Coverage Report

Created: 2026-01-10 06:14

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/hc2cbdft2_20.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sat Jan 10 06:13:17 UTC 2026 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft2_20 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 286 FP additions, 148 FP multiplications,
32
 * (or, 176 additions, 38 multiplications, 110 fused multiply/add),
33
 * 104 stack variables, 4 constants, and 80 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
46
         E T27, T2o, T3T, T41, T2p, T40, T1N, T2Q, T1w, T2L, T4n, T59, T4A, T5e, T24;
47
         E T2m, T2h, T2Z, T3P, T4J, T3W, T3Y, T7, TC, T2c, T2d, T3y, T3F, T3G, T3H;
48
         E T46, T4d, T4e, T4f, T4r, T4u, T4v, T4w, T1E, T1H, T1I, T1J, TJ, T16, T17;
49
         E T18;
50
         {
51
        E T3, T1A, TI, T25, T6, TF, T1D, T26, Te, T47, T4k, TO, T1e, T3z, T3M;
52
        E T1S, Tt, T4a, T4h, TZ, T1p, T3C, T3J, T1Z, TA, T4b, T4i, T14, T1u, T3D;
53
        E T3K, T22, Tl, T48, T4l, TT, T1j, T3A, T3N, T1V;
54
        {
55
       E T1, T2, TG, TH;
56
       T1 = Rp[0];
57
       T2 = Rm[WS(rs, 9)];
58
       T3 = T1 + T2;
59
       T1A = T1 - T2;
60
       TG = Ip[0];
61
       TH = Im[WS(rs, 9)];
62
       TI = TG + TH;
63
       T25 = TG - TH;
64
        }
65
        {
66
       E T4, T5, T1B, T1C;
67
       T4 = Rp[WS(rs, 5)];
68
       T5 = Rm[WS(rs, 4)];
69
       T6 = T4 + T5;
70
       TF = T4 - T5;
71
       T1B = Ip[WS(rs, 5)];
72
       T1C = Im[WS(rs, 4)];
73
       T1D = T1B + T1C;
74
       T26 = T1B - T1C;
75
        }
76
        {
77
       E Ta, T1a, TN, T1Q, Td, TK, T1d, T1R;
78
       {
79
            E T8, T9, TL, TM;
80
            T8 = Rp[WS(rs, 4)];
81
            T9 = Rm[WS(rs, 5)];
82
            Ta = T8 + T9;
83
            T1a = T8 - T9;
84
            TL = Ip[WS(rs, 4)];
85
            TM = Im[WS(rs, 5)];
86
            TN = TL + TM;
87
            T1Q = TL - TM;
88
       }
89
       {
90
            E Tb, Tc, T1b, T1c;
91
            Tb = Rp[WS(rs, 9)];
92
            Tc = Rm[0];
93
            Td = Tb + Tc;
94
            TK = Tb - Tc;
95
            T1b = Ip[WS(rs, 9)];
96
            T1c = Im[0];
97
            T1d = T1b + T1c;
98
            T1R = T1b - T1c;
99
       }
100
       Te = Ta + Td;
101
       T47 = TN - TK;
102
       T4k = T1a + T1d;
103
       TO = TK + TN;
104
       T1e = T1a - T1d;
105
       T3z = Ta - Td;
106
       T3M = T1Q - T1R;
107
       T1S = T1Q + T1R;
108
        }
109
        {
110
       E Tp, T1l, TY, T1X, Ts, TV, T1o, T1Y;
111
       {
112
            E Tn, To, TW, TX;
113
            Tn = Rp[WS(rs, 8)];
114
            To = Rm[WS(rs, 1)];
115
            Tp = Tn + To;
116
            T1l = Tn - To;
117
            TW = Ip[WS(rs, 8)];
118
            TX = Im[WS(rs, 1)];
119
            TY = TW + TX;
120
            T1X = TW - TX;
121
       }
122
       {
123
            E Tq, Tr, T1m, T1n;
124
            Tq = Rm[WS(rs, 6)];
125
            Tr = Rp[WS(rs, 3)];
126
            Ts = Tq + Tr;
127
            TV = Tq - Tr;
128
            T1m = Im[WS(rs, 6)];
129
            T1n = Ip[WS(rs, 3)];
130
            T1o = T1m + T1n;
131
            T1Y = T1n - T1m;
132
       }
133
       Tt = Tp + Ts;
134
       T4a = TY - TV;
135
       T4h = T1l - T1o;
136
       TZ = TV + TY;
137
       T1p = T1l + T1o;
138
       T3C = Tp - Ts;
139
       T3J = T1X - T1Y;
140
       T1Z = T1X + T1Y;
141
        }
142
        {
143
       E Tw, T1q, T13, T20, Tz, T10, T1t, T21;
144
       {
145
            E Tu, Tv, T11, T12;
146
            Tu = Rm[WS(rs, 7)];
147
            Tv = Rp[WS(rs, 2)];
148
            Tw = Tu + Tv;
149
            T1q = Tu - Tv;
150
            T11 = Im[WS(rs, 7)];
151
            T12 = Ip[WS(rs, 2)];
152
            T13 = T11 + T12;
153
            T20 = T12 - T11;
154
       }
155
       {
156
            E Tx, Ty, T1r, T1s;
157
            Tx = Rm[WS(rs, 2)];
158
            Ty = Rp[WS(rs, 7)];
159
            Tz = Tx + Ty;
160
            T10 = Tx - Ty;
161
            T1r = Im[WS(rs, 2)];
162
            T1s = Ip[WS(rs, 7)];
163
            T1t = T1r + T1s;
164
            T21 = T1s - T1r;
165
       }
166
       TA = Tw + Tz;
167
       T4b = T10 + T13;
168
       T4i = T1q - T1t;
169
       T14 = T10 - T13;
170
       T1u = T1q + T1t;
171
       T3D = Tw - Tz;
172
       T3K = T20 - T21;
173
       T22 = T20 + T21;
174
        }
175
        {
176
       E Th, T1f, TS, T1T, Tk, TP, T1i, T1U;
177
       {
178
            E Tf, Tg, TQ, TR;
179
            Tf = Rm[WS(rs, 3)];
180
