 = Ip[WS(rs, 2)]; |
152 | | T13 = T11 + T12; |
153 | | T20 = T12 - T11; |
154 | | } |
155 | | { |
156 | | E Tx, Ty, T1r, T1s; |
157 | | Tx = Rm[WS(rs, 2)]; |
158 | | Ty = Rp[WS(rs, 7)]; |
159 | | Tz = Tx + Ty; |
160 | | T10 = Tx - Ty; |
161 | | T1r = Im[WS(rs, 2)]; |
162 | | T1s = Ip[WS(rs, 7)]; |
163 | | T1t = T1r + T1s; |
164 | | T21 = T1s - T1r; |
165 | | } |
166 | | TA = Tw + Tz; |
167 | | T4b = T10 + T13; |
168 | | T4i = T1q - T1t; |
169 | | T14 = T10 - T13; |
170 | | T1u = T1q + T1t; |
171 | | T3D = Tw - Tz; |
172 | | T3K = T20 - T21; |
173 | | T22 = T20 + T21; |
174 | | } |
175 | | { |
176 | | E Th, T1f, TS, T1T, Tk, TP, T1i, T1U; |
177 | | { |
178 | | E Tf, Tg, TQ, TR; |
179 | | Tf = Rm[WS(rs, 3)]; |
180 | | Tg = Rp[WS(rs, 6)]; |
181 | | Th = Tf + Tg; |
182 | | T1f = Tf - Tg; |
183 | | TQ = Im[WS(rs, 3)]; |
184 | | TR = Ip[WS(rs, 6)]; |
185 | | TS = TQ + TR; |
186 | | T1T = TR - TQ; |
187 | | } |
188 | | { |
189 | | E Ti, Tj, T1g, T1h; |
190 | | Ti = Rp[WS(rs, 1)]; |
191 | | Tj = Rm[WS(rs, 8)]; |
192 | | Tk = Ti + Tj; |
193 | | TP = Ti - Tj; |
194 | | T1g = Ip[WS(rs, 1)]; |
195 | | T1h = Im[WS(rs, 8)]; |
196 | | T1i = T1g + T1h; |
197 | | T1U = T1g - T1h; |
198 | | } |
199 | | Tl = Th + Tk; |
200 | | T48 = TP + TS; |
201 | | T4l = T1f + T1i; |
202 | | TT = TP - TS; |
203 | | T1j = T1f - T1i; |
204 | | T3A = Th - Tk; |
205 | | T3N = T1T - T1U; |
206 | | T1V = T1T + T1U; |
207 | | } |
208 | | T27 = T25 + T26; |
209 | | T2o = Tt - TA; |
210 | | T3T = T25 - T26; |
211 | | T41 = T3z - T3A; |
212 | | T2p = Te - Tl; |
213 | | { |
214 | | E T1L, T1M, T1k, T1v; |
215 | | T40 = T3C - T3D; |
216 | | T1L = TO - TT; |
217 | | T1M = TZ - T14; |
218 | | T1N = FMA(KP618033988, T1M, T1L); |
219 | | T2Q = FNMS(KP618033988, T1L, T1M); |
220 | | T1k = T1e - T1j; |
221 | | T1v = T1p - T1u; |
222 | | T1w = FMA(KP618033988, T1v, T1k); |
223 | | T2L = FNMS(KP618033988, T1k, T1v); |
224 | | { |
225 | | E T4j, T4m, T4y, T4z; |
226 | | T4j = T4h - T4i; |
227 | | T4m = T4k - T4l; |
228 | | T4n = FNMS(KP618033988, T4m, T4j); |
229 | | T59 = FMA(KP618033988, T4j, T4m); |
230 | | T4y = T4a + T4b; |
231 | | T4z = T47 + T48; |
232 | | T4A = FNMS(KP618033988, T4z, T4y); |
233 | | T5e = FMA(KP618033988, T4y, T4z); |
234 | | } |
235 | | } |
236 | | { |
237 | | E T3L, T3O, T4s, T4t; |
238 | | { |
239 | | E T1W, T23, T2f, T2g; |
240 | | T1W = T1S + T1V; |
241 | | T23 = T1Z + T22; |
242 | | T24 = T1W + T23; |
243 | | T2m = T1W - T23; |
244 | | T2f = T1Z - T22; |
245 | | T2g = T1S - T1V; |
246 | | T2h = FNMS(KP618033988, T2g, T2f); |
247 | | T2Z = FMA(KP618033988, T2f, T2g); |
248 | | } |
249 | | T3L = T3J - T3K; |
250 | | T3O = T3M - T3N; |
251 | | T3P = FNMS(KP618033988, T3O, T3L); |
252 | | T4J = FMA(KP618033988, T3L, T3O); |
253 | | { |
254 | | E T3U, T3V, Tm, TB; |
255 | | T3U = T3M + T3N; |
256 | | T3V = T3J + T3K; |
257 | | T3W = T3U + T3V; |
258 | | T3Y = T3U - T3V; |
259 | | T7 = T3 + T6; |
260 | | Tm = Te + Tl; |
261 | | TB = Tt + TA; |
262 | | TC = Tm + TB; |
263 | | T2c = FNMS(KP250000000, TC, T7); |
264 | | T2d = Tm - TB; |
265 | | } |
266 | | { |
267 | | E T3B, T3E, T49, T4c; |
268 | | T3y = T3 - T6; |
269 | | T3B = T3z + T3A; |
270 | | T3E = T3C + T3D; |
271 | | T3F = T3B + T3E; |
272 | | T3G = FNMS(KP250000000, T3F, T3y); |
273 | | T3H = T3B - T3E; |
274 | | T46 = TI - TF; |
275 | | T49 = T47 - T48; |
276 | | T4c = T4a - T4b; |
277 | | T4d = T49 + T4c; |
278 | | T4e = FNMS(KP250000000, T4d, T46); |
279 | | T4f = T49 - T4c; |
280 | | } |
281 | | T4r = T1A + T1D; |
282 | | T4s = T4k + T4l; |
283 | | T4t = T4h + T4i; |
284 | | T4u = T4s + T4t; |
285 | | T4v = FNMS(KP250000000, T4u, T4r); |
286 | | T4w = T4s - T4t; |
287 | | { |
288 | | E T1F, T1G, TU, T15; |
289 | | T1E = T1A - T1D; |
290 | | T1F = T1e + T1j; |
291 | | T1G = T1p + T1u; |
292 | | T1H = T1F + T1G; |
293 | | T1I = FNMS(KP250000000, T1H, T1E); |
