/src/mozilla-central/gfx/qcms/transform_util.c
Line | Count | Source (jump to first uncovered line) |
1 | | #include <math.h> |
2 | | #include <assert.h> |
3 | | #include <string.h> //memcpy |
4 | | #include "qcmsint.h" |
5 | | #include "transform_util.h" |
6 | | #include "matrix.h" |
7 | | |
8 | 0 | #define PARAMETRIC_CURVE_TYPE 0x70617261 //'para' |
9 | | |
10 | | /* value must be a value between 0 and 1 */ |
11 | | //XXX: is the above a good restriction to have? |
12 | | // the output range of this functions is 0..1 |
13 | | float lut_interp_linear(double input_value, uint16_t *table, int length) |
14 | 0 | { |
15 | 0 | int upper, lower; |
16 | 0 | float value; |
17 | 0 | input_value = input_value * (length - 1); // scale to length of the array |
18 | 0 | upper = ceil(input_value); |
19 | 0 | lower = floor(input_value); |
20 | 0 | //XXX: can we be more performant here? |
21 | 0 | value = table[upper]*(1. - (upper - input_value)) + table[lower]*(upper - input_value); |
22 | 0 | /* scale the value */ |
23 | 0 | return value * (1.f/65535.f); |
24 | 0 | } |
25 | | |
26 | | /* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
27 | | uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
28 | 0 | { |
29 | 0 | /* Start scaling input_value to the length of the array: 65535*(length-1). |
30 | 0 | * We'll divide out the 65535 next */ |
31 | 0 | uint32_t value = (input_value * (length - 1)); |
32 | 0 | uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */ |
33 | 0 | uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */ |
34 | 0 | /* interp is the distance from upper to value scaled to 0..65535 */ |
35 | 0 | uint32_t interp = value % 65535; |
36 | 0 |
|
37 | 0 | value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535 |
38 | 0 |
|
39 | 0 | return value; |
40 | 0 | } |
41 | | |
42 | | /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX |
43 | | * and returns a uint8_t value representing a range from 0..1 */ |
44 | | static |
45 | | uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length) |
46 | 0 | { |
47 | 0 | /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1). |
48 | 0 | * We'll divide out the PRECACHE_OUTPUT_MAX next */ |
49 | 0 | uint32_t value = (input_value * (length - 1)); |
50 | 0 |
|
51 | 0 | /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ |
52 | 0 | uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; |
53 | 0 | /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ |
54 | 0 | uint32_t lower = value / PRECACHE_OUTPUT_MAX; |
55 | 0 | /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */ |
56 | 0 | uint32_t interp = value % PRECACHE_OUTPUT_MAX; |
57 | 0 |
|
58 | 0 | /* the table values range from 0..65535 */ |
59 | 0 | value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX) |
60 | 0 |
|
61 | 0 | /* round and scale */ |
62 | 0 | value += (PRECACHE_OUTPUT_MAX*65535/255)/2; |
63 | 0 | value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 |
64 | 0 | return value; |
65 | 0 | } |
66 | | |
67 | | /* value must be a value between 0 and 1 */ |
68 | | //XXX: is the above a good restriction to have? |
69 | | float lut_interp_linear_float(float value, float *table, int length) |
70 | 0 | { |
71 | 0 | int upper, lower; |
72 | 0 | value = value * (length - 1); |
73 | 0 | upper = ceilf(value); |
74 | 0 | lower = floorf(value); |
75 | 0 | //XXX: can we be more performant here? |
76 | 0 | value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); |
77 | 0 | /* scale the value */ |
78 | 0 | return value; |
79 | 0 | } |
80 | | |
81 | | #if 0 |
82 | | /* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient |
83 | | * because we can avoid the divisions and use a shifting instead */ |
84 | | /* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
85 | | uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
86 | | { |
87 | | uint32_t value = (input_value * (length - 1)); |
88 | | uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */ |
