/src/mozilla-central/gfx/ycbcr/yuv_convert.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
2 | | // Use of this source code is governed by a BSD-style license that can be |
3 | | // found in the LICENSE file. |
4 | | |
5 | | // This webpage shows layout of YV12 and other YUV formats |
6 | | // http://www.fourcc.org/yuv.php |
7 | | // The actual conversion is best described here |
8 | | // http://en.wikipedia.org/wiki/YUV |
9 | | // An article on optimizing YUV conversion using tables instead of multiplies |
10 | | // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf |
11 | | // |
12 | | // YV12 is a full plane of Y and a half height, half width chroma planes |
13 | | // YV16 is a full plane of Y and a full height, half width chroma planes |
14 | | // YV24 is a full plane of Y and a full height, full width chroma planes |
15 | | // |
16 | | // ARGB pixel format is output, which on little endian is stored as BGRA. |
17 | | // The alpha is set to 255, allowing the application to use RGBA or RGB32. |
18 | | |
19 | | #include "yuv_convert.h" |
20 | | |
21 | | #include "gfxPrefs.h" |
22 | | #include "libyuv.h" |
23 | | #include "scale_yuv_argb.h" |
24 | | // Header for low level row functions. |
25 | | #include "yuv_row.h" |
26 | | #include "mozilla/SSE.h" |
27 | | |
28 | | namespace mozilla { |
29 | | |
30 | | namespace gfx { |
31 | | |
32 | | // 16.16 fixed point arithmetic |
33 | | const int kFractionBits = 16; |
34 | | const int kFractionMax = 1 << kFractionBits; |
35 | | const int kFractionMask = ((1 << kFractionBits) - 1); |
36 | | |
37 | | YUVType TypeFromSize(int ywidth, |
38 | | int yheight, |
39 | | int cbcrwidth, |
40 | | int cbcrheight) |
41 | 0 | { |
42 | 0 | if (ywidth == cbcrwidth && yheight == cbcrheight) { |
43 | 0 | return YV24; |
44 | 0 | } |
45 | 0 | else if ((ywidth + 1) / 2 == cbcrwidth && yheight == cbcrheight) { |
46 | 0 | return YV16; |
47 | 0 | } |
48 | 0 | else { |
49 | 0 | return YV12; |
50 | 0 | } |
51 | 0 | } |
52 | | |
53 | | libyuv::FourCC FourCCFromYUVType(YUVType aYUVType) |
54 | 0 | { |
55 | 0 | if (aYUVType == YV24) { |
56 | 0 | return libyuv::FOURCC_I444; |
57 | 0 | } else if (aYUVType == YV16) { |
58 | 0 | return libyuv::FOURCC_I422; |
59 | 0 | } else if (aYUVType == YV12) { |
60 | 0 | return libyuv::FOURCC_I420; |
61 | 0 | } else { |
62 | 0 | return libyuv::FOURCC_ANY; |
63 | 0 | } |
64 | 0 | } |
65 | | |
66 | | // Convert a frame of YUV to 32 bit ARGB. |
67 | | void ConvertYCbCrToRGB32(const uint8* y_buf, |
68 | | const uint8* u_buf, |
69 | | const uint8* v_buf, |
70 | | uint8* rgb_buf, |
71 | | int pic_x, |
72 | | int pic_y, |
73 | | int pic_width, |
74 | | int pic_height, |
75 | | int y_pitch, |
76 | | int uv_pitch, |
77 | | int rgb_pitch, |
78 | | YUVType yuv_type, |
79 | 0 | YUVColorSpace yuv_color_space) { |
80 | 0 |
|
81 | 0 |
|
82 | 0 | // Deprecated function's conversion is accurate. |
83 | 0 | // libyuv converion is a bit inaccurate to get performance. It dynamically |
84 | 0 | // calculates RGB from YUV to use simd. In it, signed byte is used for conversion's |
85 | 0 | // coefficient, but it requests 129. libyuv cut 129 to 127. And only 6 bits are |
86 | 0 | // used for a decimal part during the dynamic calculation. |
87 | 0 | // |
88 | 0 | // The function is still fast on some old intel chips. |
89 | 0 | // See Bug 1256475. |
90 | 0 | bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() || |
91 | 0 | (supports_mmx() && supports_sse() && !supports_sse3() && |
92 | 0 | yuv_color_space == YUVColorSpace::BT601); |
93 | 0 | // The deprecated function only support BT601. |
