/src/mozilla-central/intl/icu/source/common/normalizer2impl.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ******************************************************************************* |
5 | | * |
6 | | * Copyright (C) 2009-2014, International Business Machines |
7 | | * Corporation and others. All Rights Reserved. |
8 | | * |
9 | | ******************************************************************************* |
10 | | * file name: normalizer2impl.cpp |
11 | | * encoding: UTF-8 |
12 | | * tab size: 8 (not used) |
13 | | * indentation:4 |
14 | | * |
15 | | * created on: 2009nov22 |
16 | | * created by: Markus W. Scherer |
17 | | */ |
18 | | |
19 | | #include "unicode/utypes.h" |
20 | | |
21 | | #if !UCONFIG_NO_NORMALIZATION |
22 | | |
23 | | #include "unicode/bytestream.h" |
24 | | #include "unicode/edits.h" |
25 | | #include "unicode/normalizer2.h" |
26 | | #include "unicode/stringoptions.h" |
27 | | #include "unicode/udata.h" |
28 | | #include "unicode/ustring.h" |
29 | | #include "unicode/utf16.h" |
30 | | #include "unicode/utf8.h" |
31 | | #include "bytesinkutil.h" |
32 | | #include "cmemory.h" |
33 | | #include "mutex.h" |
34 | | #include "normalizer2impl.h" |
35 | | #include "putilimp.h" |
36 | | #include "uassert.h" |
37 | | #include "uset_imp.h" |
38 | | #include "utrie2.h" |
39 | | #include "uvector.h" |
40 | | |
41 | | U_NAMESPACE_BEGIN |
42 | | |
43 | | namespace { |
44 | | |
45 | | /** |
46 | | * UTF-8 lead byte for minNoMaybeCP. |
47 | | * Can be lower than the actual lead byte for c. |
48 | | * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold. |
49 | | */ |
50 | 0 | inline uint8_t leadByteForCP(UChar32 c) { |
51 | 0 | if (c <= 0x7f) { |
52 | 0 | return (uint8_t)c; |
53 | 0 | } else if (c <= 0x7ff) { |
54 | 0 | return (uint8_t)(0xc0+(c>>6)); |
55 | 0 | } else { |
56 | 0 | // Should not occur because ccc(U+0300)!=0. |
57 | 0 | return 0xe0; |
58 | 0 | } |
59 | 0 | } |
60 | | |
61 | | /** |
62 | | * Returns the code point from one single well-formed UTF-8 byte sequence |
63 | | * between cpStart and cpLimit. |
64 | | * |
65 | | * UTrie2 UTF-8 macros do not assemble whole code points (for efficiency). |
66 | | * When we do need the code point, we call this function. |
67 | | * We should not need it for normalization-inert data (norm16==0). |
68 | | * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points. |
69 | | */ |
70 | 0 | UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) { |
71 | 0 | // Similar to U8_NEXT_UNSAFE(s, i, c). |
72 | 0 | U_ASSERT(cpStart < cpLimit); |
73 | 0 | uint8_t c = *cpStart; |
74 | 0 | switch(cpLimit-cpStart) { |
75 | 0 | case 1: |
76 | 0 | return c; |
77 | 0 | case 2: |
78 | 0 | return ((c&0x1f)<<6) | (cpStart[1]&0x3f); |
79 | 0 | case 3: |
80 | 0 | // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar) |
81 | 0 | return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f)); |
82 | 0 | case 4: |
83 | 0 | return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f); |
84 | 0 | default: |
85 | 0 | U_ASSERT(FALSE); // Should not occur. |
86 | 0 | return U_SENTINEL; |
87 | 0 | } |
88 | 0 | } |
89 | | |
90 | | /** |
91 | | * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF. |
92 | | * Otherwise returns a negative value. |
93 | | */ |
94 | 0 | UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) { |
95 | 0 | if ((p - start) >= 3) { |
96 | 0 | p -= 3; |
97 | 0 | uint8_t l = *p; |
98 | 0 | uint8_t t1, t2; |
99 | 0 | if (0xe1 <= l && l <= 0xed && |
100 | 0 | (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f && |
101 | 0 | (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f && |
102 | 0 | (l < 0xed || t1 <= 0x1f)) { |
103 | 0 | return ((l & 0xf) << 12) | (t1 << 6) | t2; |
104 | 0 | } |
105 | 0 | } |
106 | 0 | return U_SENTINEL; |
107 | 0 | } |
108 | | |
109 | | /** |
110 | | * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point. |
111 | | * Otherwise returns a negative value. |
112 | | */ |
113 | 0 | int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) { |
114 | 0 | // Jamo T: E1 86 A8..E1 87 82 |
115 | 0 | if ((limit - src) >= 3 && *src == 0xe1) { |
116 | 0 | if (src[1] == 0x86) { |
117 | 0 | uint8_t t = src[2]; |
118 | 0 | // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7. |
119 | 0 | // Offset 0 does not correspond to any conjoining Jamo. |
120 | 0 | if (0xa8 <= t && t <= 0xbf) { |
121 | 0 | return t - 0xa7; |
122 | 0 | } |
123 | 0 | } else if (src[1] == 0x87) { |
124 | 0 | uint8_t t = src[2]; |
125 | 0 | if ((int8_t)t <= (int8_t)0x82) { |
126 | 0 | return t - (0xa7 - 0x40); |
127 | 0 | } |
128 | 0 | } |
129 | 0 | } |
130 | 0 | return -1; |
131 | 0 | } |
132 | | |
133 | | void |
134 | | appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta, |
135 | 0 | ByteSink &sink, Edits *edits) { |
136 | 0 | char buffer[U8_MAX_LENGTH]; |
137 | 0 | int32_t length; |
138 | 0 | int32_t cpLength = (int32_t)(cpLimit - cpStart); |
139 | 0 | if (cpLength == 1) { |
140 | 0 | // The builder makes ASCII map to ASCII. |
141 | 0 | buffer[0] = (uint8_t)(*cpStart + delta); |
142 | 0 | length = 1; |
143 | 0 | } else { |
144 | 0 | int32_t trail = *(cpLimit-1) + delta; |
145 | 0 | if (0x80 <= trail && trail <= 0xbf) { |
146 | 0 | // The delta only changes the last trail byte. |
147 | 0 | --cpLimit; |
148 | 0 | length = 0; |
149 | 0 | do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit); |
150 | 0 | buffer[length++] = (uint8_t)trail; |
151 | 0 | } else { |
152 | 0 | // Decode the code point, add the delta, re-encode. |
153 | 0 | UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta; |
154 | 0 | length = 0; |
155 | 0 | U8_APPEND_UNSAFE(buffer, length, c); |
156 | 0 | } |
157 | 0 | } |
158 | 0 | if (edits != nullptr) { |
159 | 0 | edits->addReplace(cpLength, length); |
160 | 0 | } |
161 | 0 | sink.Append(buffer, length); |
162 | 0 | } |
163 | | |
164 | | } // namespace |
165 | | |
166 | | // ReorderingBuffer -------------------------------------------------------- *** |
167 | | |
168 | | ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, |
169 | | UErrorCode &errorCode) : |
170 | | impl(ni), str(dest), |
171 | | start(str.getBuffer(8)), reorderStart(start), limit(start), |
172 | 0 | remainingCapacity(str.getCapacity()), lastCC(0) { |
173 | 0 | if (start == nullptr && U_SUCCESS(errorCode)) { |
174 | 0 | // getBuffer() already did str.setToBogus() |
175 | 0 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
176 | 0 | } |
177 | 0 | } |
178 | | |
179 | 91.3k | UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
180 | 91.3k | int32_t length=str.length(); |
181 | 91.3k | start=str.getBuffer(destCapacity); |
182 | 91.3k | if(start==NULL) { |
183 | 0 | // getBuffer() already did str.setToBogus() |
184 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
185 | 0 | return FALSE; |
186 | 0 | } |
187 | 91.3k | limit=start+length; |
188 | 91.3k | remainingCapacity=str.getCapacity()-length; |
189 | 91.3k | reorderStart=start; |
190 | 91.3k | if(start==limit) { |
191 | 37.5k | lastCC=0; |
192 | 53.8k | } else { |
193 | 53.8k | setIterator(); |
194 | 53.8k | lastCC=previousCC(); |
195 | 53.8k | // Set reorderStart after the last code point with cc<=1 if there is one. |
196 | 53.8k | if(lastCC>1) { |
197 | 0 | while(previousCC()>1) {} |
198 | 0 | } |
199 | 53.8k | reorderStart=codePointLimit; |
200 | 53.8k | } |
201 | 91.3k | return TRUE; |
202 | 91.3k | } |
203 | | |
204 | 0 | UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { |
205 | 0 | int32_t length=(int32_t)(limit-start); |
206 | 0 | return |
207 | 0 | length==(int32_t)(otherLimit-otherStart) && |
208 | 0 | 0==u_memcmp(start, otherStart, length); |
209 | 0 | } |
210 | | |
211 | 0 | UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const { |
212 | 0 | U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller |
213 | 0 | int32_t length = (int32_t)(limit - start); |
214 | 0 | int32_t otherLength = (int32_t)(otherLimit - otherStart); |
215 | 0 | // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long. |
216 | 0 | if (otherLength < length || (otherLength / 3) > length) { |
217 | 0 | return FALSE; |
218 | 0 | } |
219 | 0 | // Compare valid strings from between normalization boundaries. |
220 | 0 | // (Invalid sequences are normalization-inert.) |
221 | 0 | for (int32_t i = 0, j = 0;;) { |
222 | 0 | if (i >= length) { |
223 | 0 | return j >= otherLength; |
224 | 0 | } else if (j >= otherLength) { |
225 | 0 | return FALSE; |
226 | 0 | } |
227 | 0 | // Not at the end of either string yet. |
228 | 0 | UChar32 c, other; |
229 | 0 | U16_NEXT_UNSAFE(start, i, c); |
230 | 0 | U8_NEXT_UNSAFE(otherStart, j, other); |
231 | 0 | if (c != other) { |
232 | 0 | return FALSE; |
233 | 0 | } |
234 | 0 | } |
235 | 0 | } |
236 | | |
237 | 0 | UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { |
238 | 0 | if(remainingCapacity<2 && !resize(2, errorCode)) { |
239 | 0 | return FALSE; |
240 | 0 | } |
241 | 0 | if(lastCC<=cc || cc==0) { |
242 | 0 | limit[0]=U16_LEAD(c); |
243 | 0 | limit[1]=U16_TRAIL(c); |
244 | 0 | limit+=2; |
245 | 0 | lastCC=cc; |
246 | 0 | if(cc<=1) { |
247 | 0 | reorderStart=limit; |
248 | 0 | } |
249 | 0 | } else { |
250 | 0 | insert(c, cc); |
251 | 0 | } |
252 | 0 | remainingCapacity-=2; |
253 | 0 | return TRUE; |
254 | 0 | } |
255 | | |
256 | | UBool ReorderingBuffer::append(const UChar *s, int32_t length, |
257 | | uint8_t leadCC, uint8_t trailCC, |
258 | 128 | UErrorCode &errorCode) { |
259 | 128 | if(length==0) { |
260 | 109 | return TRUE; |
261 | 109 | } |
262 | 19 | if(remainingCapacity<length && !resize(length, errorCode)) { |
263 | 0 | return FALSE; |
264 | 0 | } |
265 | 19 | remainingCapacity-=length; |
266 | 19 | if(lastCC<=leadCC || leadCC==0) { |
267 | 19 | if(trailCC<=1) { |
268 | 0 | reorderStart=limit+length; |
269 | 19 | } else if(leadCC<=1) { |
270 | 19 | reorderStart=limit+1; // Ok if not a code point boundary. |
271 | 19 | } |
272 | 19 | const UChar *sLimit=s+length; |
273 | 38 | do { *limit++=*s++; } while(s!=sLimit); |
274 | 19 | lastCC=trailCC; |
275 | 19 | } else { |
276 | 0 | int32_t i=0; |
277 | 0 | UChar32 c; |
278 | 0 | U16_NEXT(s, i, length, c); |
279 | 0 | insert(c, leadCC); // insert first code point |
280 | 0 | while(i<length) { |
281 | 0 | U16_NEXT(s, i, length, c); |
282 | 0 | if(i<length) { |
283 | 0 | // s must be in NFD, otherwise we need to use getCC(). |
284 | 0 | leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
285 | 0 | } else { |
286 | 0 | leadCC=trailCC; |
287 | 0 | } |
288 | 0 | append(c, leadCC, errorCode); |
289 | 0 | } |
290 | 0 | } |
291 | 19 | return TRUE; |
292 | 19 | } |
293 | | |
294 | 0 | UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
295 | 0 | int32_t cpLength=U16_LENGTH(c); |
296 | 0 | if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
297 | 0 | return FALSE; |
298 | 0 | } |
299 | 0 | remainingCapacity-=cpLength; |
300 | 0 | if(cpLength==1) { |
301 | 0 | *limit++=(UChar)c; |
302 | 0 | } else { |
303 | 0 | limit[0]=U16_LEAD(c); |
304 | 0 | limit[1]=U16_TRAIL(c); |
305 | 0 | limit+=2; |
306 | 0 | } |
307 | 0 | lastCC=0; |
308 | 0 | reorderStart=limit; |
309 | 0 | return TRUE; |
310 | 0 | } |
311 | | |
312 | 206k | UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { |
313 | 206k | if(s==sLimit) { |
314 | 0 | return TRUE; |
315 | 0 | } |
316 | 206k | int32_t length=(int32_t)(sLimit-s); |
317 | 206k | if(remainingCapacity<length && !resize(length, errorCode)) { |
318 | 0 | return FALSE; |
319 | 0 | } |
320 | 206k | u_memcpy(limit, s, length); |
321 | 206k | limit+=length; |
322 | 206k | remainingCapacity-=length; |
323 | 206k | lastCC=0; |
324 | 206k | reorderStart=limit; |
325 | 206k | return TRUE; |
326 | 206k | } |
327 | | |
328 | 0 | void ReorderingBuffer::remove() { |
329 | 0 | reorderStart=limit=start; |
330 | 0 | remainingCapacity=str.getCapacity(); |
331 | 0 | lastCC=0; |
332 | 0 | } |
333 | | |
334 | 1.10k | void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
335 | 1.10k | if(suffixLength<(limit-start)) { |
336 | 1.09k | limit-=suffixLength; |
337 | 1.09k | remainingCapacity+=suffixLength; |
338 | 1.09k | } else { |
339 | 12 | limit=start; |
340 | 12 | remainingCapacity=str.getCapacity(); |
341 | 12 | } |
342 | 1.10k | lastCC=0; |
343 | 1.10k | reorderStart=limit; |
344 | 1.10k | } |
345 | | |
346 | 1.80k | UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
347 | 1.80k | int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
