/src/mozilla-central/dom/media/webaudio/AnalyserNode.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim:set ts=2 sw=2 sts=2 et cindent: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | #include "mozilla/dom/AnalyserNode.h" |
8 | | #include "mozilla/dom/AnalyserNodeBinding.h" |
9 | | #include "AudioNodeEngine.h" |
10 | | #include "AudioNodeStream.h" |
11 | | #include "mozilla/Mutex.h" |
12 | | #include "mozilla/PodOperations.h" |
13 | | |
14 | | namespace mozilla { |
15 | | |
16 | | static const uint32_t MAX_FFT_SIZE = 32768; |
17 | | static const size_t CHUNK_COUNT = MAX_FFT_SIZE >> WEBAUDIO_BLOCK_SIZE_BITS; |
18 | | static_assert(MAX_FFT_SIZE == CHUNK_COUNT * WEBAUDIO_BLOCK_SIZE, |
19 | | "MAX_FFT_SIZE must be a multiple of WEBAUDIO_BLOCK_SIZE"); |
20 | | static_assert((CHUNK_COUNT & (CHUNK_COUNT - 1)) == 0, |
21 | | "CHUNK_COUNT must be power of 2 for remainder behavior"); |
22 | | |
23 | | namespace dom { |
24 | | |
25 | | class AnalyserNodeEngine final : public AudioNodeEngine |
26 | | { |
27 | | class TransferBuffer final : public Runnable |
28 | | { |
29 | | public: |
30 | | TransferBuffer(AudioNodeStream* aStream, const AudioChunk& aChunk) |
31 | | : Runnable("dom::AnalyserNodeEngine::TransferBuffer") |
32 | | , mStream(aStream) |
33 | | , mChunk(aChunk) |
34 | 0 | { |
35 | 0 | } |
36 | | |
37 | | NS_IMETHOD Run() override |
38 | 0 | { |
39 | 0 | RefPtr<AnalyserNode> node = |
40 | 0 | static_cast<AnalyserNode*>(mStream->Engine()->NodeMainThread()); |
41 | 0 | if (node) { |
42 | 0 | node->AppendChunk(mChunk); |
43 | 0 | } |
44 | 0 | return NS_OK; |
45 | 0 | } |
46 | | |
47 | | private: |
48 | | RefPtr<AudioNodeStream> mStream; |
49 | | AudioChunk mChunk; |
50 | | }; |
51 | | |
52 | | public: |
53 | | explicit AnalyserNodeEngine(AnalyserNode* aNode) |
54 | | : AudioNodeEngine(aNode) |
55 | 0 | { |
56 | 0 | MOZ_ASSERT(NS_IsMainThread()); |
57 | 0 | } |
58 | | |
59 | | virtual void ProcessBlock(AudioNodeStream* aStream, |
60 | | GraphTime aFrom, |
61 | | const AudioBlock& aInput, |
62 | | AudioBlock* aOutput, |
63 | | bool* aFinished) override |
64 | 0 | { |
65 | 0 | *aOutput = aInput; |
66 | 0 |
|
67 | 0 | if (aInput.IsNull()) { |
68 | 0 | // If AnalyserNode::mChunks has only null chunks, then there is no need |
69 | 0 | // to send further null chunks. |
70 | 0 | if (mChunksToProcess == 0) { |
71 | 0 | return; |
72 | 0 | } |
73 | 0 | |
74 | 0 | --mChunksToProcess; |
75 | 0 | if (mChunksToProcess == 0) { |
76 | 0 | aStream->ScheduleCheckForInactive(); |
77 | 0 | } |
78 | 0 |
|
79 | 0 | } else { |
80 | 0 | // This many null chunks will be required to empty AnalyserNode::mChunks. |
81 | 0 | mChunksToProcess = CHUNK_COUNT; |
82 | 0 | } |
83 | 0 |
|
84 | 0 | RefPtr<TransferBuffer> transfer = |
85 | 0 | new TransferBuffer(aStream, aInput.AsAudioChunk()); |
86 | 0 | mAbstractMainThread->Dispatch(transfer.forget()); |
87 | 0 | } |
88 | | |
89 | | virtual bool IsActive() const override |
90 | 0 | { |
91 | 0 | return mChunksToProcess != 0; |
92 | 0 | } |
93 | | |
