Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/dom/media/webaudio/blink/DynamicsCompressorKernel.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (C) 2011 Google Inc. All rights reserved.
3
 *
4
 * Redistribution and use in source and binary forms, with or without
5
 * modification, are permitted provided that the following conditions
6
 * are met:
7
 *
8
 * 1.  Redistributions of source code must retain the above copyright
9
 *     notice, this list of conditions and the following disclaimer.
10
 * 2.  Redistributions in binary form must reproduce the above copyright
11
 *     notice, this list of conditions and the following disclaimer in the
12
 *     documentation and/or other materials provided with the distribution.
13
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14
 *     its contributors may be used to endorse or promote products derived
15
 *     from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
29
#include "DynamicsCompressorKernel.h"
30
31
#include "DenormalDisabler.h"
32
#include <algorithm>
33
#include <cmath>
34
35
#include "mozilla/FloatingPoint.h"
36
#include "WebAudioUtils.h"
37
38
using namespace std;
39
40
using namespace mozilla::dom; // for WebAudioUtils
41
using mozilla::IsInfinite;
42
using mozilla::PositiveInfinity;
43
using mozilla::IsNaN;
44
using mozilla::MakeUnique;
45
46
namespace WebCore {
47
48
49
// Metering hits peaks instantly, but releases this fast (in seconds).
50
const float meteringReleaseTimeConstant = 0.325f;
51
52
const float uninitializedValue = -1;
53
54
DynamicsCompressorKernel::DynamicsCompressorKernel(float sampleRate, unsigned numberOfChannels)
55
    : m_sampleRate(sampleRate)
56
    , m_lastPreDelayFrames(DefaultPreDelayFrames)
57
    , m_preDelayReadIndex(0)
58
    , m_preDelayWriteIndex(DefaultPreDelayFrames)
59
    , m_ratio(uninitializedValue)
60
    , m_slope(uninitializedValue)
61
    , m_linearThreshold(uninitializedValue)
62
    , m_dbThreshold(uninitializedValue)
63
    , m_dbKnee(uninitializedValue)
64
    , m_kneeThreshold(uninitializedValue)
65
    , m_kneeThresholdDb(uninitializedValue)
66
    , m_ykneeThresholdDb(uninitializedValue)
67
    , m_K(uninitializedValue)
68
0
{
69
0
    setNumberOfChannels(numberOfChannels);
70
0
71
0
    // Initializes most member variables
72
0
    reset();
73
0
74
0
    m_meteringReleaseK =
75
0
        static_cast<float>(WebAudioUtils::DiscreteTimeConstantForSampleRate(meteringReleaseTimeConstant, sampleRate));
76
0
}
77
78
size_t DynamicsCompressorKernel::sizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
79
0
{
80
0
    size_t amount = 0;
81
0
    amount += m_preDelayBuffers.ShallowSizeOfExcludingThis(aMallocSizeOf);
82
0
    for (size_t i = 0; i < m_preDelayBuffers.Length(); i++) {
83
0
        amount += aMallocSizeOf(m_preDelayBuffers[i].get());
84
0
    }
85
0
86
0
    return amount;
87
0
}
88
89
void DynamicsCompressorKernel::setNumberOfChannels(unsigned numberOfChannels)
90
0
{
91
0
    if (m_preDelayBuffers.Length() == numberOfChannels)
92
0
        return;
93
0
94
0
    m_preDelayBuffers.Clear();
95
0
    for (unsigned i = 0; i < numberOfChannels; ++i)
96
0
      m_preDelayBuffers.AppendElement(MakeUnique<float[]>(MaxPreDelayFrames));
97
0
}
98
99
void DynamicsCompressorKernel::setPreDelayTime(float preDelayTime)
100
0
{
101
0
    // Re-configure look-ahead section pre-delay if delay time has changed.