294 | | T1J = T1F - T1G; |
295 | | TJ = TF + TI; |
296 | | TU = TO + TT; |
297 | | T15 = TZ + T14; |
298 | | T16 = TU + T15; |
299 | | T17 = FNMS(KP250000000, T16, TJ); |
300 | | T18 = TU - T15; |
301 | | } |
302 | | } |
303 | | } |
304 | | { |
305 | | E TD, T28, T3o, T3r, T3p, T3v, T2r, T3l, T2H, T35, T2b, T2j, T2k, T2z, T2D; |
306 | | E T2F, T2G, T2T, T2X, T31, T32, T3d, T3h, T3j, T3k, T3t, T1x, T2u, T1O, T2x; |
307 | | E T1y, T29, T2v, T2B, T2M, T38, T2R, T3b, T2N, T2V, T39, T3f, T3n, T1P, T2a; |
308 | | E T1z; |
309 | | TD = T7 + TC; |
310 | | T28 = T24 + T27; |
311 | | T3o = TJ + T16; |
312 | | T3r = T1H + T1E; |
313 | | T3n = W[8]; |
314 | | T3p = T3n * T3o; |
315 | | T3v = T3n * T3r; |
316 | | { |
317 | | E T2q, T34, T2n, T33, T2l; |
318 | | T2q = FNMS(KP618033988, T2p, T2o); |
319 | | T34 = FMA(KP618033988, T2o, T2p); |
320 | | T2l = FNMS(KP250000000, T24, T27); |
321 | | T2n = FNMS(KP559016994, T2m, T2l); |
322 | | T33 = FMA(KP559016994, T2m, T2l); |
323 | | T2r = FMA(KP951056516, T2q, T2n); |
324 | | T3l = FNMS(KP951056516, T34, T33); |
325 | | T2H = FNMS(KP951056516, T2q, T2n); |
326 | | T35 = FMA(KP951056516, T34, T33); |
327 | | } |
328 | | { |
329 | | E T2i, T2E, T2e, T30, T3i, T2Y; |
330 | | T2e = FNMS(KP559016994, T2d, T2c); |
331 | | T2i = FNMS(KP951056516, T2h, T2e); |
332 | | T2E = FMA(KP951056516, T2h, T2e); |
333 | | T2b = W[14]; |
334 | | T2j = T2b * T2i; |
335 | | T2k = W[15]; |
336 | | T2z = T2k * T2i; |
337 | | T2D = W[22]; |
338 | | T2F = T2D * T2E; |
339 | | T2G = W[23]; |
340 | | T2T = T2G * T2E; |
341 | | T2Y = FMA(KP559016994, T2d, T2c); |
342 | | T30 = FNMS(KP951056516, T2Z, T2Y); |
343 | | T3i = FMA(KP951056516, T2Z, T2Y); |
344 | | T2X = W[30]; |
345 | | T31 = T2X * T30; |
346 | | T32 = W[31]; |
347 | | T3d = T32 * T30; |
348 | | T3h = W[6]; |
349 | | T3j = T3h * T3i; |
350 | | T3k = W[7]; |
351 | | T3t = T3k * T3i; |
352 | | } |
353 | | { |
354 | | E T19, T1K, TE, T2t; |
355 | | T19 = FMA(KP559016994, T18, T17); |
356 | | T1x = FMA(KP951056516, T1w, T19); |
357 | | T2u = FNMS(KP951056516, T1w, T19); |
358 | | T1K = FMA(KP559016994, T1J, T1I); |
359 | | T1O = FNMS(KP951056516, T1N, T1K); |
360 | | T2x = FMA(KP951056516, T1N, T1K); |
361 | | TE = W[0]; |
362 | | T1y = TE * T1x; |
363 | | T29 = TE * T1O; |
364 | | T2t = W[16]; |
365 | | T2v = T2t * T2u; |
366 | | T2B = T2t * T2x; |
367 | | } |
368 | | { |
369 | | E T2K, T2P, T2J, T37; |
370 | | T2K = FNMS(KP559016994, T18, T17); |
371 | | T2M = FMA(KP951056516, T2L, T2K); |
372 | | T38 = FNMS(KP951056516, T2L, T2K); |
373 | | T2P = FNMS(KP559016994, T1J, T1I); |
374 | | T2R = FNMS(KP951056516, T2Q, T2P); |
375 | | T3b = FMA(KP951056516, T2Q, T2P); |
376 | | T2J = W[24]; |
377 | | T2N = T2J * T2M; |
378 | | T2V = T2J * T2R; |
379 | | T37 = W[32]; |
380 | | T39 = T37 * T38; |
381 | | T3f = T37 * T3b; |
382 | | } |
383 | | T1z = W[1]; |
384 | | T1P = FMA(T1z, T1O, T1y); |
385 | | T2a = FNMS(T1z, T1x, T29); |
386 | | Rp[0] = TD - T1P; |
387 | | Ip[0] = T28 + T2a; |
388 | | Rm[0] = TD + T1P; |
389 | | Im[0] = T2a - T28; |
390 | | { |
391 | | E T3m, T3u, T3s, T3w, T3q; |
392 | | T3m = FNMS(T3k, T3l, T3j); |
393 | | T3u = FMA(T3h, T3l, T3t); |
394 | | T3q = W[9]; |
395 | | T3s = FMA(T3q, T3r, T3p); |
396 | | T3w = FNMS(T3q, T3o, T3v); |
397 | | Rp[WS(rs, 2)] = T3m - T3s; |
398 | | Ip[WS(rs, 2)] = T3u + T3w; |
399 | | Rm[WS(rs, 2)] = T3m + T3s; |
400 | | Im[WS(rs, 2)] = T3w - T3u; |
401 | | } |
402 | | { |
403 | | E T2s, T2A, T2y, T2C, T2w; |
404 | | T2s = FNMS(T2k, T2r, T2j); |
405 | | T2A = FMA(T2b, T2r, T2z); |
406 | | T2w = W[17]; |
407 | | T2y = FMA(T2w, T2x, T2v); |
408 | | T2C = FNMS(T2w, T2u, T2B); |
409 | | Rp[WS(rs, 4)] = T2s - T2y; |
410 | | Ip[WS(rs, 4)] = T2A + T2C; |
411 | | Rm[WS(rs, 4)] = T2s + T2y; |
412 | | Im[WS(rs, 4)] = T2C - T2A; |
413 | | } |
414 | | { |
