Coverage Report

Created: 2026-02-14 07:07

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cf/hc2cfdft_12.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sat Feb 14 07:05:21 UTC 2026 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 142 FP additions, 92 FP multiplications,
32
 * (or, 96 additions, 46 multiplications, 46 fused multiply/add),
33
 * 65 stack variables, 2 constants, and 48 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
44
         E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B;
45
         E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q;
46
         E TU, T1R;
47
         {
48
        E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4;
49
        E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n;
50
        Tm = Ip[0];
51
        Tn = Im[0];
52
        T1u = Tm + Tn;
53
        T1x = Rp[0];
54
        T1y = Rm[0];
55
        T1z = T1x - T1y;
56
        T1t = W[0];
57
        T1v = T1t * T1u;
58
        T2c = T1t * T1z;
59
        {
60
       E Tc, Td, Th, Ti, Tb;
61
       Tc = Ip[WS(rs, 4)];
62
       Td = Im[WS(rs, 4)];
63
       Te = Tc - Td;
64
       Th = Rp[WS(rs, 4)];
65
       Ti = Rm[WS(rs, 4)];
66
       Tj = Th + Ti;
67
       T1i = Tc + Td;
68
       T1l = Th - Ti;
69
       Tb = W[14];
70
       Tf = Tb * Te;
71
       T1H = Tb * Tj;
72
        }
73
        {
74
       E T2, T3, T7, T8;
75
       T2 = Ip[WS(rs, 2)];
76
       T3 = Im[WS(rs, 2)];
77
       T4 = T2 - T3;
78
       T1o = T2 + T3;
79
       T7 = Rp[WS(rs, 2)];
80
       T8 = Rm[WS(rs, 2)];
81
       T9 = T7 + T8;
82
       T1r = T7 - T8;
83
        }
84
        T1 = W[6];
85
        T5 = T1 * T4;
86
        T1F = T1 * T9;
87
        T1n = W[8];
88
        T1p = T1n * T1o;
89
        T2a = T1n * T1r;
90
        To = Tm - Tn;
91
        T1E = T1x + T1y;
92
        {
93
       E T1j, T2G, T1h, T1k;
94
       T1h = W[16];
95
       T1j = T1h * T1i;
96
       T2G = T1h * T1l;
97
       T1k = W[17];
98
       T1m = FNMS(T1k, T1l, T1j);
99
       T2H = FMA(T1k, T1i, T2G);
100
        }
101
        {
102
       E T6, Tg, T1q, T1w;
103
       T6 = W[7];
104
       Ta = FNMS(T6, T9, T5);
105
       T1G = FMA(T6, T4, T1F);
106
       Tg = W[15];
107
       Tk = FNMS(Tg, Tj, Tf);
108
       T1I = FMA(Tg, Te, T1H);
109
       Tl = Ta + Tk;
110
       T1J = T1G + T1I;
111
       T1q = W[9];
112
       T1s = FNMS(T1q, T1r, T1p);
113
       T2b = FMA(T1q, T1o, T2a);
114
       T1w = W[1];
115
       T1A = FNMS(T1w, T1z, T1v);
116
       T2d = FMA(T1w, T1u, T2c);
117
       T1B = T1s + T1A;
118
       T2I = T2b + T2d;
119
        }
120
         }
121
         {
122
        E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI;
123
        E T17, T16, T25, T13, T15, TE, T1N, TF, TP;
124
        {
125
       E Tr, Ts, Tw, Tx, TY;
126
       Tr = Ip[WS(rs, 3)];
127
       Ts = Im[WS(rs, 3)];
128
       Tt = Tr - Ts;
129
       T11 = Tr + Ts;
130
       Tw = Rp[WS(rs, 3)];
131
       Tx = Rm[WS(rs, 3)];
132
       TY = Tx - Tw;
133
       Ty = Tw + Tx;
134
       T10 = W[12];
135
       T23 = T10 * TY;
136
       TX = W[13];
137
       TZ = TX * TY;
138
        }
139
        {
140
       E TL, TM, TQ, TR, TK;
141
       TL = Ip[WS(rs, 1)];
142
       TM = Im[WS(rs, 1)];
143
       TN = TL - TM;
144
