Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/gfx/2d/Matrix.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
3
/* This Source Code Form is subject to the terms of the Mozilla Public
4
 * License, v. 2.0. If a copy of the MPL was not distributed with this
5
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6
7
#include "Matrix.h"
8
#include "Quaternion.h"
9
#include "Tools.h"
10
#include <algorithm>
11
#include <ostream>
12
#include <math.h>
13
#include <float.h>  // for FLT_EPSILON
14
15
#include "mozilla/FloatingPoint.h" // for UnspecifiedNaN
16
17
using namespace std;
18
19
20
namespace mozilla {
21
namespace gfx {
22
23
/* Force small values to zero.  We do this to avoid having sin(360deg)
24
 * evaluate to a tiny but nonzero value.
25
 */
26
double
27
FlushToZero(double aVal)
28
0
{
29
0
  // XXX Is double precision really necessary here
30
0
  if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) {
31
0
    return 0.0f;
32
0
  } else {
33
0
    return aVal;
34
0
  }
35
0
}
36
37
/* Computes tan(aTheta).  For values of aTheta such that tan(aTheta) is
38
 * undefined or very large, SafeTangent returns a manageably large value
39
 * of the correct sign.
40
 */
41
double
42
SafeTangent(double aTheta)
43
0
{
44
0
  // XXX Is double precision really necessary here
45
0
  const double kEpsilon = 0.0001;
46
0
47
0
  /* tan(theta) = sin(theta)/cos(theta); problems arise when
48
0
   * cos(theta) is too close to zero.  Limit cos(theta) to the
49
0
   * range [-1, -epsilon] U [epsilon, 1].
50
0
   */
51
0
52
0
  double sinTheta = sin(aTheta);
53
0
  double cosTheta = cos(aTheta);
54
0
55
0
  if (cosTheta >= 0 && cosTheta < kEpsilon) {
56
0
    cosTheta = kEpsilon;
57
0
  } else if (cosTheta < 0 && cosTheta >= -kEpsilon) {
58
0
    cosTheta = -kEpsilon;
59
0
  }
60
0
  return FlushToZero(sinTheta / cosTheta);
61
0
}
62
63
template<> Matrix
64
Matrix::Rotation(Float aAngle)
65
0
{
66
0
  Matrix newMatrix;
67
0
68
0
  Float s = sinf(aAngle);
69
0
  Float c = cosf(aAngle);
70
0
71
0
  newMatrix._11 = c;
72
0
  newMatrix._12 = s;
73
0
  newMatrix._21 = -s;
74
0
  newMatrix._22 = c;
75
0
76
0
  return newMatrix;
77
0
}
78
79
template<> MatrixDouble
80
MatrixDouble::Rotation(Double aAngle)
81
0
{
82
0
  MatrixDouble newMatrix;
83
0
84
0
  Double s = sin(aAngle);
85
0
  Double c = cos(aAngle);
86
0
87
0
  newMatrix._11 = c;
88
0
  newMatrix._12 = s;
89
0
  newMatrix._21 = -s;
90
0
  newMatrix._22 = c;
91
0
92
0
  return newMatrix;
93
0
}
94
95
template<> Matrix4x4
96
MatrixDouble::operator*(const Matrix4x4& aMatrix) const
97
0
{
98
0
  Matrix4x4 resultMatrix;
99
0
100
0
  resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
101
0
  resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
102
0
  resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23;
103
0
  resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24;
104
0
105
0
  resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
106
0
  resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
107
0
  resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23;
108
0
  resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24;
109
0
110
0
  resultMatrix._31 = aMatrix._31;
111
0
  resultMatrix._32 = aMatrix._32;
112
0
  resultMatrix._33 = aMatrix._33;
113
0
  resultMatrix._34 = aMatrix._34;
114
0
115
0
  resultMatrix._41 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._41;
116
0
  resultMatrix._42 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._42;
117
0
  resultMatrix._43 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + aMatrix._43;
118
0
  resultMatrix._44 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + aMatrix._44;
119
0
120
0
  return resultMatrix;
121
0
}
122
123
} // namespace gfx
124
} // namespace mozilla