415 | | E T2I, T2U, T2S, T2W, T2O; |
416 | | T2I = FNMS(T2G, T2H, T2F); |
417 | | T2U = FMA(T2D, T2H, T2T); |
418 | | T2O = W[25]; |
419 | | T2S = FMA(T2O, T2R, T2N); |
420 | | T2W = FNMS(T2O, T2M, T2V); |
421 | | Rp[WS(rs, 6)] = T2I - T2S; |
422 | | Ip[WS(rs, 6)] = T2U + T2W; |
423 | | Rm[WS(rs, 6)] = T2I + T2S; |
424 | | Im[WS(rs, 6)] = T2W - T2U; |
425 | | } |
426 | | { |
427 | | E T36, T3e, T3c, T3g, T3a; |
428 | | T36 = FNMS(T32, T35, T31); |
429 | | T3e = FMA(T2X, T35, T3d); |
430 | | T3a = W[33]; |
431 | | T3c = FMA(T3a, T3b, T39); |
432 | | T3g = FNMS(T3a, T38, T3f); |
433 | | Rp[WS(rs, 8)] = T36 - T3c; |
434 | | Ip[WS(rs, 8)] = T3e + T3g; |
435 | | Rm[WS(rs, 8)] = T36 + T3c; |
436 | | Im[WS(rs, 8)] = T3g - T3e; |
437 | | } |
438 | | } |
439 | | { |
440 | | E T55, T51, T53, T54, T5h, T5I, T5L, T5J, T5P, T43, T5F, T4P, T5p, T3x, T3R; |
441 | | E T3S, T4D, T5l, T5n, T5o, T5x, T4H, T4L, T4M, T4X, T5B, T5D, T5E, T5N, T4o; |
442 | | E T4S, T4B, T4V, T4p, T4F, T4T, T4Z, T5a, T5s, T5f, T5v, T5b, T5j, T5t, T5z; |
443 | | E T52, T5H; |
444 | | T55 = T3W + T3T; |
445 | | T52 = T3y + T3F; |
446 | | T51 = W[18]; |
447 | | T53 = T51 * T52; |
448 | | T54 = W[19]; |
449 | | T5h = T54 * T52; |
450 | | T5I = T46 + T4d; |
451 | | T5L = T4u + T4r; |
452 | | T5H = W[28]; |
453 | | T5J = T5H * T5I; |
454 | | T5P = T5H * T5L; |
455 | | { |
456 | | E T42, T4O, T3Z, T4N, T3X; |
457 | | T42 = FNMS(KP618033988, T41, T40); |
458 | | T4O = FMA(KP618033988, T40, T41); |
459 | | T3X = FNMS(KP250000000, T3W, T3T); |
460 | | T3Z = FNMS(KP559016994, T3Y, T3X); |
461 | | T4N = FMA(KP559016994, T3Y, T3X); |
462 | | T43 = FNMS(KP951056516, T42, T3Z); |
463 | | T5F = FNMS(KP951056516, T4O, T4N); |
464 | | T4P = FMA(KP951056516, T4O, T4N); |
465 | | T5p = FMA(KP951056516, T42, T3Z); |
466 | | } |
467 | | { |
468 | | E T3Q, T5m, T3I, T4K, T5C, T4I; |
469 | | T3I = FNMS(KP559016994, T3H, T3G); |
470 | | T3Q = FMA(KP951056516, T3P, T3I); |
471 | | T5m = FNMS(KP951056516, T3P, T3I); |
472 | | T3x = W[2]; |
473 | | T3R = T3x * T3Q; |
474 | | T3S = W[3]; |
475 | | T4D = T3S * T3Q; |
476 | | T5l = W[34]; |
477 | | T5n = T5l * T5m; |
478 | | T5o = W[35]; |
479 | | T5x = T5o * T5m; |
480 | | T4I = FMA(KP559016994, T3H, T3G); |
481 | | T4K = FNMS(KP951056516, T4J, T4I); |
482 | | T5C = FMA(KP951056516, T4J, T4I); |
483 | | T4H = W[10]; |
484 | | T4L = T4H * T4K; |
485 | | T4M = W[11]; |
486 | | T4X = T4M * T4K; |
487 | | T5B = W[26]; |
488 | | T5D = T5B * T5C; |
489 | | T5E = W[27]; |
490 | | T5N = T5E * T5C; |
491 | | } |
492 | | { |
493 | | E T4g, T4x, T45, T4R; |
494 | | T4g = FNMS(KP559016994, T4f, T4e); |
495 | | T4o = FMA(KP951056516, T4n, T4g); |
496 | | T4S = FNMS(KP951056516, T4n, T4g); |
497 | | T4x = FNMS(KP559016994, T4w, T4v); |
498 | | T4B = FNMS(KP951056516, T4A, T4x); |
499 | | T4V = FMA(KP951056516, T4A, T4x); |
500 | | T45 = W[4]; |
501 | | T4p = T45 * T4o; |
502 | | T4F = T45 * T4B; |
503 | | T4R = W[12]; |
504 | | T4T = T4R * T4S; |
505 | | T4Z = T4R * T4V; |
506 | | } |
507 | | { |
508 | | E T58, T5d, T57, T5r; |
509 | | T58 = FMA(KP559016994, T4f, T4e); |
510 | | T5a = FMA(KP951056516, T59, T58); |
511 | | T5s = FNMS(KP951056516, T59, T58); |
512 | | T5d = FMA(KP559016994, T4w, T4v); |
513 | | T5f = FNMS(KP951056516, T5e, T5d); |
514 | | T5v = FMA(KP951056516, T5e, T5d); |
515 | | T57 = W[20]; |
516 | | T5b = T57 * T5a; |
517 | | T5j = T57 * T5f; |
518 | | T5r = W[36]; |
519 | | T5t = T5r * T5s; |
520 | | T5z = T5r * T5v; |
521 | | } |
522 | | { |
523 | | E T44, T4E, T4C, T4G, T4q; |
524 | | T44 = FNMS(T3S, T43, T3R); |
525 | | T4E = FMA(T3x, T43, T4D); |
526 | | T4q = W[5]; |
527 | | T4C = FMA(T4q, T4B, T4p); |
528 | | T4G = FNMS(T4q, T4o, T4F); |
529 | | Rp[WS(rs, 1)] = T44 - T4C; |
530 | | Ip[WS(rs, 1)] = T4E + T4G; |
531 | | Rm[WS(rs, 1)] = T44 + T4C; |
532 | | Im[WS(rs, 1)] = T4G - T4E; |
