/src/fftw3/dft/scalar/codelets/q1_3.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sat Feb 14 07:02:28 UTC 2026 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 48 FP additions, 42 FP multiplications, |
32 | | * (or, 18 additions, 12 multiplications, 30 fused multiply/add), |
33 | | * 35 stack variables, 2 constants, and 36 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/q.h" |
36 | | |
37 | | static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
44 | | E T1, T4, T6, Tg, Td, Te, T9, Tf, Tp, Ts, Tu, TE, TB, TC, Tx; |
45 | | E TD, TZ, T10, TV, T11, TN, TQ, TS, T12; |
46 | | { |
47 | | E T2, T3, Tv, Tw; |
48 | | T1 = rio[0]; |
49 | | T2 = rio[WS(rs, 1)]; |
50 | | T3 = rio[WS(rs, 2)]; |
51 | | T4 = T2 + T3; |
52 | | T6 = FNMS(KP500000000, T4, T1); |
53 | | Tg = T3 - T2; |
54 | | { |
55 | | E T7, T8, Tq, Tr; |
56 | | Td = iio[0]; |
57 | | T7 = iio[WS(rs, 1)]; |
58 | | T8 = iio[WS(rs, 2)]; |
59 | | Te = T7 + T8; |
60 | | T9 = T7 - T8; |
61 | | Tf = FNMS(KP500000000, Te, Td); |
62 | | Tp = rio[WS(vs, 1)]; |
63 | | Tq = rio[WS(vs, 1) + WS(rs, 1)]; |
64 | | Tr = rio[WS(vs, 1) + WS(rs, 2)]; |
65 | | Ts = Tq + Tr; |
66 | | Tu = FNMS(KP500000000, Ts, Tp); |
67 | | TE = Tr - Tq; |
68 | | } |
69 | | TB = iio[WS(vs, 1)]; |
70 | | Tv = iio[WS(vs, 1) + WS(rs, 1)]; |
71 | | Tw = iio[WS(vs, 1) + WS(rs, 2)]; |
72 | | TC = Tv + Tw; |
73 | | Tx = Tv - Tw; |
74 | | TD = FNMS(KP500000000, TC, TB); |
75 | | { |
76 | | E TT, TU, TO, TP; |
77 | | TZ = iio[WS(vs, 2)]; |
78 | | TT = iio[WS(vs, 2) + WS(rs, 1)]; |
79 | | TU = iio[WS(vs, 2) + WS(rs, 2)]; |
80 | | T10 = TT + TU; |
81 | | TV = TT - TU; |
82 | | T11 = FNMS(KP500000000, T10, TZ); |
83 | | TN = rio[WS(vs, 2)]; |
84 | | TO = rio[WS(vs, 2) + WS(rs, 1)]; |
85 | | TP = rio[WS(vs, 2) + WS(rs, 2)]; |
86 | | TQ = TO + TP; |
87 | | TS = FNMS(KP500000000, TQ, TN); |
88 | | T12 = TP - TO; |
89 | | } |
90 | | } |
91 | | rio[0] = T1 + T4; |
92 | | iio[0] = Td + Te; |
93 | | rio[WS(rs, 1)] = Tp + Ts; |
94 | | iio[WS(rs, 1)] = TB + TC; |
95 | | iio[WS(rs, 2)] = TZ + T10; |
96 | | rio[WS(rs, 2)] = TN + TQ; |
97 | | { |
98 | | E Ta, Th, Tb, Ti, T5, Tc; |
99 | | Ta = FMA(KP866025403, T9, T6); |
100 | | Th = FMA(KP866025403, Tg, Tf); |
101 | | T5 = W[0]; |
102 | | Tb = T5 * Ta; |
103 | | Ti = T5 * Th; |
104 | | Tc = W[1]; |
105 | | rio[WS(vs, 1)] = FMA(Tc, Th, Tb); |
106 | | iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti); |
107 | | } |
108 | | { |
109 | | E T16, T19, T17, T1a, T15, T18; |
110 | | T16 = FNMS(KP866025403, TV, TS); |
111 | | T19 = FNMS(KP866025403, T12, T11); |
112 | | T15 = W[2]; |
113 | | T17 = T15 * T16; |
114 | | T1a = T15 * T19; |
115 | | T18 = W[3]; |
116 | | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17); |
117 | | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a); |
118 | | } |
119 | | { |
120 | | E TI, TL, TJ, TM, TH, TK; |
121 | | TI = FNMS(KP866025403, Tx, Tu); |
122 | | TL = FNMS(KP866025403, TE, TD); |
123 | | TH = W[2]; |
124 | | TJ = TH * TI; |
125 | | TM = TH * TL; |
126 | | TK = W[3]; |
127 | | rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ); |