       TQ = Rp[WS(rs, 1)];
145
       TR = Rm[WS(rs, 1)];
146
       TS = TQ + TR;
147
       T1b = TL + TM;
148
       T1e = TQ - TR;
149
       TK = W[2];
150
       TO = TK * TN;
151
       T1P = TK * TS;
152
        }
153
        {
154
       E TB, TC, T14, TG, TH, TA;
155
       TB = Ip[WS(rs, 5)];
156
       TC = Im[WS(rs, 5)];
157
       TD = TB - TC;
158
       TG = Rp[WS(rs, 5)];
159
       TH = Rm[WS(rs, 5)];
160
       TI = TG + TH;
161
       T14 = TH - TG;
162
       T17 = TB + TC;
163
       T16 = W[20];
164
       T25 = T16 * T14;
165
       T13 = W[21];
166
       T15 = T13 * T14;
167
       TA = W[18];
168
       TE = TA * TD;
169
       T1N = TA * TI;
170
        }
171
        T12 = FMA(T10, T11, TZ);
172
        T18 = FMA(T16, T17, T15);
173
        T19 = T12 + T18;
174
        T24 = FNMS(TX, T11, T23);
175
        T26 = FNMS(T13, T17, T25);
176
        T2C = T24 + T26;
177
        {
178
       E Tu, T1L, Tq, Tv;
179
       Tq = W[10];
180
       Tu = Tq * Tt;
181
       T1L = Tq * Ty;
182
       Tv = W[11];
183
       Tz = FNMS(Tv, Ty, Tu);
184
       T1M = FMA(Tv, Tt, T1L);
185
        }
186
        {
187
       E T1c, T2A, T1a, T1d;
188
       T1a = W[4];
189
       T1c = T1a * T1b;
190
       T2A = T1a * T1e;
191
       T1d = W[5];
192
       T1f = FNMS(T1d, T1e, T1c);
193
       T2B = FMA(T1d, T1b, T2A);
194
        }
195
        TF = W[19];
196
        TJ = FNMS(TF, TI, TE);
197
        T1O = FMA(TF, TD, T1N);
198
        TP = W[3];
199
        TT = FNMS(TP, TS, TO);
200
        T1Q = FMA(TP, TN, T1P);
201
        TU = TJ + TT;
202
        T1R = T1O + T1Q;
203
         }
204
         {
205
        E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z;
206
        {
207
       E Tp, TV, T2W, T2X;
208
       Tp = Tl + To;
209
       TV = Tz + TU;
210
       TW = Tp - TV;
211
       T2V = TV + Tp;
212
       T2W = T2C - T2B;
213
       T2X = T2H + T2I;
214
       T2Y = T2W - T2X;
215
       T30 = T2W + T2X;
216
        }
217
        {
218
       E T1g, T1C, T1K, T1S;
219
       T1g = T19 + T1f;
220
       T1C = T1m + T1B;
221
       T1D = T1g - T1C;
222
       T1U = T1g + T1C;
223
       T1K = T1E + T1J;
224
       T1S = T1M + T1R;
225
       T1T = T1K + T1S;
226
       T2Z = T1K - T1S;
227
        }
228
        Ip[WS(rs, 3)] = KP500000000 * (TW + T1D);
229
        Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30);
230
        Im[WS(rs, 2)] = KP500000000 * (T1D - TW);
231
        Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30);
232
        Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U);
233
        Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V);
234
        Rp[0] = KP500000000 * (T1T + T1U);
235
        Ip[0] = KP500000000 * (T2V + T2Y);
236
         }
237
         {
238
        E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f;
239
        E T2s;
240
        {
241
       E T1V, T1W, T2D, T2E;
242
       T1V = FNMS(KP500000000, T1J, T1E);
243
       T1W = Ta - Tk;
244
       T1X = FNMS(KP866025403, T1W, T1V);
245
       T2v = FMA(KP866025403, T1W, T1V);
246
       T2D = FMA(KP500000000, T2C, T2B);
247
       T2E = T18 - T12;
248
       T2F = FNMS(KP866025403, T2E, T2D);
249
       T2Q = FMA(KP866025403, T2E, T2D);
250
        }
251
        {
252
       E T2J, T2K, T1Y, T1Z;