102
0
    unsigned preDelayFrames = preDelayTime * sampleRate();
103
0
    if (preDelayFrames > MaxPreDelayFrames - 1)
104
0
        preDelayFrames = MaxPreDelayFrames - 1;
105
0
106
0
    if (m_lastPreDelayFrames != preDelayFrames) {
107
0
        m_lastPreDelayFrames = preDelayFrames;
108
0
        for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i)
109
0
    memset(m_preDelayBuffers[i].get(), 0, sizeof(float) * MaxPreDelayFrames);
110
0
111
0
        m_preDelayReadIndex = 0;
112
0
        m_preDelayWriteIndex = preDelayFrames;
113
0
    }
114
0
}
115
116
// Exponential curve for the knee.
117
// It is 1st derivative matched at m_linearThreshold and asymptotically approaches the value m_linearThreshold + 1 / k.
118
float DynamicsCompressorKernel::kneeCurve(float x, float k)
119
0
{
120
0
    // Linear up to threshold.
121
0
    if (x < m_linearThreshold)
122
0
        return x;
123
0
124
0
    return m_linearThreshold + (1 - expf(-k * (x - m_linearThreshold))) / k;
125
0
}
126
127
// Full compression curve with constant ratio after knee.
128
float DynamicsCompressorKernel::saturate(float x, float k)
129
0
{
130
0
    float y;
131
0
132
0
    if (x < m_kneeThreshold)
133
0
        y = kneeCurve(x, k);
134
0
    else {
135
0
        // Constant ratio after knee.
136
0
        float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f);
137
0
        float yDb = m_ykneeThresholdDb + m_slope * (xDb - m_kneeThresholdDb);
138
0
139
0
        y = WebAudioUtils::ConvertDecibelsToLinear(yDb);
140
0
    }
141
0
142
0
    return y;
143
0
}
144
145
// Approximate 1st derivative with input and output expressed in dB.
146
// This slope is equal to the inverse of the compression "ratio".
147
// In other words, a compression ratio of 20 would be a slope of 1/20.
148
float DynamicsCompressorKernel::slopeAt(float x, float k)
149
0
{
150
0
    if (x < m_linearThreshold)
151
0
        return 1;
152
0
153
0
    float x2 = x * 1.001;
154
0
155
0
    float xDb = WebAudioUtils::ConvertLinearToDecibels(x, -1000.0f);
156
0
    float x2Db = WebAudioUtils::ConvertLinearToDecibels(x2, -1000.0f);
157
0
158
0
    float yDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x, k), -1000.0f);
159
0
    float y2Db = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(x2, k), -1000.0f);
160
0
161
0
    float m = (y2Db - yDb) / (x2Db - xDb);
162
0
163
0
    return m;
164
0
}
165
166
float DynamicsCompressorKernel::kAtSlope(float desiredSlope)
167
0
{
168
0
    float xDb = m_dbThreshold + m_dbKnee;
169
0
    float x = WebAudioUtils::ConvertDecibelsToLinear(xDb);
170
0
171
0
    // Approximate k given initial values.
172
0
    float minK = 0.1f;
173
0
    float maxK = 10000;
174
0
    float k = 5;
175
0
176
0
    for (int i = 0; i < 15; ++i) {
177
0
        // A high value for k will more quickly asymptotically approach a slope of 0.
178
0
        float slope = slopeAt(x, k);
179
0
180
0
        if (slope < desiredSlope) {
181
0
            // k is too high.
182
0
            maxK = k;
183
0
        } else {
184
0
            // k is too low.
185
0
            minK = k;
186
0
        }
187
0
188
0
        // Re-calculate based on geometric mean.
189
0
        k = sqrtf(minK * maxK);
190
0
    }
191
0
192
0
    return k;
193
0
}
194
195
float DynamicsCompressorKernel::updateStaticCurveParameters(float dbThreshold, float dbKnee, float ratio)
196
0
{
197
0
    if (dbThreshold != m_dbThreshold || dbKnee != m_dbKnee || ratio != m_ratio) {
198
0
        // Threshold and knee.
199
0
        m_dbThreshold = dbThreshold;
200
0
        m_linearThreshold = WebAudioUtils::ConvertDecibelsToLinear(dbThreshold);
201
0
        m_dbKnee = dbKnee;
202
0
203
0
        // Compute knee parameters.