94 | 0 | // See Bug 1210357. |
95 | 0 | if (yuv_color_space != YUVColorSpace::BT601) { |
96 | 0 | use_deprecated = false; |
97 | 0 | } |
98 | 0 | if (use_deprecated) { |
99 | 0 | ConvertYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf, |
100 | 0 | pic_x, pic_y, pic_width, pic_height, |
101 | 0 | y_pitch, uv_pitch, rgb_pitch, yuv_type); |
102 | 0 | return; |
103 | 0 | } |
104 | 0 | |
105 | 0 | if (yuv_type == YV24) { |
106 | 0 | const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; |
107 | 0 | const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x; |
108 | 0 | const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x; |
109 | 0 | if (yuv_color_space == mozilla::YUVColorSpace::BT709) { |
110 | 0 | DebugOnly<int> err = libyuv::H444ToARGB(src_y, y_pitch, |
111 | 0 | src_u, uv_pitch, |
112 | 0 | src_v, uv_pitch, |
113 | 0 | rgb_buf, rgb_pitch, |
114 | 0 | pic_width, pic_height); |
115 | 0 | MOZ_ASSERT(!err); |
116 | 0 | } else { |
117 | 0 | DebugOnly<int> err = libyuv::I444ToARGB(src_y, y_pitch, |
118 | 0 | src_u, uv_pitch, |
119 | 0 | src_v, uv_pitch, |
120 | 0 | rgb_buf, rgb_pitch, |
121 | 0 | pic_width, pic_height); |
122 | 0 | MOZ_ASSERT(!err); |
123 | 0 | } |
124 | 0 | } else if (yuv_type == YV16) { |
125 | 0 | const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; |
126 | 0 | const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x / 2; |
127 | 0 | const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x / 2; |
128 | 0 | if (yuv_color_space == mozilla::YUVColorSpace::BT709) { |
129 | 0 | DebugOnly<int> err = libyuv::H422ToARGB(src_y, y_pitch, |
130 | 0 | src_u, uv_pitch, |
131 | 0 | src_v, uv_pitch, |
132 | 0 | rgb_buf, rgb_pitch, |
133 | 0 | pic_width, pic_height); |
134 | 0 | MOZ_ASSERT(!err); |
135 | 0 | } else { |
136 | 0 | DebugOnly<int> err = libyuv::I422ToARGB(src_y, y_pitch, |
137 | 0 | src_u, uv_pitch, |
138 | 0 | src_v, uv_pitch, |
139 | 0 | rgb_buf, rgb_pitch, |
140 | 0 | pic_width, pic_height); |
141 | 0 | MOZ_ASSERT(!err); |
142 | 0 | } |
143 | 0 | } else { |
144 | 0 | MOZ_ASSERT(yuv_type == YV12); |
145 | 0 | const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; |
146 | 0 | const uint8* src_u = u_buf + (uv_pitch * pic_y + pic_x) / 2; |
147 | 0 | const uint8* src_v = v_buf + (uv_pitch * pic_y + pic_x) / 2; |
148 | 0 | if (yuv_color_space == mozilla::YUVColorSpace::BT709) { |
149 | 0 | DebugOnly<int> err = libyuv::H420ToARGB(src_y, y_pitch, |
150 | 0 | src_u, uv_pitch, |
151 | 0 | src_v, uv_pitch, |
152 | 0 | rgb_buf, rgb_pitch, |
153 | 0 | pic_width, pic_height); |
154 | 0 | MOZ_ASSERT(!err); |
155 | 0 | } else { |
156 | 0 | DebugOnly<int> err = libyuv::I420ToARGB(src_y, y_pitch, |
157 | 0 | src_u, uv_pitch, |
158 | 0 | src_v, uv_pitch, |
159 | 0 | rgb_buf, rgb_pitch, |
160 | 0 | pic_width, pic_height); |
161 | 0 | MOZ_ASSERT(!err); |
162 | 0 | } |
163 | 0 | } |
164 | 0 | } |
165 | | |
166 | | // Convert a frame of YUV to 32 bit ARGB. |
167 | | void ConvertYCbCrToRGB32_deprecated(const uint8* y_buf, |
168 | | const uint8* u_buf, |
169 | | const uint8* v_buf, |
170 | | uint8* rgb_buf, |
171 | | int pic_x, |
172 | | int pic_y, |
173 | | int pic_width, |
174 | | int pic_height, |
175 | | int y_pitch, |
176 | | int uv_pitch, |
177 | | int rgb_pitch, |
178 | 0 | YUVType yuv_type) { |
179 | 0 | unsigned int y_shift = yuv_type == YV12 ? 1 : 0; |
180 | 0 | unsigned int x_shift = yuv_type == YV24 ? 0 : 1; |
181 | 0 | // Test for SSE because the optimized code uses movntq, which is not part of MMX. |
182 | 0 | bool has_sse = supports_mmx() && supports_sse(); |