348 | 1.80k | int32_t length=(int32_t)(limit-start); |
349 | 1.80k | str.releaseBuffer(length); |
350 | 1.80k | int32_t newCapacity=length+appendLength; |
351 | 1.80k | int32_t doubleCapacity=2*str.getCapacity(); |
352 | 1.80k | if(newCapacity<doubleCapacity) { |
353 | 1.80k | newCapacity=doubleCapacity; |
354 | 1.80k | } |
355 | 1.80k | if(newCapacity<256) { |
356 | 1.79k | newCapacity=256; |
357 | 1.79k | } |
358 | 1.80k | start=str.getBuffer(newCapacity); |
359 | 1.80k | if(start==NULL) { |
360 | 0 | // getBuffer() already did str.setToBogus() |
361 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
362 | 0 | return FALSE; |
363 | 0 | } |
364 | 1.80k | reorderStart=start+reorderStartIndex; |
365 | 1.80k | limit=start+length; |
366 | 1.80k | remainingCapacity=str.getCapacity()-length; |
367 | 1.80k | return TRUE; |
368 | 1.80k | } |
369 | | |
370 | 0 | void ReorderingBuffer::skipPrevious() { |
371 | 0 | codePointLimit=codePointStart; |
372 | 0 | UChar c=*--codePointStart; |
373 | 0 | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { |
374 | 0 | --codePointStart; |
375 | 0 | } |
376 | 0 | } |
377 | | |
378 | 53.8k | uint8_t ReorderingBuffer::previousCC() { |
379 | 53.8k | codePointLimit=codePointStart; |
380 | 53.8k | if(reorderStart>=codePointStart) { |
381 | 0 | return 0; |
382 | 0 | } |
383 | 53.8k | UChar32 c=*--codePointStart; |
384 | 53.8k | UChar c2; |
385 | 53.8k | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { |
386 | 0 | --codePointStart; |
387 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
388 | 0 | } |
389 | 53.8k | return impl.getCCFromYesOrMaybeCP(c); |
390 | 53.8k | } |
391 | | |
392 | | // Inserts c somewhere before the last character. |
393 | | // Requires 0<cc<lastCC which implies reorderStart<limit. |
394 | 0 | void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
395 | 0 | for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
396 | 0 | // insert c at codePointLimit, after the character with prevCC<=cc |
397 | 0 | UChar *q=limit; |
398 | 0 | UChar *r=limit+=U16_LENGTH(c); |
399 | 0 | do { |
400 | 0 | *--r=*--q; |
401 | 0 | } while(codePointLimit!=q); |
402 | 0 | writeCodePoint(q, c); |
403 | 0 | if(cc<=1) { |
404 | 0 | reorderStart=r; |
405 | 0 | } |
406 | 0 | } |
407 | | |
408 | | // Normalizer2Impl --------------------------------------------------------- *** |
409 | | |
410 | | struct CanonIterData : public UMemory { |
411 | | CanonIterData(UErrorCode &errorCode); |
412 | | ~CanonIterData(); |
413 | | void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); |
414 | | UTrie2 *trie; |
415 | | UVector canonStartSets; // contains UnicodeSet * |
416 | | }; |
417 | | |
418 | 0 | Normalizer2Impl::~Normalizer2Impl() { |
419 | 0 | delete fCanonIterData; |
420 | 0 | } |
421 | | |
422 | | void |
423 | | Normalizer2Impl::init(const int32_t *inIndexes, const UTrie2 *inTrie, |
424 | 3 | const uint16_t *inExtraData, const uint8_t *inSmallFCD) { |
425 | 3 | minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; |
426 | 3 | minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; |
427 | 3 | minLcccCP=inIndexes[IX_MIN_LCCC_CP]; |
428 | 3 | |
429 | 3 | minYesNo=inIndexes[IX_MIN_YES_NO]; |
430 | 3 | minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; |
431 | 3 | minNoNo=inIndexes[IX_MIN_NO_NO]; |
432 | 3 | minNoNoCompBoundaryBefore=inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]; |
433 | 3 | minNoNoCompNoMaybeCC=inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]; |
434 | 3 | minNoNoEmpty=inIndexes[IX_MIN_NO_NO_EMPTY]; |
435 | 3 | limitNoNo=inIndexes[IX_LIMIT_NO_NO]; |
436 | 3 | minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; |
437 | 3 | U_ASSERT((minMaybeYes&7)==0); // 8-aligned for noNoDelta bit fields |
438 | 3 | centerNoNoDelta=(minMaybeYes>>DELTA_SHIFT)-MAX_DELTA-1; |
439 | 3 | |
440 | 3 | normTrie=inTrie; |
441 | 3 | |
442 | 3 | maybeYesCompositions=inExtraData; |
443 | 3 | extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT); |
444 | 3 | |
445 | 3 | smallFCD=inSmallFCD; |
446 | 3 | } |
447 | | |
448 | | class LcccContext { |
449 | | public: |
450 | 0 | LcccContext(const Normalizer2Impl &ni, UnicodeSet &s) : impl(ni), set(s) {} |
451 | | |
452 | 0 | void handleRange(UChar32 start, UChar32 end, uint16_t norm16) { |
453 | 0 | if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES && |
454 | 0 | norm16 != Normalizer2Impl::JAMO_VT) { |
455 | 0 | set.add(start, end); |
456 | 0 | } else if (impl.minNoNoCompNoMaybeCC <= norm16 && norm16 < impl.limitNoNo) { |
457 | 0 | uint16_t fcd16=impl.getFCD16(start); |
458 | 0 | if(fcd16>0xff) { set.add(start, end); } |
459 | 0 | } |
460 | 0 | } |
461 | | |
462 | | private: |
463 | | const Normalizer2Impl &impl; |
464 | | UnicodeSet &set; |
465 | | }; |
466 | | |
467 | | namespace { |
468 | | |
469 | | struct PropertyStartsContext { |
470 | | PropertyStartsContext(const Normalizer2Impl &ni, const USetAdder *adder) |
471 | 0 | : impl(ni), sa(adder) {} |
472 | | |
473 | | const Normalizer2Impl &impl; |
474 | | const USetAdder *sa; |
475 | | }; |
476 | | |
477 | | } // namespace |
478 | | |
479 | | U_CDECL_BEGIN |
480 | | |
481 | | static UBool U_CALLCONV |
482 | 0 | enumLcccRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
483 | 0 | ((LcccContext *)context)->handleRange(start, end, (uint16_t)value); |
484 | 0 | return TRUE; |
485 | 0 | } |
486 | | |
487 | | static UBool U_CALLCONV |
488 | 0 | enumNorm16PropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
489 | 0 | /* add the start code point to the USet */ |
490 | 0 | const PropertyStartsContext *ctx=(const PropertyStartsContext *)context; |
491 | 0 | const USetAdder *sa=ctx->sa; |
492 | 0 | sa->add(sa->set, start); |
493 | 0 | if (start != end && ctx->impl.isAlgorithmicNoNo((uint16_t)value) && |
494 | 0 | (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) { |
495 | 0 | // Range of code points with same-norm16-value algorithmic decompositions. |
496 | 0 | // They might have different non-zero FCD16 values. |
497 | 0 | uint16_t prevFCD16=ctx->impl.getFCD16(start); |
498 | 0 | while(++start<=end) { |
499 | 0 | uint16_t fcd16=ctx->impl.getFCD16(start); |
500 | 0 | if(fcd16!=prevFCD16) { |
501 | 0 | sa->add(sa->set, start); |
502 | 0 | prevFCD16=fcd16; |
503 | 0 | } |
504 | 0 | } |
505 | 0 | } |
506 | 0 | return TRUE; |
507 | 0 | } |
508 | | |
509 | | static UBool U_CALLCONV |
510 | 0 | enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { |
511 | 0 | /* add the start code point to the USet */ |
512 | 0 | const USetAdder *sa=(const USetAdder *)context; |
513 | 0 | sa->add(sa->set, start); |
514 | 0 | return TRUE; |
515 | 0 | } |
516 | | |
517 | | static uint32_t U_CALLCONV |
518 | 0 | segmentStarterMapper(const void * /*context*/, uint32_t value) { |
519 | 0 | return value&CANON_NOT_SEGMENT_STARTER; |
520 | 0 | } |
521 | | |
522 | | U_CDECL_END |
523 | | |
524 | | void |
525 | 0 | Normalizer2Impl::addLcccChars(UnicodeSet &set) const { |
526 | 0 | LcccContext context(*this, set); |
527 | 0 | utrie2_enum(normTrie, NULL, enumLcccRange, &context); |
528 | 0 | } |
529 | | |
530 | | void |
531 | 0 | Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { |
532 | 0 | /* add the start code point of each same-value range of each trie */ |
533 | 0 | PropertyStartsContext context(*this, sa); |
534 | 0 | utrie2_enum(normTrie, NULL, enumNorm16PropertyStartsRange, &context); |
535 | 0 |
|
536 | 0 | /* add Hangul LV syllables and LV+1 because of skippables */ |
537 | 0 | for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { |
538 | 0 | sa->add(sa->set, c); |
539 | 0 | sa->add(sa->set, c+1); |
540 | 0 | } |
541 | 0 | sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ |
542 | 0 | } |
543 | | |
544 | | void |
545 | 0 | Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { |
546 | 0 | /* add the start code point of each same-value range of the canonical iterator data trie */ |
547 | 0 | if(ensureCanonIterData(errorCode)) { |
548 | 0 | // currently only used for the SEGMENT_STARTER property |
549 | 0 | utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa); |
550 | 0 | } |
551 | 0 | } |
552 | | |
553 | | const UChar * |
554 | | Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
555 | | UChar32 minNeedDataCP, |
556 | | ReorderingBuffer *buffer, |
557 | 0 | UErrorCode &errorCode) const { |
558 | 0 | // Make some effort to support NUL-terminated strings reasonably. |
559 | 0 | // Take the part of the fast quick check loop that does not look up |
560 | 0 | // data and check the first part of the string. |
561 | 0 | // After this prefix, determine the string length to simplify the rest |
562 | 0 | // of the code. |
563 | 0 | const UChar *prevSrc=src; |
564 | 0 | UChar c; |
565 | 0 | while((c=*src++)<minNeedDataCP && c!=0) {} |
566 | 0 | // Back out the last character for full processing. |
567 | 0 | // Copy this prefix. |
568 | 0 | if(--src!=prevSrc) { |
569 | 0 | if(buffer!=NULL) { |
570 | 0 | buffer->appendZeroCC(prevSrc, src, errorCode); |
571 | 0 | } |
572 | 0 | } |
573 | 0 | return src; |
574 | 0 | } |
575 | | |
576 | | UnicodeString & |
577 | | Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest, |
578 | 0 | UErrorCode &errorCode) const { |
579 | 0 | if(U_FAILURE(errorCode)) { |
580 | 0 | dest.setToBogus(); |
581 | 0 | return dest; |
582 | 0 | } |
583 | 0 | const UChar *sArray=src.getBuffer(); |
584 | 0 | if(&dest==&src || sArray==NULL) { |
585 | 0 | errorCode=U_ILLEGAL_ARGUMENT_ERROR; |
586 | 0 | dest.setToBogus(); |
587 | 0 | return dest; |
588 | 0 | } |
589 | 0 | decompose(sArray, sArray+src.length(), dest, src.length(), errorCode); |
590 | 0 | return dest; |
591 | 0 | } |
592 | | |
593 | | void |
594 | | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
595 | | UnicodeString &dest, |
596 | | int32_t destLengthEstimate, |
597 | 0 | UErrorCode &errorCode) const { |
598 | 0 | if(destLengthEstimate<0 && limit!=NULL) { |
599 | 0 | destLengthEstimate=(int32_t)(limit-src); |
600 | 0 | } |
601 | 0 | dest.remove(); |
602 | 0 | ReorderingBuffer buffer(*this, dest); |
603 | 0 | if(buffer.init(destLengthEstimate, errorCode)) { |
604 | 0 | decompose(src, limit, &buffer, errorCode); |
605 | 0 | } |
606 | 0 | } |
607 | | |
608 | | // Dual functionality: |
609 | | // buffer!=NULL: normalize |
610 | | // buffer==NULL: isNormalized/spanQuickCheckYes |
611 | | const UChar * |
612 | | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
613 | | ReorderingBuffer *buffer, |
614 | 0 | UErrorCode &errorCode) const { |
615 | 0 | UChar32 minNoCP=minDecompNoCP; |
616 | 0 | if(limit==NULL) { |
617 | 0 | src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
618 | 0 | if(U_FAILURE(errorCode)) { |
619 | 0 | return src; |
620 | 0 | } |
621 | 0 | limit=u_strchr(src, 0); |
622 | 0 | } |
623 | 0 |
|
624 | 0 | const UChar *prevSrc; |
625 | 0 | UChar32 c=0; |
626 | 0 | uint16_t norm16=0; |
627 | 0 |
|
628 | 0 | // only for quick check |
629 | 0 | const UChar *prevBoundary=src; |
630 | 0 | uint8_t prevCC=0; |
631 | 0 |
|
632 | 0 | for(;;) { |
633 | 0 | // count code units below the minimum or with irrelevant data for the quick check |
634 | 0 | for(prevSrc=src; src!=limit;) { |
635 | 0 | if( (c=*src)<minNoCP || |
636 | 0 | isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
637 | 0 | ) { |
638 | 0 | ++src; |
639 | 0 | } else if(!U16_IS_SURROGATE(c)) { |
640 | 0 | break; |
641 | 0 | } else { |
642 | 0 | UChar c2; |
643 | 0 | if(U16_IS_SURROGATE_LEAD(c)) { |
644 | 0 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
645 | 0 | c=U16_GET_SUPPLEMENTARY(c, c2); |
646 | 0 | } |
647 | 0 | } else /* trail surrogate */ { |
648 | 0 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
649 | 0 | --src; |
650 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
651 | 0 | } |
652 | 0 | } |
653 | 0 | if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { |
654 | 0 | src+=U16_LENGTH(c); |
655 | 0 | } else { |
656 | 0 | break; |
657 | 0 | } |
658 | 0 | } |
659 | 0 | } |
660 | 0 | // copy these code units all at once |
661 | 0 | if(src!=prevSrc) { |
662 | 0 | if(buffer!=NULL) { |
663 | 0 | if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
664 | 0 | break; |
665 | 0 | } |
666 | 0 | } else { |
667 | 0 | prevCC=0; |
668 | 0 | prevBoundary=src; |
669 | 0 | } |
670 | 0 | } |
671 | 0 | if(src==limit) { |
672 | 0 | break; |
673 | 0 | } |
674 | 0 | |
675 | 0 | // Check one above-minimum, relevant code point. |
