Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/dom/media/webaudio/blink/HRTFElevation.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (C) 2010 Google Inc. All rights reserved.
3
 *
4
 * Redistribution and use in source and binary forms, with or without
5
 * modification, are permitted provided that the following conditions
6
 * are met:
7
 *
8
 * 1.  Redistributions of source code must retain the above copyright
9
 *     notice, this list of conditions and the following disclaimer.
10
 * 2.  Redistributions in binary form must reproduce the above copyright
11
 *     notice, this list of conditions and the following disclaimer in the
12
 *     documentation and/or other materials provided with the distribution.
13
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14
 *     its contributors may be used to endorse or promote products derived
15
 *     from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
29
#include "HRTFElevation.h"
30
31
#include <speex/speex_resampler.h>
32
#include "mozilla/PodOperations.h"
33
#include "AudioSampleFormat.h"
34
35
#include "IRC_Composite_C_R0195-incl.cpp"
36
37
using namespace std;
38
using namespace mozilla;
39
40
namespace WebCore {
41
42
const int elevationSpacing = irc_composite_c_r0195_elevation_interval;
43
const int firstElevation = irc_composite_c_r0195_first_elevation;
44
const int numberOfElevations = MOZ_ARRAY_LENGTH(irc_composite_c_r0195);
45
46
const unsigned HRTFElevation::NumberOfTotalAzimuths = 360 / 15 * 8;
47
48
const int rawSampleRate = irc_composite_c_r0195_sample_rate;
49
50
// Number of frames in an individual impulse response.
51
const size_t ResponseFrameSize = 256;
52
53
size_t HRTFElevation::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
54
0
{
55
0
    size_t amount = aMallocSizeOf(this);
56
0
57
0
    amount += m_kernelListL.ShallowSizeOfExcludingThis(aMallocSizeOf);
58
0
    for (size_t i = 0; i < m_kernelListL.Length(); i++) {
59
0
        amount += m_kernelListL[i]->sizeOfIncludingThis(aMallocSizeOf);
60
0
    }
61
0
62
0
    return amount;
63
0
}
64
65
size_t HRTFElevation::fftSizeForSampleRate(float sampleRate)
66
0
{
67
0
    // The IRCAM HRTF impulse responses were 512 sample-frames @44.1KHz,
68
0
    // but these have been truncated to 256 samples.
69
0
    // An FFT-size of twice impulse response size is used (for convolution).
70
0
    // So for sample rates of 44.1KHz an FFT size of 512 is good.
71
0
    // We double the FFT-size only for sample rates at least double this.
72
0
    // If the FFT size is too large then the impulse response will be padded
73
0
    // with zeros without the fade-out provided by HRTFKernel.
74
0
    MOZ_ASSERT(sampleRate > 1.0 && sampleRate < 1048576.0);
75
0
76
0
    // This is the size if we were to use all raw response samples.
77
0
    unsigned resampledLength =
78
0
        floorf(ResponseFrameSize * sampleRate / rawSampleRate);
79
0
    // Keep things semi-sane, with max FFT size of 1024.
80
0
    unsigned size = min(resampledLength, 1023U);
81
0
    // Ensure a minimum of 2 * WEBAUDIO_BLOCK_SIZE (with the size++ below) for
82
0
    // FFTConvolver and set the 8 least significant bits for rounding up to
83
0
    // the next power of 2 below.
84
0
    size |= 2 * WEBAUDIO_BLOCK_SIZE - 1;
85
0
    // Round up to the next power of 2, making the FFT size no more than twice
86
0
    // the impulse response length.  This doubles size for values that are
87
0
    // already powers of 2.  This works by filling in alls bit to right of the
88
0
    // most significant bit.  The most significant bit is no greater than
89
0
    // 1 << 9, and the least significant 8 bits were already set above, so
90
0
    // there is at most one bit to add.
91
0
    size |= (size >> 1);
92
0
    size++;
93
0
    MOZ_ASSERT((size & (size - 1)) == 0);
94
0
95
0
    return size;
96
0
}
97
98
nsReturnRef<HRTFKernel> HRTFElevation::calculateKernelForAzimuthElevation(int azimuth, int elevation, SpeexResamplerState* resampler, float sampleRate)
99
0
{
100
0
    int elevationIndex = (elevation - firstElevation) / elevationSpacing;
101
0
    MOZ_ASSERT(elevationIndex >= 0 && elevationIndex <= numberOfElevations);
102
0
103
0
    int numberOfAzimuths = irc_composite_c_r0195[elevationIndex].count;
104
0
    int azimuthSpacing = 360 / numberOfAzimuths;
105
0
    MOZ_ASSERT(numberOfAzimuths * azimuthSpacing == 360);
106
0
107
0
    int azimuthIndex = azimuth / azimuthSpacing;
108
0
    MOZ_ASSERT(azimuthIndex * azimuthSpacing == azimuth);
109
0
110
0
    const int16_t (&impulse_response_data)[ResponseFrameSize] =
111
0
        irc_composite_c_r0195[elevationIndex].azimuths[azimuthIndex];
112
0
113
0
    // When libspeex_resampler is compiled with FIXED_POINT, samples in
114
0
    // speex_resampler_process_float are rounded directly to int16_t, which
115
0
    // only works well if the floats are in the range +/-32767.  On such
116
0
    // platforms it's better to resample before converting to float anyway.