204
0
        m_ratio = ratio;
205
0
        m_slope = 1 / m_ratio;
206
0
207
0
        float k = kAtSlope(1 / m_ratio);
208
0
209
0
        m_kneeThresholdDb = dbThreshold + dbKnee;
210
0
        m_kneeThreshold = WebAudioUtils::ConvertDecibelsToLinear(m_kneeThresholdDb);
211
0
212
0
        m_ykneeThresholdDb = WebAudioUtils::ConvertLinearToDecibels(kneeCurve(m_kneeThreshold, k), -1000.0f);
213
0
214
0
        m_K = k;
215
0
    }
216
0
    return m_K;
217
0
}
218
219
void DynamicsCompressorKernel::process(float* sourceChannels[],
220
                                       float* destinationChannels[],
221
                                       unsigned numberOfChannels,
222
                                       unsigned framesToProcess,
223
224
                                       float dbThreshold,
225
                                       float dbKnee,
226
                                       float ratio,
227
                                       float attackTime,
228
                                       float releaseTime,
229
                                       float preDelayTime,
230
                                       float dbPostGain,
231
                                       float effectBlend, /* equal power crossfade */
232
233
                                       float releaseZone1,
234
                                       float releaseZone2,
235
                                       float releaseZone3,
236
                                       float releaseZone4
237
                                       )
238
0
{
239
0
    MOZ_ASSERT(m_preDelayBuffers.Length() == numberOfChannels);
240
0
241
0
    float sampleRate = this->sampleRate();
242
0
243
0
    float dryMix = 1 - effectBlend;
244
0
    float wetMix = effectBlend;
245
0
246
0
    float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio);
247
0
248
0
    // Makeup gain.
249
0
    float fullRangeGain = saturate(1, k);
250
0
    float fullRangeMakeupGain = 1 / fullRangeGain;
251
0
252
0
    // Empirical/perceptual tuning.
253
0
    fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f);
254
0
255
0
    float masterLinearGain = WebAudioUtils::ConvertDecibelsToLinear(dbPostGain) * fullRangeMakeupGain;
256
0
257
0
    // Attack parameters.
258
0
    attackTime = max(0.001f, attackTime);
259
0
    float attackFrames = attackTime * sampleRate;
260
0
261
0
    // Release parameters.
262
0
    float releaseFrames = sampleRate * releaseTime;
263
0
264
0
    // Detector release time.
265
0
    float satReleaseTime = 0.0025f;
266
0
    float satReleaseFrames = satReleaseTime * sampleRate;
267
0
268
0
    // Create a smooth function which passes through four points.
269
0
270
0
    // Polynomial of the form
271
0
    // y = a + b*x + c*x^2 + d*x^3 + e*x^4;
272
0
273
0
    float y1 = releaseFrames * releaseZone1;
274
0
    float y2 = releaseFrames * releaseZone2;
275
0
    float y3 = releaseFrames * releaseZone3;
276
0
    float y4 = releaseFrames * releaseZone4;
277
0
278
0
    // All of these coefficients were derived for 4th order polynomial curve fitting where the y values
279
0
    // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3)
280
0
    float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4;
281
0
    float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4;
282
0
    float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4;
283
0
    float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4;
284
0
    float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4;
285
0
286
0
    // x ranges from 0 -> 3       0    1    2   3
287
0
    //                           -15  -10  -5   0db
288
0
289
0
    // y calculates adaptive release frames depending on the amount of compression.
290
0
291
0
    setPreDelayTime(preDelayTime);
292
0
293
0
    const int nDivisionFrames = 32;
294
0
295
0
    const int nDivisions = framesToProcess / nDivisionFrames;
296
0
297
0
    unsigned frameIndex = 0;
298
0
    for (int i = 0; i < nDivisions; ++i) {
299
0
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
300
0
        // Calculate desired gain
301
0
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
302
0
303
0
        // Fix gremlins.
304
0
        if (IsNaN(m_detectorAverage))
305
0
            m_detectorAverage = 1;
306
0
        if (IsInfinite(m_detectorAverage))
307
0
            m_detectorAverage = 1;
308
0
309
0
        float desiredGain = m_detectorAverage;
310
0
311
0
        // Pre-warp so we get desiredGain after sin() warp below.