253
       T2J = FNMS(KP500000000, T2I, T2H);
254
       T2K = T1s - T1A;
255
       T2L = FNMS(KP866025403, T2K, T2J);
256
       T2R = FMA(KP866025403, T2K, T2J);
257
       T1Y = FNMS(KP500000000, T1R, T1M);
258
       T1Z = TJ - TT;
259
       T20 = FNMS(KP866025403, T1Z, T1Y);
260
       T2w = FMA(KP866025403, T1Z, T1Y);
261
        }
262
        {
263
       E T22, T27, T2h, T2i;
264
       T22 = FNMS(KP500000000, T19, T1f);
265
       T27 = T24 - T26;
266
       T28 = FNMS(KP866025403, T27, T22);
267
       T2t = FMA(KP866025403, T27, T22);
268
       T2h = FNMS(KP500000000, Tl, To);
269
       T2i = T1I - T1G;
270
       T2j = FNMS(KP866025403, T2i, T2h);
271
       T2p = FMA(KP866025403, T2i, T2h);
272
        }
273
        {
274
       E T2k, T2l, T29, T2e;
275
       T2k = FNMS(KP500000000, TU, Tz);
276
       T2l = T1Q - T1O;
277
       T2m = FNMS(KP866025403, T2l, T2k);
278
       T2q = FMA(KP866025403, T2l, T2k);
279
       T29 = FNMS(KP500000000, T1B, T1m);
280
       T2e = T2b - T2d;
281
       T2f = FNMS(KP866025403, T2e, T29);
282
       T2s = FMA(KP866025403, T2e, T29);
283
        }
284
        {
285
       E T21, T2g, T2P, T2S;
286
       T21 = T1X + T20;
287
       T2g = T28 + T2f;
288
       Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g);
289
       Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g);
290
       T2P = T2m + T2j;
291
       T2S = T2Q + T2R;
292
       Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S);
293
       Im[WS(rs, 3)] = KP500000000 * (T2S - T2P);
294
        }
295
        {
296
       E T2n, T2o, T2T, T2U;
297
       T2n = T2j - T2m;
298
       T2o = T2f - T28;
299
       Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o);
300
       Im[0] = KP500000000 * (T2o - T2n);
301
       T2T = T1X - T20;
302
       T2U = T2R - T2Q;
303
       Rm[0] = KP500000000 * (T2T - T2U);
304
       Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U);
305
        }
306
        {
307
       E T2r, T2u, T2N, T2O;
308
       T2r = T2p - T2q;
309
       T2u = T2s - T2t;
310
       Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u);
311
       Im[WS(rs, 4)] = KP500000000 * (T2u - T2r);
312
       T2N = T2v - T2w;
313
       T2O = T2L - T2F;
314
       Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O);
315
       Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O);
316
        }
317
        {
318
       E T2x, T2y, T2z, T2M;
319
       T2x = T2v + T2w;
320
       T2y = T2t + T2s;
321
       Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y);
322
       Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
323
       T2z = T2q + T2p;
324
       T2M = T2F + T2L;
325
       Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M);
326
       Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M));
327
        }
328
         }
329
    }
330
     }
331
}
332
333
static const tw_instr twinstr[] = {
334
     { TW_FULL, 1, 12 },
335
     { TW_NEXT, 1, 0 }
336
};
337
338
static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 96, 46, 46, 0 } };
339
340
void X(codelet_hc2cfdft_12) (planner *p) {
341
     X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
342
}
343
#else
344
345
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
346
347
/*
348