89 | | uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */ |
90 | | uint32_t interp = value % 4096; |
91 | | |
92 | | value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096 |
93 | | |
94 | | return value; |
95 | | } |
96 | | #endif |
97 | | |
98 | | void compute_curve_gamma_table_type1(float gamma_table[256], uint16_t gamma) |
99 | 0 | { |
100 | 0 | unsigned int i; |
101 | 0 | float gamma_float = u8Fixed8Number_to_float(gamma); |
102 | 0 | for (i = 0; i < 256; i++) { |
103 | 0 | // 0..1^(0..255 + 255/256) will always be between 0 and 1 |
104 | 0 | gamma_table[i] = pow(i/255., gamma_float); |
105 | 0 | } |
106 | 0 | } |
107 | | |
108 | | void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length) |
109 | 0 | { |
110 | 0 | unsigned int i; |
111 | 0 | for (i = 0; i < 256; i++) { |
112 | 0 | gamma_table[i] = lut_interp_linear(i/255., table, length); |
113 | 0 | } |
114 | 0 | } |
115 | | |
116 | | void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count) |
117 | 0 | { |
118 | 0 | size_t X; |
119 | 0 | float interval; |
120 | 0 | float a, b, c, e, f; |
121 | 0 | float y = parameter[0]; |
122 | 0 | if (count == 0) { |
123 | 0 | a = 1; |
124 | 0 | b = 0; |
125 | 0 | c = 0; |
126 | 0 | e = 0; |
127 | 0 | f = 0; |
128 | 0 | interval = -1; |
129 | 0 | } else if(count == 1) { |
130 | 0 | a = parameter[1]; |
131 | 0 | b = parameter[2]; |
132 | 0 | c = 0; |
133 | 0 | e = 0; |
134 | 0 | f = 0; |
135 | 0 | interval = -1 * parameter[2] / parameter[1]; |
136 | 0 | } else if(count == 2) { |
137 | 0 | a = parameter[1]; |
138 | 0 | b = parameter[2]; |
139 | 0 | c = 0; |
140 | 0 | e = parameter[3]; |
141 | 0 | f = parameter[3]; |
142 | 0 | interval = -1 * parameter[2] / parameter[1]; |
143 | 0 | } else if(count == 3) { |
144 | 0 | a = parameter[1]; |
145 | 0 | b = parameter[2]; |
146 | 0 | c = parameter[3]; |
147 | 0 | e = -c; |
148 | 0 | f = 0; |
149 | 0 | interval = parameter[4]; |
150 | 0 | } else if(count == 4) { |
151 | 0 | a = parameter[1]; |
152 | 0 | b = parameter[2]; |
153 | 0 | c = parameter[3]; |
154 | 0 | e = parameter[5] - c; |
155 | 0 | f = parameter[6]; |
156 | 0 | interval = parameter[4]; |
157 | 0 | } else { |
158 | 0 | assert(0 && "invalid parametric function type."); |
159 | 0 | a = 1; |
160 | 0 | b = 0; |
161 | 0 | c = 0; |
162 | 0 | e = 0; |
163 | 0 | f = 0; |
164 | 0 | interval = -1; |
165 | 0 | } |
166 | 0 | for (X = 0; X < 256; X++) { |
167 | 0 | if (X >= interval) { |
168 | 0 | // XXX The equations are not exactly as defined in the spec but are |
169 | 0 | // algebraically equivalent. |
170 | 0 | // TODO Should division by 255 be for the whole expression. |
171 | 0 | gamma_table[X] = clamp_float(pow(a * X / 255. + b, y) + c + e); |
172 | 0 | } else { |
173 | 0 | gamma_table[X] = clamp_float(c * X / 255. + f); |
174 | 0 | } |
175 | 0 | } |
176 | 0 | } |
177 | | |
178 | | void compute_curve_gamma_table_type0(float gamma_table[256]) |
179 | 0 | { |
180 | 0 | unsigned int i; |
181 | 0 | for (i = 0; i < 256; i++) { |
182 | 0 | gamma_table[i] = i/255.; |
183 | 0 | } |
184 | 0 | } |
185 | | |
186 | | float *build_input_gamma_table(struct curveType *TRC) |
187 | 0 | { |
188 | 0 | float *gamma_table; |
189 | 0 |
|
190 | 0 | if (!TRC) return NULL; |
191 | 0 | gamma_table = malloc(sizeof(float)*256); |
192 | 0 | if (gamma_table) { |
193 | 0 | if (TRC->type == PARAMETRIC_CURVE_TYPE) { |
194 | 0 | compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count); |
195 | 0 | } else { |
196 | 0 | if (TRC->count == 0) { |
197 | 0 | compute_curve_gamma_table_type0(gamma_table); |
198 | 0 | } else if (TRC->count == 1) { |
199 | 0 | compute_curve_gamma_table_type1(gamma_table, TRC->data[0]); |
200 | 0 | } else { |
201 | 0 | compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count); |
202 | 0 | } |
203 | 0 | } |
204 | 0 | } |
205 | 0 | return gamma_table; |
206 | 0 | } |
207 | | |