117
#ifdef MOZ_SAMPLE_TYPE_S16
118
#  define RESAMPLER_PROCESS speex_resampler_process_int
119
    const int16_t* response = impulse_response_data;
120
    const int16_t* resampledResponse;
121
#else
122
0
#  define RESAMPLER_PROCESS speex_resampler_process_float
123
0
    float response[ResponseFrameSize];
124
0
    ConvertAudioSamples(impulse_response_data, response, ResponseFrameSize);
125
0
    float* resampledResponse;
126
0
#endif
127
0
128
0
    // Note that depending on the fftSize returned by the panner, we may be truncating the impulse response.
129
0
    const size_t resampledResponseLength = fftSizeForSampleRate(sampleRate) / 2;
130
0
131
0
    AutoTArray<AudioDataValue, 2 * ResponseFrameSize> resampled;
132
0
    if (sampleRate == rawSampleRate) {
133
0
        resampledResponse = response;
134
0
        MOZ_ASSERT(resampledResponseLength == ResponseFrameSize);
135
0
    } else {
136
0
        resampled.SetLength(resampledResponseLength);
137
0
        resampledResponse = resampled.Elements();
138
0
        speex_resampler_skip_zeros(resampler);
139
0
140
0
        // Feed the input buffer into the resampler.
141
0
        spx_uint32_t in_len = ResponseFrameSize;
142
0
        spx_uint32_t out_len = resampled.Length();
143
0
        RESAMPLER_PROCESS(resampler, 0, response, &in_len,
144
0
                          resampled.Elements(), &out_len);
145
0
146
0
        if (out_len < resampled.Length()) {
147
0
            // The input should have all been processed.
148
0
            MOZ_ASSERT(in_len == ResponseFrameSize);
149
0
            // Feed in zeros get the data remaining in the resampler.
150
0
            spx_uint32_t out_index = out_len;
151
0
            in_len = speex_resampler_get_input_latency(resampler);
152
0
            out_len = resampled.Length() - out_index;
153
0
            RESAMPLER_PROCESS(resampler, 0, nullptr, &in_len,
154
0
                              resampled.Elements() + out_index, &out_len);
155
0
            out_index += out_len;
156
0
            // There may be some uninitialized samples remaining for very low
157
0
            // sample rates.
158
0
            PodZero(resampled.Elements() + out_index,
159
0
                    resampled.Length() - out_index);
160
0
        }
161
0
162
0
        speex_resampler_reset_mem(resampler);
163
0
    }
164
0
165
#ifdef MOZ_SAMPLE_TYPE_S16
166
    AutoTArray<float, 2 * ResponseFrameSize> floatArray;
167
    floatArray.SetLength(resampledResponseLength);
168
    float *floatResponse = floatArray.Elements();
169
    ConvertAudioSamples(resampledResponse,
170
                        floatResponse, resampledResponseLength);
171
#else
172
    float *floatResponse = resampledResponse;
173
0
#endif
174
0
#undef RESAMPLER_PROCESS
175
0
176
0
    return HRTFKernel::create(floatResponse, resampledResponseLength, sampleRate);
177
0
}
178
179
// The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
180
//
181
// Here's how it goes:
182
static int maxElevations[] = {
183
        //  Azimuth
184
        //
185
    90, // 0
186
    45, // 15
187
    60, // 30
188
    45, // 45
189
    75, // 60
190
    45, // 75
191
    60, // 90
192
    45, // 105
193
    75, // 120
194
    45, // 135
195
    60, // 150
196
    45, // 165
197
    75, // 180
198
    45, // 195
199
    60, // 210
200
    45, // 225
201
    75, // 240
202
    45, // 255
203
    60, // 270
204
    45, // 285
205
    75, // 300
206
    45, // 315
207
    60, // 330
208
    45 //  345
209
};
210
211
nsReturnRef<HRTFElevation> HRTFElevation::createBuiltin(int elevation, float sampleRate)
212
0
{
213
0
    if (elevation < firstElevation ||
214
0
        elevation > firstElevation + numberOfElevations * elevationSpacing ||
215
0
        (elevation / elevationSpacing) * elevationSpacing != elevation)
216
0
        return nsReturnRef<HRTFElevation>();
217
0
218
0
    // Spacing, in degrees, between every azimuth loaded from resource.
219
0
    // Some elevations do not have data for all these intervals.