533 | | } |
534 | | { |
535 | | E T5G, T5O, T5M, T5Q, T5K; |
536 | | T5G = FNMS(T5E, T5F, T5D); |
537 | | T5O = FMA(T5B, T5F, T5N); |
538 | | T5K = W[29]; |
539 | | T5M = FMA(T5K, T5L, T5J); |
540 | | T5Q = FNMS(T5K, T5I, T5P); |
541 | | Rp[WS(rs, 7)] = T5G - T5M; |
542 | | Ip[WS(rs, 7)] = T5O + T5Q; |
543 | | Rm[WS(rs, 7)] = T5G + T5M; |
544 | | Im[WS(rs, 7)] = T5Q - T5O; |
545 | | } |
546 | | { |
547 | | E T4Q, T4Y, T4W, T50, T4U; |
548 | | T4Q = FNMS(T4M, T4P, T4L); |
549 | | T4Y = FMA(T4H, T4P, T4X); |
550 | | T4U = W[13]; |
551 | | T4W = FMA(T4U, T4V, T4T); |
552 | | T50 = FNMS(T4U, T4S, T4Z); |
553 | | Rp[WS(rs, 3)] = T4Q - T4W; |
554 | | Ip[WS(rs, 3)] = T4Y + T50; |
555 | | Rm[WS(rs, 3)] = T4Q + T4W; |
556 | | Im[WS(rs, 3)] = T50 - T4Y; |
557 | | } |
558 | | { |
559 | | E T56, T5i, T5g, T5k, T5c; |
560 | | T56 = FNMS(T54, T55, T53); |
561 | | T5i = FMA(T51, T55, T5h); |
562 | | T5c = W[21]; |
563 | | T5g = FMA(T5c, T5f, T5b); |
564 | | T5k = FNMS(T5c, T5a, T5j); |
565 | | Rp[WS(rs, 5)] = T56 - T5g; |
566 | | Ip[WS(rs, 5)] = T5i + T5k; |
567 | | Rm[WS(rs, 5)] = T56 + T5g; |
568 | | Im[WS(rs, 5)] = T5k - T5i; |
569 | | } |
570 | | { |
571 | | E T5q, T5y, T5w, T5A, T5u; |
572 | | T5q = FNMS(T5o, T5p, T5n); |
573 | | T5y = FMA(T5l, T5p, T5x); |
574 | | T5u = W[37]; |
575 | | T5w = FMA(T5u, T5v, T5t); |
576 | | T5A = FNMS(T5u, T5s, T5z); |
577 | | Rp[WS(rs, 9)] = T5q - T5w; |
578 | | Ip[WS(rs, 9)] = T5y + T5A; |
579 | | Rm[WS(rs, 9)] = T5q + T5w; |
580 | | Im[WS(rs, 9)] = T5A - T5y; |
581 | | } |
582 | | } |
583 | | } |
584 | | } |
585 | | } |
586 | | |
587 | | static const tw_instr twinstr[] = { |
588 | | { TW_FULL, 1, 20 }, |
589 | | { TW_NEXT, 1, 0 } |
590 | | }; |
591 | | |
592 | | static const hc2c_desc desc = { 20, "hc2cbdft2_20", twinstr, &GENUS, { 176, 38, 110, 0 } }; |
593 | | |
594 | | void X(codelet_hc2cbdft2_20) (planner *p) { |
595 | | X(khc2c_register) (p, hc2cbdft2_20, &desc, HC2C_VIA_DFT); |
596 | | } |
597 | | #else |
598 | | |
599 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft2_20 -include rdft/scalar/hc2cb.h */ |
600 | | |
601 | | /* |
602 | | * This function contains 286 FP additions, 124 FP multiplications, |
603 | | * (or, 224 additions, 62 multiplications, 62 fused multiply/add), |
604 | | * 89 stack variables, 4 constants, and 80 memory accesses |
605 | | */ |
606 | | #include "rdft/scalar/hc2cb.h" |
607 | | |
608 | | static void hc2cbdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
609 | 0 | { |
610 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
611 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
612 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
613 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
614 | 0 | { |
615 | 0 | INT m; |
616 | 0 | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
617 | 0 | E T7, T3N, T4a, T16, T1G, T3g, T3D, T26, T1k, T3A, T3B, T1v, T2e, T48, T47; |
618 | 0 | E T2d, T1L, T43, T40, T1K, T2l, T3t, T2m, T3w, T3n, T3p, TC, T2b, T4d, T4f; |
619 | 0 | E T23, T2j, T1B, T1H, T3U, T3W, T3G, T3I, T11, T17; |
620 | 0 | { |
621 | 0 | E T3, T1C, T15, T24, T6, T12, T1F, T25; |
622 | 0 | { |
623 | 0 | E T1, T2, T13, T14; |
624 | 0 | T1 = Rp[0]; |
625 | 0 | T2 = Rm[WS(rs, 9)]; |
626 | 0 | T3 = T1 + T2; |
627 | 0 | T1C = T1 - T2; |
628 | 0 | T13 = Ip[0]; |
629 | 0 | T14 = Im[WS(rs, 9)]; |
630 | 0 | T15 = T13 + T14; |
631 | 0 | T24 = T13 - T14; |
632 | 0 | } |
633 | 0 | { |
634 | 0 | E T4, T5, T1D, T1E; |
635 | 0 | T4 = Rp[WS(rs, 5)]; |
636 | 0 | T5 = Rm[WS(rs, 4)]; |
637 | 0 | T6 = T4 + T5; |
638 | 0 | T12 = T4 - T5; |
639 | 0 | T1D = Ip[WS(rs, 5)]; |
640 | 0 | T1E = Im[WS(rs, 4)]; |
641 | 0 | T1F = T1D + T1E; |
642 | 0 | T25 = T1D - T1E; |
643 | 0 | } |
644 | 0 | T7 = T3 + T6; |
645 | 0 | T3N = T15 - T12; |
646 | 0 | T4a = T1C + T1F; |
647 | 0 | T16 = T12 + T15; |
648 | 0 | T1G = T1C - T1F; |