208 | | struct matrix build_colorant_matrix(qcms_profile *p) |
209 | 0 | { |
210 | 0 | struct matrix result; |
211 | 0 | result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); |
212 | 0 | result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); |
213 | 0 | result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); |
214 | 0 | result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); |
215 | 0 | result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); |
216 | 0 | result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); |
217 | 0 | result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); |
218 | 0 | result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); |
219 | 0 | result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); |
220 | 0 | result.invalid = false; |
221 | 0 | return result; |
222 | 0 | } |
223 | | |
224 | | /* The following code is copied nearly directly from lcms. |
225 | | * I think it could be much better. For example, Argyll seems to have better code in |
226 | | * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way |
227 | | * to a working solution and allows for easy comparing with lcms. */ |
228 | | uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length) |
229 | 0 | { |
230 | 0 | int l = 1; |
231 | 0 | int r = 0x10000; |
232 | 0 | int x = 0, res; // 'int' Give spacing for negative values |
233 | 0 | int NumZeroes, NumPoles; |
234 | 0 | int cell0, cell1; |
235 | 0 | double val2; |
236 | 0 | double y0, y1, x0, x1; |
237 | 0 | double a, b, f; |
238 | 0 |
|
239 | 0 | // July/27 2001 - Expanded to handle degenerated curves with an arbitrary |
240 | 0 | // number of elements containing 0 at the begining of the table (Zeroes) |
241 | 0 | // and another arbitrary number of poles (FFFFh) at the end. |
242 | 0 | // First the zero and pole extents are computed, then value is compared. |
243 | 0 |
|
244 | 0 | NumZeroes = 0; |
245 | 0 | while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) |
246 | 0 | NumZeroes++; |
247 | 0 |
|
248 | 0 | // There are no zeros at the beginning and we are trying to find a zero, so |
249 | 0 | // return anything. It seems zero would be the less destructive choice |
250 | 0 | /* I'm not sure that this makes sense, but oh well... */ |
251 | 0 | if (NumZeroes == 0 && Value == 0) |
252 | 0 | return 0; |
253 | 0 | |
254 | 0 | NumPoles = 0; |
255 | 0 | while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) |
256 | 0 | NumPoles++; |
257 | 0 |
|
258 | 0 | // Does the curve belong to this case? |
259 | 0 | if (NumZeroes > 1 || NumPoles > 1) |
260 | 0 | { |
261 | 0 | int a, b; |
262 | 0 |
|
263 | 0 | // Identify if value fall downto 0 or FFFF zone |
264 | 0 | if (Value == 0) return 0; |
265 | 0 | // if (Value == 0xFFFF) return 0xFFFF; |
266 | 0 | |
267 | 0 | // else restrict to valid zone |
268 | 0 | |
269 | 0 | if (NumZeroes > 1) { |
270 | 0 | a = ((NumZeroes-1) * 0xFFFF) / (length-1); |
271 | 0 | l = a - 1; |
272 | 0 | } |
273 | 0 | if (NumPoles > 1) { |
274 | 0 | b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); |
275 | 0 | r = b + 1; |
276 | 0 | } |
277 | 0 | } |
278 | 0 |
|
279 | 0 | if (r <= l) { |
280 | 0 | // If this happens LutTable is not invertible |
281 | 0 | return 0; |
282 | 0 | } |
283 | 0 | |
284 | 0 | |
285 | 0 | // Seems not a degenerated case... apply binary search |
286 | 0 | while (r > l) { |
287 | 0 |
|
288 | 0 | x = (l + r) / 2; |
289 | 0 |
|
290 | 0 | res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length); |
291 | 0 |
|
292 | 0 | if (res == Value) { |
293 | 0 |
|
294 | 0 | // Found exact match. |
295 | 0 |
|
296 | 0 | return (uint16_fract_t) (x - 1); |
297 | 0 | } |
298 | 0 | |
299 | 0 | if (res > Value) r = x - 1; |
300 | 0 | else l = x + 1; |
301 | 0 | } |
302 | 0 |
|
303 | 0 | // Not found, should we interpolate? |
304 | 0 |
|
305 | 0 | // Get surrounding nodes |
306 | 0 |
|
307 | 0 | assert(x >= 1); |
308 | 0 |
|