183 | 0 | // There is no optimized YV24 SSE routine so we check for this and |
184 | 0 | // fall back to the C code. |
185 | 0 | has_sse &= yuv_type != YV24; |
186 | 0 | bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0; |
187 | 0 | int x_width = odd_pic_x ? pic_width - 1 : pic_width; |
188 | 0 |
|
189 | 0 | for (int y = pic_y; y < pic_height + pic_y; ++y) { |
190 | 0 | uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch; |
191 | 0 | const uint8* y_ptr = y_buf + y * y_pitch + pic_x; |
192 | 0 | const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); |
193 | 0 | const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); |
194 | 0 |
|
195 | 0 | if (odd_pic_x) { |
196 | 0 | // Handle the single odd pixel manually and use the |
197 | 0 | // fast routines for the remaining. |
198 | 0 | FastConvertYUVToRGB32Row_C(y_ptr++, |
199 | 0 | u_ptr++, |
200 | 0 | v_ptr++, |
201 | 0 | rgb_row, |
202 | 0 | 1, |
203 | 0 | x_shift); |
204 | 0 | rgb_row += 4; |
205 | 0 | } |
206 | 0 |
|
207 | 0 | if (has_sse) { |
208 | 0 | FastConvertYUVToRGB32Row(y_ptr, |
209 | 0 | u_ptr, |
210 | 0 | v_ptr, |
211 | 0 | rgb_row, |
212 | 0 | x_width); |
213 | 0 | } |
214 | 0 | else { |
215 | 0 | FastConvertYUVToRGB32Row_C(y_ptr, |
216 | 0 | u_ptr, |
217 | 0 | v_ptr, |
218 | 0 | rgb_row, |
219 | 0 | x_width, |
220 | 0 | x_shift); |
221 | 0 | } |
222 | 0 | } |
223 | 0 |
|
224 | 0 | // MMX used for FastConvertYUVToRGB32Row requires emms instruction. |
225 | 0 | if (has_sse) |
226 | 0 | EMMS(); |
227 | 0 | } |
228 | | |
229 | | // C version does 8 at a time to mimic MMX code |
230 | | static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, |
231 | 0 | int source_width, int source_y_fraction) { |
232 | 0 | int y1_fraction = source_y_fraction; |
233 | 0 | int y0_fraction = 256 - y1_fraction; |
234 | 0 | uint8* end = ybuf + source_width; |
235 | 0 | do { |
236 | 0 | ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8; |
237 | 0 | ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8; |
238 | 0 | ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8; |
239 | 0 | ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8; |
240 | 0 | ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8; |
241 | 0 | ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8; |
242 | 0 | ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8; |
243 | 0 | ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8; |
244 | 0 | y0_ptr += 8; |
245 | 0 | y1_ptr += 8; |
246 | 0 | ybuf += 8; |
247 | 0 | } while (ybuf < end); |
248 | 0 | } |
249 | | |
250 | | #ifdef MOZILLA_MAY_SUPPORT_MMX |
251 | | void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, |
252 | | int source_width, int source_y_fraction); |
253 | | #endif |
254 | | |
255 | | #ifdef MOZILLA_MAY_SUPPORT_SSE2 |
256 | | void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, |
257 | | int source_width, int source_y_fraction); |
258 | | #endif |
259 | | |
260 | | static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr, |
261 | | const uint8* y1_ptr, int source_width, |
262 | 0 | int source_y_fraction) { |
263 | 0 | #ifdef MOZILLA_MAY_SUPPORT_SSE2 |
264 | 0 | if (mozilla::supports_sse2()) { |
265 | 0 | FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
266 | 0 | return; |
267 | 0 | } |
268 | 0 | #endif |
269 | 0 | |
270 | 0 | #ifdef MOZILLA_MAY_SUPPORT_MMX |
271 | 0 | if (mozilla::supports_mmx()) { |
272 | 0 | FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
273 | 0 | return; |
274 | 0 | } |
275 | 0 | #endif |
276 | 0 | |
277 | 0 | FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
278 | 0 | } |