649 | 0 | T3g = T3 - T6; |
650 | 0 | T3D = T24 - T25; |
651 | 0 | T26 = T24 + T25; |
652 | 0 | } |
653 | 0 | { |
654 | 0 | E Te, T3O, T3Y, TJ, T1e, T3h, T3r, T1R, TA, T3S, T42, TZ, T1u, T3l, T3v; |
655 | 0 | E T21, Tl, T3P, T3Z, TO, T1j, T3i, T3s, T1U, Tt, T3R, T41, TU, T1p, T3k; |
656 | 0 | E T3u, T1Y; |
657 | 0 | { |
658 | 0 | E Ta, T1a, TI, T1P, Td, TF, T1d, T1Q; |
659 | 0 | { |
660 | 0 | E T8, T9, TG, TH; |
661 | 0 | T8 = Rp[WS(rs, 4)]; |
662 | 0 | T9 = Rm[WS(rs, 5)]; |
663 | 0 | Ta = T8 + T9; |
664 | 0 | T1a = T8 - T9; |
665 | 0 | TG = Ip[WS(rs, 4)]; |
666 | 0 | TH = Im[WS(rs, 5)]; |
667 | 0 | TI = TG + TH; |
668 | 0 | T1P = TG - TH; |
669 | 0 | } |
670 | 0 | { |
671 | 0 | E Tb, Tc, T1b, T1c; |
672 | 0 | Tb = Rp[WS(rs, 9)]; |
673 | 0 | Tc = Rm[0]; |
674 | 0 | Td = Tb + Tc; |
675 | 0 | TF = Tb - Tc; |
676 | 0 | T1b = Ip[WS(rs, 9)]; |
677 | 0 | T1c = Im[0]; |
678 | 0 | T1d = T1b + T1c; |
679 | 0 | T1Q = T1b - T1c; |
680 | 0 | } |
681 | 0 | Te = Ta + Td; |
682 | 0 | T3O = TI - TF; |
683 | 0 | T3Y = T1a + T1d; |
684 | 0 | TJ = TF + TI; |
685 | 0 | T1e = T1a - T1d; |
686 | 0 | T3h = Ta - Td; |
687 | 0 | T3r = T1P - T1Q; |
688 | 0 | T1R = T1P + T1Q; |
689 | 0 | } |
690 | 0 | { |
691 | 0 | E Tw, T1q, TY, T1Z, Tz, TV, T1t, T20; |
692 | 0 | { |
693 | 0 | E Tu, Tv, TW, TX; |
694 | 0 | Tu = Rm[WS(rs, 7)]; |
695 | 0 | Tv = Rp[WS(rs, 2)]; |
696 | 0 | Tw = Tu + Tv; |
697 | 0 | T1q = Tu - Tv; |
698 | 0 | TW = Im[WS(rs, 7)]; |
699 | 0 | TX = Ip[WS(rs, 2)]; |
700 | 0 | TY = TW + TX; |
701 | 0 | T1Z = TX - TW; |
702 | 0 | } |
703 | 0 | { |
704 | 0 | E Tx, Ty, T1r, T1s; |
705 | 0 | Tx = Rm[WS(rs, 2)]; |
706 | 0 | Ty = Rp[WS(rs, 7)]; |
707 | 0 | Tz = Tx + Ty; |
708 | 0 | TV = Tx - Ty; |
709 | 0 | T1r = Im[WS(rs, 2)]; |
710 | 0 | T1s = Ip[WS(rs, 7)]; |
711 | 0 | T1t = T1r + T1s; |
712 | 0 | T20 = T1s - T1r; |
713 | 0 | } |
714 | 0 | TA = Tw + Tz; |
715 | 0 | T3S = TV + TY; |
716 | 0 | T42 = T1q - T1t; |
717 | 0 | TZ = TV - TY; |
718 | 0 | T1u = T1q + T1t; |
719 | 0 | T3l = Tw - Tz; |
720 | 0 | T3v = T1Z - T20; |
721 | 0 | T21 = T1Z + T20; |
722 | 0 | } |
723 | 0 | { |
724 | 0 | E Th, T1f, TN, T1S, Tk, TK, T1i, T1T; |
725 | 0 | { |
726 | 0 | E Tf, Tg, TL, TM; |
727 | 0 | Tf = Rm[WS(rs, 3)]; |
728 | 0 | Tg = Rp[WS(rs, 6)]; |
729 | 0 | Th = Tf + Tg; |
730 | 0 | T1f = Tf - Tg; |
731 | 0 | TL = Im[WS(rs, 3)]; |
732 | 0 | TM = Ip[WS(rs, 6)]; |
733 | 0 | TN = TL + TM; |
734 | 0 | T1S = TM - TL; |
735 | 0 | } |
736 | 0 | { |
737 | 0 | E Ti, Tj, T1g, T1h; |
738 | 0 | Ti = Rp[WS(rs, 1)]; |
739 | 0 | Tj = Rm[WS(rs, 8)]; |
740 | 0 | Tk = Ti + Tj; |
741 | 0 | TK = Ti - Tj; |
742 | 0 | T1g = Ip[WS(rs, 1)]; |
743 | 0 | T1h = Im[WS(rs, 8)]; |
744 | 0 | T1i = T1g + T1h; |
745 | 0 | T1T = T1g - T1h; |
746 | 0 | } |
747 | 0 | Tl = Th + Tk; |
748 | 0 | T3P = TK + TN; |
749 | 0 | T3Z = T1f + T1i; |
750 | 0 | TO = TK - TN; |
751 | 0 | T1j = T1f - T1i; |
752 | 0 | T3i = Th - Tk; |
753 | 0 | T3s = T1S - T1T; |
754 | 0 | T1U = T1S + T1T; |
755 | 0 | } |
756 | 0 | { |
757 | 0 | E Tp, T1l, TT, T1W, Ts, TQ, T1o, T1X; |
758 | 0 | { |
759 | 0 | E Tn, To, TR, TS; |
760 | 0 | Tn = Rp[WS(rs, 8)]; |
761 | 0 | To = Rm[WS(rs, 1)]; |
762 | 0 | Tp = Tn + To; |
763 | 0 | T1l = Tn - To; |
764 | 0 | TR = Ip[WS(rs, 8)]; |
765 | 0 | TS = Im[WS(rs, 1)]; |
766 | 0 | TT = TR + TS; |
767 | 0 | T1W = TR - TS; |
768 | 0 | } |
769 | 0 | { |
770 | 0 | E Tq, Tr, T1m, T1n; |
771 | 0 | Tq = Rm[WS(rs, 6)]; |
772 | 0 | Tr = Rp[WS(rs, 3)]; |
773 | 0 | Ts = Tq + Tr; |
774 | 0 | TQ = Tq - Tr; |
775 | 0 | T1m = Im[WS(rs, 6)]; |
776 | 0 | T1n = Ip[WS(rs, 3)]; |
777 | 0 | T1o = T1m + T1n; |
778 | 0 | T1X = T1n - T1m; |
779 | 0 | } |
780 | 0 | Tt = Tp + Ts; |
781 | 0 | T3R = TT - TQ; |
782 | 0 | T41 = T1l - T1o; |
783 | 0 | TU = TQ + TT; |
784 | 0 | T1p = T1l + T1o; |
785 | 0 | T3k = Tp - Ts; |
786 | 0 | T3u = T1W - T1X; |