676 | 0 | src+=U16_LENGTH(c); |
677 | 0 | if(buffer!=NULL) { |
678 | 0 | if(!decompose(c, norm16, *buffer, errorCode)) { |
679 | 0 | break; |
680 | 0 | } |
681 | 0 | } else { |
682 | 0 | if(isDecompYes(norm16)) { |
683 | 0 | uint8_t cc=getCCFromYesOrMaybe(norm16); |
684 | 0 | if(prevCC<=cc || cc==0) { |
685 | 0 | prevCC=cc; |
686 | 0 | if(cc<=1) { |
687 | 0 | prevBoundary=src; |
688 | 0 | } |
689 | 0 | continue; |
690 | 0 | } |
691 | 0 | } |
692 | 0 | return prevBoundary; // "no" or cc out of order |
693 | 0 | } |
694 | 0 | } |
695 | 0 | return src; |
696 | 0 | } |
697 | | |
698 | | // Decompose a short piece of text which is likely to contain characters that |
699 | | // fail the quick check loop and/or where the quick check loop's overhead |
700 | | // is unlikely to be amortized. |
701 | | // Called by the compose() and makeFCD() implementations. |
702 | | const UChar * |
703 | | Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
704 | | UBool stopAtCompBoundary, UBool onlyContiguous, |
705 | 13.5k | ReorderingBuffer &buffer, UErrorCode &errorCode) const { |
706 | 13.5k | if (U_FAILURE(errorCode)) { |
707 | 0 | return nullptr; |
708 | 0 | } |
709 | 20.4k | while(src<limit) { |
710 | 12.8k | if (stopAtCompBoundary && *src < minCompNoMaybeCP) { |
711 | 200 | return src; |
712 | 200 | } |
713 | 12.6k | const UChar *prevSrc = src; |
714 | 12.6k | UChar32 c; |
715 | 12.6k | uint16_t norm16; |
716 | 12.6k | UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); |
717 | 12.6k | if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) { |
718 | 5.74k | return prevSrc; |
719 | 5.74k | } |
720 | 6.89k | if(!decompose(c, norm16, buffer, errorCode)) { |
721 | 0 | return nullptr; |
722 | 0 | } |
723 | 6.89k | if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
724 | 0 | return src; |
725 | 0 | } |
726 | 6.89k | } |
727 | 13.5k | return src; |
728 | 13.5k | } |
729 | | |
730 | | UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
731 | | ReorderingBuffer &buffer, |
732 | 6.89k | UErrorCode &errorCode) const { |
733 | 6.89k | // get the decomposition and the lead and trail cc's |
734 | 6.89k | if (norm16 >= limitNoNo) { |
735 | 6.78k | if (isMaybeOrNonZeroCC(norm16)) { |
736 | 6.76k | return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
737 | 6.76k | } |
738 | 18 | // Maps to an isCompYesAndZeroCC. |
739 | 18 | c=mapAlgorithmic(c, norm16); |
740 | 18 | norm16=getNorm16(c); |
741 | 18 | } |
742 | 6.89k | if (norm16 < minYesNo) { |
743 | 1 | // c does not decompose |
744 | 1 | return buffer.append(c, 0, errorCode); |
745 | 128 | } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
746 | 0 | // Hangul syllable: decompose algorithmically |
747 | 0 | UChar jamos[3]; |
748 | 0 | return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); |
749 | 0 | } |
750 | 128 | // c decomposes, get everything from the variable-length extra data |
751 | 128 | const uint16_t *mapping=getMapping(norm16); |
752 | 128 | uint16_t firstUnit=*mapping; |
753 | 128 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
754 | 128 | uint8_t leadCC, trailCC; |
755 | 128 | trailCC=(uint8_t)(firstUnit>>8); |
756 | 128 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
757 | 109 | leadCC=(uint8_t)(*(mapping-1)>>8); |
758 | 109 | } else { |
759 | 19 | leadCC=0; |
760 | 19 | } |
761 | 128 | return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode); |
762 | 128 | } |
763 | | |
764 | | const uint8_t * |
765 | | Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit, |
766 | | UBool stopAtCompBoundary, UBool onlyContiguous, |
767 | 0 | ReorderingBuffer &buffer, UErrorCode &errorCode) const { |
768 | 0 | if (U_FAILURE(errorCode)) { |
769 | 0 | return nullptr; |
770 | 0 | } |
771 | 0 | while (src < limit) { |
772 | 0 | const uint8_t *prevSrc = src; |
773 | 0 | uint16_t norm16; |
774 | 0 | UTRIE2_U8_NEXT16(normTrie, src, limit, norm16); |
775 | 0 | // Get the decomposition and the lead and trail cc's. |
776 | 0 | UChar32 c = U_SENTINEL; |
777 | 0 | if (norm16 >= limitNoNo) { |
778 | 0 | if (isMaybeOrNonZeroCC(norm16)) { |
779 | 0 | // No boundaries around this character. |
780 | 0 | c = codePointFromValidUTF8(prevSrc, src); |
781 | 0 | if (!buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode)) { |
782 | 0 | return nullptr; |
783 | 0 | } |
784 | 0 | continue; |
785 | 0 | } |
786 | 0 | // Maps to an isCompYesAndZeroCC. |
787 | 0 | if (stopAtCompBoundary) { |
788 | 0 | return prevSrc; |
789 | 0 | } |
790 | 0 | c = codePointFromValidUTF8(prevSrc, src); |
791 | 0 | c = mapAlgorithmic(c, norm16); |
792 | 0 | norm16 = getNorm16(c); |
793 | 0 | } else if (stopAtCompBoundary && norm16 < minNoNoCompNoMaybeCC) { |
794 | 0 | return prevSrc; |
795 | 0 | } |
796 | 0 | // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8. |
797 | 0 | // We do not see invalid UTF-8 here because |
798 | 0 | // its norm16==INERT is normalization-inert, |
799 | 0 | // so it gets copied unchanged in the fast path, |
800 | 0 | // and we stop the slow path where invalid UTF-8 begins. |
801 | 0 | U_ASSERT(norm16 != INERT); |
802 | 0 | if (norm16 < minYesNo) { |
803 | 0 | if (c < 0) { |
804 | 0 | c = codePointFromValidUTF8(prevSrc, src); |
805 | 0 | } |
806 | 0 | // does not decompose |
807 | 0 | if (!buffer.append(c, 0, errorCode)) { |
808 | 0 | return nullptr; |
809 | 0 | } |
810 | 0 | } else if (isHangulLV(norm16) || isHangulLVT(norm16)) { |
811 | 0 | // Hangul syllable: decompose algorithmically |
812 | 0 | if (c < 0) { |
813 | 0 | c = codePointFromValidUTF8(prevSrc, src); |
814 | 0 | } |
815 | 0 | char16_t jamos[3]; |
816 | 0 | if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) { |
817 | 0 | return nullptr; |
818 | 0 | } |
819 | 0 | } else { |
820 | 0 | // The character decomposes, get everything from the variable-length extra data. |
821 | 0 | const uint16_t *mapping = getMapping(norm16); |
822 | 0 | uint16_t firstUnit = *mapping; |
823 | 0 | int32_t length = firstUnit & MAPPING_LENGTH_MASK; |
824 | 0 | uint8_t trailCC = (uint8_t)(firstUnit >> 8); |
825 | 0 | uint8_t leadCC; |
826 | 0 | if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) { |
827 | 0 | leadCC = (uint8_t)(*(mapping-1) >> 8); |
828 | 0 | } else { |
829 | 0 | leadCC = 0; |
830 | 0 | } |
831 | 0 | if (!buffer.append((const char16_t *)mapping+1, length, leadCC, trailCC, errorCode)) { |
832 | 0 | return nullptr; |
833 | 0 | } |
834 | 0 | } |
835 | 0 | if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
836 | 0 | return src; |
837 | 0 | } |
838 | 0 | } |
839 | 0 | return src; |
840 | 0 | } |
841 | | |
842 | | const UChar * |
843 | 0 | Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { |
844 | 0 | uint16_t norm16; |
845 | 0 | if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) { |
846 | 0 | // c does not decompose |
847 | 0 | return nullptr; |
848 | 0 | } |
849 | 0 | const UChar *decomp = nullptr; |
850 | 0 | if(isDecompNoAlgorithmic(norm16)) { |
851 | 0 | // Maps to an isCompYesAndZeroCC. |
852 | 0 | c=mapAlgorithmic(c, norm16); |
853 | 0 | decomp=buffer; |
854 | 0 | length=0; |
855 | 0 | U16_APPEND_UNSAFE(buffer, length, c); |
856 | 0 | // The mapping might decompose further. |
857 | 0 | norm16 = getNorm16(c); |
858 | 0 | } |
859 | 0 | if (norm16 < minYesNo) { |
860 | 0 | return decomp; |
861 | 0 | } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
862 | 0 | // Hangul syllable: decompose algorithmically |
863 | 0 | length=Hangul::decompose(c, buffer); |
864 | 0 | return buffer; |
865 | 0 | } |
866 | 0 | // c decomposes, get everything from the variable-length extra data |
867 | 0 | const uint16_t *mapping=getMapping(norm16); |
868 | 0 | length=*mapping&MAPPING_LENGTH_MASK; |
869 | 0 | return (const UChar *)mapping+1; |
870 | 0 | } |
871 | | |
872 | | // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 |
873 | | // so that a raw mapping fits that consists of one unit ("rm0") |
874 | | // plus all but the first two code units of the normal mapping. |
875 | | // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. |
876 | | const UChar * |
877 | 0 | Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { |
878 | 0 | uint16_t norm16; |
879 | 0 | if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
880 | 0 | // c does not decompose |
881 | 0 | return NULL; |
882 | 0 | } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
883 | 0 | // Hangul syllable: decompose algorithmically |
884 | 0 | Hangul::getRawDecomposition(c, buffer); |
885 | 0 | length=2; |
886 | 0 | return buffer; |
887 | 0 | } else if(isDecompNoAlgorithmic(norm16)) { |
888 | 0 | c=mapAlgorithmic(c, norm16); |
889 | 0 | length=0; |
890 | 0 | U16_APPEND_UNSAFE(buffer, length, c); |
891 | 0 | return buffer; |
892 | 0 | } |
893 | 0 | // c decomposes, get everything from the variable-length extra data |
894 | 0 | const uint16_t *mapping=getMapping(norm16); |
895 | 0 | uint16_t firstUnit=*mapping; |
896 | 0 | int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping |
897 | 0 | if(firstUnit&MAPPING_HAS_RAW_MAPPING) { |
898 | 0 | // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. |
899 | 0 | // Bit 7=MAPPING_HAS_CCC_LCCC_WORD |
900 | 0 | const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; |
901 | 0 | uint16_t rm0=*rawMapping; |
902 | 0 | if(rm0<=MAPPING_LENGTH_MASK) { |
903 | 0 | length=rm0; |
904 | 0 | return (const UChar *)rawMapping-rm0; |
905 | 0 | } else { |
906 | 0 | // Copy the normal mapping and replace its first two code units with rm0. |
907 | 0 | buffer[0]=(UChar)rm0; |
908 | 0 | u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); |
909 | 0 | length=mLength-1; |
910 | 0 | return buffer; |
911 | 0 | } |
912 | 0 | } else { |
913 | 0 | length=mLength; |
914 | 0 | return (const UChar *)mapping+1; |
915 | 0 | } |
916 | 0 | } |
917 | | |
918 | | void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
919 | | UBool doDecompose, |
920 | | UnicodeString &safeMiddle, |
921 | | ReorderingBuffer &buffer, |
922 | 0 | UErrorCode &errorCode) const { |
923 | 0 | buffer.copyReorderableSuffixTo(safeMiddle); |
924 | 0 | if(doDecompose) { |
925 | 0 | decompose(src, limit, &buffer, errorCode); |
926 | 0 | return; |
927 | 0 | } |
928 | 0 | // Just merge the strings at the boundary. |
929 | 0 | ForwardUTrie2StringIterator iter(normTrie, src, limit); |
930 | 0 | uint8_t firstCC, prevCC, cc; |
931 | 0 | firstCC=prevCC=cc=getCC(iter.next16()); |
932 | 0 | while(cc!=0) { |
933 | 0 | prevCC=cc; |
934 | 0 | cc=getCC(iter.next16()); |
935 | 0 | }; |
936 | 0 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
937 | 0 | limit=u_strchr(iter.codePointStart, 0); |
938 | 0 | } |
939 | 0 |
|
940 | 0 | if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) { |
941 | 0 | buffer.appendZeroCC(iter.codePointStart, limit, errorCode); |
942 | 0 | } |
943 | 0 | } |
944 | | |
945 | 0 | UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const { |
946 | 0 | return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) || |
947 | 0 | norm16HasDecompBoundaryBefore(getNorm16(c)); |
948 | 0 | } |
949 | | |
950 | 0 | UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const { |
951 | 0 | if (norm16 < minNoNoCompNoMaybeCC) { |
952 | 0 | return TRUE; |
953 | 0 | } |
954 | 0 | if (norm16 >= limitNoNo) { |
955 | 0 | return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT; |
956 | 0 | } |
957 | 0 | // c decomposes, get everything from the variable-length extra data |
958 | 0 | const uint16_t *mapping=getMapping(norm16); |
959 | 0 | uint16_t firstUnit=*mapping; |
960 | 0 | // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
961 | 0 | return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
962 | 0 | } |
963 | | |
964 | 0 | UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const { |
965 | 0 | if (c < minDecompNoCP) { |
966 | 0 | return TRUE; |
967 | 0 | } |
968 | 0 | if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) { |
969 | 0 | return TRUE; |
970 | 0 | } |
971 | 0 | return norm16HasDecompBoundaryAfter(getNorm16(c)); |
972 | 0 | } |
973 | | |
974 | 0 | UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const { |
975 | 0 | if(norm16 <= minYesNo || isHangulLVT(norm16)) { |
976 | 0 | return TRUE; |
977 | 0 | } |
978 | 0 | if (norm16 >= limitNoNo) { |
979 | 0 | if (isMaybeOrNonZeroCC(norm16)) { |
980 | 0 | return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT; |
981 | 0 | } |
982 | 0 | // Maps to an isCompYesAndZeroCC. |