279 | | |
280 | | |
281 | | // Scale a frame of YUV to 32 bit ARGB. |
282 | | void ScaleYCbCrToRGB32(const uint8* y_buf, |
283 | | const uint8* u_buf, |
284 | | const uint8* v_buf, |
285 | | uint8* rgb_buf, |
286 | | int source_width, |
287 | | int source_height, |
288 | | int width, |
289 | | int height, |
290 | | int y_pitch, |
291 | | int uv_pitch, |
292 | | int rgb_pitch, |
293 | | YUVType yuv_type, |
294 | | YUVColorSpace yuv_color_space, |
295 | 0 | ScaleFilter filter) { |
296 | 0 |
|
297 | 0 | bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() || |
298 | | #if defined(XP_WIN) && defined(_M_X64) |
299 | | // libyuv does not support SIMD scaling on win 64bit. See Bug 1295927. |
300 | | supports_sse3() || |
301 | | #endif |
302 | 0 | (supports_mmx() && supports_sse() && !supports_sse3()); |
303 | 0 | // The deprecated function only support BT601. |
304 | 0 | // See Bug 1210357. |
305 | 0 | if (yuv_color_space != YUVColorSpace::BT601) { |
306 | 0 | use_deprecated = false; |
307 | 0 | } |
308 | 0 | if (use_deprecated) { |
309 | 0 | ScaleYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, |
310 | 0 | rgb_buf, |
311 | 0 | source_width, source_height, |
312 | 0 | width, height, |
313 | 0 | y_pitch, uv_pitch, |
314 | 0 | rgb_pitch, |
315 | 0 | yuv_type, |
316 | 0 | ROTATE_0, |
317 | 0 | filter); |
318 | 0 | return; |
319 | 0 | } |
320 | 0 | |
321 | 0 | DebugOnly<int> err = |
322 | 0 | libyuv::YUVToARGBScale(y_buf, y_pitch, |
323 | 0 | u_buf, uv_pitch, |
324 | 0 | v_buf, uv_pitch, |
325 | 0 | FourCCFromYUVType(yuv_type), |
326 | 0 | yuv_color_space, |
327 | 0 | source_width, source_height, |
328 | 0 | rgb_buf, rgb_pitch, |
329 | 0 | width, height, |
330 | 0 | libyuv::kFilterBilinear); |
331 | 0 | MOZ_ASSERT(!err); |
332 | 0 | return; |
333 | 0 | } |
334 | | |
335 | | // Scale a frame of YUV to 32 bit ARGB. |
336 | | void ScaleYCbCrToRGB32_deprecated(const uint8* y_buf, |
337 | | const uint8* u_buf, |
338 | | const uint8* v_buf, |
339 | | uint8* rgb_buf, |
340 | | int source_width, |
341 | | int source_height, |
342 | | int width, |
343 | | int height, |
344 | | int y_pitch, |
345 | | int uv_pitch, |
346 | | int rgb_pitch, |
347 | | YUVType yuv_type, |
348 | | Rotate view_rotate, |
349 | 0 | ScaleFilter filter) { |
350 | 0 | bool has_mmx = supports_mmx(); |
351 | 0 |
|
352 | 0 | // 4096 allows 3 buffers to fit in 12k. |
353 | 0 | // Helps performance on CPU with 16K L1 cache. |
354 | 0 | // Large enough for 3830x2160 and 30" displays which are 2560x1600. |
355 | 0 | const int kFilterBufferSize = 4096; |
356 | 0 | // Disable filtering if the screen is too big (to avoid buffer overflows). |
357 | 0 | // This should never happen to regular users: they don't have monitors |
358 | 0 | // wider than 4096 pixels. |
359 | 0 | // TODO(fbarchard): Allow rotated videos to filter. |
360 | 0 | if (source_width > kFilterBufferSize || view_rotate) |
361 | 0 | filter = FILTER_NONE; |
362 | 0 |
|
363 | 0 | unsigned int y_shift = yuv_type == YV12 ? 1 : 0; |
364 | 0 | // Diagram showing origin and direction of source sampling. |
365 | 0 | // ->0 4<- |
366 | 0 | // 7 3 |
367 | 0 | // |
368 | 0 | // 6 5 |
369 | 0 | // ->1 2<- |
370 | 0 | // Rotations that start at right side of image. |
371 | 0 | if ((view_rotate == ROTATE_180) || |
372 | 0 | (view_rotate == ROTATE_270) || |
373 | 0 | (view_rotate == MIRROR_ROTATE_0) || |
374 | 0 | (view_rotate == MIRROR_ROTATE_90)) { |
375 | 0 | y_buf += source_width - 1; |
376 | 0 | u_buf += source_width / 2 - 1; |
377 | 0 | v_buf += source_width / 2 - 1; |
378 | 0 | source_width = -source_width; |