            Tg = Rp[WS(rs, 6)];
181
            Th = Tf + Tg;
182
            T1f = Tf - Tg;
183
            TQ = Im[WS(rs, 3)];
184
            TR = Ip[WS(rs, 6)];
185
            TS = TQ + TR;
186
            T1T = TR - TQ;
187
       }
188
       {
189
            E Ti, Tj, T1g, T1h;
190
            Ti = Rp[WS(rs, 1)];
191
            Tj = Rm[WS(rs, 8)];
192
            Tk = Ti + Tj;
193
            TP = Ti - Tj;
194
            T1g = Ip[WS(rs, 1)];
195
            T1h = Im[WS(rs, 8)];
196
            T1i = T1g + T1h;
197
            T1U = T1g - T1h;
198
       }
199
       Tl = Th + Tk;
200
       T48 = TP + TS;
201
       T4l = T1f + T1i;
202
       TT = TP - TS;
203
       T1j = T1f - T1i;
204
       T3A = Th - Tk;
205
       T3N = T1T - T1U;
206
       T1V = T1T + T1U;
207
        }
208
        T27 = T25 + T26;
209
        T2o = Tt - TA;
210
        T3T = T25 - T26;
211
        T41 = T3z - T3A;
212
        T2p = Te - Tl;
213
        {
214
       E T1L, T1M, T1k, T1v;
215
       T40 = T3C - T3D;
216
       T1L = TO - TT;
217
       T1M = TZ - T14;
218
       T1N = FMA(KP618033988, T1M, T1L);
219
       T2Q = FNMS(KP618033988, T1L, T1M);
220
       T1k = T1e - T1j;
221
       T1v = T1p - T1u;
222
       T1w = FMA(KP618033988, T1v, T1k);
223
       T2L = FNMS(KP618033988, T1k, T1v);
224
       {
225
            E T4j, T4m, T4y, T4z;
226
            T4j = T4h - T4i;
227
            T4m = T4k - T4l;
228
            T4n = FNMS(KP618033988, T4m, T4j);
229
            T59 = FMA(KP618033988, T4j, T4m);
230
            T4y = T4a + T4b;
231
            T4z = T47 + T48;
232
            T4A = FNMS(KP618033988, T4z, T4y);
233
            T5e = FMA(KP618033988, T4y, T4z);
234
       }
235
        }
236
        {
237
       E T3L, T3O, T4s, T4t;
238
       {
239
            E T1W, T23, T2f, T2g;
240
            T1W = T1S + T1V;
241
            T23 = T1Z + T22;
242
            T24 = T1W + T23;
243
            T2m = T1W - T23;
244
            T2f = T1Z - T22;
245
            T2g = T1S - T1V;
246
            T2h = FNMS(KP618033988, T2g, T2f);
247
            T2Z = FMA(KP618033988, T2f, T2g);
248
       }
249
       T3L = T3J - T3K;
250
       T3O = T3M - T3N;
251
       T3P = FNMS(KP618033988, T3O, T3L);
252
       T4J = FMA(KP618033988, T3L, T3O);
253
       {
254
            E T3U, T3V, Tm, TB;
255
            T3U = T3M + T3N;
256
            T3V = T3J + T3K;
257
            T3W = T3U + T3V;
258
            T3Y = T3U - T3V;
259
            T7 = T3 + T6;
260
            Tm = Te + Tl;
261
            TB = Tt + TA;
262
            TC = Tm + TB;
263
            T2c = FNMS(KP250000000, TC, T7);
264
            T2d = Tm - TB;
265
       }
266
       {
267
            E T3B, T3E, T49, T4c;
268
            T3y = T3 - T6;
269
            T3B = T3z + T3A;
270
            T3E = T3C + T3D;
271
            T3F = T3B + T3E;
272
            T3G = FNMS(KP250000000, T3F, T3y);
273
            T3H = T3B - T3E;
274
            T46 = TI - TF;
275
            T49 = T47 - T48;
276
            T4c = T4a - T4b;
277
            T4d = T49 + T4c;
278
            T4e = FNMS(KP250000000, T4d, T46);
279
            T4f = T49 - T4c;
280
       }
281
       T4r = T1A + T1D;
282
       T4s = T4k + T4l;
283
       T4t = T4h + T4i;
284
       T4u = T4s + T4t;
285
       T4v = FNMS(KP250000000, T4u, T4r);
286
       T4w = T4s - T4t;
287
       {
288
            E T1F, T1G, TU, T15;
289
            T1E = T1A - T1D;
290
            T1F = T1e + T1j;
291
            T1G = T1p + T1u;
292
            T1H = T1F + T1G;
293
            T1I = FNMS(KP250000000, T1H, T1E);
294
            T1J = T1F - T1G;
295
            TJ = TF + TI;
296
            TU = TO + TT;
297
            T15 = TZ + T14;
298
            T16 = TU + T15;
299
            T17 = FNMS(KP250000000, T16, TJ);
300
            T18 = TU - T15;
301
       }
302
        }
303
         }
304
         {
305
        E TD, T28, T3o, T3r, T3p, T3v, T2r, T3l, T2H, T35, T2b, T2j, T2k, T2z, T2D;
306
        E T2F, T2G, T2T, T2X, T31, T32, T3d, T3h, T3j, T3k, T3t, T1x, T2u, T1O, T2x;
307
        E T1y, T29, T2v, T2B, T2M, T38, T2R, T3b, T2N, T2V, T39, T3f, T3n, T1P, T2a;
308
        E T1z;
309
        TD = T7 + TC;
310
        T28 = T24 + T27;
311
        T3o = TJ + T16;
312
        T3r = T1H + T1E;
313
        T3n = W[8];
314
        T3p = T3n * T3o;
315
        T3v = T3n * T3r;
316
        {
317
       E T2q, T34, T2n, T33, T2l;
318
       T2q = FNMS(KP618033988, T2p, T2o);
319
       T34 = FMA(KP618033988, T2o, T2p);
320
       T2l = FNMS(KP250000000, T24, T27);
321
       T2n = FNMS(KP559016994, T2m, T2l);