983 | 0 | return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1; |
984 | 0 | } |
985 | 0 | // c decomposes, get everything from the variable-length extra data |
986 | 0 | const uint16_t *mapping=getMapping(norm16); |
987 | 0 | uint16_t firstUnit=*mapping; |
988 | 0 | // decomp after-boundary: same as hasFCDBoundaryAfter(), |
989 | 0 | // fcd16<=1 || trailCC==0 |
990 | 0 | if(firstUnit>0x1ff) { |
991 | 0 | return FALSE; // trailCC>1 |
992 | 0 | } |
993 | 0 | if(firstUnit<=0xff) { |
994 | 0 | return TRUE; // trailCC==0 |
995 | 0 | } |
996 | 0 | // if(trailCC==1) test leadCC==0, same as checking for before-boundary |
997 | 0 | // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
998 | 0 | return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
999 | 0 | } |
1000 | | |
1001 | | /* |
1002 | | * Finds the recomposition result for |
1003 | | * a forward-combining "lead" character, |
1004 | | * specified with a pointer to its compositions list, |
1005 | | * and a backward-combining "trail" character. |
1006 | | * |
1007 | | * If the lead and trail characters combine, then this function returns |
1008 | | * the following "compositeAndFwd" value: |
1009 | | * Bits 21..1 composite character |
1010 | | * Bit 0 set if the composite is a forward-combining starter |
1011 | | * otherwise it returns -1. |
1012 | | * |
1013 | | * The compositions list has (trail, compositeAndFwd) pair entries, |
1014 | | * encoded as either pairs or triples of 16-bit units. |
1015 | | * The last entry has the high bit of its first unit set. |
1016 | | * |
1017 | | * The list is sorted by ascending trail characters (there are no duplicates). |
1018 | | * A linear search is used. |
1019 | | * |
1020 | | * See normalizer2impl.h for a more detailed description |
1021 | | * of the compositions list format. |
1022 | | */ |
1023 | 18 | int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
1024 | 18 | uint16_t key1, firstUnit; |
1025 | 18 | if(trail<COMP_1_TRAIL_LIMIT) { |
1026 | 18 | // trail character is 0..33FF |
1027 | 18 | // result entry may have 2 or 3 units |
1028 | 18 | key1=(uint16_t)(trail<<1); |
1029 | 36 | while(key1>(firstUnit=*list)) { |
1030 | 18 | list+=2+(firstUnit&COMP_1_TRIPLE); |
1031 | 18 | } |
1032 | 18 | if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
1033 | 18 | if(firstUnit&COMP_1_TRIPLE) { |
1034 | 0 | return ((int32_t)list[1]<<16)|list[2]; |
1035 | 18 | } else { |
1036 | 18 | return list[1]; |
1037 | 18 | } |
1038 | 0 | } |
1039 | 0 | } else { |
1040 | 0 | // trail character is 3400..10FFFF |
1041 | 0 | // result entry has 3 units |
1042 | 0 | key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
1043 | 0 | (((trail>>COMP_1_TRAIL_SHIFT))& |
1044 | 0 | ~COMP_1_TRIPLE)); |
1045 | 0 | uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
1046 | 0 | uint16_t secondUnit; |
1047 | 0 | for(;;) { |
1048 | 0 | if(key1>(firstUnit=*list)) { |
1049 | 0 | list+=2+(firstUnit&COMP_1_TRIPLE); |
1050 | 0 | } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
1051 | 0 | if(key2>(secondUnit=list[1])) { |
1052 | 0 | if(firstUnit&COMP_1_LAST_TUPLE) { |
1053 | 0 | break; |
1054 | 0 | } else { |
1055 | 0 | list+=3; |
1056 | 0 | } |
1057 | 0 | } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
1058 | 0 | return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
1059 | 0 | } else { |
1060 | 0 | break; |
1061 | 0 | } |
1062 | 0 | } else { |
1063 | 0 | break; |
1064 | 0 | } |
1065 | 0 | } |
1066 | 0 | } |
1067 | 18 | return -1; |
1068 | 18 | } |
1069 | | |
1070 | | /** |
1071 | | * @param list some character's compositions list |
1072 | | * @param set recursively receives the composites from these compositions |
1073 | | */ |
1074 | 0 | void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { |
1075 | 0 | uint16_t firstUnit; |
1076 | 0 | int32_t compositeAndFwd; |
1077 | 0 | do { |
1078 | 0 | firstUnit=*list; |
1079 | 0 | if((firstUnit&COMP_1_TRIPLE)==0) { |
1080 | 0 | compositeAndFwd=list[1]; |
1081 | 0 | list+=2; |
1082 | 0 | } else { |
1083 | 0 | compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
1084 | 0 | list+=3; |
1085 | 0 | } |
1086 | 0 | UChar32 composite=compositeAndFwd>>1; |
1087 | 0 | if((compositeAndFwd&1)!=0) { |
1088 | 0 | addComposites(getCompositionsListForComposite(getNorm16(composite)), set); |
1089 | 0 | } |
1090 | 0 | set.add(composite); |
1091 | 0 | } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
1092 | 0 | } |
1093 | | |
1094 | | /* |
1095 | | * Recomposes the buffer text starting at recomposeStartIndex |
1096 | | * (which is in NFD - decomposed and canonically ordered), |
1097 | | * and truncates the buffer contents. |
1098 | | * |
1099 | | * Note that recomposition never lengthens the text: |
1100 | | * Any character consists of either one or two code units; |
1101 | | * a composition may contain at most one more code unit than the original starter, |
1102 | | * while the combining mark that is removed has at least one code unit. |
1103 | | */ |
1104 | | void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, |
1105 | 6.78k | UBool onlyContiguous) const { |
1106 | 6.78k | UChar *p=buffer.getStart()+recomposeStartIndex; |
1107 | 6.78k | UChar *limit=buffer.getLimit(); |
1108 | 6.78k | if(p==limit) { |
1109 | 0 | return; |
1110 | 0 | } |
1111 | 6.78k | |
1112 | 6.78k | UChar *starter, *pRemove, *q, *r; |
1113 | 6.78k | const uint16_t *compositionsList; |
1114 | 6.78k | UChar32 c, compositeAndFwd; |
1115 | 6.78k | uint16_t norm16; |
1116 | 6.78k | uint8_t cc, prevCC; |
1117 | 6.78k | UBool starterIsSupplementary; |
1118 | 6.78k | |
1119 | 6.78k | // Some of the following variables are not used until we have a forward-combining starter |
1120 | 6.78k | // and are only initialized now to avoid compiler warnings. |
1121 | 6.78k | compositionsList=NULL; // used as indicator for whether we have a forward-combining starter |
1122 | 6.78k | starter=NULL; |
1123 | 6.78k | starterIsSupplementary=FALSE; |
1124 | 6.78k | prevCC=0; |
1125 | 6.78k | |
1126 | 6.80k | for(;;) { |
1127 | 6.80k | UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); |
1128 | 6.80k | cc=getCCFromYesOrMaybe(norm16); |
1129 | 6.80k | if( // this character combines backward and |
1130 | 6.80k | isMaybe(norm16) && |
1131 | 6.80k | // we have seen a starter that combines forward and |
1132 | 6.80k | compositionsList!=NULL && |
1133 | 6.80k | // the backward-combining character is not blocked |
1134 | 6.80k | (prevCC<cc || prevCC==0) |
1135 | 18 | ) { |
1136 | 18 | if(isJamoVT(norm16)) { |
1137 | 0 | // c is a Jamo V/T, see if we can compose it with the previous character. |
1138 | 0 | if(c<Hangul::JAMO_T_BASE) { |
1139 | 0 | // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
1140 | 0 | UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
1141 | 0 | if(prev<Hangul::JAMO_L_COUNT) { |
1142 | 0 | pRemove=p-1; |
1143 | 0 | UChar syllable=(UChar) |
1144 | 0 | (Hangul::HANGUL_BASE+ |
1145 | 0 | (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
1146 | 0 | Hangul::JAMO_T_COUNT); |
1147 | 0 | UChar t; |
1148 | 0 | if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
1149 | 0 | ++p; |
1150 | 0 | syllable+=t; // The next character was a Jamo T. |
1151 | 0 | } |
1152 | 0 | *starter=syllable; |
1153 | 0 | // remove the Jamo V/T |
1154 | 0 | q=pRemove; |
1155 | 0 | r=p; |
1156 | 0 | while(r<limit) { |
1157 | 0 | *q++=*r++; |
1158 | 0 | } |
1159 | 0 | limit=q; |
1160 | 0 | p=pRemove; |
1161 | 0 | } |
1162 | 0 | } |
1163 | 0 | /* |
1164 | 0 | * No "else" for Jamo T: |
1165 | 0 | * Since the input is in NFD, there are no Hangul LV syllables that |
1166 | 0 | * a Jamo T could combine with. |
1167 | 0 | * All Jamo Ts are combined above when handling Jamo Vs. |
1168 | 0 | */ |
1169 | 0 | if(p==limit) { |
1170 | 0 | break; |
1171 | 0 | } |
1172 | 0 | compositionsList=NULL; |
1173 | 0 | continue; |
1174 | 18 | } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
1175 | 18 | // The starter and the combining mark (c) do combine. |
1176 | 18 | UChar32 composite=compositeAndFwd>>1; |
1177 | 18 | |
1178 | 18 | // Replace the starter with the composite, remove the combining mark. |
1179 | 18 | pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark |
1180 | 18 | if(starterIsSupplementary) { |
1181 | 0 | if(U_IS_SUPPLEMENTARY(composite)) { |
1182 | 0 | // both are supplementary |
1183 | 0 | starter[0]=U16_LEAD(composite); |
1184 | 0 | starter[1]=U16_TRAIL(composite); |
1185 | 0 | } else { |
1186 | 0 | *starter=(UChar)composite; |
1187 | 0 | // The composite is shorter than the starter, |
1188 | 0 | // move the intermediate characters forward one. |
1189 | 0 | starterIsSupplementary=FALSE; |
1190 | 0 | q=starter+1; |
1191 | 0 | r=q+1; |
1192 | 0 | while(r<pRemove) { |
1193 | 0 | *q++=*r++; |
1194 | 0 | } |
1195 | 0 | --pRemove; |
1196 | 0 | } |
1197 | 18 | } else if(U_IS_SUPPLEMENTARY(composite)) { |
1198 | 0 | // The composite is longer than the starter, |
1199 | 0 | // move the intermediate characters back one. |
1200 | 0 | starterIsSupplementary=TRUE; |
1201 | 0 | ++starter; // temporarily increment for the loop boundary |
1202 | 0 | q=pRemove; |
1203 | 0 | r=++pRemove; |
1204 | 0 | while(starter<q) { |
1205 | 0 | *--r=*--q; |
1206 | 0 | } |
1207 | 0 | *starter=U16_TRAIL(composite); |
1208 | 0 | *--starter=U16_LEAD(composite); // undo the temporary increment |
1209 | 18 | } else { |
1210 | 18 | // both are on the BMP |
1211 | 18 | *starter=(UChar)composite; |
1212 | 18 | } |
1213 | 18 | |
1214 | 18 | /* remove the combining mark by moving the following text over it */ |
1215 | 18 | if(pRemove<p) { |
1216 | 18 | q=pRemove; |
1217 | 18 | r=p; |
1218 | 18 | while(r<limit) { |
1219 | 0 | *q++=*r++; |
1220 | 0 | } |
1221 | 18 | limit=q; |
1222 | 18 | p=pRemove; |
1223 | 18 | } |
1224 | 18 | // Keep prevCC because we removed the combining mark. |
1225 | 18 | |
1226 | 18 | if(p==limit) { |
1227 | 18 | break; |
1228 | 18 | } |
1229 | 0 | // Is the composite a starter that combines forward? |
1230 | 0 | if(compositeAndFwd&1) { |
1231 | 0 | compositionsList= |
1232 | 0 | getCompositionsListForComposite(getNorm16(composite)); |
1233 | 0 | } else { |
1234 | 0 | compositionsList=NULL; |
1235 | 0 | } |
1236 | 0 |
|
1237 | 0 | // We combined; continue with looking for compositions. |
1238 | 0 | continue; |
1239 | 0 | } |
1240 | 18 | } |
1241 | 6.78k | |
1242 | 6.78k | // no combination this time |
1243 | 6.78k | prevCC=cc; |
1244 | 6.78k | if(p==limit) { |
1245 | 6.76k | break; |
1246 | 6.76k | } |
1247 | 19 | |
1248 | 19 | // If c did not combine, then check if it is a starter. |
1249 | 19 | if(cc==0) { |
1250 | 19 | // Found a new starter. |
1251 | 19 | if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { |
1252 | 18 | // It may combine with something, prepare for it. |
1253 | 18 | if(U_IS_BMP(c)) { |
1254 | 18 | starterIsSupplementary=FALSE; |
1255 | 18 | starter=p-1; |
1256 | 18 | } else { |
1257 | 0 | starterIsSupplementary=TRUE; |
1258 | 0 | starter=p-2; |
1259 | 0 | } |
1260 | 18 | } |
1261 | 19 | } else if(onlyContiguous) { |
1262 | 0 | // FCC: no discontiguous compositions; any intervening character blocks. |
1263 | 0 | compositionsList=NULL; |
1264 | 0 | } |
1265 | 19 | } |
1266 | 6.78k | buffer.setReorderingLimit(limit); |
1267 | 6.78k | } |
1268 | | |
1269 | | UChar32 |
1270 | 0 | Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { |
1271 | 0 | uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0 |
1272 | 0 | const uint16_t *list; |
1273 | 0 | if(isInert(norm16)) { |
1274 | 0 | return U_SENTINEL; |
1275 | 0 | } else if(norm16<minYesNoMappingsOnly) { |
1276 | 0 | // a combines forward. |
1277 | 0 | if(isJamoL(norm16)) { |
1278 | 0 | b-=Hangul::JAMO_V_BASE; |
1279 | 0 | if(0<=b && b<Hangul::JAMO_V_COUNT) { |
1280 | 0 | return |
1281 | 0 | (Hangul::HANGUL_BASE+ |
1282 | 0 | ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* |
1283 | 0 | Hangul::JAMO_T_COUNT); |
1284 | 0 | } else { |
1285 | 0 | return U_SENTINEL; |
1286 | 0 | } |
1287 | 0 | } else if(isHangulLV(norm16)) { |
1288 | 0 | b-=Hangul::JAMO_T_BASE; |
1289 | 0 | if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! |
1290 | 0 | return a+b; |
1291 | 0 | } else { |
1292 | 0 | return U_SENTINEL; |
1293 | 0 | } |
1294 | 0 | } else { |
1295 | 0 | // 'a' has a compositions list in extraData |
1296 | 0 | list=getMapping(norm16); |
1297 | 0 | if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list |