220
0
    // See maxElevations.
221
0
    static const unsigned AzimuthSpacing = 15;
222
0
    static const unsigned NumberOfRawAzimuths = 360 / AzimuthSpacing;
223
0
    static_assert(AzimuthSpacing * NumberOfRawAzimuths == 360,
224
0
                  "Not a multiple");
225
0
    static const unsigned InterpolationFactor =
226
0
        NumberOfTotalAzimuths / NumberOfRawAzimuths;
227
0
    static_assert(NumberOfTotalAzimuths ==
228
0
                  NumberOfRawAzimuths * InterpolationFactor, "Not a multiple");
229
0
230
0
    HRTFKernelList kernelListL;
231
0
    kernelListL.SetLength(NumberOfTotalAzimuths);
232
0
233
0
    SpeexResamplerState* resampler = sampleRate == rawSampleRate ? nullptr :
234
0
        speex_resampler_init(1, rawSampleRate, sampleRate,
235
0
                             SPEEX_RESAMPLER_QUALITY_MIN, nullptr);
236
0
237
0
    // Load convolution kernels from HRTF files.
238
0
    int interpolatedIndex = 0;
239
0
    for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
240
0
        // Don't let elevation exceed maximum for this azimuth.
241
0
        int maxElevation = maxElevations[rawIndex];
242
0
        int actualElevation = min(elevation, maxElevation);
243
0
244
0
        kernelListL[interpolatedIndex] = calculateKernelForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, resampler, sampleRate);
245
0
246
0
        interpolatedIndex += InterpolationFactor;
247
0
    }
248
0
249
0
    if (resampler)
250
0
        speex_resampler_destroy(resampler);
251
0
252
0
    // Now go back and interpolate intermediate azimuth values.
253
0
    for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
254
0
        int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
255
0
256
0
        // Create the interpolated convolution kernels and delays.
257
0
        for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
258
0
            float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
259
0
260
0
            kernelListL[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL[i], kernelListL[j], x);
261
0
        }
262
0
    }
263
0
264
0
    return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, elevation, sampleRate));
265
0
}
266
267
nsReturnRef<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate)
268
0
{
269
0
    MOZ_ASSERT(hrtfElevation1 && hrtfElevation2);
270
0
    if (!hrtfElevation1 || !hrtfElevation2)
271
0
        return nsReturnRef<HRTFElevation>();
272
0
273
0
    MOZ_ASSERT(x >= 0.0 && x < 1.0);
274
0
275
0
    HRTFKernelList kernelListL;
276
0
    kernelListL.SetLength(NumberOfTotalAzimuths);
277
0
278
0
    const HRTFKernelList& kernelListL1 = hrtfElevation1->kernelListL();
279
0
    const HRTFKernelList& kernelListL2 = hrtfElevation2->kernelListL();
280
0
281
0
    // Interpolate kernels of corresponding azimuths of the two elevations.
282
0
    for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
283
0
        kernelListL[i] = HRTFKernel::createInterpolatedKernel(kernelListL1[i], kernelListL2[i], x);
284
0
    }
285
0
286
0
    // Interpolate elevation angle.
287
0
    double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
288
0
289
0
    return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, static_cast<int>(angle), sampleRate));
290
0
}
291
292
void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
293
0
{
294
0
    bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
295
0
    MOZ_ASSERT(checkAzimuthBlend);
296
0
    if (!checkAzimuthBlend)
297
0
        azimuthBlend = 0.0;
298
0
299
0
    unsigned numKernels = m_kernelListL.Length();
300
0
301
0
    bool isIndexGood = azimuthIndex < numKernels;
302
0
    MOZ_ASSERT(isIndexGood);
303
0
    if (!isIndexGood) {
304
0
        kernelL = 0;
305
0
        kernelR = 0;
306
0
        return;
307
0
    }
308
0
309
0
    // Return the left and right kernels,
310
0
    // using symmetry to produce the right kernel.
311
0
    kernelL = m_kernelListL[azimuthIndex];
312
0
    int azimuthIndexR = (numKernels - azimuthIndex) % numKernels;
313
0
    kernelR = m_kernelListL[azimuthIndexR];
314
0
315
0
    frameDelayL = kernelL->frameDelay();
316
0
    frameDelayR = kernelR->frameDelay();
317
0
318
0
    int azimuthIndex2L = (azimuthIndex + 1) % numKernels;
319
0
    double frameDelay2L = m_kernelListL[azimuthIndex2L]->frameDelay();
320
0
    int azimuthIndex2R = (numKernels - azimuthIndex2L) % numKernels;
321
0
    double frameDelay2R = m_kernelListL[azimuthIndex2R]->frameDelay();
322
0
323
0
    // Linearly interpolate delays.
324
0
    frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
325
0
    frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
326
0
}
327
328
} // namespace WebCore