379 | 0 | } |
380 | 0 | // Rotations that start at bottom of image. |
381 | 0 | if ((view_rotate == ROTATE_90) || |
382 | 0 | (view_rotate == ROTATE_180) || |
383 | 0 | (view_rotate == MIRROR_ROTATE_90) || |
384 | 0 | (view_rotate == MIRROR_ROTATE_180)) { |
385 | 0 | y_buf += (source_height - 1) * y_pitch; |
386 | 0 | u_buf += ((source_height >> y_shift) - 1) * uv_pitch; |
387 | 0 | v_buf += ((source_height >> y_shift) - 1) * uv_pitch; |
388 | 0 | source_height = -source_height; |
389 | 0 | } |
390 | 0 |
|
391 | 0 | // Handle zero sized destination. |
392 | 0 | if (width == 0 || height == 0) |
393 | 0 | return; |
394 | 0 | int source_dx = source_width * kFractionMax / width; |
395 | 0 | int source_dy = source_height * kFractionMax / height; |
396 | 0 | int source_dx_uv = source_dx; |
397 | 0 |
|
398 | 0 | if ((view_rotate == ROTATE_90) || |
399 | 0 | (view_rotate == ROTATE_270)) { |
400 | 0 | int tmp = height; |
401 | 0 | height = width; |
402 | 0 | width = tmp; |
403 | 0 | tmp = source_height; |
404 | 0 | source_height = source_width; |
405 | 0 | source_width = tmp; |
406 | 0 | int original_dx = source_dx; |
407 | 0 | int original_dy = source_dy; |
408 | 0 | source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits; |
409 | 0 | source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits; |
410 | 0 | source_dy = original_dx; |
411 | 0 | if (view_rotate == ROTATE_90) { |
412 | 0 | y_pitch = -1; |
413 | 0 | uv_pitch = -1; |
414 | 0 | source_height = -source_height; |
415 | 0 | } else { |
416 | 0 | y_pitch = 1; |
417 | 0 | uv_pitch = 1; |
418 | 0 | } |
419 | 0 | } |
420 | 0 |
|
421 | 0 | // Need padding because FilterRows() will write 1 to 16 extra pixels |
422 | 0 | // after the end for SSE2 version. |
423 | 0 | uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; |
424 | 0 | uint8* ybuf = |
425 | 0 | reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); |
426 | 0 | uint8* ubuf = ybuf + kFilterBufferSize; |
427 | 0 | uint8* vbuf = ubuf + kFilterBufferSize; |
428 | 0 | // TODO(fbarchard): Fixed point math is off by 1 on negatives. |
429 | 0 | int yscale_fixed = (source_height << kFractionBits) / height; |
430 | 0 |
|
431 | 0 | // TODO(fbarchard): Split this into separate function for better efficiency. |
432 | 0 | for (int y = 0; y < height; ++y) { |
433 | 0 | uint8* dest_pixel = rgb_buf + y * rgb_pitch; |
434 | 0 | int source_y_subpixel = (y * yscale_fixed); |
435 | 0 | if (yscale_fixed >= (kFractionMax * 2)) { |
436 | 0 | source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter. |
437 | 0 | } |
438 | 0 | int source_y = source_y_subpixel >> kFractionBits; |
439 | 0 |
|
440 | 0 | const uint8* y0_ptr = y_buf + source_y * y_pitch; |
441 | 0 | const uint8* y1_ptr = y0_ptr + y_pitch; |
442 | 0 |
|
443 | 0 | const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch; |
444 | 0 | const uint8* u1_ptr = u0_ptr + uv_pitch; |
445 | 0 | const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch; |
446 | 0 | const uint8* v1_ptr = v0_ptr + uv_pitch; |
447 | 0 |
|
448 | 0 | // vertical scaler uses 16.8 fixed point |
449 | 0 | int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; |
450 | 0 | int source_uv_fraction = |
451 | 0 | ((source_y_subpixel >> y_shift) & kFractionMask) >> 8; |
452 | 0 |
|
453 | 0 | const uint8* y_ptr = y0_ptr; |
454 | 0 | const uint8* u_ptr = u0_ptr; |
455 | 0 | const uint8* v_ptr = v0_ptr; |
456 | 0 | // Apply vertical filtering if necessary. |
457 | 0 | // TODO(fbarchard): Remove memcpy when not necessary. |
458 | 0 | if (filter & mozilla::gfx::FILTER_BILINEAR_V) { |