1298 | 0 | list+= // mapping pointer |
1299 | 0 | 1+ // +1 to skip the first unit with the mapping length |
1300 | 0 | (*list&MAPPING_LENGTH_MASK); // + mapping length |
1301 | 0 | } |
1302 | 0 | } |
1303 | 0 | } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { |
1304 | 0 | return U_SENTINEL; |
1305 | 0 | } else { |
1306 | 0 | list=getCompositionsListForMaybe(norm16); |
1307 | 0 | } |
1308 | 0 | if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b |
1309 | 0 | return U_SENTINEL; |
1310 | 0 | } |
1311 | 0 | #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC |
1312 | 0 | return combine(list, b)>>1; |
1313 | | #else |
1314 | | int32_t compositeAndFwd=combine(list, b); |
1315 | | return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; |
1316 | | #endif |
1317 | | } |
1318 | | |
1319 | | // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
1320 | | // doCompose: normalize |
1321 | | // !doCompose: isNormalized (buffer must be empty and initialized) |
1322 | | UBool |
1323 | | Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
1324 | | UBool onlyContiguous, |
1325 | | UBool doCompose, |
1326 | | ReorderingBuffer &buffer, |
1327 | 92.4k | UErrorCode &errorCode) const { |
1328 | 92.4k | const UChar *prevBoundary=src; |
1329 | 92.4k | UChar32 minNoMaybeCP=minCompNoMaybeCP; |
1330 | 92.4k | if(limit==NULL) { |
1331 | 0 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
1332 | 0 | doCompose ? &buffer : NULL, |
1333 | 0 | errorCode); |
1334 | 0 | if(U_FAILURE(errorCode)) { |
1335 | 0 | return FALSE; |
1336 | 0 | } |
1337 | 0 | limit=u_strchr(src, 0); |
1338 | 0 | if (prevBoundary != src) { |
1339 | 0 | if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) { |
1340 | 0 | prevBoundary = src; |
1341 | 0 | } else { |
1342 | 0 | buffer.removeSuffix(1); |
1343 | 0 | prevBoundary = --src; |
1344 | 0 | } |
1345 | 0 | } |
1346 | 0 | } |
1347 | 92.4k | |
1348 | 233k | for (;;) { |
1349 | 233k | // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
1350 | 233k | // or with (compYes && ccc==0) properties. |
1351 | 233k | const UChar *prevSrc; |
1352 | 233k | UChar32 c = 0; |
1353 | 233k | uint16_t norm16 = 0; |
1354 | 1.12M | for (;;) { |
1355 | 1.12M | if (src == limit) { |
1356 | 92.4k | if (prevBoundary != limit && doCompose) { |
1357 | 76.0k | buffer.appendZeroCC(prevBoundary, limit, errorCode); |
1358 | 76.0k | } |
1359 | 92.4k | return TRUE; |
1360 | 92.4k | } |
1361 | 1.03M | if( (c=*src)<minNoMaybeCP || |
1362 | 1.03M | isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
1363 | 889k | ) { |
1364 | 889k | ++src; |
1365 | 889k | } else { |
1366 | 141k | prevSrc = src++; |
1367 | 141k | if(!U16_IS_SURROGATE(c)) { |
1368 | 141k | break; |
1369 | 141k | } else { |
1370 | 34 | UChar c2; |
1371 | 34 | if(U16_IS_SURROGATE_LEAD(c)) { |
1372 | 34 | if(src!=limit && U16_IS_TRAIL(c2=*src)) { |
1373 | 34 | ++src; |
1374 | 34 | c=U16_GET_SUPPLEMENTARY(c, c2); |
1375 | 34 | } |
1376 | 34 | } else /* trail surrogate */ { |
1377 | 0 | if(prevBoundary<prevSrc && U16_IS_LEAD(c2=*(prevSrc-1))) { |
1378 | 0 | --prevSrc; |
1379 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
1380 | 0 | } |
1381 | 0 | } |
1382 | 34 | if(!isCompYesAndZeroCC(norm16=getNorm16(c))) { |
1383 | 0 | break; |
1384 | 0 | } |
1385 | 34 | } |
1386 | 141k | } |
1387 | 1.03M | } |
1388 | 233k | // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1389 | 233k | // The current character is either a "noNo" (has a mapping) |
1390 | 233k | // or a "maybeYes" (combines backward) |
1391 | 233k | // or a "yesYes" with ccc!=0. |
1392 | 233k | // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
1393 | 233k | |
1394 | 233k | // Medium-fast path: Handle cases that do not require full decomposition and recomposition. |
1395 | 233k | if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes |
1396 | 134k | if (!doCompose) { |
1397 | 0 | return FALSE; |
1398 | 0 | } |
1399 | 134k | // Fast path for mapping a character that is immediately surrounded by boundaries. |
1400 | 134k | // In this case, we need not decompose around the current character. |
1401 | 134k | if (isDecompNoAlgorithmic(norm16)) { |
1402 | 36.2k | // Maps to a single isCompYesAndZeroCC character |
1403 | 36.2k | // which also implies hasCompBoundaryBefore. |
1404 | 36.2k | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1405 | 36.2k | hasCompBoundaryBefore(src, limit)) { |
1406 | 36.2k | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1407 | 0 | break; |
1408 | 0 | } |
1409 | 36.2k | if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) { |
1410 | 0 | break; |
1411 | 0 | } |
1412 | 36.2k | prevBoundary = src; |
1413 | 36.2k | continue; |
1414 | 36.2k | } |
1415 | 98.2k | } else if (norm16 < minNoNoCompBoundaryBefore) { |
1416 | 96.9k | // The mapping is comp-normalized which also implies hasCompBoundaryBefore. |
1417 | 96.9k | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1418 | 96.9k | hasCompBoundaryBefore(src, limit)) { |
1419 | 96.9k | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1420 | 0 | break; |
1421 | 0 | } |
1422 | 96.9k | const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16)); |
1423 | 96.9k | int32_t length = *mapping++ & MAPPING_LENGTH_MASK; |
1424 | 96.9k | if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) { |
1425 | 0 | break; |
1426 | 0 | } |
1427 | 96.9k | prevBoundary = src; |
1428 | 96.9k | continue; |
1429 | 96.9k | } |
1430 | 1.34k | } else if (norm16 >= minNoNoEmpty) { |
1431 | 1.34k | // The current character maps to nothing. |
1432 | 1.34k | // Simply omit it from the output if there is a boundary before _or_ after it. |
1433 | 1.34k | // The character itself implies no boundaries. |
1434 | 1.34k | if (hasCompBoundaryBefore(src, limit) || |
1435 | 1.34k | hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) { |
1436 | 1.34k | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1437 | 0 | break; |
1438 | 0 | } |
1439 | 1.34k | prevBoundary = src; |
1440 | 1.34k | continue; |
1441 | 1.34k | } |
1442 | 1.34k | } |
1443 | 6.76k | // Other "noNo" type, or need to examine more text around this character: |
1444 | 6.76k | // Fall through to the slow path. |
1445 | 6.76k | } else if (isJamoVT(norm16) && prevBoundary != prevSrc) { |
1446 | 0 | UChar prev=*(prevSrc-1); |
1447 | 0 | if(c<Hangul::JAMO_T_BASE) { |
1448 | 0 | // The current character is a Jamo Vowel, |
1449 | 0 | // compose with previous Jamo L and following Jamo T. |
1450 | 0 | UChar l = (UChar)(prev-Hangul::JAMO_L_BASE); |
1451 | 0 | if(l<Hangul::JAMO_L_COUNT) { |
1452 | 0 | if (!doCompose) { |
1453 | 0 | return FALSE; |
1454 | 0 | } |
1455 | 0 | int32_t t; |
1456 | 0 | if (src != limit && |
1457 | 0 | 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) && |
1458 | 0 | t < Hangul::JAMO_T_COUNT) { |
1459 | 0 | // The next character is a Jamo T. |
1460 | 0 | ++src; |
1461 | 0 | } else if (hasCompBoundaryBefore(src, limit)) { |
1462 | 0 | // No Jamo T follows, not even via decomposition. |
1463 | 0 | t = 0; |
1464 | 0 | } else { |
1465 | 0 | t = -1; |
1466 | 0 | } |
1467 | 0 | if (t >= 0) { |
1468 | 0 | UChar32 syllable = Hangul::HANGUL_BASE + |
1469 | 0 | (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) * |
1470 | 0 | Hangul::JAMO_T_COUNT + t; |
1471 | 0 | --prevSrc; // Replace the Jamo L as well. |
1472 | 0 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1473 | 0 | break; |
1474 | 0 | } |
1475 | 0 | if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) { |
1476 | 0 | break; |
1477 | 0 | } |
1478 | 0 | prevBoundary = src; |
1479 | 0 | continue; |
1480 | 0 | } |
1481 | 0 | // If we see L+V+x where x!=T then we drop to the slow path, |
1482 | 0 | // decompose and recompose. |
1483 | 0 | // This is to deal with NFKC finding normal L and V but a |
1484 | 0 | // compatibility variant of a T. |
1485 | 0 | // We need to either fully compose that combination here |
1486 | 0 | // (which would complicate the code and may not work with strange custom data) |
1487 | 0 | // or use the slow path. |
1488 | 0 | } |
1489 | 0 | } else if (Hangul::isHangulLV(prev)) { |
1490 | 0 | // The current character is a Jamo Trailing consonant, |
1491 | 0 | // compose with previous Hangul LV that does not contain a Jamo T. |
1492 | 0 | if (!doCompose) { |
1493 | 0 | return FALSE; |
1494 | 0 | } |
1495 | 0 | UChar32 syllable = prev + c - Hangul::JAMO_T_BASE; |
1496 | 0 | --prevSrc; // Replace the Hangul LV as well. |
1497 | 0 | if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1498 | 0 | break; |
1499 | 0 | } |
1500 | 0 | if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) { |
1501 | 0 | break; |
1502 | 0 | } |
1503 | 0 | prevBoundary = src; |
1504 | 0 | continue; |
1505 | 0 | } |
1506 | 6.76k | // No matching context, or may need to decompose surrounding text first: |
1507 | 6.76k | // Fall through to the slow path. |
1508 | 6.76k | } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC |
1509 | 1 | // One or more combining marks that do not combine-back: |
1510 | 1 | // Check for canonical order, copy unchanged if ok and |
1511 | 1 | // if followed by a character with a boundary-before. |
1512 | 1 | uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0 |
1513 | 1 | if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) { |
1514 | 0 | // Fails FCD test, need to decompose and contiguously recompose. |
1515 | 0 | if (!doCompose) { |
1516 | 0 | return FALSE; |
1517 | 0 | } |
1518 | 1 | } else { |
1519 | 1 | // If !onlyContiguous (not FCC), then we ignore the tccc of |
1520 | 1 | // the previous character which passed the quick check "yes && ccc==0" test. |
1521 | 1 | const UChar *nextSrc; |
1522 | 1 | uint16_t n16; |
1523 | 1 | for (;;) { |
1524 | 1 | if (src == limit) { |
1525 | 1 | if (doCompose) { |
1526 | 1 | buffer.appendZeroCC(prevBoundary, limit, errorCode); |
1527 | 1 | } |
1528 | 1 | return TRUE; |
1529 | 1 | } |
1530 | 0 | uint8_t prevCC = cc; |
1531 | 0 | nextSrc = src; |
1532 | 0 | UTRIE2_U16_NEXT16(normTrie, nextSrc, limit, c, n16); |
1533 | 0 | if (n16 >= MIN_YES_YES_WITH_CC) { |
1534 | 0 | cc = getCCFromNormalYesOrMaybe(n16); |
1535 | 0 | if (prevCC > cc) { |
1536 | 0 | if (!doCompose) { |
1537 | 0 | return FALSE; |
1538 | 0 | } |
1539 | 0 | break; |
1540 | 0 | } |
1541 | 0 | } else { |
1542 | 0 | break; |
1543 | 0 | } |
1544 | 0 | src = nextSrc; |
1545 | 0 | } |
1546 | 1 | // src is after the last in-order combining mark. |
1547 | 1 | // If there is a boundary here, then we continue with no change. |
1548 | 1 | if (norm16HasCompBoundaryBefore(n16)) { |
1549 | 0 | if (isCompYesAndZeroCC(n16)) { |
1550 | 0 | src = nextSrc; |
1551 | 0 | } |
1552 | 0 | continue; |
1553 | 0 | } |
1554 | 6.78k | // Use the slow path. There is no boundary in [prevSrc, src[. |
1555 | 6.78k | } |
1556 | 1 | } |
1557 | 6.78k | |
1558 | 6.78k | // Slow path: Find the nearest boundaries around the current character, |
1559 | 6.78k | // decompose and recompose. |
1560 | 6.78k | if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) { |
1561 | 6.12k | const UChar *p = prevSrc; |
1562 | 6.12k | UTRIE2_U16_PREV16(normTrie, prevBoundary, p, c, norm16); |
1563 | 6.12k | if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
1564 | 1 | prevSrc = p; |
1565 | 1 | } |
1566 | 6.12k | } |
1567 | 6.78k | if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
1568 | 0 | break; |
1569 | 0 | } |
1570 | 6.78k | int32_t recomposeStartIndex=buffer.length(); |
1571 | 6.78k | // We know there is not a boundary here. |
1572 | 6.78k | decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous, |
1573 | 6.78k | buffer, errorCode); |
1574 | 6.78k | // Decompose until the next boundary. |
1575 | 6.78k | src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous, |
1576 | 6.78k | buffer, errorCode); |
1577 | 6.78k | if (U_FAILURE(errorCode)) { |
1578 | 0 | break; |
1579 | 0 | } |
1580 | 6.78k | if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
1581 | 0 | errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
1582 | 0 | return TRUE; |
1583 | 0 | } |
1584 | 6.78k | recompose(buffer, recomposeStartIndex, onlyContiguous); |
1585 | 6.78k | if(!doCompose) { |
1586 | 0 | if(!buffer.equals(prevSrc, src)) { |
1587 | 0 | return FALSE; |
1588 | 0 | } |
1589 | 0 | buffer.remove(); |
1590 | 0 | } |
1591 | 6.78k | prevBoundary=src; |
1592 | 6.78k | } |
1593 | 92.4k | return TRUE; |
1594 | 92.4k | } |
1595 | | |