312
0
        float scaledDesiredGain = asinf(desiredGain) / (0.5f * M_PI);
313
0
314
0
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
315
0
        // Deal with envelopes
316
0
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
317
0
318
0
        // envelopeRate is the rate we slew from current compressor level to the desired level.
319
0
        // The exact rate depends on if we're attacking or releasing and by how much.
320
0
        float envelopeRate;
321
0
322
0
        bool isReleasing = scaledDesiredGain > m_compressorGain;
323
0
324
0
        // compressionDiffDb is the difference between current compression level and the desired level.
325
0
        float compressionDiffDb;
326
0
        if (scaledDesiredGain == 0.0) {
327
0
          compressionDiffDb = PositiveInfinity<float>();
328
0
        } else {
329
0
          compressionDiffDb = WebAudioUtils::ConvertLinearToDecibels(m_compressorGain / scaledDesiredGain, -1000.0f);
330
0
        }
331
0
332
0
333
0
        if (isReleasing) {
334
0
            // Release mode - compressionDiffDb should be negative dB
335
0
            m_maxAttackCompressionDiffDb = -1;
336
0
337
0
            // Fix gremlins.
338
0
            if (IsNaN(compressionDiffDb))
339
0
                compressionDiffDb = -1;
340
0
            if (IsInfinite(compressionDiffDb))
341
0
                compressionDiffDb = -1;
342
0
343
0
            // Adaptive release - higher compression (lower compressionDiffDb)  releases faster.
344
0
345
0
            // Contain within range: -12 -> 0 then scale to go from 0 -> 3
346
0
            float x = compressionDiffDb;
347
0
            x = max(-12.0f, x);
348
0
            x = min(0.0f, x);
349
0
            x = 0.25f * (x + 12);
350
0
351
0
            // Compute adaptive release curve using 4th order polynomial.
352
0
            // Normal values for the polynomial coefficients would create a monotonically increasing function.
353
0
            float x2 = x * x;
354
0
            float x3 = x2 * x;
355
0
            float x4 = x2 * x2;
356
0
            float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4;
357
0
358
0
#define kSpacingDb 5
359
0
            float dbPerFrame = kSpacingDb / releaseFrames;
360
0
361
0
            envelopeRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame);
362
0
        } else {
363
0
            // Attack mode - compressionDiffDb should be positive dB
364
0
365
0
            // Fix gremlins.
366
0
            if (IsNaN(compressionDiffDb))
367
0
                compressionDiffDb = 1;
368
0
            if (IsInfinite(compressionDiffDb))
369
0
                compressionDiffDb = 1;
370
0
371
0
            // As long as we're still in attack mode, use a rate based off
372
0
            // the largest compressionDiffDb we've encountered so far.
373
0
            if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb)
374
0
                m_maxAttackCompressionDiffDb = compressionDiffDb;
375
0
376
0
            float effAttenDiffDb = max(0.5f, m_maxAttackCompressionDiffDb);
377
0
378
0
            float x = 0.25f / effAttenDiffDb;
379
0
            envelopeRate = 1 - powf(x, 1 / attackFrames);
380
0
        }
381
0
382
0
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
383
0
        // Inner loop - calculate shaped power average - apply compression.
384
0
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
385
0
386
0
        {
387
0
            int preDelayReadIndex = m_preDelayReadIndex;
388
0
            int preDelayWriteIndex = m_preDelayWriteIndex;
389
0
            float detectorAverage = m_detectorAverage;
390
0
            float compressorGain = m_compressorGain;
391
0
392
0
            int loopFrames = nDivisionFrames;
393
0
            while (loopFrames--) {
394
0
                float compressorInput = 0;
395
0
396
0
                // Predelay signal, computing compression amount from un-delayed version.