322
       T33 = FMA(KP559016994, T2m, T2l);
323
       T2r = FMA(KP951056516, T2q, T2n);
324
       T3l = FNMS(KP951056516, T34, T33);
325
       T2H = FNMS(KP951056516, T2q, T2n);
326
       T35 = FMA(KP951056516, T34, T33);
327
        }
328
        {
329
       E T2i, T2E, T2e, T30, T3i, T2Y;
330
       T2e = FNMS(KP559016994, T2d, T2c);
331
       T2i = FNMS(KP951056516, T2h, T2e);
332
       T2E = FMA(KP951056516, T2h, T2e);
333
       T2b = W[14];
334
       T2j = T2b * T2i;
335
       T2k = W[15];
336
       T2z = T2k * T2i;
337
       T2D = W[22];
338
       T2F = T2D * T2E;
339
       T2G = W[23];
340
       T2T = T2G * T2E;
341
       T2Y = FMA(KP559016994, T2d, T2c);
342
       T30 = FNMS(KP951056516, T2Z, T2Y);
343
       T3i = FMA(KP951056516, T2Z, T2Y);
344
       T2X = W[30];
345
       T31 = T2X * T30;
346
       T32 = W[31];
347
       T3d = T32 * T30;
348
       T3h = W[6];
349
       T3j = T3h * T3i;
350
       T3k = W[7];
351
       T3t = T3k * T3i;
352
        }
353
        {
354
       E T19, T1K, TE, T2t;
355
       T19 = FMA(KP559016994, T18, T17);
356
       T1x = FMA(KP951056516, T1w, T19);
357
       T2u = FNMS(KP951056516, T1w, T19);
358
       T1K = FMA(KP559016994, T1J, T1I);
359
       T1O = FNMS(KP951056516, T1N, T1K);
360
       T2x = FMA(KP951056516, T1N, T1K);
361
       TE = W[0];
362
       T1y = TE * T1x;
363
       T29 = TE * T1O;
364
       T2t = W[16];
365
       T2v = T2t * T2u;
366
       T2B = T2t * T2x;
367
        }
368
        {
369
       E T2K, T2P, T2J, T37;
370
       T2K = FNMS(KP559016994, T18, T17);
371
       T2M = FMA(KP951056516, T2L, T2K);
372
       T38 = FNMS(KP951056516, T2L, T2K);
373
       T2P = FNMS(KP559016994, T1J, T1I);
374
       T2R = FNMS(KP951056516, T2Q, T2P);
375
       T3b = FMA(KP951056516, T2Q, T2P);
376
       T2J = W[24];
377
       T2N = T2J * T2M;
378
       T2V = T2J * T2R;
379
       T37 = W[32];
380
       T39 = T37 * T38;
381
       T3f = T37 * T3b;
382
        }
383
        T1z = W[1];
384
        T1P = FMA(T1z, T1O, T1y);
385
        T2a = FNMS(T1z, T1x, T29);
386
        Rp[0] = TD - T1P;
387
        Ip[0] = T28 + T2a;
388
        Rm[0] = TD + T1P;
389
        Im[0] = T2a - T28;
390
        {
391
       E T3m, T3u, T3s, T3w, T3q;
392
       T3m = FNMS(T3k, T3l, T3j);
393
       T3u = FMA(T3h, T3l, T3t);
394
       T3q = W[9];
395
       T3s = FMA(T3q, T3r, T3p);
396
       T3w = FNMS(T3q, T3o, T3v);
397
       Rp[WS(rs, 2)] = T3m - T3s;
398
       Ip[WS(rs, 2)] = T3u + T3w;
399
       Rm[WS(rs, 2)] = T3m + T3s;
400
       Im[WS(rs, 2)] = T3w - T3u;
401
        }
402
        {
403
       E T2s, T2A, T2y, T2C, T2w;
404
       T2s = FNMS(T2k, T2r, T2j);
405
       T2A = FMA(T2b, T2r, T2z);
406
       T2w = W[17];
407
       T2y = FMA(T2w, T2x, T2v);
408
       T2C = FNMS(T2w, T2u, T2B);
409
       Rp[WS(rs, 4)] = T2s - T2y;
410
       Ip[WS(rs, 4)] = T2A + T2C;
411
       Rm[WS(rs, 4)] = T2s + T2y;
412
       Im[WS(rs, 4)] = T2C - T2A;
413
        }
414
        {
415
       E T2I, T2U, T2S, T2W, T2O;
416
       T2I = FNMS(T2G, T2H, T2F);
417
       T2U = FMA(T2D, T2H, T2T);
418
       T2O = W[25];
419
       T2S = FMA(T2O, T2R, T2N);
420
       T2W = FNMS(T2O, T2M, T2V);
421
       Rp[WS(rs, 6)] = T2I - T2S;
422
       Ip[WS(rs, 6)] = T2U + T2W;
423
       Rm[WS(rs, 6)] = T2I + T2S;
424
       Im[WS(rs, 6)] = T2W - T2U;
425
        }
426
        {
427
       E T36, T3e, T3c, T3g, T3a;
428
       T36 = FNMS(T32, T35, T31);
429
       T3e = FMA(T2X, T35, T3d);
430
       T3a = W[33];
431
       T3c = FMA(T3a, T3b, T39);
432
       T3g = FNMS(T3a, T38, T3f);
433
       Rp[WS(rs, 8)] = T36 - T3c;
434
       Ip[WS(rs, 8)] = T3e + T3g;
435
       Rm[WS(rs, 8)] = T36 + T3c;
436
       Im[WS(rs, 8)] = T3g - T3e;
437
        }
438
         }
439
         {
440
        E T55, T51, T53, T54, T5h, T5I, T5L, T5J, T5P, T43, T5F, T4P, T5p, T3x, T3R;
441
        E T3S, T4D, T5l, T5n, T5o, T5x, T4H, T4L, T4M, T4X, T5B, T5D, T5E, T5N, T4o;
442
        E T4S, T4B, T4V, T4p, T4F, T4T, T4Z, T5a, T5s, T5f, T5v, T5b, T5j, T5t, T5z;
443
        E T52, T5H;
444
        T55 = T3W + T3T;
445
        T52 = T3y + T3F;
446
        T51 = W[18];
447
        T53 = T51 * T52;
448
        T54 = W[19];
449
        T5h = T54 * T52;
450
        T5I = T46 + T4d;
451
        T5L = T4u + T4r;
452
        T5H = W[28];
453
        T5J = T5H * T5I;
454
        T5P = T5H * T5L;
455
        {
456
       E T42, T4O, T3Z, T4N, T3X;
457
       T42 = FNMS(KP618033988, T41, T40);
458
       T4O = FMA(KP618033988, T40, T41);
459