1596 | | // Very similar to compose(): Make the same changes in both places if relevant. |
1597 | | // pQCResult==NULL: spanQuickCheckYes |
1598 | | // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
1599 | | const UChar * |
1600 | | Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
1601 | | UBool onlyContiguous, |
1602 | 0 | UNormalizationCheckResult *pQCResult) const { |
1603 | 0 | const UChar *prevBoundary=src; |
1604 | 0 | UChar32 minNoMaybeCP=minCompNoMaybeCP; |
1605 | 0 | if(limit==NULL) { |
1606 | 0 | UErrorCode errorCode=U_ZERO_ERROR; |
1607 | 0 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
1608 | 0 | limit=u_strchr(src, 0); |
1609 | 0 | if (prevBoundary != src) { |
1610 | 0 | if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) { |
1611 | 0 | prevBoundary = src; |
1612 | 0 | } else { |
1613 | 0 | prevBoundary = --src; |
1614 | 0 | } |
1615 | 0 | } |
1616 | 0 | } |
1617 | 0 |
|
1618 | 0 | for(;;) { |
1619 | 0 | // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
1620 | 0 | // or with (compYes && ccc==0) properties. |
1621 | 0 | const UChar *prevSrc; |
1622 | 0 | UChar32 c = 0; |
1623 | 0 | uint16_t norm16 = 0; |
1624 | 0 | for (;;) { |
1625 | 0 | if(src==limit) { |
1626 | 0 | return src; |
1627 | 0 | } |
1628 | 0 | if( (c=*src)<minNoMaybeCP || |
1629 | 0 | isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
1630 | 0 | ) { |
1631 | 0 | ++src; |
1632 | 0 | } else { |
1633 | 0 | prevSrc = src++; |
1634 | 0 | if(!U16_IS_SURROGATE(c)) { |
1635 | 0 | break; |
1636 | 0 | } else { |
1637 | 0 | UChar c2; |
1638 | 0 | if(U16_IS_SURROGATE_LEAD(c)) { |
1639 | 0 | if(src!=limit && U16_IS_TRAIL(c2=*src)) { |
1640 | 0 | ++src; |
1641 | 0 | c=U16_GET_SUPPLEMENTARY(c, c2); |
1642 | 0 | } |
1643 | 0 | } else /* trail surrogate */ { |
1644 | 0 | if(prevBoundary<prevSrc && U16_IS_LEAD(c2=*(prevSrc-1))) { |
1645 | 0 | --prevSrc; |
1646 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
1647 | 0 | } |
1648 | 0 | } |
1649 | 0 | if(!isCompYesAndZeroCC(norm16=getNorm16(c))) { |
1650 | 0 | break; |
1651 | 0 | } |
1652 | 0 | } |
1653 | 0 | } |
1654 | 0 | } |
1655 | 0 | // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1656 | 0 | // The current character is either a "noNo" (has a mapping) |
1657 | 0 | // or a "maybeYes" (combines backward) |
1658 | 0 | // or a "yesYes" with ccc!=0. |
1659 | 0 | // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
1660 | 0 |
|
1661 | 0 | uint16_t prevNorm16 = INERT; |
1662 | 0 | if (prevBoundary != prevSrc) { |
1663 | 0 | if (norm16HasCompBoundaryBefore(norm16)) { |
1664 | 0 | prevBoundary = prevSrc; |
1665 | 0 | } else { |
1666 | 0 | const UChar *p = prevSrc; |
1667 | 0 | uint16_t n16; |
1668 | 0 | UTRIE2_U16_PREV16(normTrie, prevBoundary, p, c, n16); |
1669 | 0 | if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) { |
1670 | 0 | prevBoundary = prevSrc; |
1671 | 0 | } else { |
1672 | 0 | prevBoundary = p; |
1673 | 0 | prevNorm16 = n16; |
1674 | 0 | } |
1675 | 0 | } |
1676 | 0 | } |
1677 | 0 |
|
1678 | 0 | if(isMaybeOrNonZeroCC(norm16)) { |
1679 | 0 | uint8_t cc=getCCFromYesOrMaybe(norm16); |
1680 | 0 | if (onlyContiguous /* FCC */ && cc != 0 && |
1681 | 0 | getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) { |
1682 | 0 | // The [prevBoundary..prevSrc[ character |
1683 | 0 | // passed the quick check "yes && ccc==0" test |
1684 | 0 | // but is out of canonical order with the current combining mark. |
1685 | 0 | } else { |
1686 | 0 | // If !onlyContiguous (not FCC), then we ignore the tccc of |
1687 | 0 | // the previous character which passed the quick check "yes && ccc==0" test. |
1688 | 0 | const UChar *nextSrc; |
1689 | 0 | for (;;) { |
1690 | 0 | if (norm16 < MIN_YES_YES_WITH_CC) { |
1691 | 0 | if (pQCResult != nullptr) { |
1692 | 0 | *pQCResult = UNORM_MAYBE; |
1693 | 0 | } else { |
1694 | 0 | return prevBoundary; |
1695 | 0 | } |
1696 | 0 | } |
1697 | 0 | if (src == limit) { |
1698 | 0 | return src; |
1699 | 0 | } |
1700 | 0 | uint8_t prevCC = cc; |
1701 | 0 | nextSrc = src; |
1702 | 0 | UTRIE2_U16_NEXT16(normTrie, nextSrc, limit, c, norm16); |
1703 | 0 | if (isMaybeOrNonZeroCC(norm16)) { |
1704 | 0 | cc = getCCFromYesOrMaybe(norm16); |
1705 | 0 | if (!(prevCC <= cc || cc == 0)) { |
1706 | 0 | break; |
1707 | 0 | } |
1708 | 0 | } else { |
1709 | 0 | break; |
1710 | 0 | } |
1711 | 0 | src = nextSrc; |
1712 | 0 | } |
1713 | 0 | // src is after the last in-order combining mark. |
1714 | 0 | if (isCompYesAndZeroCC(norm16)) { |
1715 | 0 | prevBoundary = src; |
1716 | 0 | src = nextSrc; |
1717 | 0 | continue; |
1718 | 0 | } |
1719 | 0 | } |
1720 | 0 | } |
1721 | 0 | if(pQCResult!=NULL) { |
1722 | 0 | *pQCResult=UNORM_NO; |
1723 | 0 | } |
1724 | 0 | return prevBoundary; |
1725 | 0 | } |
1726 | 0 | } |
1727 | | |
1728 | | void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
1729 | | UBool doCompose, |
1730 | | UBool onlyContiguous, |
1731 | | UnicodeString &safeMiddle, |
1732 | | ReorderingBuffer &buffer, |
1733 | 53.8k | UErrorCode &errorCode) const { |
1734 | 53.8k | if(!buffer.isEmpty()) { |
1735 | 53.8k | const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous); |
1736 | 53.8k | if(src!=firstStarterInSrc) { |
1737 | 1.10k | const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), |
1738 | 1.10k | buffer.getLimit(), onlyContiguous); |
1739 | 1.10k | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); |
1740 | 1.10k | UnicodeString middle(lastStarterInDest, destSuffixLength); |
1741 | 1.10k | buffer.removeSuffix(destSuffixLength); |
1742 | 1.10k | safeMiddle=middle; |
1743 | 1.10k | middle.append(src, (int32_t)(firstStarterInSrc-src)); |
1744 | 1.10k | const UChar *middleStart=middle.getBuffer(); |
1745 | 1.10k | compose(middleStart, middleStart+middle.length(), onlyContiguous, |
1746 | 1.10k | TRUE, buffer, errorCode); |
1747 | 1.10k | if(U_FAILURE(errorCode)) { |
1748 | 0 | return; |
1749 | 0 | } |
1750 | 1.10k | src=firstStarterInSrc; |
1751 | 1.10k | } |
1752 | 53.8k | } |
1753 | 53.8k | if(doCompose) { |
1754 | 53.8k | compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
1755 | 53.8k | } else { |
1756 | 0 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
1757 | 0 | limit=u_strchr(src, 0); |
1758 | 0 | } |
1759 | 0 | buffer.appendZeroCC(src, limit, errorCode); |
1760 | 0 | } |
1761 | 53.8k | } |
1762 | | |
1763 | | UBool |
1764 | | Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous, |
1765 | | const uint8_t *src, const uint8_t *limit, |
1766 | 0 | ByteSink *sink, Edits *edits, UErrorCode &errorCode) const { |
1767 | 0 | U_ASSERT(limit != nullptr); |
1768 | 0 | UnicodeString s16; |
1769 | 0 | uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP); |
1770 | 0 | const uint8_t *prevBoundary = src; |
1771 | 0 |
|
1772 | 0 | for (;;) { |
1773 | 0 | // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
1774 | 0 | // or with (compYes && ccc==0) properties. |
1775 | 0 | const uint8_t *prevSrc; |
1776 | 0 | uint16_t norm16 = 0; |
1777 | 0 | for (;;) { |
1778 | 0 | if (src == limit) { |
1779 | 0 | if (prevBoundary != limit && sink != nullptr) { |
1780 | 0 | ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
1781 | 0 | *sink, options, edits, errorCode); |
1782 | 0 | } |
1783 | 0 | return TRUE; |
1784 | 0 | } |
1785 | 0 | if (*src < minNoMaybeLead) { |
1786 | 0 | ++src; |
1787 | 0 | } else { |
1788 | 0 | prevSrc = src; |
1789 | 0 | UTRIE2_U8_NEXT16(normTrie, src, limit, norm16); |
1790 | 0 | if (!isCompYesAndZeroCC(norm16)) { |
1791 | 0 | break; |
1792 | 0 | } |
1793 | 0 | } |
1794 | 0 | } |
1795 | 0 | // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
1796 | 0 | // The current character is either a "noNo" (has a mapping) |
1797 | 0 | // or a "maybeYes" (combines backward) |
1798 | 0 | // or a "yesYes" with ccc!=0. |
1799 | 0 | // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
1800 | 0 |
|
1801 | 0 | // Medium-fast path: Handle cases that do not require full decomposition and recomposition. |
1802 | 0 | if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes |
1803 | 0 | if (sink == nullptr) { |
1804 | 0 | return FALSE; |
1805 | 0 | } |
1806 | 0 | // Fast path for mapping a character that is immediately surrounded by boundaries. |
1807 | 0 | // In this case, we need not decompose around the current character. |
1808 | 0 | if (isDecompNoAlgorithmic(norm16)) { |
1809 | 0 | // Maps to a single isCompYesAndZeroCC character |
1810 | 0 | // which also implies hasCompBoundaryBefore. |
1811 | 0 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1812 | 0 | hasCompBoundaryBefore(src, limit)) { |
1813 | 0 | if (prevBoundary != prevSrc && |
1814 | 0 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1815 | 0 | *sink, options, edits, errorCode)) { |
1816 | 0 | break; |
1817 | 0 | } |
1818 | 0 | appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits); |
1819 | 0 | prevBoundary = src; |
1820 | 0 | continue; |
1821 | 0 | } |
1822 | 0 | } else if (norm16 < minNoNoCompBoundaryBefore) { |
1823 | 0 | // The mapping is comp-normalized which also implies hasCompBoundaryBefore. |
1824 | 0 | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
1825 | 0 | hasCompBoundaryBefore(src, limit)) { |
1826 | 0 | if (prevBoundary != prevSrc && |
1827 | 0 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1828 | 0 | *sink, options, edits, errorCode)) { |
1829 | 0 | break; |
1830 | 0 | } |
1831 | 0 | const uint16_t *mapping = getMapping(norm16); |
1832 | 0 | int32_t length = *mapping++ & MAPPING_LENGTH_MASK; |
1833 | 0 | if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length, |
1834 | 0 | *sink, edits, errorCode)) { |
1835 | 0 | break; |
1836 | 0 | } |
1837 | 0 | prevBoundary = src; |
1838 | 0 | continue; |
1839 | 0 | } |
1840 | 0 | } else if (norm16 >= minNoNoEmpty) { |
1841 | 0 | // The current character maps to nothing. |
1842 | 0 | // Simply omit it from the output if there is a boundary before _or_ after it. |
1843 | 0 | // The character itself implies no boundaries. |
1844 | 0 | if (hasCompBoundaryBefore(src, limit) || |
1845 | 0 | hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) { |
1846 | 0 | if (prevBoundary != prevSrc && |
1847 | 0 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1848 | 0 | *sink, options, edits, errorCode)) { |
1849 | 0 | break; |
1850 | 0 | } |
1851 | 0 | if (edits != nullptr) { |
1852 | 0 | edits->addReplace((int32_t)(src - prevSrc), 0); |
1853 | 0 | } |
1854 | 0 | prevBoundary = src; |
1855 | 0 | continue; |
1856 | 0 | } |
1857 | 0 | } |
1858 | 0 | // Other "noNo" type, or need to examine more text around this character: |
1859 | 0 | // Fall through to the slow path. |
1860 | 0 | } else if (isJamoVT(norm16)) { |
1861 | 0 | // Jamo L: E1 84 80..92 |
1862 | 0 | // Jamo V: E1 85 A1..B5 |
1863 | 0 | // Jamo T: E1 86 A8..E1 87 82 |
1864 | 0 | U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1); |
1865 | 0 | UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc); |
1866 | 0 | if (prevSrc[1] == 0x85) { |
1867 | 0 | // The current character is a Jamo Vowel, |
1868 | 0 | // compose with previous Jamo L and following Jamo T. |
1869 | 0 | UChar32 l = prev - Hangul::JAMO_L_BASE; |
1870 | 0 | if ((uint32_t)l < Hangul::JAMO_L_COUNT) { |
1871 | 0 | if (sink == nullptr) { |
1872 | 0 | return FALSE; |
1873 | 0 | } |
1874 | 0 | int32_t t = getJamoTMinusBase(src, limit); |
1875 | 0 | if (t >= 0) { |
1876 | 0 | // The next character is a Jamo T. |
1877 | 0 | src += 3; |
1878 | 0 | } else if (hasCompBoundaryBefore(src, limit)) { |
1879 | 0 | // No Jamo T follows, not even via decomposition. |
1880 | 0 | t = 0; |
1881 | 0 | } |
1882 | 0 | if (t >= 0) { |
1883 | 0 | UChar32 syllable = Hangul::HANGUL_BASE + |
1884 | 0 | (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) * |
1885 | 0 | Hangul::JAMO_T_COUNT + t; |
1886 | 0 | prevSrc -= 3; // Replace the Jamo L as well. |
1887 | 0 | if (prevBoundary != prevSrc && |
1888 | 0 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1889 | 0 | *sink, options, edits, errorCode)) { |
1890 | 0 | break; |
1891 | 0 | } |
1892 | 0 | ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits); |
1893 | 0 | prevBoundary = src; |
1894 | 0 | continue; |
1895 | 0 | } |
1896 | 0 | // If we see L+V+x where x!=T then we drop to the slow path, |
1897 | 0 | // decompose and recompose. |
1898 | 0 | // This is to deal with NFKC finding normal L and V but a |
1899 | 0 | // compatibility variant of a T. |