459 | 0 | if (yscale_fixed != kFractionMax && |
460 | 0 | source_y_fraction && ((source_y + 1) < source_height)) { |
461 | 0 | FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
462 | 0 | } else { |
463 | 0 | memcpy(ybuf, y0_ptr, source_width); |
464 | 0 | } |
465 | 0 | y_ptr = ybuf; |
466 | 0 | ybuf[source_width] = ybuf[source_width-1]; |
467 | 0 | int uv_source_width = (source_width + 1) / 2; |
468 | 0 | if (yscale_fixed != kFractionMax && |
469 | 0 | source_uv_fraction && |
470 | 0 | (((source_y >> y_shift) + 1) < (source_height >> y_shift))) { |
471 | 0 | FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction); |
472 | 0 | FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction); |
473 | 0 | } else { |
474 | 0 | memcpy(ubuf, u0_ptr, uv_source_width); |
475 | 0 | memcpy(vbuf, v0_ptr, uv_source_width); |
476 | 0 | } |
477 | 0 | u_ptr = ubuf; |
478 | 0 | v_ptr = vbuf; |
479 | 0 | ubuf[uv_source_width] = ubuf[uv_source_width - 1]; |
480 | 0 | vbuf[uv_source_width] = vbuf[uv_source_width - 1]; |
481 | 0 | } |
482 | 0 | if (source_dx == kFractionMax) { // Not scaled |
483 | 0 | FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
484 | 0 | dest_pixel, width); |
485 | 0 | } else if (filter & FILTER_BILINEAR_H) { |
486 | 0 | LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
487 | 0 | dest_pixel, width, source_dx); |
488 | 0 | } else { |
489 | 0 | // Specialized scalers and rotation. |
490 | | #if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86) && !defined(__clang__) |
491 | | if(mozilla::supports_sse()) { |
492 | | if (width == (source_width * 2)) { |
493 | | DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, |
494 | | dest_pixel, width); |
495 | | } else if ((source_dx & kFractionMask) == 0) { |
496 | | // Scaling by integer scale factor. ie half. |
497 | | ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, |
498 | | dest_pixel, width, |
499 | | source_dx >> kFractionBits); |
500 | | } else if (source_dx_uv == source_dx) { // Not rotated. |
501 | | ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
502 | | dest_pixel, width, source_dx); |
503 | | } else { |
504 | | RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, |
505 | | dest_pixel, width, |
506 | | source_dx >> kFractionBits, |
507 | | source_dx_uv >> kFractionBits); |
508 | | } |
509 | | } |
510 | | else { |
511 | | ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr, |
512 | | dest_pixel, width, source_dx); |
513 | | } |
514 | | #else |
515 | | (void)source_dx_uv; |
516 | 0 | ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
517 | 0 | dest_pixel, width, source_dx); |
518 | 0 | #endif |
519 | 0 | } |
520 | 0 | } |
521 | 0 | // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms. |
522 | 0 | if (has_mmx) |
523 | 0 | EMMS(); |
524 | 0 | } |
525 | | void ConvertYCbCrAToARGB32(const uint8* y_buf, |
526 | | const uint8* u_buf, |
527 | | const uint8* v_buf, |
528 | | const uint8* a_buf, |
529 | | uint8* argb_buf, |
530 | | int pic_width, |
531 | | int pic_height, |
532 | | int ya_pitch, |
533 | | int uv_pitch, |
534 | 0 | int argb_pitch) { |
535 | 0 |
|
536 | 0 | // The downstream graphics stack expects an attenuated input, hence why the |
537 | 0 | // attenuation parameter is set. |
538 | 0 | DebugOnly<int> err = libyuv::I420AlphaToARGB(y_buf, ya_pitch, |
539 | 0 | u_buf, uv_pitch, |
540 | 0 | v_buf, uv_pitch, |
541 | 0 | a_buf, ya_pitch, |
542 | 0 | argb_buf, argb_pitch, |
543 | 0 | pic_width, pic_height, 1); |
544 | 0 | MOZ_ASSERT(!err); |
545 | 0 | } |
546 | | |
547 | | } // namespace gfx |
548 | | } // namespace mozilla |