787 | 0 | T1Y = T1W + T1X; |
788 | 0 | } |
789 | 0 | T1k = T1e - T1j; |
790 | 0 | T3A = T3h - T3i; |
791 | 0 | T3B = T3k - T3l; |
792 | 0 | T1v = T1p - T1u; |
793 | 0 | T2e = T1Y - T21; |
794 | 0 | T48 = T3R + T3S; |
795 | 0 | T47 = T3O + T3P; |
796 | 0 | T2d = T1R - T1U; |
797 | 0 | T1L = TU - TZ; |
798 | 0 | T43 = T41 - T42; |
799 | 0 | T40 = T3Y - T3Z; |
800 | 0 | T1K = TJ - TO; |
801 | 0 | T2l = Te - Tl; |
802 | 0 | T3t = T3r - T3s; |
803 | 0 | T2m = Tt - TA; |
804 | 0 | T3w = T3u - T3v; |
805 | 0 | { |
806 | 0 | E T3j, T3m, Tm, TB; |
807 | 0 | T3j = T3h + T3i; |
808 | 0 | T3m = T3k + T3l; |
809 | 0 | T3n = T3j + T3m; |
810 | 0 | T3p = KP559016994 * (T3j - T3m); |
811 | 0 | Tm = Te + Tl; |
812 | 0 | TB = Tt + TA; |
813 | 0 | TC = Tm + TB; |
814 | 0 | T2b = KP559016994 * (Tm - TB); |
815 | 0 | } |
816 | 0 | { |
817 | 0 | E T4b, T4c, T3Q, T3T; |
818 | 0 | T4b = T3Y + T3Z; |
819 | 0 | T4c = T41 + T42; |
820 | 0 | T4d = T4b + T4c; |
821 | 0 | T4f = KP559016994 * (T4b - T4c); |
822 | 0 | { |
823 | 0 | E T1V, T22, T1z, T1A; |
824 | 0 | T1V = T1R + T1U; |
825 | 0 | T22 = T1Y + T21; |
826 | 0 | T23 = T1V + T22; |
827 | 0 | T2j = KP559016994 * (T1V - T22); |
828 | 0 | T1z = T1e + T1j; |
829 | 0 | T1A = T1p + T1u; |
830 | 0 | T1B = KP559016994 * (T1z - T1A); |
831 | 0 | T1H = T1z + T1A; |
832 | 0 | } |
833 | 0 | T3Q = T3O - T3P; |
834 | 0 | T3T = T3R - T3S; |
835 | 0 | T3U = T3Q + T3T; |
836 | 0 | T3W = KP559016994 * (T3Q - T3T); |
837 | 0 | { |
838 | 0 | E T3E, T3F, TP, T10; |
839 | 0 | T3E = T3r + T3s; |
840 | 0 | T3F = T3u + T3v; |
841 | 0 | T3G = T3E + T3F; |
842 | 0 | T3I = KP559016994 * (T3E - T3F); |
843 | 0 | TP = TJ + TO; |
844 | 0 | T10 = TU + TZ; |
845 | 0 | T11 = KP559016994 * (TP - T10); |
846 | 0 | T17 = TP + T10; |
847 | 0 | } |
848 | 0 | } |
849 | 0 | } |
850 | 0 | { |
851 | 0 | E TD, T27, T3c, T3e, T2o, T36, T2A, T2U, T1N, T2Z, T2t, T2J, T1x, T2X, T2r; |
852 | 0 | E T2F, T2g, T34, T2y, T2Q; |
853 | 0 | TD = T7 + TC; |
854 | 0 | T27 = T23 + T26; |
855 | 0 | { |
856 | 0 | E T39, T3b, T38, T3a; |
857 | 0 | T39 = T16 + T17; |
858 | 0 | T3b = T1H + T1G; |
859 | 0 | T38 = W[8]; |
860 | 0 | T3a = W[9]; |
861 | 0 | T3c = FMA(T38, T39, T3a * T3b); |
862 | 0 | T3e = FNMS(T3a, T39, T38 * T3b); |
863 | 0 | } |
864 | 0 | { |
865 | 0 | E T2n, T2S, T2k, T2T, T2i; |
866 | 0 | T2n = FNMS(KP951056516, T2m, KP587785252 * T2l); |
867 | 0 | T2S = FMA(KP951056516, T2l, KP587785252 * T2m); |
868 | 0 | T2i = FNMS(KP250000000, T23, T26); |
869 | 0 | T2k = T2i - T2j; |
870 | 0 | T2T = T2j + T2i; |
871 | 0 | T2o = T2k - T2n; |
872 | 0 | T36 = T2T - T2S; |
873 | 0 | T2A = T2n + T2k; |
874 | 0 | T2U = T2S + T2T; |
875 | 0 | } |
876 | 0 | { |
877 | 0 | E T1M, T2H, T1J, T2I, T1I; |
878 | 0 | T1M = FMA(KP951056516, T1K, KP587785252 * T1L); |
879 | 0 | T2H = FNMS(KP951056516, T1L, KP587785252 * T1K); |
880 | 0 | T1I = FNMS(KP250000000, T1H, T1G); |
881 | 0 | T1J = T1B + T1I; |
882 | 0 | T2I = T1I - T1B; |
883 | 0 | T1N = T1J - T1M; |
884 | 0 | T2Z = T2I - T2H; |
885 | 0 | T2t = T1M + T1J; |
886 | 0 | T2J = T2H + T2I; |
887 | 0 | } |
888 | 0 | { |
889 | 0 | E T1w, T2E, T19, T2D, T18; |
890 | 0 | T1w = FMA(KP951056516, T1k, KP587785252 * T1v); |
891 | 0 | T2E = FNMS(KP951056516, T1v, KP587785252 * T1k); |
892 | 0 | T18 = FNMS(KP250000000, T17, T16); |
893 | 0 | T19 = T11 + T18; |
894 | 0 | T2D = T18 - T11; |
895 | 0 | T1x = T19 + T1w; |
896 | 0 | T2X = T2D + T2E; |
897 | 0 | T2r = T19 - T1w; |
898 | 0 | T2F = T2D - T2E; |
899 | 0 | } |
900 | 0 | { |
901 | 0 | E T2f, T2P, T2c, T2O, T2a; |
902 | 0 | T2f = FNMS(KP951056516, T2e, KP587785252 * T2d); |
903 | 0 | T2P = FMA(KP951056516, T2d, KP587785252 * T2e); |
904 | 0 | T2a = FNMS(KP250000000, TC, T7); |
905 | 0 | T2c = T2a - T2b; |
906 | 0 | T2O = T2b + T2a; |
907 | 0 | T2g = T2c + T2f; |
908 | 0 | T34 = T2O + T2P; |
909 | 0 | T2y = T2c - T2f; |