128 | | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM); |
129 | | } |
130 | | { |
131 | | E Ty, TF, Tz, TG, Tt, TA; |
132 | | Ty = FMA(KP866025403, Tx, Tu); |
133 | | TF = FMA(KP866025403, TE, TD); |
134 | | Tt = W[0]; |
135 | | Tz = Tt * Ty; |
136 | | TG = Tt * TF; |
137 | | TA = W[1]; |
138 | | rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz); |
139 | | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG); |
140 | | } |
141 | | { |
142 | | E TW, T13, TX, T14, TR, TY; |
143 | | TW = FMA(KP866025403, TV, TS); |
144 | | T13 = FMA(KP866025403, T12, T11); |
145 | | TR = W[0]; |
146 | | TX = TR * TW; |
147 | | T14 = TR * T13; |
148 | | TY = W[1]; |
149 | | rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX); |
150 | | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14); |
151 | | } |
152 | | { |
153 | | E Tk, Tn, Tl, To, Tj, Tm; |
154 | | Tk = FNMS(KP866025403, T9, T6); |
155 | | Tn = FNMS(KP866025403, Tg, Tf); |
156 | | Tj = W[2]; |
157 | | Tl = Tj * Tk; |
158 | | To = Tj * Tn; |
159 | | Tm = W[3]; |
160 | | rio[WS(vs, 2)] = FMA(Tm, Tn, Tl); |
161 | | iio[WS(vs, 2)] = FNMS(Tm, Tk, To); |
162 | | } |
163 | | } |
164 | | } |
165 | | } |
166 | | |
167 | | static const tw_instr twinstr[] = { |
168 | | { TW_FULL, 0, 3 }, |
169 | | { TW_NEXT, 1, 0 } |
170 | | }; |
171 | | |
172 | | static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 18, 12, 30, 0 }, 0, 0, 0 }; |
173 | | |
174 | | void X(codelet_q1_3) (planner *p) { |
175 | | X(kdft_difsq_register) (p, q1_3, &desc); |
176 | | } |
177 | | #else |
178 | | |
179 | | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ |
180 | | |
181 | | /* |
182 | | * This function contains 48 FP additions, 36 FP multiplications, |
183 | | * (or, 30 additions, 18 multiplications, 18 fused multiply/add), |
184 | | * 35 stack variables, 2 constants, and 36 memory accesses |
185 | | */ |
186 | | #include "dft/scalar/q.h" |
187 | | |
188 | | static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
189 | 0 | { |
190 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
191 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
192 | 0 | { |
193 | 0 | INT m; |
194 | 0 | for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
195 | 0 | E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt; |
196 | 0 | E Tz, TR, TS, TN, TT, TF, TI, TK, TQ; |
197 | 0 | { |
198 | 0 | E T2, T3, Tr, Ts; |
199 | 0 | T1 = rio[0]; |
200 | 0 | T2 = rio[WS(rs, 1)]; |
201 | 0 | T3 = rio[WS(rs, 2)]; |
202 | 0 | T4 = T2 + T3; |
203 | 0 | T6 = FNMS(KP500000000, T4, T1); |
204 | 0 | Tc = KP866025403 * (T3 - T2); |
205 | 0 | { |
206 | 0 | E T7, T8, Tm, Tn; |
207 | 0 | Td = iio[0]; |
208 | 0 | T7 = iio[WS(rs, 1)]; |
209 | 0 | T8 = iio[WS(rs, 2)]; |
210 | 0 | Te = T7 + T8; |
211 | 0 | T9 = KP866025403 * (T7 - T8); |
212 | 0 | Tf = FNMS(KP500000000, Te, Td); |
213 | 0 | Tl = rio[WS(vs, 1)]; |
214 | 0 | Tm = rio[WS(vs, 1) + WS(rs, 1)]; |
215 | 0 | Tn = rio[WS(vs, 1) + WS(rs, 2)]; |
216 | 0 | To = Tm + Tn; |
217 | 0 | Tq = FNMS(KP500000000, To, Tl); |
218 | 0 | Tw = KP866025403 * (Tn - Tm); |
219 | 0 | } |
220 | 0 | Tx = iio[WS(vs, 1)]; |
221 | 0 | Tr = iio[WS(vs, 1) + WS(rs, 1)]; |