       T3X = FNMS(KP250000000, T3W, T3T);
460
       T3Z = FNMS(KP559016994, T3Y, T3X);
461
       T4N = FMA(KP559016994, T3Y, T3X);
462
       T43 = FNMS(KP951056516, T42, T3Z);
463
       T5F = FNMS(KP951056516, T4O, T4N);
464
       T4P = FMA(KP951056516, T4O, T4N);
465
       T5p = FMA(KP951056516, T42, T3Z);
466
        }
467
        {
468
       E T3Q, T5m, T3I, T4K, T5C, T4I;
469
       T3I = FNMS(KP559016994, T3H, T3G);
470
       T3Q = FMA(KP951056516, T3P, T3I);
471
       T5m = FNMS(KP951056516, T3P, T3I);
472
       T3x = W[2];
473
       T3R = T3x * T3Q;
474
       T3S = W[3];
475
       T4D = T3S * T3Q;
476
       T5l = W[34];
477
       T5n = T5l * T5m;
478
       T5o = W[35];
479
       T5x = T5o * T5m;
480
       T4I = FMA(KP559016994, T3H, T3G);
481
       T4K = FNMS(KP951056516, T4J, T4I);
482
       T5C = FMA(KP951056516, T4J, T4I);
483
       T4H = W[10];
484
       T4L = T4H * T4K;
485
       T4M = W[11];
486
       T4X = T4M * T4K;
487
       T5B = W[26];
488
       T5D = T5B * T5C;
489
       T5E = W[27];
490
       T5N = T5E * T5C;
491
        }
492
        {
493
       E T4g, T4x, T45, T4R;
494
       T4g = FNMS(KP559016994, T4f, T4e);
495
       T4o = FMA(KP951056516, T4n, T4g);
496
       T4S = FNMS(KP951056516, T4n, T4g);
497
       T4x = FNMS(KP559016994, T4w, T4v);
498
       T4B = FNMS(KP951056516, T4A, T4x);
499
       T4V = FMA(KP951056516, T4A, T4x);
500
       T45 = W[4];
501
       T4p = T45 * T4o;
502
       T4F = T45 * T4B;
503
       T4R = W[12];
504
       T4T = T4R * T4S;
505
       T4Z = T4R * T4V;
506
        }
507
        {
508
       E T58, T5d, T57, T5r;
509
       T58 = FMA(KP559016994, T4f, T4e);
510
       T5a = FMA(KP951056516, T59, T58);
511
       T5s = FNMS(KP951056516, T59, T58);
512
       T5d = FMA(KP559016994, T4w, T4v);
513
       T5f = FNMS(KP951056516, T5e, T5d);
514
       T5v = FMA(KP951056516, T5e, T5d);
515
       T57 = W[20];
516
       T5b = T57 * T5a;
517
       T5j = T57 * T5f;
518
       T5r = W[36];
519
       T5t = T5r * T5s;
520
       T5z = T5r * T5v;
521
        }
522
        {
523
       E T44, T4E, T4C, T4G, T4q;
524
       T44 = FNMS(T3S, T43, T3R);
525
       T4E = FMA(T3x, T43, T4D);
526
       T4q = W[5];
527
       T4C = FMA(T4q, T4B, T4p);
528
       T4G = FNMS(T4q, T4o, T4F);
529
       Rp[WS(rs, 1)] = T44 - T4C;
530
       Ip[WS(rs, 1)] = T4E + T4G;
531
       Rm[WS(rs, 1)] = T44 + T4C;
532
       Im[WS(rs, 1)] = T4G - T4E;
533
        }
534
        {
535
       E T5G, T5O, T5M, T5Q, T5K;
536
       T5G = FNMS(T5E, T5F, T5D);
537
       T5O = FMA(T5B, T5F, T5N);
538
       T5K = W[29];
539
       T5M = FMA(T5K, T5L, T5J);
540
       T5Q = FNMS(T5K, T5I, T5P);
541
       Rp[WS(rs, 7)] = T5G - T5M;
542
       Ip[WS(rs, 7)] = T5O + T5Q;
543
       Rm[WS(rs, 7)] = T5G + T5M;
544
       Im[WS(rs, 7)] = T5Q - T5O;
545
        }
546
        {
547
       E T4Q, T4Y, T4W, T50, T4U;
548
       T4Q = FNMS(T4M, T4P, T4L);
549
       T4Y = FMA(T4H, T4P, T4X);
550
       T4U = W[13];
551
       T4W = FMA(T4U, T4V, T4T);
552
       T50 = FNMS(T4U, T4S, T4Z);
553
       Rp[WS(rs, 3)] = T4Q - T4W;
554
       Ip[WS(rs, 3)] = T4Y + T50;
555
       Rm[WS(rs, 3)] = T4Q + T4W;
556
       Im[WS(rs, 3)] = T50 - T4Y;
557
        }
558
        {
559
       E T56, T5i, T5g, T5k, T5c;
560
       T56 = FNMS(T54, T55, T53);
561
       T5i = FMA(T51, T55, T5h);
562
       T5c = W[21];
563
       T5g = FMA(T5c, T5f, T5b);
564
       T5k = FNMS(T5c, T5a, T5j);
565
       Rp[WS(rs, 5)] = T56 - T5g;
566
       Ip[WS(rs, 5)] = T5i + T5k;
567
       Rm[WS(rs, 5)] = T56 + T5g;
568
       Im[WS(rs, 5)] = T5k - T5i;
569
        }
570
        {
571
       E T5q, T5y, T5w, T5A, T5u;
572
       T5q = FNMS(T5o, T5p, T5n);
573
       T5y = FMA(T5l, T5p, T5x);
574
       T5u = W[37];
575
       T5w = FMA(T5u, T5v, T5t);
576
       T5A = FNMS(T5u, T5s, T5z);
577
       Rp[WS(rs, 9)] = T5q - T5w;
578
       Ip[WS(rs, 9)] = T5y + T5A;
579
       Rm[WS(rs, 9)] = T5q + T5w;
580
       Im[WS(rs, 9)] = T5A - T5y;
581
        }
582
         }
583
    }
584
     }
585
}
586
587
static const tw_instr twinstr[] = {
588
     { TW_FULL, 1, 20 },
589
     { TW_NEXT, 1, 0 }
590
};
591
592
static const hc2c_desc desc = { 20, "hc2cbdft2_20", twinstr, &GENUS, { 176, 38, 110, 0 } };
593
594
void X(codelet_hc2cbdft2_20) (planner *p) {
595
     X(khc2c_register) (p, hc2cbdft2_20, &desc, HC2C_VIA_DFT);
596
}
597
#else
598
599
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft2_20 -include rdft/scalar/hc2cb.h */
600
601
/*
602
 * This function contains 286 FP additions, 124 FP multiplications,