309 | 0 | val2 = (length-1) * ((double) (x - 1) / 65535.0); |
310 | 0 |
|
311 | 0 | cell0 = (int) floor(val2); |
312 | 0 | cell1 = (int) ceil(val2); |
313 | 0 | |
314 | 0 | if (cell0 == cell1) return (uint16_fract_t) x; |
315 | 0 | |
316 | 0 | y0 = LutTable[cell0] ; |
317 | 0 | x0 = (65535.0 * cell0) / (length-1); |
318 | 0 |
|
319 | 0 | y1 = LutTable[cell1] ; |
320 | 0 | x1 = (65535.0 * cell1) / (length-1); |
321 | 0 |
|
322 | 0 | a = (y1 - y0) / (x1 - x0); |
323 | 0 | b = y0 - a * x0; |
324 | 0 |
|
325 | 0 | if (fabs(a) < 0.01) return (uint16_fract_t) x; |
326 | 0 | |
327 | 0 | f = ((Value - b) / a); |
328 | 0 |
|
329 | 0 | if (f < 0.0) return (uint16_fract_t) 0; |
330 | 0 | if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; |
331 | 0 | |
332 | 0 | return (uint16_fract_t) floor(f + 0.5); |
333 | 0 |
|
334 | 0 | } |
335 | | |
336 | | /* |
337 | | The number of entries needed to invert a lookup table should not |
338 | | necessarily be the same as the original number of entries. This is |
339 | | especially true of lookup tables that have a small number of entries. |
340 | | |
341 | | For example: |
342 | | Using a table like: |
343 | | {0, 3104, 14263, 34802, 65535} |
344 | | invert_lut will produce an inverse of: |
345 | | {3, 34459, 47529, 56801, 65535} |
346 | | which has an maximum error of about 9855 (pixel difference of ~38.346) |
347 | | |
348 | | For now, we punt the decision of output size to the caller. */ |
349 | | static uint16_t *invert_lut(uint16_t *table, int length, int out_length) |
350 | 0 | { |
351 | 0 | int i; |
352 | 0 | /* for now we invert the lut by creating a lut of size out_length |
353 | 0 | * and attempting to lookup a value for each entry using lut_inverse_interp16 */ |
354 | 0 | uint16_t *output = malloc(sizeof(uint16_t)*out_length); |
355 | 0 | if (!output) |
356 | 0 | return NULL; |
357 | 0 | |
358 | 0 | for (i = 0; i < out_length; i++) { |
359 | 0 | double x = ((double) i * 65535.) / (double) (out_length - 1); |
360 | 0 | uint16_fract_t input = floor(x + .5); |
361 | 0 | output[i] = lut_inverse_interp16(input, table, length); |
362 | 0 | } |
363 | 0 | return output; |
364 | 0 | } |
365 | | |
366 | | static void compute_precache_pow(uint8_t *output, float gamma) |
367 | 0 | { |
368 | 0 | uint32_t v = 0; |
369 | 0 | for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
370 | 0 | //XXX: don't do integer/float conversion... and round? |
371 | 0 | output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); |
372 | 0 | } |
373 | 0 | } |
374 | | |
375 | | void compute_precache_lut(uint8_t *output, uint16_t *table, int length) |
376 | 0 | { |
377 | 0 | uint32_t v = 0; |
378 | 0 | for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
379 | 0 | output[v] = lut_interp_linear_precache_output(v, table, length); |
380 | 0 | } |
381 | 0 | } |
382 | | |
383 | | void compute_precache_linear(uint8_t *output) |
384 | 0 | { |
385 | 0 | uint32_t v = 0; |
386 | 0 | for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
387 | 0 | //XXX: round? |
388 | 0 | output[v] = v / (PRECACHE_OUTPUT_SIZE/256); |
389 | 0 | } |
390 | 0 | } |
391 | | |
392 | | qcms_bool compute_precache(struct curveType *trc, uint8_t *output) |
393 | 0 | { |
394 | 0 | |
395 | 0 | if (trc->type == PARAMETRIC_CURVE_TYPE) { |
396 | 0 | float gamma_table[256]; |
397 | 0 | uint16_t gamma_table_uint[256]; |
398 | 0 | uint16_t i; |
399 | 0 | uint16_t *inverted; |
400 | 0 | int inverted_size = 256; |
401 | 0 |
|
402 | 0 | compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); |
403 | 0 | for(i = 0; i < 256; i++) { |
404 | 0 | gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535); |
405 | 0 | } |
406 | 0 |
|
407 | 0 | //XXX: the choice of a minimum of 256 here is not backed by any theory, |
408 | 0 | // measurement or data, howeve r it is what lcms uses. |
409 | 0 | // the maximum number we would need is 65535 because that's the |
410 | 0 | // accuracy used for computing the pre cache table |
