Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/gfx/qcms/matrix.c
Line
Count
Source (jump to first uncovered line)
1
/* vim: set ts=8 sw=8 noexpandtab: */
2
//  qcms
3
//  Copyright (C) 2009 Mozilla Foundation
4
//  Copyright (C) 1998-2007 Marti Maria
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining 
7
// a copy of this software and associated documentation files (the "Software"), 
8
// to deal in the Software without restriction, including without limitation 
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
10
// and/or sell copies of the Software, and to permit persons to whom the Software 
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in 
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
24
#include <stdlib.h>
25
#include "qcmsint.h"
26
#include "matrix.h"
27
28
struct vector matrix_eval(struct matrix mat, struct vector v)
29
0
{
30
0
  struct vector result;
31
0
  result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
32
0
  result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
33
0
  result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
34
0
  return result;
35
0
}
36
37
//XXX: should probably pass by reference and we could
38
//probably reuse this computation in matrix_invert
39
float matrix_det(struct matrix mat)
40
0
{
41
0
  float det;
42
0
  det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
43
0
    mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
44
0
    mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
45
0
    mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
46
0
    mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
47
0
    mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
48
0
  return det;
49
0
}
50
51
/* from pixman and cairo and Mathematics for Game Programmers */
52
/* lcms uses gauss-jordan elimination with partial pivoting which is
53
 * less efficient and not as numerically stable. See Mathematics for
54
 * Game Programmers. */
55
struct matrix matrix_invert(struct matrix mat)
56
0
{
57
0
  struct matrix dest_mat;
58
0
  int i,j;
59
0
  static int a[3] = { 2, 2, 1 };
60
0
  static int b[3] = { 1, 0, 0 };
61
0
62
0
  /* inv  (A) = 1/det (A) * adj (A) */
63
0
  float det = matrix_det(mat);
64
0
65
0
  if (det == 0) {
66
0
    dest_mat.invalid = true;
67
0
    return dest_mat;
68
0
  }
69
0
70
0
  dest_mat.invalid = false;
71
0
72
0
  det = 1/det;
73
0
74
0
  for (j = 0; j < 3; j++) {
75
0
    for (i = 0; i < 3; i++) {
76
0
      double p;
77
0
      int ai = a[i];
78
0
      int aj = a[j];
79
0
      int bi = b[i];
80
0
      int bj = b[j];
81
0
82
0
      p = mat.m[ai][aj] * mat.m[bi][bj] -
83
0
        mat.m[ai][bj] * mat.m[bi][aj];
84
0
      if (((i + j) & 1) != 0)
85
0
        p = -p;
86
0
87
0
      dest_mat.m[j][i] = det * p;
88
0
    }
89
0
  }
90
0
  return dest_mat;
91
0
}
92
93
struct matrix matrix_identity(void)
94
0
{
95
0
  struct matrix i;
96
0
  i.m[0][0] = 1;
97
0
  i.m[0][1] = 0;
98
0
  i.m[0][2] = 0;
99
0
  i.m[1][0] = 0;
100
0
  i.m[1][1] = 1;
101
0
  i.m[1][2] = 0;
102
0
  i.m[2][0] = 0;
103
0
  i.m[2][1] = 0;
104
0
  i.m[2][2] = 1;
105
0
  i.invalid = false;
106
0
  return i;
107
0
}
108
109
struct matrix matrix_invalid(void)
110
0
{
111
0
  struct matrix inv = matrix_identity();
112
0
  inv.invalid = true;
113
0
  return inv;
114
0
}
115
116
117
/* from pixman */
118
/* MAT3per... */
119
struct matrix matrix_multiply(struct matrix a, struct matrix b)
120
0
{
121
0
  struct matrix result;
122
0
  int dx, dy;
123
0
  int o;
124
0
  for (dy = 0; dy < 3; dy++) {
125
0
    for (dx = 0; dx < 3; dx++) {
126
0
      double v = 0;
127
0
      for (o = 0; o < 3; o++) {
128
0
        v += a.m[dy][o] * b.m[o][dx];
129
0
      }
130
0
      result.m[dy][dx] = v;
131
0
    }
132
0
  }
133
0
  result.invalid = a.invalid || b.invalid;
134
0
  return result;
135
0
}
136
137