603
 * (or, 224 additions, 62 multiplications, 62 fused multiply/add),
604
 * 89 stack variables, 4 constants, and 80 memory accesses
605
 */
606
#include "rdft/scalar/hc2cb.h"
607
608
static void hc2cbdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
609
0
{
610
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
611
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
612
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
613
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
614
0
     {
615
0
    INT m;
616
0
    for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
617
0
         E T7, T3N, T4a, T16, T1G, T3g, T3D, T26, T1k, T3A, T3B, T1v, T2e, T48, T47;
618
0
         E T2d, T1L, T43, T40, T1K, T2l, T3t, T2m, T3w, T3n, T3p, TC, T2b, T4d, T4f;
619
0
         E T23, T2j, T1B, T1H, T3U, T3W, T3G, T3I, T11, T17;
620
0
         {
621
0
        E T3, T1C, T15, T24, T6, T12, T1F, T25;
622
0
        {
623
0
       E T1, T2, T13, T14;
624
0
       T1 = Rp[0];
625
0
       T2 = Rm[WS(rs, 9)];
626
0
       T3 = T1 + T2;
627
0
       T1C = T1 - T2;
628
0
       T13 = Ip[0];
629
0
       T14 = Im[WS(rs, 9)];
630
0
       T15 = T13 + T14;
631
0
       T24 = T13 - T14;
632
0
        }
633
0
        {
634
0
       E T4, T5, T1D, T1E;
635
0
       T4 = Rp[WS(rs, 5)];
636
0
       T5 = Rm[WS(rs, 4)];
637
0
       T6 = T4 + T5;
638
0
       T12 = T4 - T5;
639
0
       T1D = Ip[WS(rs, 5)];
640
0
       T1E = Im[WS(rs, 4)];
641
0
       T1F = T1D + T1E;
642
0
       T25 = T1D - T1E;
643
0
        }
644
0
        T7 = T3 + T6;
645
0
        T3N = T15 - T12;
646
0
        T4a = T1C + T1F;
647
0
        T16 = T12 + T15;
648
0
        T1G = T1C - T1F;
649
0
        T3g = T3 - T6;
650
0
        T3D = T24 - T25;
651
0
        T26 = T24 + T25;
652
0
         }
653
0
         {
654
0
        E Te, T3O, T3Y, TJ, T1e, T3h, T3r, T1R, TA, T3S, T42, TZ, T1u, T3l, T3v;
655
0
        E T21, Tl, T3P, T3Z, TO, T1j, T3i, T3s, T1U, Tt, T3R, T41, TU, T1p, T3k;
656
0
        E T3u, T1Y;
657
0
        {
658
0
       E Ta, T1a, TI, T1P, Td, TF, T1d, T1Q;
659
0
       {
660
0
            E T8, T9, TG, TH;
661
0
            T8 = Rp[WS(rs, 4)];
662
0
            T9 = Rm[WS(rs, 5)];
663
0
            Ta = T8 + T9;
664
0
            T1a = T8 - T9;
665
0
            TG = Ip[WS(rs, 4)];
666
0
            TH = Im[WS(rs, 5)];
667
0
            TI = TG + TH;
668
0
            T1P = TG - TH;
669
0
       }
670
0
       {
671
0
            E Tb, Tc, T1b, T1c;
672
0
            Tb = Rp[WS(rs, 9)];
673
0
            Tc = Rm[0];
674
0
            Td = Tb + Tc;
675
0
            TF = Tb - Tc;
676
0
            T1b = Ip[WS(rs, 9)];
677
0
            T1c = Im[0];
678
0
            T1d = T1b + T1c;
679
0
            T1Q = T1b - T1c;
680
0
       }
681
0
       Te = Ta + Td;
682
0
       T3O = TI - TF;
683
0
       T3Y = T1a + T1d;
684
0
       TJ = TF + TI;
685
0
       T1e = T1a - T1d;
686
0
       T3h = Ta - Td;
687
0
       T3r = T1P - T1Q;
688
0
       T1R = T1P + T1Q;
689
0
        }
690
0
        {
691
0
       E Tw, T1q, TY, T1Z, Tz, TV, T1t, T20;
692
0
       {
693
0
            E Tu, Tv, TW, TX;
694
0
            Tu = Rm[WS(rs, 7)];
695
0
            Tv = Rp[WS(rs, 2)];
696
0
            Tw = Tu + Tv;
697
0
            T1q = Tu - Tv;
698
0
            TW = Im[WS(rs, 7)];
699
0
            TX = Ip[WS(rs, 2)];
700
0
            TY = TW + TX;
701
0
            T1Z = TX - TW;
702
0
       }
703
0
       {
704
0
            E Tx, Ty, T1r, T1s;
705
0
            Tx = Rm[WS(rs, 2)];
706
0
            Ty = Rp[WS(rs, 7)];
707
0
            Tz = Tx + Ty;
708
0
            TV = Tx - Ty;
709
0
            T1r = Im[WS(rs, 2)];
710
0
            T1s = Ip[WS(rs, 7)];
711
0
            T1t = T1r + T1s;
712
0
            T20 = T1s - T1r;
713
0
       }
714
0
       TA = Tw + Tz;
715
0
       T3S = TV + TY;
716
0
       T42 = T1q - T1t;
717
0
       TZ = TV - TY;
718
0
       T1u = T1q + T1t;
719
0
       T3l = Tw - Tz;
720
0
       T3v = T1Z - T20;
721
0
       T21 = T1Z + T20;
722
0
        }
723
0
        {
724
0
       E Th, T1f, TN, T1S, Tk, TK, T1i, T1T;
725
0
       {
726
0
            E Tf, Tg, TL, TM;
727
0
            Tf = Rm[WS(rs, 3)];
728
0
            Tg = Rp[WS(rs, 6)];
729
0
            Th = Tf + Tg;
730
0
            T1f = Tf - Tg;
731
0
            TL = Im[WS(rs, 3)];
732
0
            TM = Ip[WS(rs, 6)];
733
0
            TN = TL + TM;
734
0
            T1S = TM - TL;
735
0
       }
736
0
       {
737
0
            E Ti, Tj, T1g, T1h;
738
0
            Ti = Rp[WS(rs, 1)];
739
0
            Tj = Rm[WS(rs, 8)];