 * This function contains 142 FP additions, 76 FP multiplications,
349
 * (or, 112 additions, 46 multiplications, 30 fused multiply/add),
350
 * 52 stack variables, 3 constants, and 48 memory accesses
351
 */
352
#include "rdft/scalar/hc2cf.h"
353
354
static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
355
0
{
356
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
357
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
358
0
     DK(KP433012701, +0.433012701892219323381861585376468091735701313);
359
0
     {
360
0
    INT m;
361
0
    for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
362
0
         E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17;
363
0
         E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h;
364
0
         {
365
0
        E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19;
366
0
        E T1b;
367
0
        {
368
0
       E T2, T3, T6, T7;
369
0
       Tk = Ip[0];
370
0
       Tl = Im[0];
371
0
       T1k = Tk + Tl;
372
0
       T1m = Rp[0];
373
0
       T1n = Rm[0];
374
0
       T1o = T1m - T1n;
375
0
       T2 = Ip[WS(rs, 2)];
376
0
       T3 = Im[WS(rs, 2)];
377
0
       T4 = T2 - T3;
378
0
       T1f = T2 + T3;
379
0
       T6 = Rp[WS(rs, 2)];
380
0
       T7 = Rm[WS(rs, 2)];
381
0
       T8 = T6 + T7;
382
0
       T1h = T6 - T7;
383
0
       {
384
0
            E Tf, Tg, Tb, Tc;
385
0
            Tf = Rp[WS(rs, 4)];
386
0
            Tg = Rm[WS(rs, 4)];
387
0
            Th = Tf + Tg;
388
0
            T1c = Tf - Tg;
389
0
            Tb = Ip[WS(rs, 4)];
390
0
            Tc = Im[WS(rs, 4)];
391
0
            Td = Tb - Tc;
392
0
            T1a = Tb + Tc;
393
0
       }
394
0
        }
395
0
        Tm = Tk - Tl;
396
0
        T1t = T1m + T1n;
397
0
        T19 = W[16];
398
0
        T1b = W[17];
399
0
        T1d = FNMS(T1b, T1c, T19 * T1a);
400
0
        T2j = FMA(T19, T1c, T1b * T1a);
401
0
        {
402
0
       E T9, T1u, Ti, T1v;
403
0
       {
404
0
            E T1, T5, Ta, Te;
405
0
            T1 = W[6];
406
0
            T5 = W[7];
407
0
            T9 = FNMS(T5, T8, T1 * T4);
408
0
            T1u = FMA(T1, T8, T5 * T4);
409
0
            Ta = W[14];
410
0
            Te = W[15];
411
0
            Ti = FNMS(Te, Th, Ta * Td);
412
0
            T1v = FMA(Ta, Th, Te * Td);
413
0
       }
414
0
       Tj = T9 + Ti;
415
0
       T1Y = KP433012701 * (T1v - T1u);
416
0
       T1w = T1u + T1v;
417
0
       T1G = KP433012701 * (T9 - Ti);
418
0
        }
419
0
        {
420
0
       E T1i, T1S, T1p, T1T;
421
0
       {
422
0
            E T1e, T1g, T1j, T1l;
423
0
            T1e = W[8];
424
0
            T1g = W[9];
425
0
            T1i = FNMS(T1g, T1h, T1e * T1f);
426
0
            T1S = FMA(T1e, T1h, T1g * T1f);
427
0
            T1j = W[0];
428
0
            T1l = W[1];
429
0
            T1p = FNMS(T1l, T1o, T1j * T1k);
430
0
            T1T = FMA(T1j, T1o, T1l * T1k);
431
0
       }
432
0
       T1q = T1i + T1p;
433
0
       T2q = KP433012701 * (T1i - T1p);
434
0
       T1U = KP433012701 * (T1S - T1T);
435
0
       T2k = T1S + T1T;
436
0
        }
437
0
         }
438
0
         {
439
0
        E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16;
440
0
        {
441
0
       E Tp, Tq, TC, TD;
442
0
       Tp = Ip[WS(rs, 3)];
443
0
       Tq = Im[WS(rs, 3)];