94 | | virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override |
95 | 0 | { |
96 | 0 | return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); |
97 | 0 | } |
98 | | |
99 | | uint32_t mChunksToProcess = 0; |
100 | | }; |
101 | | |
102 | | /* static */ already_AddRefed<AnalyserNode> |
103 | | AnalyserNode::Create(AudioContext& aAudioContext, |
104 | | const AnalyserOptions& aOptions, |
105 | | ErrorResult& aRv) |
106 | 0 | { |
107 | 0 | if (aAudioContext.CheckClosed(aRv)) { |
108 | 0 | return nullptr; |
109 | 0 | } |
110 | 0 | |
111 | 0 | RefPtr<AnalyserNode> analyserNode = new AnalyserNode(&aAudioContext); |
112 | 0 |
|
113 | 0 | analyserNode->Initialize(aOptions, aRv); |
114 | 0 | if (NS_WARN_IF(aRv.Failed())) { |
115 | 0 | return nullptr; |
116 | 0 | } |
117 | 0 | |
118 | 0 | analyserNode->SetFftSize(aOptions.mFftSize, aRv); |
119 | 0 | if (NS_WARN_IF(aRv.Failed())) { |
120 | 0 | return nullptr; |
121 | 0 | } |
122 | 0 | |
123 | 0 | analyserNode->SetMinAndMaxDecibels(aOptions.mMinDecibels, |
124 | 0 | aOptions.mMaxDecibels, |
125 | 0 | aRv); |
126 | 0 | if (NS_WARN_IF(aRv.Failed())) { |
127 | 0 | return nullptr; |
128 | 0 | } |
129 | 0 | |
130 | 0 | analyserNode->SetSmoothingTimeConstant(aOptions.mSmoothingTimeConstant, aRv); |
131 | 0 | if (NS_WARN_IF(aRv.Failed())) { |
132 | 0 | return nullptr; |
133 | 0 | } |
134 | 0 | |
135 | 0 | return analyserNode.forget(); |
136 | 0 | } |
137 | | |
138 | | AnalyserNode::AnalyserNode(AudioContext* aContext) |
139 | | : AudioNode(aContext, |
140 | | 1, |
141 | | ChannelCountMode::Max, |
142 | | ChannelInterpretation::Speakers) |
143 | | , mAnalysisBlock(2048) |
144 | | , mMinDecibels(-100.) |
145 | | , mMaxDecibels(-30.) |
146 | | , mSmoothingTimeConstant(.8) |
147 | 0 | { |
148 | 0 | mStream = AudioNodeStream::Create(aContext, |
149 | 0 | new AnalyserNodeEngine(this), |
150 | 0 | AudioNodeStream::NO_STREAM_FLAGS, |
151 | 0 | aContext->Graph()); |
152 | 0 |
|
153 | 0 | // Enough chunks must be recorded to handle the case of fftSize being |
154 | 0 | // increased to maximum immediately before getFloatTimeDomainData() is |
155 | 0 | // called, for example. |
156 | 0 | Unused << mChunks.SetLength(CHUNK_COUNT, fallible); |
157 | 0 |
|
158 | 0 | AllocateBuffer(); |
159 | 0 | } |
160 | | |
161 | | size_t |
162 | | AnalyserNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const |
163 | 0 | { |
164 | 0 | size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf); |
165 | 0 | amount += mAnalysisBlock.SizeOfExcludingThis(aMallocSizeOf); |
166 | 0 | amount += mChunks.ShallowSizeOfExcludingThis(aMallocSizeOf); |
167 | 0 | amount += mOutputBuffer.ShallowSizeOfExcludingThis(aMallocSizeOf); |
168 | 0 | return amount; |
169 | 0 | } |
170 | | |
171 | | size_t |
172 | | AnalyserNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const |
173 | 0 | { |
174 | 0 | return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); |
175 | 0 | } |
176 | | |
177 | | JSObject* |
178 | | AnalyserNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto) |