740
0
            Tk = Ti + Tj;
741
0
            TK = Ti - Tj;
742
0
            T1g = Ip[WS(rs, 1)];
743
0
            T1h = Im[WS(rs, 8)];
744
0
            T1i = T1g + T1h;
745
0
            T1T = T1g - T1h;
746
0
       }
747
0
       Tl = Th + Tk;
748
0
       T3P = TK + TN;
749
0
       T3Z = T1f + T1i;
750
0
       TO = TK - TN;
751
0
       T1j = T1f - T1i;
752
0
       T3i = Th - Tk;
753
0
       T3s = T1S - T1T;
754
0
       T1U = T1S + T1T;
755
0
        }
756
0
        {
757
0
       E Tp, T1l, TT, T1W, Ts, TQ, T1o, T1X;
758
0
       {
759
0
            E Tn, To, TR, TS;
760
0
            Tn = Rp[WS(rs, 8)];
761
0
            To = Rm[WS(rs, 1)];
762
0
            Tp = Tn + To;
763
0
            T1l = Tn - To;
764
0
            TR = Ip[WS(rs, 8)];
765
0
            TS = Im[WS(rs, 1)];
766
0
            TT = TR + TS;
767
0
            T1W = TR - TS;
768
0
       }
769
0
       {
770
0
            E Tq, Tr, T1m, T1n;
771
0
            Tq = Rm[WS(rs, 6)];
772
0
            Tr = Rp[WS(rs, 3)];
773
0
            Ts = Tq + Tr;
774
0
            TQ = Tq - Tr;
775
0
            T1m = Im[WS(rs, 6)];
776
0
            T1n = Ip[WS(rs, 3)];
777
0
            T1o = T1m + T1n;
778
0
            T1X = T1n - T1m;
779
0
       }
780
0
       Tt = Tp + Ts;
781
0
       T3R = TT - TQ;
782
0
       T41 = T1l - T1o;
783
0
       TU = TQ + TT;
784
0
       T1p = T1l + T1o;
785
0
       T3k = Tp - Ts;
786
0
       T3u = T1W - T1X;
787
0
       T1Y = T1W + T1X;
788
0
        }
789
0
        T1k = T1e - T1j;
790
0
        T3A = T3h - T3i;
791
0
        T3B = T3k - T3l;
792
0
        T1v = T1p - T1u;
793
0
        T2e = T1Y - T21;
794
0
        T48 = T3R + T3S;
795
0
        T47 = T3O + T3P;
796
0
        T2d = T1R - T1U;
797
0
        T1L = TU - TZ;
798
0
        T43 = T41 - T42;
799
0
        T40 = T3Y - T3Z;
800
0
        T1K = TJ - TO;
801
0
        T2l = Te - Tl;
802
0
        T3t = T3r - T3s;
803
0
        T2m = Tt - TA;
804
0
        T3w = T3u - T3v;
805
0
        {
806
0
       E T3j, T3m, Tm, TB;
807
0
       T3j = T3h + T3i;
808
0
       T3m = T3k + T3l;
809
0
       T3n = T3j + T3m;
810
0
       T3p = KP559016994 * (T3j - T3m);
811
0
       Tm = Te + Tl;
812
0
       TB = Tt + TA;
813
0
       TC = Tm + TB;
814
0
       T2b = KP559016994 * (Tm - TB);
815
0
        }
816
0
        {
817
0
       E T4b, T4c, T3Q, T3T;
818
0
       T4b = T3Y + T3Z;
819
0
       T4c = T41 + T42;
820
0
       T4d = T4b + T4c;
821
0
       T4f = KP559016994 * (T4b - T4c);
822
0
       {
823
0
            E T1V, T22, T1z, T1A;
824
0
            T1V = T1R + T1U;
825
0
            T22 = T1Y + T21;
826
0
            T23 = T1V + T22;
827
0
            T2j = KP559016994 * (T1V - T22);
828
0
            T1z = T1e + T1j;
829
0
            T1A = T1p + T1u;
830
0
            T1B = KP559016994 * (T1z - T1A);
831
0
            T1H = T1z + T1A;
832
0
       }
833
0
       T3Q = T3O - T3P;
834
0
       T3T = T3R - T3S;
835
0
       T3U = T3Q + T3T;
836
0
       T3W = KP559016994 * (T3Q - T3T);
837
0
       {
838
0
            E T3E, T3F, TP, T10;
839
0
            T3E = T3r + T3s;
840
0
            T3F = T3u + T3v;
841
0
            T3G = T3E + T3F;
842
0
            T3I = KP559016994 * (T3E - T3F);
843
0
            TP = TJ + TO;
844
0
            T10 = TU + TZ;
845
0
            T11 = KP559016994 * (TP - T10);
846
0
            T17 = TP + T10;
847
0
       }
848
0
        }
849
0
         }
850
0
         {
851
0
        E TD, T27, T3c, T3e, T2o, T36, T2A, T2U, T1N, T2Z, T2t, T2J, T1x, T2X, T2r;
852
0
        E T2F, T2g, T34, T2y, T2Q;
853
0
        TD = T7 + TC;
854
0
        T27 = T23 + T26;
855
0
        {
856
0
       E T39, T3b, T38, T3a;
857
0
       T39 = T16 + T17;
858
0
       T3b = T1H + T1G;
859
0
       T38 = W[8];
860
0
       T3a = W[9];
861
0
       T3c = FMA(T38, T39, T3a * T3b);
862
0
       T3e = FNMS(T3a, T39, T38 * T3b);
863
0
        }
864
0
        {
865
0
       E T2n, T2S, T2k, T2T, T2i;
866
0
       T2n = FNMS(KP951056516, T2m, KP587785252 * T2l);
867
0
       T2S = FMA(KP951056516, T2l, KP587785252 * T2m);
868
0
       T2i = FNMS(KP250000000, T23, T26);
869
0
       T2k = T2i - T2j;
870
0
       T2T = T2j + T2i;
871
0
       T2o = T2k - T2n;
872
0
       T36 = T2T - T2S;
873
0
       T2A = T2n + T2k;
874
0
       T2U = T2S + T2T;
875
0
        }
876
0
        {
877
0
       E T1M, T2H, T1J, T2I, T1I;
878
0
       T1M = FMA(KP951056516, T1K, KP587785252 * T1L);
879
0
       T2H = FNMS(KP951056516, T1L, KP587785252 * T1K);
880
0
       T1I = FNMS(KP250000000, T1H, T1G);
881
0