1900 | 0 | // We need to either fully compose that combination here |
1901 | 0 | // (which would complicate the code and may not work with strange custom data) |
1902 | 0 | // or use the slow path. |
1903 | 0 | } |
1904 | 0 | } else if (Hangul::isHangulLV(prev)) { |
1905 | 0 | // The current character is a Jamo Trailing consonant, |
1906 | 0 | // compose with previous Hangul LV that does not contain a Jamo T. |
1907 | 0 | if (sink == nullptr) { |
1908 | 0 | return FALSE; |
1909 | 0 | } |
1910 | 0 | UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src); |
1911 | 0 | prevSrc -= 3; // Replace the Hangul LV as well. |
1912 | 0 | if (prevBoundary != prevSrc && |
1913 | 0 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
1914 | 0 | *sink, options, edits, errorCode)) { |
1915 | 0 | break; |
1916 | 0 | } |
1917 | 0 | ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits); |
1918 | 0 | prevBoundary = src; |
1919 | 0 | continue; |
1920 | 0 | } |
1921 | 0 | // No matching context, or may need to decompose surrounding text first: |
1922 | 0 | // Fall through to the slow path. |
1923 | 0 | } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC |
1924 | 0 | // One or more combining marks that do not combine-back: |
1925 | 0 | // Check for canonical order, copy unchanged if ok and |
1926 | 0 | // if followed by a character with a boundary-before. |
1927 | 0 | uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0 |
1928 | 0 | if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) { |
1929 | 0 | // Fails FCD test, need to decompose and contiguously recompose. |
1930 | 0 | if (sink == nullptr) { |
1931 | 0 | return FALSE; |
1932 | 0 | } |
1933 | 0 | } else { |
1934 | 0 | // If !onlyContiguous (not FCC), then we ignore the tccc of |
1935 | 0 | // the previous character which passed the quick check "yes && ccc==0" test. |
1936 | 0 | const uint8_t *nextSrc; |
1937 | 0 | uint16_t n16; |
1938 | 0 | for (;;) { |
1939 | 0 | if (src == limit) { |
1940 | 0 | if (sink != nullptr) { |
1941 | 0 | ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
1942 | 0 | *sink, options, edits, errorCode); |
1943 | 0 | } |
1944 | 0 | return TRUE; |
1945 | 0 | } |
1946 | 0 | uint8_t prevCC = cc; |
1947 | 0 | nextSrc = src; |
1948 | 0 | UTRIE2_U8_NEXT16(normTrie, nextSrc, limit, n16); |
1949 | 0 | if (n16 >= MIN_YES_YES_WITH_CC) { |
1950 | 0 | cc = getCCFromNormalYesOrMaybe(n16); |
1951 | 0 | if (prevCC > cc) { |
1952 | 0 | if (sink == nullptr) { |
1953 | 0 | return FALSE; |
1954 | 0 | } |
1955 | 0 | break; |
1956 | 0 | } |
1957 | 0 | } else { |
1958 | 0 | break; |
1959 | 0 | } |
1960 | 0 | src = nextSrc; |
1961 | 0 | } |
1962 | 0 | // src is after the last in-order combining mark. |
1963 | 0 | // If there is a boundary here, then we continue with no change. |
1964 | 0 | if (norm16HasCompBoundaryBefore(n16)) { |
1965 | 0 | if (isCompYesAndZeroCC(n16)) { |
1966 | 0 | src = nextSrc; |
1967 | 0 | } |
1968 | 0 | continue; |
1969 | 0 | } |
1970 | 0 | // Use the slow path. There is no boundary in [prevSrc, src[. |
1971 | 0 | } |
1972 | 0 | } |
1973 | 0 |
|
1974 | 0 | // Slow path: Find the nearest boundaries around the current character, |
1975 | 0 | // decompose and recompose. |
1976 | 0 | if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) { |
1977 | 0 | const uint8_t *p = prevSrc; |
1978 | 0 | UTRIE2_U8_PREV16(normTrie, prevBoundary, p, norm16); |
1979 | 0 | if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
1980 | 0 | prevSrc = p; |
1981 | 0 | } |
1982 | 0 | } |
1983 | 0 | ReorderingBuffer buffer(*this, s16, errorCode); |
1984 | 0 | if (U_FAILURE(errorCode)) { |
1985 | 0 | break; |
1986 | 0 | } |
1987 | 0 | // We know there is not a boundary here. |
1988 | 0 | decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous, |
1989 | 0 | buffer, errorCode); |
1990 | 0 | // Decompose until the next boundary. |
1991 | 0 | src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous, |
1992 | 0 | buffer, errorCode); |
1993 | 0 | if (U_FAILURE(errorCode)) { |
1994 | 0 | break; |
1995 | 0 | } |
1996 | 0 | if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
1997 | 0 | errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
1998 | 0 | return TRUE; |
1999 | 0 | } |
2000 | 0 | recompose(buffer, 0, onlyContiguous); |
2001 | 0 | if (!buffer.equals(prevSrc, src)) { |
2002 | 0 | if (sink == nullptr) { |
2003 | 0 | return FALSE; |
2004 | 0 | } |
2005 | 0 | if (prevBoundary != prevSrc && |
2006 | 0 | !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
2007 | 0 | *sink, options, edits, errorCode)) { |
2008 | 0 | break; |
2009 | 0 | } |
2010 | 0 | if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(), |
2011 | 0 | *sink, edits, errorCode)) { |
2012 | 0 | break; |
2013 | 0 | } |
2014 | 0 | prevBoundary = src; |
2015 | 0 | } |
2016 | 0 | } |
2017 | 0 | return TRUE; |
2018 | 0 | } |
2019 | | |
2020 | 46.2k | UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const { |
2021 | 46.2k | if (src == limit || *src < minCompNoMaybeCP) { |
2022 | 18.5k | return TRUE; |
2023 | 18.5k | } |
2024 | 27.7k | UChar32 c; |
2025 | 27.7k | uint16_t norm16; |
2026 | 27.7k | UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); |
2027 | 27.7k | return norm16HasCompBoundaryBefore(norm16); |
2028 | 27.7k | } |
2029 | | |
2030 | 0 | UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const { |
2031 | 0 | if (src == limit) { |
2032 | 0 | return TRUE; |
2033 | 0 | } |
2034 | 0 | uint16_t norm16; |
2035 | 0 | UTRIE2_U8_NEXT16(normTrie, src, limit, norm16); |
2036 | 0 | return norm16HasCompBoundaryBefore(norm16); |
2037 | 0 | } |
2038 | | |
2039 | | UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p, |
2040 | 93 | UBool onlyContiguous) const { |
2041 | 93 | if (start == p) { |
2042 | 89 | return TRUE; |
2043 | 89 | } |
2044 | 4 | UChar32 c; |
2045 | 4 | uint16_t norm16; |
2046 | 4 | UTRIE2_U16_PREV16(normTrie, start, p, c, norm16); |
2047 | 4 | return norm16HasCompBoundaryAfter(norm16, onlyContiguous); |
2048 | 4 | } |
2049 | | |
2050 | | UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p, |
2051 | 0 | UBool onlyContiguous) const { |
2052 | 0 | if (start == p) { |
2053 | 0 | return TRUE; |
2054 | 0 | } |
2055 | 0 | uint16_t norm16; |
2056 | 0 | UTRIE2_U8_PREV16(normTrie, start, p, norm16); |
2057 | 0 | return norm16HasCompBoundaryAfter(norm16, onlyContiguous); |
2058 | 0 | } |
2059 | | |
2060 | | const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p, |
2061 | 1.10k | UBool onlyContiguous) const { |
2062 | 1.10k | BackwardUTrie2StringIterator iter(normTrie, start, p); |
2063 | 1.10k | for(;;) { |
2064 | 1.10k | uint16_t norm16=iter.previous16(); |
2065 | 1.10k | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
2066 | 1.09k | return iter.codePointLimit; |
2067 | 1.09k | } |
2068 | 12 | if (hasCompBoundaryBefore(iter.codePoint, norm16)) { |
2069 | 12 | return iter.codePointStart; |
2070 | 12 | } |
2071 | 12 | } |
2072 | 1.10k | } |
2073 | | |
2074 | | const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit, |
2075 | 53.8k | UBool onlyContiguous) const { |
2076 | 53.8k | ForwardUTrie2StringIterator iter(normTrie, p, limit); |
2077 | 54.9k | for(;;) { |
2078 | 54.9k | uint16_t norm16=iter.next16(); |
2079 | 54.9k | if (hasCompBoundaryBefore(iter.codePoint, norm16)) { |
2080 | 53.8k | return iter.codePointStart; |
2081 | 53.8k | } |
2082 | 1.11k | if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
2083 | 0 | return iter.codePointLimit; |
2084 | 0 | } |
2085 | 1.11k | } |
2086 | 53.8k | } |
2087 | | |
2088 | 0 | uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const { |
2089 | 0 | if (start == p) { |
2090 | 0 | return 0; |
2091 | 0 | } |
2092 | 0 | int32_t i = (int32_t)(p - start); |
2093 | 0 | UChar32 c; |
2094 | 0 | U16_PREV(start, 0, i, c); |
2095 | 0 | return (uint8_t)getFCD16(c); |
2096 | 0 | } |
2097 | | |
2098 | 0 | uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const { |
2099 | 0 | if (start == p) { |
2100 | 0 | return 0; |
2101 | 0 | } |
2102 | 0 | int32_t i = (int32_t)(p - start); |
2103 | 0 | UChar32 c; |
2104 | 0 | U8_PREV(start, 0, i, c); |
2105 | 0 | return (uint8_t)getFCD16(c); |
2106 | 0 | } |
2107 | | |
2108 | | // Note: normalizer2impl.cpp r30982 (2011-nov-27) |
2109 | | // still had getFCDTrie() which built and cached an FCD trie. |
2110 | | // That provided faster access to FCD data than getFCD16FromNormData() |
2111 | | // but required synchronization and consumed some 10kB of heap memory |
2112 | | // in any process that uses FCD (e.g., via collation). |
2113 | | // minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance, |
2114 | | // at least for ASCII & CJK. |
2115 | | |
2116 | | // Gets the FCD value from the regular normalization data. |
2117 | 0 | uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { |
2118 | 0 | uint16_t norm16=getNorm16(c); |
2119 | 0 | if (norm16 >= limitNoNo) { |
2120 | 0 | if(norm16>=MIN_NORMAL_MAYBE_YES) { |
2121 | 0 | // combining mark |
2122 | 0 | norm16=getCCFromNormalYesOrMaybe(norm16); |
2123 | 0 | return norm16|(norm16<<8); |
2124 | 0 | } else if(norm16>=minMaybeYes) { |
2125 | 0 | return 0; |
2126 | 0 | } else { // isDecompNoAlgorithmic(norm16) |
2127 | 0 | uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK; |
2128 | 0 | if (deltaTrailCC <= DELTA_TCCC_1) { |
2129 | 0 | return deltaTrailCC >> OFFSET_SHIFT; |
2130 | 0 | } |
2131 | 0 | // Maps to an isCompYesAndZeroCC. |
2132 | 0 | c=mapAlgorithmic(c, norm16); |
2133 | 0 | norm16=getNorm16(c); |
2134 | 0 | } |
2135 | 0 | } |
2136 | 0 | if(norm16<=minYesNo || isHangulLVT(norm16)) { |
2137 | 0 | // no decomposition or Hangul syllable, all zeros |
2138 | 0 | return 0; |
2139 | 0 | } |
2140 | 0 | // c decomposes, get everything from the variable-length extra data |
2141 | 0 | const uint16_t *mapping=getMapping(norm16); |
2142 | 0 | uint16_t firstUnit=*mapping; |
2143 | 0 | norm16=firstUnit>>8; // tccc |
2144 | 0 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
2145 | 0 | norm16|=*(mapping-1)&0xff00; // lccc |
2146 | 0 | } |
2147 | 0 | return norm16; |
2148 | 0 | } |
2149 | | |
2150 | | // Dual functionality: |
2151 | | // buffer!=NULL: normalize |
2152 | | // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
2153 | | const UChar * |
2154 | | Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
2155 | | ReorderingBuffer *buffer, |
2156 | 0 | UErrorCode &errorCode) const { |
2157 | 0 | // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. |
2158 | 0 | // Similar to the prevBoundary in the compose() implementation. |
2159 | 0 | const UChar *prevBoundary=src; |
2160 | 0 | int32_t prevFCD16=0; |
2161 | 0 | if(limit==NULL) { |
2162 | 0 | src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode); |
2163 | 0 | if(U_FAILURE(errorCode)) { |
2164 | 0 | return src; |
2165 | 0 | } |
2166 | 0 | if(prevBoundary<src) { |
2167 | 0 | prevBoundary=src; |
2168 | 0 | // We know that the previous character's lccc==0. |
2169 | 0 | // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
2170 | 0 | prevFCD16=getFCD16(*(src-1)); |
2171 | 0 | if(prevFCD16>1) { |
2172 | 0 | --prevBoundary; |
2173 | 0 | } |
2174 | 0 | } |
2175 | 0 | limit=u_strchr(src, 0); |
2176 | 0 | } |
2177 | 0 |
|
2178 | 0 | // Note: In this function we use buffer->appendZeroCC() because we track |
2179 | 0 | // the lead and trail combining classes here, rather than leaving it to |
2180 | 0 | // the ReorderingBuffer. |
2181 | 0 | // The exception is the call to decomposeShort() which uses the buffer |
2182 | 0 | // in the normal way. |
2183 | 0 |
|
2184 | 0 | const UChar *prevSrc; |
2185 | 0 | UChar32 c=0; |
2186 | 0 | uint16_t fcd16=0; |
2187 | 0 |
|
2188 | 0 | for(;;) { |
2189 | 0 | // count code units with lccc==0 |
2190 | 0 | for(prevSrc=src; src!=limit;) { |
2191 | 0 | if((c=*src)<minLcccCP) { |
2192 | 0 | prevFCD16=~c; |
2193 | 0 | ++src; |
2194 | 0 | } else if(!singleLeadMightHaveNonZeroFCD16(c)) { |
2195 | 0 | prevFCD16=0; |
2196 | 0 | ++src; |
2197 | 0 | } else { |
2198 | 0 | if(U16_IS_SURROGATE(c)) { |
2199 | 0 | UChar c2; |
2200 | 0 | if(U16_IS_SURROGATE_LEAD(c)) { |
2201 | 0 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
2202 | 0 | c=U16_GET_SUPPLEMENTARY(c, c2); |
2203 | 0 | } |
2204 | 0 | } else /* trail surrogate */ { |
2205 | 0 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
2206 | 0 | --src; |
2207 | 0 | c=U16_GET_SUPPLEMENTARY(c2, c); |
2208 | 0 | } |
2209 | 0 | } |
2210 | 0 | } |