179 | 0 | { |
180 | 0 | return AnalyserNode_Binding::Wrap(aCx, this, aGivenProto); |
181 | 0 | } |
182 | | |
183 | | void |
184 | | AnalyserNode::SetFftSize(uint32_t aValue, ErrorResult& aRv) |
185 | 0 | { |
186 | 0 | // Disallow values that are not a power of 2 and outside the [32,32768] range |
187 | 0 | if (aValue < 32 || |
188 | 0 | aValue > MAX_FFT_SIZE || |
189 | 0 | (aValue & (aValue - 1)) != 0) { |
190 | 0 | aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); |
191 | 0 | return; |
192 | 0 | } |
193 | 0 | if (FftSize() != aValue) { |
194 | 0 | mAnalysisBlock.SetFFTSize(aValue); |
195 | 0 | AllocateBuffer(); |
196 | 0 | } |
197 | 0 | } |
198 | | |
199 | | void |
200 | | AnalyserNode::SetMinDecibels(double aValue, ErrorResult& aRv) |
201 | 0 | { |
202 | 0 | if (aValue >= mMaxDecibels) { |
203 | 0 | aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); |
204 | 0 | return; |
205 | 0 | } |
206 | 0 | mMinDecibels = aValue; |
207 | 0 | } |
208 | | |
209 | | void |
210 | | AnalyserNode::SetMaxDecibels(double aValue, ErrorResult& aRv) |
211 | 0 | { |
212 | 0 | if (aValue <= mMinDecibels) { |
213 | 0 | aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); |
214 | 0 | return; |
215 | 0 | } |
216 | 0 | mMaxDecibels = aValue; |
217 | 0 | } |
218 | | |
219 | | void |
220 | | AnalyserNode::SetMinAndMaxDecibels(double aMinValue, double aMaxValue, ErrorResult& aRv) |
221 | 0 | { |
222 | 0 | if (aMinValue >= aMaxValue) { |
223 | 0 | aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); |
224 | 0 | return; |
225 | 0 | } |
226 | 0 | mMinDecibels = aMinValue; |
227 | 0 | mMaxDecibels = aMaxValue; |
228 | 0 | } |
229 | | |
230 | | void |
231 | | AnalyserNode::SetSmoothingTimeConstant(double aValue, ErrorResult& aRv) |
232 | 0 | { |
233 | 0 | if (aValue < 0 || aValue > 1) { |
234 | 0 | aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); |
235 | 0 | return; |
236 | 0 | } |
237 | 0 | mSmoothingTimeConstant = aValue; |
238 | 0 | } |
239 | | |
240 | | void |
241 | | AnalyserNode::GetFloatFrequencyData(const Float32Array& aArray) |
242 | 0 | { |
243 | 0 | if (!FFTAnalysis()) { |
244 | 0 | // Might fail to allocate memory |
245 | 0 | return; |
246 | 0 | } |
247 | 0 | |
248 | 0 | aArray.ComputeLengthAndData(); |
249 | 0 |
|
250 | 0 | float* buffer = aArray.Data(); |
251 | 0 | size_t length = std::min(size_t(aArray.Length()), mOutputBuffer.Length()); |
252 | 0 |
|
253 | 0 | for (size_t i = 0; i < length; ++i) { |
254 | 0 | buffer[i] = |
255 | 0 | WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], |
256 | 0 | -std::numeric_limits<float>::infinity()); |
257 | 0 | } |
258 | 0 | } |
259 | | |
260 | | void |
261 | | AnalyserNode::GetByteFrequencyData(const Uint8Array& aArray) |
262 | 0 | { |
263 | 0 | if (!FFTAnalysis()) { |
264 | 0 | // Might fail to allocate memory |
265 | 0 | return; |
266 | 0 | } |
267 | 0 | |
268 | 0 | const double rangeScaleFactor = 1.0 / (mMaxDecibels - mMinDecibels); |
269 | 0 |
|
270 | 0 | aArray.ComputeLengthAndData(); |