444
0
       Tr = Tp - Tq;
445
0
       TT = Tp + Tq;
446
0
       {
447
0
            E Tt, Tu, Ty, Tz;
448
0
            Tt = Rp[WS(rs, 3)];
449
0
            Tu = Rm[WS(rs, 3)];
450
0
            Tv = Tt + Tu;
451
0
            TV = Tt - Tu;
452
0
            Ty = Ip[WS(rs, 5)];
453
0
            Tz = Im[WS(rs, 5)];
454
0
            TA = Ty - Tz;
455
0
            TY = Ty + Tz;
456
0
       }
457
0
       TC = Rp[WS(rs, 5)];
458
0
       TD = Rm[WS(rs, 5)];
459
0
       TE = TC + TD;
460
0
       T10 = TC - TD;
461
0
       {
462
0
            E TL, TM, TH, TI;
463
0
            TL = Rp[WS(rs, 1)];
464
0
            TM = Rm[WS(rs, 1)];
465
0
            TN = TL + TM;
466
0
            T14 = TM - TL;
467
0
            TH = Ip[WS(rs, 1)];
468
0
            TI = Im[WS(rs, 1)];
469
0
            TJ = TH - TI;
470
0
            T16 = TH + TI;
471
0
       }
472
0
        }
473
0
        {
474
0
       E To, Ts, T13, T15;
475
0
       To = W[10];
476
0
       Ts = W[11];
477
0
       Tw = FNMS(Ts, Tv, To * Tr);
478
0
       T1y = FMA(To, Tv, Ts * Tr);
479
0
       T13 = W[5];
480
0
       T15 = W[4];
481
0
       T17 = FMA(T13, T14, T15 * T16);
482
0
       T2g = FNMS(T13, T16, T15 * T14);
483
0
        }
484
0
        {
485
0
       E TF, T1z, TO, T1A;
486
0
       {
487
0
            E Tx, TB, TG, TK;
488
0
            Tx = W[18];
489
0
            TB = W[19];
490
0
            TF = FNMS(TB, TE, Tx * TA);
491
0
            T1z = FMA(Tx, TE, TB * TA);
492
0
            TG = W[2];
493
0
            TK = W[3];
494
0
            TO = FNMS(TK, TN, TG * TJ);
495
0
            T1A = FMA(TG, TN, TK * TJ);
496
0
       }
497
0
       TP = TF + TO;
498
0
       T21 = KP433012701 * (T1A - T1z);
499
0
       T1B = T1z + T1A;
500
0
       T1J = KP433012701 * (TF - TO);
501
0
        }
502
0
        {
503
0
       E TW, T1O, T11, T1N;
504
0
       {
505
0
            E TS, TU, TX, TZ;
506
0
            TS = W[12];
507
0
            TU = W[13];
508
0
            TW = FNMS(TU, TV, TS * TT);
509
0
            T1O = FMA(TS, TV, TU * TT);
510
0
            TX = W[20];
511
0
            TZ = W[21];
512
0
            T11 = FNMS(TZ, T10, TX * TY);
513
0
            T1N = FMA(TX, T10, TZ * TY);
514
0
       }
515
0
       T12 = TW + T11;
516
0
       T2u = KP433012701 * (T11 - TW);
517
0
       T1P = KP433012701 * (T1N - T1O);
518
0
       T2h = T1O + T1N;
519
0
        }
520
0
         }
521
0
         {
522
0
        E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n;
523
0
        {
524
0
       E Tn, TQ, T2i, T2l;
525
0
       Tn = Tj + Tm;
526
0
       TQ = Tw + TP;
527
0
       TR = Tn - TQ;
528
0
       T2f = TQ + Tn;
529
0
       T2i = T2g - T2h;
530
0
       T2l = T2j + T2k;
531
0
       T2m = T2i - T2l;
532
0
       T2o = T2i + T2l;
533
0
        }
534
0
        {
535
0
       E T18, T1r, T1x, T1C;
536
0
       T18 = T12 + T17;
537
0
       T1r = T1d + T1q;
538
0
       T1s = T18 - T1r;
539
0
       T1E = T18 + T1r;
540
0
       T1x = T1t + T1w;
541
0
       T1C = T1y + T1B;
542
0
       T1D = T1x + T1C;
543
0
       T2n = T1x - T1C;
544
0
        }
545
0
        Ip[WS(rs, 3)] = KP500000000 * (TR + T1s);
546
0
        Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o);
547
0
        Im[WS(rs, 2)] = KP500000000 * (T1s - TR);