397
0
                for (unsigned i = 0; i < numberOfChannels; ++i) {
398
0
                    float* delayBuffer = m_preDelayBuffers[i].get();
399
0
                    float undelayedSource = sourceChannels[i][frameIndex];
400
0
                    delayBuffer[preDelayWriteIndex] = undelayedSource;
401
0
402
0
                    float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource;
403
0
                    if (compressorInput < absUndelayedSource)
404
0
                        compressorInput = absUndelayedSource;
405
0
                }
406
0
407
0
                // Calculate shaped power on undelayed input.
408
0
409
0
                float scaledInput = compressorInput;
410
0
                float absInput = scaledInput > 0 ? scaledInput : -scaledInput;
411
0
412
0
                // Put through shaping curve.
413
0
                // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion.
414
0
                // The transition from the threshold to the knee is smooth (1st derivative matched).
415
0
                // The transition from the knee to the ratio portion is smooth (1st derivative matched).
416
0
                float shapedInput = saturate(absInput, k);
417
0
418
0
                float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput;
419
0
420
0
                float attenuationDb = -WebAudioUtils::ConvertLinearToDecibels(attenuation, -1000.0f);
421
0
                attenuationDb = max(2.0f, attenuationDb);
422
0
423
0
                float dbPerFrame = attenuationDb / satReleaseFrames;
424
0
425
0
                float satReleaseRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame) - 1;
426
0
427
0
                bool isRelease = (attenuation > detectorAverage);
428
0
                float rate = isRelease ? satReleaseRate : 1;
429
0
430
0
                detectorAverage += (attenuation - detectorAverage) * rate;
431
0
                detectorAverage = min(1.0f, detectorAverage);
432
0
433
0
                // Fix gremlins.
434
0
                if (IsNaN(detectorAverage))
435
0
                    detectorAverage = 1;
436
0
                if (IsInfinite(detectorAverage))
437
0
                    detectorAverage = 1;
438
0
439
0
                // Exponential approach to desired gain.
440
0
                if (envelopeRate < 1) {
441
0
                    // Attack - reduce gain to desired.
442
0
                    compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate;
443
0
                } else {
444
0
                    // Release - exponentially increase gain to 1.0
445
0
                    compressorGain *= envelopeRate;
446
0
                    compressorGain = min(1.0f, compressorGain);
447
0
                }
448
0
449
0
                // Warp pre-compression gain to smooth out sharp exponential transition points.
450
0
                float postWarpCompressorGain = sinf(0.5f * M_PI * compressorGain);
451
0
452
0
                // Calculate total gain using master gain and effect blend.
453
0
                float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain;
454
0
455
0
                // Calculate metering.
456
0
                float dbRealGain = 20 * log10(postWarpCompressorGain);
457
0
                if (dbRealGain < m_meteringGain)
458
0
                    m_meteringGain = dbRealGain;
459
0
                else
460
0
                    m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK;
461
0
462
0
                // Apply final gain.
463
0
                for (unsigned i = 0; i < numberOfChannels; ++i) {
464
0
                    float* delayBuffer = m_preDelayBuffers[i].get();
465
0
                    destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain;
466
0
                }
467
0
468
0
                frameIndex++;
469
0
                preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask;
470
0
                preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask;
471
0
            }
472
0
473
0
            // Locals back to member variables.
474
0
            m_preDelayReadIndex = preDelayReadIndex;
475
0
            m_preDelayWriteIndex = preDelayWriteIndex;
476
0
            m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage);
477
0
            m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain);
478
0
        }
479
0
    }
480
0
}
481
482
void DynamicsCompressorKernel::reset()
483
0
{
484
0
    m_detectorAverage = 0;
485
0
    m_compressorGain = 1;
486
0
    m_meteringGain = 1;
487
0
488
0
    // Predelay section.
489
0
    for (unsigned i = 0; i < m_preDelayBuffers.Length(); ++i)
490
0
        memset(m_preDelayBuffers[i].get(), 0, sizeof(float) * MaxPreDelayFrames);
491
0
492
0
    m_preDelayReadIndex = 0;
493
0
    m_preDelayWriteIndex = DefaultPreDelayFrames;
494
0
495
0
    m_maxAttackCompressionDiffDb = -1; // uninitialized state
496
0
}
497
498
} // namespace WebCore