Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/dom/smil/nsSMILKeySpline.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
3
/* This Source Code Form is subject to the terms of the Mozilla Public
4
 * License, v. 2.0. If a copy of the MPL was not distributed with this
5
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6
7
#include "nsSMILKeySpline.h"
8
#include <stdint.h>
9
#include <math.h>
10
11
0
#define NEWTON_ITERATIONS          4
12
0
#define NEWTON_MIN_SLOPE           0.02
13
0
#define SUBDIVISION_PRECISION      0.0000001
14
0
#define SUBDIVISION_MAX_ITERATIONS 10
15
16
const double nsSMILKeySpline::kSampleStepSize =
17
                                        1.0 / double(kSplineTableSize - 1);
18
19
void
20
nsSMILKeySpline::Init(double aX1,
21
                      double aY1,
22
                      double aX2,
23
                      double aY2)
24
0
{
25
0
  mX1 = aX1;
26
0
  mY1 = aY1;
27
0
  mX2 = aX2;
28
0
  mY2 = aY2;
29
0
30
0
  if (mX1 != mY1 || mX2 != mY2)
31
0
    CalcSampleValues();
32
0
}
33
34
double
35
nsSMILKeySpline::GetSplineValue(double aX) const
36
0
{
37
0
  if (mX1 == mY1 && mX2 == mY2)
38
0
    return aX;
39
0
40
0
  return CalcBezier(GetTForX(aX), mY1, mY2);
41
0
}
42
43
void
44
nsSMILKeySpline::GetSplineDerivativeValues(double aX, double& aDX, double& aDY) const
45
0
{
46
0
  double t = GetTForX(aX);
47
0
  aDX = GetSlope(t, mX1, mX2);
48
0
  aDY = GetSlope(t, mY1, mY2);
49
0
}
50
51
void
52
nsSMILKeySpline::CalcSampleValues()
53
0
{
54
0
  for (uint32_t i = 0; i < kSplineTableSize; ++i) {
55
0
    mSampleValues[i] = CalcBezier(double(i) * kSampleStepSize, mX1, mX2);
56
0
  }
57
0
}
58
59
/*static*/ double
60
nsSMILKeySpline::CalcBezier(double aT,
61
                            double aA1,
62
                            double aA2)
63
0
{
64
0
  // use Horner's scheme to evaluate the Bezier polynomial
65
0
  return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT;
66
0
}
67
68
/*static*/ double
69
nsSMILKeySpline::GetSlope(double aT,
70
                          double aA1,
71
                          double aA2)
72
0
{
73
0
  return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
74
0
}
75
76
double
77
nsSMILKeySpline::GetTForX(double aX) const
78
0
{
79
0
  // Early return when aX == 1.0 to avoid floating-point inaccuracies.
80
0
  if (aX == 1.0) {
81
0
    return 1.0;
82
0
  }
83
0
  // Find interval where t lies
84
0
  double intervalStart = 0.0;
85
0
  const double* currentSample = &mSampleValues[1];
86
0
  const double* const lastSample = &mSampleValues[kSplineTableSize - 1];
87
0
  for (; currentSample != lastSample && *currentSample <= aX;
88
0
        ++currentSample) {
89
0
    intervalStart += kSampleStepSize;
90
0
  }
91
0
  --currentSample; // t now lies between *currentSample and *currentSample+1
92
0
93
0
  // Interpolate to provide an initial guess for t
94
0
  double dist = (aX - *currentSample) /
95
0
                (*(currentSample+1) - *currentSample);
96
0
  double guessForT = intervalStart + dist * kSampleStepSize;
97
0
98
0
  // Check the slope to see what strategy to use. If the slope is too small
99
0
  // Newton-Raphson iteration won't converge on a root so we use bisection
100
0
  // instead.
101
0
  double initialSlope = GetSlope(guessForT, mX1, mX2);
102
0
  if (initialSlope >= NEWTON_MIN_SLOPE) {
103
0
    return NewtonRaphsonIterate(aX, guessForT);
104
0
  } else if (initialSlope == 0.0) {
105
0
    return guessForT;
106
0
  } else {
107
0
    return BinarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
108
0
  }
109
0
}
110
111
double
112
nsSMILKeySpline::NewtonRaphsonIterate(double aX, double aGuessT) const
113
0
{
114
0
  // Refine guess with Newton-Raphson iteration
115
0
  for (uint32_t i = 0; i < NEWTON_ITERATIONS; ++i) {
116
0
    // We're trying to find where f(t) = aX,
117
0
    // so we're actually looking for a root for: CalcBezier(t) - aX
118
0
    double currentX = CalcBezier(aGuessT, mX1, mX2) - aX;
119
0
    double currentSlope = GetSlope(aGuessT, mX1, mX2);
120
0
121
0
    if (currentSlope == 0.0)
122
0
      return aGuessT;
123
0
124
0
    aGuessT -= currentX / currentSlope;
125
0
  }
126
0
127
0
  return aGuessT;
128
0
}
129
130
double
131
nsSMILKeySpline::BinarySubdivide(double aX, double aA, double aB) const
132
0
{
133
0
  double currentX;
134
0
  double currentT;
135
0
  uint32_t i = 0;
136
0
137
0
  do
138
0
  {
139
0
    currentT = aA + (aB - aA) / 2.0;
140
0
    currentX = CalcBezier(currentT, mX1, mX2) - aX;
141
0
142
0
    if (currentX > 0.0) {
143
0
      aB = currentT;
144
0
    } else {
145
0
      aA = currentT;
146
0
    }
147
0
  } while (fabs(currentX) > SUBDIVISION_PRECISION
148
0
           && ++i < SUBDIVISION_MAX_ITERATIONS);
149
0
150
0
  return currentT;
151
0
}