271 | 0 |
|
272 | 0 | unsigned char* buffer = aArray.Data(); |
273 | 0 | size_t length = std::min(size_t(aArray.Length()), mOutputBuffer.Length()); |
274 | 0 |
|
275 | 0 | for (size_t i = 0; i < length; ++i) { |
276 | 0 | const double decibels = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels); |
277 | 0 | // scale down the value to the range of [0, UCHAR_MAX] |
278 | 0 | const double scaled = std::max(0.0, std::min(double(UCHAR_MAX), |
279 | 0 | UCHAR_MAX * (decibels - mMinDecibels) * rangeScaleFactor)); |
280 | 0 | buffer[i] = static_cast<unsigned char>(scaled); |
281 | 0 | } |
282 | 0 | } |
283 | | |
284 | | void |
285 | | AnalyserNode::GetFloatTimeDomainData(const Float32Array& aArray) |
286 | 0 | { |
287 | 0 | aArray.ComputeLengthAndData(); |
288 | 0 |
|
289 | 0 | float* buffer = aArray.Data(); |
290 | 0 | size_t length = std::min(aArray.Length(), FftSize()); |
291 | 0 |
|
292 | 0 | GetTimeDomainData(buffer, length); |
293 | 0 | } |
294 | | |
295 | | void |
296 | | AnalyserNode::GetByteTimeDomainData(const Uint8Array& aArray) |
297 | 0 | { |
298 | 0 | aArray.ComputeLengthAndData(); |
299 | 0 |
|
300 | 0 | size_t length = std::min(aArray.Length(), FftSize()); |
301 | 0 |
|
302 | 0 | AlignedTArray<float> tmpBuffer; |
303 | 0 | if (!tmpBuffer.SetLength(length, fallible)) { |
304 | 0 | return; |
305 | 0 | } |
306 | 0 | |
307 | 0 | GetTimeDomainData(tmpBuffer.Elements(), length); |
308 | 0 |
|
309 | 0 | unsigned char* buffer = aArray.Data(); |
310 | 0 | for (size_t i = 0; i < length; ++i) { |
311 | 0 | const float value = tmpBuffer[i]; |
312 | 0 | // scale the value to the range of [0, UCHAR_MAX] |
313 | 0 | const float scaled = std::max(0.0f, std::min(float(UCHAR_MAX), |
314 | 0 | 128.0f * (value + 1.0f))); |
315 | 0 | buffer[i] = static_cast<unsigned char>(scaled); |
316 | 0 | } |
317 | 0 | } |
318 | | |
319 | | bool |
320 | | AnalyserNode::FFTAnalysis() |
321 | 0 | { |
322 | 0 | AlignedTArray<float> tmpBuffer; |
323 | 0 | size_t fftSize = FftSize(); |
324 | 0 | if (!tmpBuffer.SetLength(fftSize, fallible)) { |
325 | 0 | return false; |
326 | 0 | } |
327 | 0 | |
328 | 0 | float* inputBuffer = tmpBuffer.Elements(); |
329 | 0 | GetTimeDomainData(inputBuffer, fftSize); |
330 | 0 | ApplyBlackmanWindow(inputBuffer, fftSize); |
331 | 0 | mAnalysisBlock.PerformFFT(inputBuffer); |
332 | 0 |
|
333 | 0 | // Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor). |
334 | 0 | const double magnitudeScale = 1.0 / fftSize; |
335 | 0 |
|
336 | 0 | for (uint32_t i = 0; i < mOutputBuffer.Length(); ++i) { |
337 | 0 | double scalarMagnitude = NS_hypot(mAnalysisBlock.RealData(i), |
338 | 0 | mAnalysisBlock.ImagData(i)) * |
339 | 0 | magnitudeScale; |
340 | 0 | mOutputBuffer[i] = mSmoothingTimeConstant * mOutputBuffer[i] + |
341 | 0 | (1.0 - mSmoothingTimeConstant) * scalarMagnitude; |
342 | 0 | } |
343 | 0 |
|
344 | 0 | return true; |
345 | 0 | } |
346 | | |
347 | | void |
348 | | AnalyserNode::ApplyBlackmanWindow(float* aBuffer, uint32_t aSize) |
349 | 0 | { |
350 | 0 | double alpha = 0.16; |