548
0
        Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o);
549
0
        Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E);
550
0
        Im[WS(rs, 5)] = KP500000000 * (T2m - T2f);
551
0
        Rp[0] = KP500000000 * (T1D + T1E);
552
0
        Ip[0] = KP500000000 * (T2f + T2m);
553
0
         }
554
0
         {
555
0
        E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V;
556
0
        E T28;
557
0
        {
558
0
       E T1F, T2r, T2t, T1I;
559
0
       T1F = FNMS(KP250000000, T1w, KP500000000 * T1t);
560
0
       T1H = T1F - T1G;
561
0
       T2b = T1F + T1G;
562
0
       T2r = FNMS(KP500000000, T2j, KP250000000 * T2k);
563
0
       T2s = T2q - T2r;
564
0
       T2B = T2q + T2r;
565
0
       T2t = FMA(KP250000000, T2h, KP500000000 * T2g);
566
0
       T2v = T2t - T2u;
567
0
       T2A = T2u + T2t;
568
0
       T1I = FNMS(KP250000000, T1B, KP500000000 * T1y);
569
0
       T1K = T1I - T1J;
570
0
       T2c = T1I + T1J;
571
0
        }
572
0
        {
573
0
       E T1M, T1X, T20, T1R;
574
0
       T1M = FNMS(KP250000000, T12, KP500000000 * T17);
575
0
       T1Q = T1M - T1P;
576
0
       T29 = T1P + T1M;
577
0
       T1X = FNMS(KP250000000, Tj, KP500000000 * Tm);
578
0
       T1Z = T1X - T1Y;
579
0
       T25 = T1Y + T1X;
580
0
       T20 = FNMS(KP250000000, TP, KP500000000 * Tw);
581
0
       T22 = T20 - T21;
582
0
       T26 = T21 + T20;
583
0
       T1R = FNMS(KP250000000, T1q, KP500000000 * T1d);
584
0
       T1V = T1R - T1U;
585
0
       T28 = T1R + T1U;
586
0
        }
587
0
        {
588
0
       E T1L, T1W, T2p, T2w;
589
0
       T1L = T1H + T1K;
590
0
       T1W = T1Q + T1V;
591
0
       Rp[WS(rs, 2)] = T1L - T1W;
592
0
       Rm[WS(rs, 3)] = T1L + T1W;
593
0
       T2p = T22 + T1Z;
594
0
       T2w = T2s - T2v;
595
0
       Ip[WS(rs, 2)] = T2p + T2w;
596
0
       Im[WS(rs, 3)] = T2w - T2p;
597
0
        }
598
0
        {
599
0
       E T23, T24, T2x, T2y;
600
0
       T23 = T1Z - T22;
601
0
       T24 = T1V - T1Q;
602
0
       Ip[WS(rs, 5)] = T23 + T24;
603
0
       Im[0] = T24 - T23;
604
0
       T2x = T1H - T1K;
605
0
       T2y = T2v + T2s;
606
0
       Rm[0] = T2x - T2y;
607
0
       Rp[WS(rs, 5)] = T2x + T2y;
608
0
        }
609
0
        {
610
0
       E T27, T2a, T2z, T2C;
611
0
       T27 = T25 - T26;
612
0
       T2a = T28 - T29;
613
0
       Ip[WS(rs, 1)] = T27 + T2a;
614
0
       Im[WS(rs, 4)] = T2a - T27;
615
0
       T2z = T2b - T2c;
616
0
       T2C = T2A - T2B;
617
0
       Rm[WS(rs, 4)] = T2z - T2C;
618
0
       Rp[WS(rs, 1)] = T2z + T2C;
619
0
        }
620
0
        {
621
0
       E T2d, T2e, T2D, T2E;
622
0
       T2d = T2b + T2c;
623
0
       T2e = T29 + T28;
624
0
       Rm[WS(rs, 1)] = T2d - T2e;
625
0
       Rp[WS(rs, 4)] = T2d + T2e;
626
0
       T2D = T26 + T25;
627
0
       T2E = T2A + T2B;
628
0
       Ip[WS(rs, 4)] = T2D + T2E;
629
0
       Im[WS(rs, 1)] = T2E - T2D;
630
0
        }
631
0
         }
632
0
    }
633
0
     }
634
0
}
635
636
static const tw_instr twinstr[] = {
637
     { TW_FULL, 1, 12 },
638
     { TW_NEXT, 1, 0 }
639
};
640
641
static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 112, 46, 30, 0 } };
642
643
1
void X(codelet_hc2cfdft_12) (planner *p) {
644
1
     X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
645
1
}
646
#endif