222 | 0 | Ts = iio[WS(vs, 1) + WS(rs, 2)]; |
223 | 0 | Ty = Tr + Ts; |
224 | 0 | Tt = KP866025403 * (Tr - Ts); |
225 | 0 | Tz = FNMS(KP500000000, Ty, Tx); |
226 | 0 | { |
227 | 0 | E TL, TM, TG, TH; |
228 | 0 | TR = iio[WS(vs, 2)]; |
229 | 0 | TL = iio[WS(vs, 2) + WS(rs, 1)]; |
230 | 0 | TM = iio[WS(vs, 2) + WS(rs, 2)]; |
231 | 0 | TS = TL + TM; |
232 | 0 | TN = KP866025403 * (TL - TM); |
233 | 0 | TT = FNMS(KP500000000, TS, TR); |
234 | 0 | TF = rio[WS(vs, 2)]; |
235 | 0 | TG = rio[WS(vs, 2) + WS(rs, 1)]; |
236 | 0 | TH = rio[WS(vs, 2) + WS(rs, 2)]; |
237 | 0 | TI = TG + TH; |
238 | 0 | TK = FNMS(KP500000000, TI, TF); |
239 | 0 | TQ = KP866025403 * (TH - TG); |
240 | 0 | } |
241 | 0 | } |
242 | 0 | rio[0] = T1 + T4; |
243 | 0 | iio[0] = Td + Te; |
244 | 0 | rio[WS(rs, 1)] = Tl + To; |
245 | 0 | iio[WS(rs, 1)] = Tx + Ty; |
246 | 0 | iio[WS(rs, 2)] = TR + TS; |
247 | 0 | rio[WS(rs, 2)] = TF + TI; |
248 | 0 | { |
249 | 0 | E Ta, Tg, T5, Tb; |
250 | 0 | Ta = T6 + T9; |
251 | 0 | Tg = Tc + Tf; |
252 | 0 | T5 = W[0]; |
253 | 0 | Tb = W[1]; |
254 | 0 | rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg); |
255 | 0 | iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg); |
256 | 0 | } |
257 | 0 | { |
258 | 0 | E TW, TY, TV, TX; |
259 | 0 | TW = TK - TN; |
260 | 0 | TY = TT - TQ; |
261 | 0 | TV = W[2]; |
262 | 0 | TX = W[3]; |
263 | 0 | rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY); |
264 | 0 | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY); |
265 | 0 | } |
266 | 0 | { |
267 | 0 | E TC, TE, TB, TD; |
268 | 0 | TC = Tq - Tt; |
269 | 0 | TE = Tz - Tw; |
270 | 0 | TB = W[2]; |
271 | 0 | TD = W[3]; |
272 | 0 | rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE); |
273 | 0 | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE); |
274 | 0 | } |
275 | 0 | { |
276 | 0 | E Tu, TA, Tp, Tv; |
277 | 0 | Tu = Tq + Tt; |
278 | 0 | TA = Tw + Tz; |
279 | 0 | Tp = W[0]; |
280 | 0 | Tv = W[1]; |
281 | 0 | rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA); |
282 | 0 | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA); |
283 | 0 | } |
284 | 0 | { |
285 | 0 | E TO, TU, TJ, TP; |
286 | 0 | TO = TK + TN; |
287 | 0 | TU = TQ + TT; |
288 | 0 | TJ = W[0]; |
289 | 0 | TP = W[1]; |
290 | 0 | rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU); |
291 | 0 | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU); |
292 | 0 | } |
293 | 0 | { |
294 | 0 | E Ti, Tk, Th, Tj; |
295 | 0 | Ti = T6 - T9; |
296 | 0 | Tk = Tf - Tc; |
297 | 0 | Th = W[2]; |
298 | 0 | Tj = W[3]; |
299 | 0 | rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk); |
300 | 0 | iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk); |
301 | 0 | } |
302 | 0 | } |
303 | 0 | } |
304 | 0 | } |
305 | | |
306 | | static const tw_instr twinstr[] = { |
307 | | { TW_FULL, 0, 3 }, |
308 | | { TW_NEXT, 1, 0 } |
309 | | }; |
310 | | |
311 | | static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, { 30, 18, 18, 0 }, 0, 0, 0 }; |
312 | | |
313 | 1 | void X(codelet_q1_3) (planner *p) { |
314 | 1 | X(kdft_difsq_register) (p, q1_3, &desc); |
315 | 1 | } |
316 | | #endif |