351 | 0 | double a0 = 0.5 * (1.0 - alpha); |
352 | 0 | double a1 = 0.5; |
353 | 0 | double a2 = 0.5 * alpha; |
354 | 0 |
|
355 | 0 | for (uint32_t i = 0; i < aSize; ++i) { |
356 | 0 | double x = double(i) / aSize; |
357 | 0 | double window = a0 - a1 * cos(2 * M_PI * x) + a2 * cos(4 * M_PI * x); |
358 | 0 | aBuffer[i] *= window; |
359 | 0 | } |
360 | 0 | } |
361 | | |
362 | | bool |
363 | | AnalyserNode::AllocateBuffer() |
364 | 0 | { |
365 | 0 | bool result = true; |
366 | 0 | if (mOutputBuffer.Length() != FrequencyBinCount()) { |
367 | 0 | if (!mOutputBuffer.SetLength(FrequencyBinCount(), fallible)) { |
368 | 0 | return false; |
369 | 0 | } |
370 | 0 | memset(mOutputBuffer.Elements(), 0, sizeof(float) * FrequencyBinCount()); |
371 | 0 | } |
372 | 0 | return result; |
373 | 0 | } |
374 | | |
375 | | void |
376 | | AnalyserNode::AppendChunk(const AudioChunk& aChunk) |
377 | 0 | { |
378 | 0 | if (mChunks.Length() == 0) { |
379 | 0 | return; |
380 | 0 | } |
381 | 0 | |
382 | 0 | ++mCurrentChunk; |
383 | 0 | mChunks[mCurrentChunk & (CHUNK_COUNT - 1)] = aChunk; |
384 | 0 | } |
385 | | |
386 | | // Reads into aData the oldest aLength samples of the fftSize most recent |
387 | | // samples. |
388 | | void |
389 | | AnalyserNode::GetTimeDomainData(float* aData, size_t aLength) |
390 | 0 | { |
391 | 0 | size_t fftSize = FftSize(); |
392 | 0 | MOZ_ASSERT(aLength <= fftSize); |
393 | 0 |
|
394 | 0 | if (mChunks.Length() == 0) { |
395 | 0 | PodZero(aData, aLength); |
396 | 0 | return; |
397 | 0 | } |
398 | 0 | |
399 | 0 | size_t readChunk = |
400 | 0 | mCurrentChunk - ((fftSize - 1) >> WEBAUDIO_BLOCK_SIZE_BITS); |
401 | 0 | size_t readIndex = (0 - fftSize) & (WEBAUDIO_BLOCK_SIZE - 1); |
402 | 0 | MOZ_ASSERT(readIndex == 0 || readIndex + fftSize == WEBAUDIO_BLOCK_SIZE); |
403 | 0 |
|
404 | 0 | for (size_t writeIndex = 0; writeIndex < aLength; ) { |
405 | 0 | const AudioChunk& chunk = mChunks[readChunk & (CHUNK_COUNT - 1)]; |
406 | 0 | const size_t channelCount = chunk.ChannelCount(); |
407 | 0 | size_t copyLength = |
408 | 0 | std::min<size_t>(aLength - writeIndex, WEBAUDIO_BLOCK_SIZE); |
409 | 0 | float* dataOut = &aData[writeIndex]; |
410 | 0 |
|
411 | 0 | if (channelCount == 0) { |
412 | 0 | PodZero(dataOut, copyLength); |
413 | 0 | } else { |
414 | 0 | float scale = chunk.mVolume / channelCount; |
415 | 0 | { // channel 0 |
416 | 0 | auto channelData = |
417 | 0 | static_cast<const float*>(chunk.mChannelData[0]) + readIndex; |
418 | 0 | AudioBufferCopyWithScale(channelData, scale, dataOut, copyLength); |
419 | 0 | } |
420 | 0 | for (uint32_t i = 1; i < channelCount; ++i) { |
421 | 0 | auto channelData = |
422 | 0 | static_cast<const float*>(chunk.mChannelData[i]) + readIndex; |
423 | 0 | AudioBufferAddWithScale(channelData, scale, dataOut, copyLength); |
424 | 0 | } |
425 | 0 | } |
426 | 0 |
|
427 | 0 | readChunk++; |
428 | 0 | writeIndex += copyLength; |
429 | 0 | } |
430 | 0 | } |
431 | | |
432 | | } // namespace dom |
433 | | } // namespace mozilla |
434 | | |