910 | 0 | T2Q = T2O - T2P; |
911 | 0 | } |
912 | 0 | { |
913 | 0 | E T1O, T28, TE, T1y; |
914 | 0 | TE = W[0]; |
915 | 0 | T1y = W[1]; |
916 | 0 | T1O = FMA(TE, T1x, T1y * T1N); |
917 | 0 | T28 = FNMS(T1y, T1x, TE * T1N); |
918 | 0 | Rp[0] = TD - T1O; |
919 | 0 | Ip[0] = T27 + T28; |
920 | 0 | Rm[0] = TD + T1O; |
921 | 0 | Im[0] = T28 - T27; |
922 | 0 | } |
923 | 0 | { |
924 | 0 | E T37, T3d, T33, T35; |
925 | 0 | T33 = W[6]; |
926 | 0 | T35 = W[7]; |
927 | 0 | T37 = FNMS(T35, T36, T33 * T34); |
928 | 0 | T3d = FMA(T35, T34, T33 * T36); |
929 | 0 | Rp[WS(rs, 2)] = T37 - T3c; |
930 | 0 | Ip[WS(rs, 2)] = T3d + T3e; |
931 | 0 | Rm[WS(rs, 2)] = T37 + T3c; |
932 | 0 | Im[WS(rs, 2)] = T3e - T3d; |
933 | 0 | } |
934 | 0 | { |
935 | 0 | E T2p, T2v, T2u, T2w; |
936 | 0 | { |
937 | 0 | E T29, T2h, T2q, T2s; |
938 | 0 | T29 = W[14]; |
939 | 0 | T2h = W[15]; |
940 | 0 | T2p = FNMS(T2h, T2o, T29 * T2g); |
941 | 0 | T2v = FMA(T2h, T2g, T29 * T2o); |
942 | 0 | T2q = W[16]; |
943 | 0 | T2s = W[17]; |
944 | 0 | T2u = FMA(T2q, T2r, T2s * T2t); |
945 | 0 | T2w = FNMS(T2s, T2r, T2q * T2t); |
946 | 0 | } |
947 | 0 | Rp[WS(rs, 4)] = T2p - T2u; |
948 | 0 | Ip[WS(rs, 4)] = T2v + T2w; |
949 | 0 | Rm[WS(rs, 4)] = T2p + T2u; |
950 | 0 | Im[WS(rs, 4)] = T2w - T2v; |
951 | 0 | } |
952 | 0 | { |
953 | 0 | E T2B, T2L, T2K, T2M; |
954 | 0 | { |
955 | 0 | E T2x, T2z, T2C, T2G; |
956 | 0 | T2x = W[22]; |
957 | 0 | T2z = W[23]; |
958 | 0 | T2B = FNMS(T2z, T2A, T2x * T2y); |
959 | 0 | T2L = FMA(T2z, T2y, T2x * T2A); |
960 | 0 | T2C = W[24]; |
961 | 0 | T2G = W[25]; |
962 | 0 | T2K = FMA(T2C, T2F, T2G * T2J); |
963 | 0 | T2M = FNMS(T2G, T2F, T2C * T2J); |
964 | 0 | } |
965 | 0 | Rp[WS(rs, 6)] = T2B - T2K; |
966 | 0 | Ip[WS(rs, 6)] = T2L + T2M; |
967 | 0 | Rm[WS(rs, 6)] = T2B + T2K; |
968 | 0 | Im[WS(rs, 6)] = T2M - T2L; |
969 | 0 | } |
970 | 0 | { |
971 | 0 | E T2V, T31, T30, T32; |
972 | 0 | { |
973 | 0 | E T2N, T2R, T2W, T2Y; |
974 | 0 | T2N = W[30]; |
975 | 0 | T2R = W[31]; |
976 | 0 | T2V = FNMS(T2R, T2U, T2N * T2Q); |
977 | 0 | T31 = FMA(T2R, T2Q, T2N * T2U); |
978 | 0 | T2W = W[32]; |
979 | 0 | T2Y = W[33]; |
980 | 0 | T30 = FMA(T2W, T2X, T2Y * T2Z); |
981 | 0 | T32 = FNMS(T2Y, T2X, T2W * T2Z); |
982 | 0 | } |
983 | 0 | Rp[WS(rs, 8)] = T2V - T30; |
984 | 0 | Ip[WS(rs, 8)] = T31 + T32; |
985 | 0 | Rm[WS(rs, 8)] = T2V + T30; |
986 | 0 | Im[WS(rs, 8)] = T32 - T31; |
987 | 0 | } |
988 | 0 | } |
989 | 0 | { |
990 | 0 | E T4F, T4P, T5c, T5e, T3y, T54, T4o, T4S, T4h, T4Z, T4x, T4N, T45, T4X, T4v; |
991 | 0 | E T4J, T3K, T56, T4s, T4U; |
992 | 0 | { |
993 | 0 | E T4C, T4E, T4B, T4D; |
994 | 0 | T4C = T3g + T3n; |
995 | 0 | T4E = T3G + T3D; |
996 | 0 | T4B = W[18]; |
997 | 0 | T4D = W[19]; |
998 | 0 | T4F = FNMS(T4D, T4E, T4B * T4C); |
999 | 0 | T4P = FMA(T4D, T4C, T4B * T4E); |
1000 | 0 | } |
1001 | 0 | { |
1002 | 0 | E T59, T5b, T58, T5a; |
1003 | 0 | T59 = T3N + T3U; |
1004 | 0 | T5b = T4d + T4a; |
1005 | 0 | T58 = W[28]; |
1006 | 0 | T5a = W[29]; |
1007 | 0 | T5c = FMA(T58, T59, T5a * T5b); |
1008 | 0 | T5e = FNMS(T5a, T59, T58 * T5b); |
1009 | 0 | } |
1010 | 0 | { |
1011 | 0 | E T3x, T4n, T3q, T4m, T3o; |
1012 | 0 | T3x = FNMS(KP951056516, T3w, KP587785252 * T3t); |
1013 | 0 | T4n = FMA(KP951056516, T3t, KP587785252 * T3w); |
1014 | 0 | T3o = FNMS(KP250000000, T3n, T3g); |
1015 | 0 | T3q = T3o - T3p; |
1016 | 0 | T4m = T3p + T3o; |
1017 | 0 | T3y = T3q - T3x; |
1018 | 0 | T54 = T4m + T4n; |
1019 | 0 | T4o = T4m - T4n; |
1020 | 0 | T4S = T3q + T3x; |
1021 | 0 | } |
1022 | 0 | { |
1023 | 0 | E T49, T4M, T4g, T4L, T4e; |
1024 | 0 | T49 = FNMS(KP951056516, T48, KP587785252 * T47); |
1025 | 0 | T4M = FMA(KP951056516, T47, KP587785252 * T48); |
1026 | 0 | T4e = FNMS(KP250000000, T4d, T4a); |
1027 | 0 | T4g = T4e - T4f; |
1028 | 0 | T4L = T4f + T4e; |
1029 | 0 | T4h = T49 + T4g; |
1030 | 0 | T4Z = T4M + T4L; |