       T1J = T1B + T1I;
882
0
       T2I = T1I - T1B;
883
0
       T1N = T1J - T1M;
884
0
       T2Z = T2I - T2H;
885
0
       T2t = T1M + T1J;
886
0
       T2J = T2H + T2I;
887
0
        }
888
0
        {
889
0
       E T1w, T2E, T19, T2D, T18;
890
0
       T1w = FMA(KP951056516, T1k, KP587785252 * T1v);
891
0
       T2E = FNMS(KP951056516, T1v, KP587785252 * T1k);
892
0
       T18 = FNMS(KP250000000, T17, T16);
893
0
       T19 = T11 + T18;
894
0
       T2D = T18 - T11;
895
0
       T1x = T19 + T1w;
896
0
       T2X = T2D + T2E;
897
0
       T2r = T19 - T1w;
898
0
       T2F = T2D - T2E;
899
0
        }
900
0
        {
901
0
       E T2f, T2P, T2c, T2O, T2a;
902
0
       T2f = FNMS(KP951056516, T2e, KP587785252 * T2d);
903
0
       T2P = FMA(KP951056516, T2d, KP587785252 * T2e);
904
0
       T2a = FNMS(KP250000000, TC, T7);
905
0
       T2c = T2a - T2b;
906
0
       T2O = T2b + T2a;
907
0
       T2g = T2c + T2f;
908
0
       T34 = T2O + T2P;
909
0
       T2y = T2c - T2f;
910
0
       T2Q = T2O - T2P;
911
0
        }
912
0
        {
913
0
       E T1O, T28, TE, T1y;
914
0
       TE = W[0];
915
0
       T1y = W[1];
916
0
       T1O = FMA(TE, T1x, T1y * T1N);
917
0
       T28 = FNMS(T1y, T1x, TE * T1N);
918
0
       Rp[0] = TD - T1O;
919
0
       Ip[0] = T27 + T28;
920
0
       Rm[0] = TD + T1O;
921
0
       Im[0] = T28 - T27;
922
0
        }
923
0
        {
924
0
       E T37, T3d, T33, T35;
925
0
       T33 = W[6];
926
0
       T35 = W[7];
927
0
       T37 = FNMS(T35, T36, T33 * T34);
928
0
       T3d = FMA(T35, T34, T33 * T36);
929
0
       Rp[WS(rs, 2)] = T37 - T3c;
930
0
       Ip[WS(rs, 2)] = T3d + T3e;
931
0
       Rm[WS(rs, 2)] = T37 + T3c;
932
0
       Im[WS(rs, 2)] = T3e - T3d;
933
0
        }
934
0
        {
935
0
       E T2p, T2v, T2u, T2w;
936
0
       {
937
0
            E T29, T2h, T2q, T2s;
938
0
            T29 = W[14];
939
0
            T2h = W[15];
940
0
            T2p = FNMS(T2h, T2o, T29 * T2g);
941
0
            T2v = FMA(T2h, T2g, T29 * T2o);
942
0
            T2q = W[16];
943
0
            T2s = W[17];
944
0
            T2u = FMA(T2q, T2r, T2s * T2t);
945
0
            T2w = FNMS(T2s, T2r, T2q * T2t);
946
0
       }
947
0
       Rp[WS(rs, 4)] = T2p - T2u;
948
0
       Ip[WS(rs, 4)] = T2v + T2w;
949
0
       Rm[WS(rs, 4)] = T2p + T2u;
950
0
       Im[WS(rs, 4)] = T2w - T2v;
951
0
        }
952
0
        {
953
0
       E T2B, T2L, T2K, T2M;
954
0
       {
955
0
            E T2x, T2z, T2C, T2G;
956
0
            T2x = W[22];
957
0
            T2z = W[23];
958
0
            T2B = FNMS(T2z, T2A, T2x * T2y);
959
0
            T2L = FMA(T2z, T2y, T2x * T2A);
960
0
            T2C = W[24];
961
0
            T2G = W[25];
962
0
            T2K = FMA(T2C, T2F, T2G * T2J);
963
0
            T2M = FNMS(T2G, T2F, T2C * T2J);
964
0
       }
965
0
       Rp[WS(rs, 6)] = T2B - T2K;
966
0
       Ip[WS(rs, 6)] = T2L + T2M;
967
0
       Rm[WS(rs, 6)] = T2B + T2K;
968
0
       Im[WS(rs, 6)] = T2M - T2L;
969
0
        }
970
0
        {
971
0
       E T2V, T31, T30, T32;
972
0
       {
973
0
            E T2N, T2R, T2W, T2Y;
974
0
            T2N = W[30];
975
0
            T2R = W[31];
976
0
            T2V = FNMS(T2R, T2U, T2N * T2Q);
977
0
            T31 = FMA(T2R, T2Q, T2N * T2U);
978
0
            T2W = W[32];
979
0
            T2Y = W[33];
980
0
            T30 = FMA(T2W, T2X, T2Y * T2Z);
981
0
            T32 = FNMS(T2Y, T2X, T2W * T2Z);
982
0
       }
983
0
       Rp[WS(rs, 8)] = T2V - T30;
984
0
       Ip[WS(rs, 8)] = T31 + T32;
985
0
       Rm[WS(rs, 8)] = T2V + T30;
986
0
       Im[WS(rs, 8)] = T32 - T31;
987
0
        }
988
0
         }
989
0
         {
990
0
        E T4F, T4P, T5c, T5e, T3y, T54, T4o, T4S, T4h, T4Z, T4x, T4N, T45, T4X, T4v;
991
0
        E T4J, T3K, T56, T4s, T4U;
992
0
        {
993
0
       E T4C, T4E, T4B, T4D;
994
0
       T4C = T3g + T3n;
995
0
       T4E = T3G + T3D;
996
0
       T4B = W[18];
997
0
       T4D = W[19];
998
0
       T4F = FNMS(T4D, T4E, T4B * T4C);
999
0
       T4P = FMA(T4D, T4C, T4B * T4E);
1000
0
        }
1001
0
        {
1002
0
       E T59, T5b, T58, T5a;
1003
0
       T59 = T3N + T3U;
1004
0
       T5b = T4d + T4a;
1005
0
       T58 = W[28];
1006
0
       T5a = W[29];
1007
0
       T5c = FMA(T58, T59, T5a * T5b);
1008
0
       T5e = FNMS(T5a, T59, T58 * T5b);
1009
0
        }
1010
0
        {
1011
0
       E T3x, T4n, T3q, T4m, T3o;
1012
0
       T3x = FNMS(KP951056516, T3w, KP587785252 * T3t);
1013
0
       T4n = FMA(KP951056516, T3t, KP587785252 * T3w);
1014
0
       T3o = FNMS(KP250000000, T3n, T3g);
1015
0
       T3q = T3o - T3p;