411 | 0 | if (inverted_size < 256) |
412 | 0 | inverted_size = 256; |
413 | 0 |
|
414 | 0 | inverted = invert_lut(gamma_table_uint, 256, inverted_size); |
415 | 0 | if (!inverted) |
416 | 0 | return false; |
417 | 0 | compute_precache_lut(output, inverted, inverted_size); |
418 | 0 | free(inverted); |
419 | 0 | } else { |
420 | 0 | if (trc->count == 0) { |
421 | 0 | compute_precache_linear(output); |
422 | 0 | } else if (trc->count == 1) { |
423 | 0 | compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0])); |
424 | 0 | } else { |
425 | 0 | uint16_t *inverted; |
426 | 0 | int inverted_size = trc->count; |
427 | 0 | //XXX: the choice of a minimum of 256 here is not backed by any theory, |
428 | 0 | // measurement or data, howeve r it is what lcms uses. |
429 | 0 | // the maximum number we would need is 65535 because that's the |
430 | 0 | // accuracy used for computing the pre cache table |
431 | 0 | if (inverted_size < 256) |
432 | 0 | inverted_size = 256; |
433 | 0 |
|
434 | 0 | inverted = invert_lut(trc->data, trc->count, inverted_size); |
435 | 0 | if (!inverted) |
436 | 0 | return false; |
437 | 0 | compute_precache_lut(output, inverted, inverted_size); |
438 | 0 | free(inverted); |
439 | 0 | } |
440 | 0 | } |
441 | 0 | return true; |
442 | 0 | } |
443 | | |
444 | | |
445 | | static uint16_t *build_linear_table(int length) |
446 | 0 | { |
447 | 0 | int i; |
448 | 0 | uint16_t *output = malloc(sizeof(uint16_t)*length); |
449 | 0 | if (!output) |
450 | 0 | return NULL; |
451 | 0 | |
452 | 0 | for (i = 0; i < length; i++) { |
453 | 0 | double x = ((double) i * 65535.) / (double) (length - 1); |
454 | 0 | uint16_fract_t input = floor(x + .5); |
455 | 0 | output[i] = input; |
456 | 0 | } |
457 | 0 | return output; |
458 | 0 | } |
459 | | |
460 | | static uint16_t *build_pow_table(float gamma, int length) |
461 | 0 | { |
462 | 0 | int i; |
463 | 0 | uint16_t *output = malloc(sizeof(uint16_t)*length); |
464 | 0 | if (!output) |
465 | 0 | return NULL; |
466 | 0 | |
467 | 0 | for (i = 0; i < length; i++) { |
468 | 0 | uint16_fract_t result; |
469 | 0 | double x = ((double) i) / (double) (length - 1); |
470 | 0 | x = pow(x, gamma); //XXX turn this conversion into a function |
471 | 0 | result = floor(x*65535. + .5); |
472 | 0 | output[i] = result; |
473 | 0 | } |
474 | 0 | return output; |
475 | 0 | } |
476 | | |
477 | | void build_output_lut(struct curveType *trc, |
478 | | uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) |
479 | 0 | { |
480 | 0 | if (trc->type == PARAMETRIC_CURVE_TYPE) { |
481 | 0 | float gamma_table[256]; |
482 | 0 | uint16_t i; |
483 | 0 | uint16_t *output = malloc(sizeof(uint16_t)*256); |
484 | 0 |
|
485 | 0 | if (!output) { |
486 | 0 | *output_gamma_lut = NULL; |
487 | 0 | return; |
488 | 0 | } |
489 | 0 | |
490 | 0 | compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); |
491 | 0 | *output_gamma_lut_length = 256; |
492 | 0 | for(i = 0; i < 256; i++) { |
493 | 0 | output[i] = (uint16_t)(gamma_table[i] * 65535); |
494 | 0 | } |
495 | 0 | *output_gamma_lut = output; |
496 | 0 | } else { |
497 | 0 | if (trc->count == 0) { |
498 | 0 | *output_gamma_lut = build_linear_table(4096); |
499 | 0 | *output_gamma_lut_length = 4096; |
500 | 0 | } else if (trc->count == 1) { |
501 | 0 | float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); |
502 | 0 | *output_gamma_lut = build_pow_table(gamma, 4096); |
503 | 0 | *output_gamma_lut_length = 4096; |
504 | 0 | } else { |
505 | 0 | //XXX: the choice of a minimum of 256 here is not backed by any theory, |
506 | 0 | // measurement or data, however it is what lcms uses. |
507 | 0 | *output_gamma_lut_length = trc->count; |
508 | 0 | if (*output_gamma_lut_length < 256) |
509 | 0 | *output_gamma_lut_length = 256; |
510 | 0 |
|
511 | 0 | *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length); |
512 | 0 | } |
513 | 0 | } |
514 | 0 |
|
515 | 0 | } |
516 | | |