1031 | 0 | T4x = T4g - T49; |
1032 | 0 | T4N = T4L - T4M; |
1033 | 0 | } |
1034 | 0 | { |
1035 | 0 | E T44, T4I, T3X, T4H, T3V; |
1036 | 0 | T44 = FNMS(KP951056516, T43, KP587785252 * T40); |
1037 | 0 | T4I = FMA(KP951056516, T40, KP587785252 * T43); |
1038 | 0 | T3V = FNMS(KP250000000, T3U, T3N); |
1039 | 0 | T3X = T3V - T3W; |
1040 | 0 | T4H = T3W + T3V; |
1041 | 0 | T45 = T3X - T44; |
1042 | 0 | T4X = T4H - T4I; |
1043 | 0 | T4v = T3X + T44; |
1044 | 0 | T4J = T4H + T4I; |
1045 | 0 | } |
1046 | 0 | { |
1047 | 0 | E T3C, T4q, T3J, T4r, T3H; |
1048 | 0 | T3C = FNMS(KP951056516, T3B, KP587785252 * T3A); |
1049 | 0 | T4q = FMA(KP951056516, T3A, KP587785252 * T3B); |
1050 | 0 | T3H = FNMS(KP250000000, T3G, T3D); |
1051 | 0 | T3J = T3H - T3I; |
1052 | 0 | T4r = T3I + T3H; |
1053 | 0 | T3K = T3C + T3J; |
1054 | 0 | T56 = T4r - T4q; |
1055 | 0 | T4s = T4q + T4r; |
1056 | 0 | T4U = T3J - T3C; |
1057 | 0 | } |
1058 | 0 | { |
1059 | 0 | E T4O, T4Q, T4G, T4K; |
1060 | 0 | T4G = W[20]; |
1061 | 0 | T4K = W[21]; |
1062 | 0 | T4O = FMA(T4G, T4J, T4K * T4N); |
1063 | 0 | T4Q = FNMS(T4K, T4J, T4G * T4N); |
1064 | 0 | Rp[WS(rs, 5)] = T4F - T4O; |
1065 | 0 | Ip[WS(rs, 5)] = T4P + T4Q; |
1066 | 0 | Rm[WS(rs, 5)] = T4F + T4O; |
1067 | 0 | Im[WS(rs, 5)] = T4Q - T4P; |
1068 | 0 | } |
1069 | 0 | { |
1070 | 0 | E T57, T5d, T53, T55; |
1071 | 0 | T53 = W[26]; |
1072 | 0 | T55 = W[27]; |
1073 | 0 | T57 = FNMS(T55, T56, T53 * T54); |
1074 | 0 | T5d = FMA(T55, T54, T53 * T56); |
1075 | 0 | Rp[WS(rs, 7)] = T57 - T5c; |
1076 | 0 | Ip[WS(rs, 7)] = T5d + T5e; |
1077 | 0 | Rm[WS(rs, 7)] = T57 + T5c; |
1078 | 0 | Im[WS(rs, 7)] = T5e - T5d; |
1079 | 0 | } |
1080 | 0 | { |
1081 | 0 | E T3L, T4j, T4i, T4k; |
1082 | 0 | { |
1083 | 0 | E T3f, T3z, T3M, T46; |
1084 | 0 | T3f = W[2]; |
1085 | 0 | T3z = W[3]; |
1086 | 0 | T3L = FNMS(T3z, T3K, T3f * T3y); |
1087 | 0 | T4j = FMA(T3z, T3y, T3f * T3K); |
1088 | 0 | T3M = W[4]; |
1089 | 0 | T46 = W[5]; |
1090 | 0 | T4i = FMA(T3M, T45, T46 * T4h); |
1091 | 0 | T4k = FNMS(T46, T45, T3M * T4h); |
1092 | 0 | } |
1093 | 0 | Rp[WS(rs, 1)] = T3L - T4i; |
1094 | 0 | Ip[WS(rs, 1)] = T4j + T4k; |
1095 | 0 | Rm[WS(rs, 1)] = T3L + T4i; |
1096 | 0 | Im[WS(rs, 1)] = T4k - T4j; |
1097 | 0 | } |
1098 | 0 | { |
1099 | 0 | E T4t, T4z, T4y, T4A; |
1100 | 0 | { |
1101 | 0 | E T4l, T4p, T4u, T4w; |
1102 | 0 | T4l = W[10]; |
1103 | 0 | T4p = W[11]; |
1104 | 0 | T4t = FNMS(T4p, T4s, T4l * T4o); |
1105 | 0 | T4z = FMA(T4p, T4o, T4l * T4s); |
1106 | 0 | T4u = W[12]; |
1107 | 0 | T4w = W[13]; |
1108 | 0 | T4y = FMA(T4u, T4v, T4w * T4x); |
1109 | 0 | T4A = FNMS(T4w, T4v, T4u * T4x); |
1110 | 0 | } |
1111 | 0 | Rp[WS(rs, 3)] = T4t - T4y; |
1112 | 0 | Ip[WS(rs, 3)] = T4z + T4A; |
1113 | 0 | Rm[WS(rs, 3)] = T4t + T4y; |
1114 | 0 | Im[WS(rs, 3)] = T4A - T4z; |
1115 | 0 | } |
1116 | 0 | { |
1117 | 0 | E T4V, T51, T50, T52; |
1118 | 0 | { |
1119 | 0 | E T4R, T4T, T4W, T4Y; |
1120 | 0 | T4R = W[34]; |
1121 | 0 | T4T = W[35]; |
1122 | 0 | T4V = FNMS(T4T, T4U, T4R * T4S); |
1123 | 0 | T51 = FMA(T4T, T4S, T4R * T4U); |
1124 | 0 | T4W = W[36]; |
1125 | 0 | T4Y = W[37]; |
1126 | 0 | T50 = FMA(T4W, T4X, T4Y * T4Z); |
1127 | 0 | T52 = FNMS(T4Y, T4X, T4W * T4Z); |
1128 | 0 | } |
1129 | 0 | Rp[WS(rs, 9)] = T4V - T50; |
1130 | 0 | Ip[WS(rs, 9)] = T51 + T52; |
1131 | 0 | Rm[WS(rs, 9)] = T4V + T50; |
1132 | 0 | Im[WS(rs, 9)] = T52 - T51; |
1133 | 0 | } |
1134 | 0 | } |
1135 | 0 | } |
1136 | 0 | } |
1137 | 0 | } |
1138 | | |
1139 | | static const tw_instr twinstr[] = { |
1140 | | { TW_FULL, 1, 20 }, |
1141 | | { TW_NEXT, 1, 0 } |
1142 | | }; |
1143 | | |
1144 | | static const hc2c_desc desc = { 20, "hc2cbdft2_20", twinstr, &GENUS, { 224, 62, 62, 0 } }; |
1145 | | |
1146 | 1 | void X(codelet_hc2cbdft2_20) (planner *p) { |
1147 | 1 | X(khc2c_register) (p, hc2cbdft2_20, &desc, HC2C_VIA_DFT); |
1148 | 1 | } |
1149 | | #endif |