1016
0
       T4m = T3p + T3o;
1017
0
       T3y = T3q - T3x;
1018
0
       T54 = T4m + T4n;
1019
0
       T4o = T4m - T4n;
1020
0
       T4S = T3q + T3x;
1021
0
        }
1022
0
        {
1023
0
       E T49, T4M, T4g, T4L, T4e;
1024
0
       T49 = FNMS(KP951056516, T48, KP587785252 * T47);
1025
0
       T4M = FMA(KP951056516, T47, KP587785252 * T48);
1026
0
       T4e = FNMS(KP250000000, T4d, T4a);
1027
0
       T4g = T4e - T4f;
1028
0
       T4L = T4f + T4e;
1029
0
       T4h = T49 + T4g;
1030
0
       T4Z = T4M + T4L;
1031
0
       T4x = T4g - T49;
1032
0
       T4N = T4L - T4M;
1033
0
        }
1034
0
        {
1035
0
       E T44, T4I, T3X, T4H, T3V;
1036
0
       T44 = FNMS(KP951056516, T43, KP587785252 * T40);
1037
0
       T4I = FMA(KP951056516, T40, KP587785252 * T43);
1038
0
       T3V = FNMS(KP250000000, T3U, T3N);
1039
0
       T3X = T3V - T3W;
1040
0
       T4H = T3W + T3V;
1041
0
       T45 = T3X - T44;
1042
0
       T4X = T4H - T4I;
1043
0
       T4v = T3X + T44;
1044
0
       T4J = T4H + T4I;
1045
0
        }
1046
0
        {
1047
0
       E T3C, T4q, T3J, T4r, T3H;
1048
0
       T3C = FNMS(KP951056516, T3B, KP587785252 * T3A);
1049
0
       T4q = FMA(KP951056516, T3A, KP587785252 * T3B);
1050
0
       T3H = FNMS(KP250000000, T3G, T3D);
1051
0
       T3J = T3H - T3I;
1052
0
       T4r = T3I + T3H;
1053
0
       T3K = T3C + T3J;
1054
0
       T56 = T4r - T4q;
1055
0
       T4s = T4q + T4r;
1056
0
       T4U = T3J - T3C;
1057
0
        }
1058
0
        {
1059
0
       E T4O, T4Q, T4G, T4K;
1060
0
       T4G = W[20];
1061
0
       T4K = W[21];
1062
0
       T4O = FMA(T4G, T4J, T4K * T4N);
1063
0
       T4Q = FNMS(T4K, T4J, T4G * T4N);
1064
0
       Rp[WS(rs, 5)] = T4F - T4O;
1065
0
       Ip[WS(rs, 5)] = T4P + T4Q;
1066
0
       Rm[WS(rs, 5)] = T4F + T4O;
1067
0
       Im[WS(rs, 5)] = T4Q - T4P;
1068
0
        }
1069
0
        {
1070
0
       E T57, T5d, T53, T55;
1071
0
       T53 = W[26];
1072
0
       T55 = W[27];
1073
0
       T57 = FNMS(T55, T56, T53 * T54);
1074
0
       T5d = FMA(T55, T54, T53 * T56);
1075
0
       Rp[WS(rs, 7)] = T57 - T5c;
1076
0
       Ip[WS(rs, 7)] = T5d + T5e;
1077
0
       Rm[WS(rs, 7)] = T57 + T5c;
1078
0
       Im[WS(rs, 7)] = T5e - T5d;
1079
0
        }
1080
0
        {
1081
0
       E T3L, T4j, T4i, T4k;
1082
0
       {
1083
0
            E T3f, T3z, T3M, T46;
1084
0
            T3f = W[2];
1085
0
            T3z = W[3];
1086
0
            T3L = FNMS(T3z, T3K, T3f * T3y);
1087
0
            T4j = FMA(T3z, T3y, T3f * T3K);
1088
0
            T3M = W[4];
1089
0
            T46 = W[5];
1090
0
            T4i = FMA(T3M, T45, T46 * T4h);
1091
0
            T4k = FNMS(T46, T45, T3M * T4h);
1092
0
       }
1093
0
       Rp[WS(rs, 1)] = T3L - T4i;
1094
0
       Ip[WS(rs, 1)] = T4j + T4k;
1095
0
       Rm[WS(rs, 1)] = T3L + T4i;
1096
0
       Im[WS(rs, 1)] = T4k - T4j;
1097
0
        }
1098
0
        {
1099
0
       E T4t, T4z, T4y, T4A;
1100
0
       {
1101
0
            E T4l, T4p, T4u, T4w;
1102
0
            T4l = W[10];
1103
0
            T4p = W[11];
1104
0
            T4t = FNMS(T4p, T4s, T4l * T4o);
1105
0
            T4z = FMA(T4p, T4o, T4l * T4s);
1106
0
            T4u = W[12];
1107
0
            T4w = W[13];
1108
0
            T4y = FMA(T4u, T4v, T4w * T4x);
1109
0
            T4A = FNMS(T4w, T4v, T4u * T4x);
1110
0
       }
1111
0
       Rp[WS(rs, 3)] = T4t - T4y;
1112
0
       Ip[WS(rs, 3)] = T4z + T4A;
1113
0
       Rm[WS(rs, 3)] = T4t + T4y;
1114
0
       Im[WS(rs, 3)] = T4A - T4z;
1115
0
        }
1116
0
        {
1117
0
       E T4V, T51, T50, T52;
1118
0
       {
1119
0
            E T4R, T4T, T4W, T4Y;
1120
0
            T4R = W[34];
1121
0
            T4T = W[35];
1122
0
            T4V = FNMS(T4T, T4U, T4R * T4S);
1123
0
            T51 = FMA(T4T, T4S, T4R * T4U);
1124
0
            T4W = W[36];
1125
0
            T4Y = W[37];
1126
0
            T50 = FMA(T4W, T4X, T4Y * T4Z);
1127
0
            T52 = FNMS(T4Y, T4X, T4W * T4Z);
1128
0
       }
1129
0
       Rp[WS(rs, 9)] = T4V - T50;
1130
0
       Ip[WS(rs, 9)] = T51 + T52;
1131
0
       Rm[WS(rs, 9)] = T4V + T50;
1132
0
       Im[WS(rs, 9)] = T52 - T51;
1133
0
        }
1134
0
         }
1135
0
    }
1136
0
     }
1137
0
}
1138
1139
static const tw_instr twinstr[] = {
1140
     { TW_FULL, 1, 20 },
1141
     { TW_NEXT, 1, 0 }
1142
};
1143
1144
static const hc2c_desc desc = { 20, "hc2cbdft2_20", twinstr, &GENUS, { 224, 62, 62, 0 } };
1145
1146
1
void X(codelet_hc2cbdft2_20) (planner *p) {
1147
1
     X(khc2c_register) (p, hc2cbdft2_20, &desc, HC2C_VIA_DFT);
1148
1
}
1149
#endif