2211 | 0 | if((fcd16=getFCD16FromNormData(c))<=0xff) { |
2212 | 0 | prevFCD16=fcd16; |
2213 | 0 | src+=U16_LENGTH(c); |
2214 | 0 | } else { |
2215 | 0 | break; |
2216 | 0 | } |
2217 | 0 | } |
2218 | 0 | } |
2219 | 0 | // copy these code units all at once |
2220 | 0 | if(src!=prevSrc) { |
2221 | 0 | if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
2222 | 0 | break; |
2223 | 0 | } |
2224 | 0 | if(src==limit) { |
2225 | 0 | break; |
2226 | 0 | } |
2227 | 0 | prevBoundary=src; |
2228 | 0 | // We know that the previous character's lccc==0. |
2229 | 0 | if(prevFCD16<0) { |
2230 | 0 | // Fetching the fcd16 value was deferred for this below-minLcccCP code point. |
2231 | 0 | UChar32 prev=~prevFCD16; |
2232 | 0 | if(prev<minDecompNoCP) { |
2233 | 0 | prevFCD16=0; |
2234 | 0 | } else { |
2235 | 0 | prevFCD16=getFCD16FromNormData(prev); |
2236 | 0 | if(prevFCD16>1) { |
2237 | 0 | --prevBoundary; |
2238 | 0 | } |
2239 | 0 | } |
2240 | 0 | } else { |
2241 | 0 | const UChar *p=src-1; |
2242 | 0 | if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
2243 | 0 | --p; |
2244 | 0 | // Need to fetch the previous character's FCD value because |
2245 | 0 | // prevFCD16 was just for the trail surrogate code point. |
2246 | 0 | prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); |
2247 | 0 | // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
2248 | 0 | } |
2249 | 0 | if(prevFCD16>1) { |
2250 | 0 | prevBoundary=p; |
2251 | 0 | } |
2252 | 0 | } |
2253 | 0 | // The start of the current character (c). |
2254 | 0 | prevSrc=src; |
2255 | 0 | } else if(src==limit) { |
2256 | 0 | break; |
2257 | 0 | } |
2258 | 0 | |
2259 | 0 | src+=U16_LENGTH(c); |
2260 | 0 | // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. |
2261 | 0 | // Check for proper order, and decompose locally if necessary. |
2262 | 0 | if((prevFCD16&0xff)<=(fcd16>>8)) { |
2263 | 0 | // proper order: prev tccc <= current lccc |
2264 | 0 | if((fcd16&0xff)<=1) { |
2265 | 0 | prevBoundary=src; |
2266 | 0 | } |
2267 | 0 | if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
2268 | 0 | break; |
2269 | 0 | } |
2270 | 0 | prevFCD16=fcd16; |
2271 | 0 | continue; |
2272 | 0 | } else if(buffer==NULL) { |
2273 | 0 | return prevBoundary; // quick check "no" |
2274 | 0 | } else { |
2275 | 0 | /* |
2276 | 0 | * Back out the part of the source that we copied or appended |
2277 | 0 | * already but is now going to be decomposed. |
2278 | 0 | * prevSrc is set to after what was copied/appended. |
2279 | 0 | */ |
2280 | 0 | buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
2281 | 0 | /* |
2282 | 0 | * Find the part of the source that needs to be decomposed, |
2283 | 0 | * up to the next safe boundary. |
2284 | 0 | */ |
2285 | 0 | src=findNextFCDBoundary(src, limit); |
2286 | 0 | /* |
2287 | 0 | * The source text does not fulfill the conditions for FCD. |
2288 | 0 | * Decompose and reorder a limited piece of the text. |
2289 | 0 | */ |
2290 | 0 | decomposeShort(prevBoundary, src, FALSE, FALSE, *buffer, errorCode); |
2291 | 0 | if (U_FAILURE(errorCode)) { |
2292 | 0 | break; |
2293 | 0 | } |
2294 | 0 | prevBoundary=src; |
2295 | 0 | prevFCD16=0; |
2296 | 0 | } |
2297 | 0 | } |
2298 | 0 | return src; |
2299 | 0 | } |
2300 | | |
2301 | | void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
2302 | | UBool doMakeFCD, |
2303 | | UnicodeString &safeMiddle, |
2304 | | ReorderingBuffer &buffer, |
2305 | 0 | UErrorCode &errorCode) const { |
2306 | 0 | if(!buffer.isEmpty()) { |
2307 | 0 | const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
2308 | 0 | if(src!=firstBoundaryInSrc) { |
2309 | 0 | const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), |
2310 | 0 | buffer.getLimit()); |
2311 | 0 | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); |
2312 | 0 | UnicodeString middle(lastBoundaryInDest, destSuffixLength); |
2313 | 0 | buffer.removeSuffix(destSuffixLength); |
2314 | 0 | safeMiddle=middle; |
2315 | 0 | middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
2316 | 0 | const UChar *middleStart=middle.getBuffer(); |
2317 | 0 | makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); |
2318 | 0 | if(U_FAILURE(errorCode)) { |
2319 | 0 | return; |
2320 | 0 | } |
2321 | 0 | src=firstBoundaryInSrc; |
2322 | 0 | } |
2323 | 0 | } |
2324 | 0 | if(doMakeFCD) { |
2325 | 0 | makeFCD(src, limit, &buffer, errorCode); |
2326 | 0 | } else { |
2327 | 0 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
2328 | 0 | limit=u_strchr(src, 0); |
2329 | 0 | } |
2330 | 0 | buffer.appendZeroCC(src, limit, errorCode); |
2331 | 0 | } |
2332 | 0 | } |
2333 | | |
2334 | 0 | const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { |
2335 | 0 | while(start<p) { |
2336 | 0 | const UChar *codePointLimit = p; |
2337 | 0 | UChar32 c; |
2338 | 0 | uint16_t norm16; |
2339 | 0 | UTRIE2_U16_PREV16(normTrie, start, p, c, norm16); |
2340 | 0 | if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) { |
2341 | 0 | return codePointLimit; |
2342 | 0 | } |
2343 | 0 | if (norm16HasDecompBoundaryBefore(norm16)) { |
2344 | 0 | return p; |
2345 | 0 | } |
2346 | 0 | } |
2347 | 0 | return p; |
2348 | 0 | } |
2349 | | |
2350 | 0 | const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { |
2351 | 0 | while(p<limit) { |
2352 | 0 | const UChar *codePointStart=p; |
2353 | 0 | UChar32 c; |
2354 | 0 | uint16_t norm16; |
2355 | 0 | UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); |
2356 | 0 | if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) { |
2357 | 0 | return codePointStart; |
2358 | 0 | } |
2359 | 0 | if (norm16HasDecompBoundaryAfter(norm16)) { |
2360 | 0 | return p; |
2361 | 0 | } |
2362 | 0 | } |
2363 | 0 | return p; |
2364 | 0 | } |
2365 | | |
2366 | | // CanonicalIterator data -------------------------------------------------- *** |
2367 | | |
2368 | | CanonIterData::CanonIterData(UErrorCode &errorCode) : |
2369 | | trie(utrie2_open(0, 0, &errorCode)), |
2370 | 0 | canonStartSets(uprv_deleteUObject, NULL, errorCode) {} |
2371 | | |
2372 | 0 | CanonIterData::~CanonIterData() { |
2373 | 0 | utrie2_close(trie); |
2374 | 0 | } |
2375 | | |
2376 | 0 | void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { |
2377 | 0 | uint32_t canonValue=utrie2_get32(trie, decompLead); |
2378 | 0 | if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
2379 | 0 | // origin is the first character whose decomposition starts with |
2380 | 0 | // the character for which we are setting the value. |
2381 | 0 | utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); |
2382 | 0 | } else { |
2383 | 0 | // origin is not the first character, or it is U+0000. |
2384 | 0 | UnicodeSet *set; |
2385 | 0 | if((canonValue&CANON_HAS_SET)==0) { |
2386 | 0 | set=new UnicodeSet; |
2387 | 0 | if(set==NULL) { |
2388 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
2389 | 0 | return; |
2390 | 0 | } |
2391 | 0 | UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
2392 | 0 | canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); |
2393 | 0 | utrie2_set32(trie, decompLead, canonValue, &errorCode); |
2394 | 0 | canonStartSets.addElement(set, errorCode); |
2395 | 0 | if(firstOrigin!=0) { |
2396 | 0 | set->add(firstOrigin); |
2397 | 0 | } |
2398 | 0 | } else { |
2399 | 0 | set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; |
2400 | 0 | } |
2401 | 0 | set->add(origin); |
2402 | 0 | } |
2403 | 0 | } |
2404 | | |
2405 | | // C++ class for friend access to private Normalizer2Impl members. |
2406 | | class InitCanonIterData { |
2407 | | public: |
2408 | | static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode); |
2409 | | static void handleRange(Normalizer2Impl *impl, UChar32 start, UChar32 end, uint16_t value, UErrorCode &errorCode); |
2410 | | }; |
2411 | | |
2412 | | U_CDECL_BEGIN |
2413 | | |
2414 | | // UInitOnce instantiation function for CanonIterData |
2415 | | static void U_CALLCONV |
2416 | 0 | initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) { |
2417 | 0 | InitCanonIterData::doInit(impl, errorCode); |
2418 | 0 | } |
2419 | | |
2420 | | // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. |
2421 | | // context: the Normalizer2Impl |
2422 | | static UBool U_CALLCONV |
2423 | 0 | enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
2424 | 0 | UErrorCode errorCode = U_ZERO_ERROR; |
2425 | 0 | if (value != Normalizer2Impl::INERT) { |
2426 | 0 | Normalizer2Impl *impl = (Normalizer2Impl *)context; |
2427 | 0 | InitCanonIterData::handleRange(impl, start, end, (uint16_t)value, errorCode); |
2428 | 0 | } |
2429 | 0 | return U_SUCCESS(errorCode); |
2430 | 0 | } |
2431 | | |
2432 | | U_CDECL_END |
2433 | | |
2434 | 0 | void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) { |
2435 | 0 | U_ASSERT(impl->fCanonIterData == NULL); |
2436 | 0 | impl->fCanonIterData = new CanonIterData(errorCode); |
2437 | 0 | if (impl->fCanonIterData == NULL) { |
2438 | 0 | errorCode=U_MEMORY_ALLOCATION_ERROR; |
2439 | 0 | } |
2440 | 0 | if (U_SUCCESS(errorCode)) { |
2441 | 0 | utrie2_enum(impl->normTrie, NULL, enumCIDRangeHandler, impl); |
2442 | 0 | utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode); |
2443 | 0 | } |
2444 | 0 | if (U_FAILURE(errorCode)) { |
2445 | 0 | delete impl->fCanonIterData; |
2446 | 0 | impl->fCanonIterData = NULL; |
2447 | 0 | } |
2448 | 0 | } |
2449 | | |
2450 | | void InitCanonIterData::handleRange( |
2451 | 0 | Normalizer2Impl *impl, UChar32 start, UChar32 end, uint16_t value, UErrorCode &errorCode) { |
2452 | 0 | impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode); |
2453 | 0 | } |
2454 | | |
2455 | | void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16, |
2456 | | CanonIterData &newData, |
2457 | 0 | UErrorCode &errorCode) const { |
2458 | 0 | if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) { |
2459 | 0 | // Inert, or 2-way mapping (including Hangul syllable). |
2460 | 0 | // We do not write a canonStartSet for any yesNo character. |
2461 | 0 | // Composites from 2-way mappings are added at runtime from the |
2462 | 0 | // starter's compositions list, and the other characters in |
2463 | 0 | // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
2464 | 0 | // "maybe" characters. |
2465 | 0 | return; |
2466 | 0 | } |
2467 | 0 | for(UChar32 c=start; c<=end; ++c) { |
2468 | 0 | uint32_t oldValue=utrie2_get32(newData.trie, c); |
2469 | 0 | uint32_t newValue=oldValue; |
2470 | 0 | if(isMaybeOrNonZeroCC(norm16)) { |
2471 | 0 | // not a segment starter if it occurs in a decomposition or has cc!=0 |
2472 | 0 | newValue|=CANON_NOT_SEGMENT_STARTER; |
2473 | 0 | if(norm16<MIN_NORMAL_MAYBE_YES) { |
2474 | 0 | newValue|=CANON_HAS_COMPOSITIONS; |
2475 | 0 | } |
2476 | 0 | } else if(norm16<minYesNo) { |
2477 | 0 | newValue|=CANON_HAS_COMPOSITIONS; |
2478 | 0 | } else { |
2479 | 0 | // c has a one-way decomposition |
2480 | 0 | UChar32 c2=c; |
2481 | 0 | // Do not modify the whole-range norm16 value. |
2482 | 0 | uint16_t norm16_2=norm16; |
2483 | 0 | if (isDecompNoAlgorithmic(norm16_2)) { |
2484 | 0 | // Maps to an isCompYesAndZeroCC. |
2485 | 0 | c2 = mapAlgorithmic(c2, norm16_2); |
2486 | 0 | norm16_2 = getNorm16(c2); |
2487 | 0 | // No compatibility mappings for the CanonicalIterator. |
2488 | 0 | U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2))); |
2489 | 0 | } |
2490 | 0 | if (norm16_2 > minYesNo) { |
2491 | 0 | // c decomposes, get everything from the variable-length extra data |
2492 | 0 | const uint16_t *mapping=getMapping(norm16_2); |
2493 | 0 | uint16_t firstUnit=*mapping; |
2494 | 0 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
2495 | 0 | if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
2496 | 0 | if(c==c2 && (*(mapping-1)&0xff)!=0) { |
2497 | 0 | newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
2498 | 0 | } |
2499 | 0 | } |
2500 | 0 | // Skip empty mappings (no characters in the decomposition). |
2501 | 0 | if(length!=0) { |
2502 | 0 | ++mapping; // skip over the firstUnit |
2503 | 0 | // add c to first code point's start set |
2504 | 0 | int32_t i=0; |
2505 | 0 | U16_NEXT_UNSAFE(mapping, i, c2); |
2506 | 0 | newData.addToStartSet(c, c2, errorCode); |
2507 | 0 | // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a |
2508 | 0 | // one-way mapping. A 2-way mapping is possible here after |
2509 | 0 | // intermediate algorithmic mapping. |
2510 | 0 | if(norm16_2>=minNoNo) { |
2511 | 0 | while(i<length) { |
2512 | 0 | U16_NEXT_UNSAFE(mapping, i, c2); |
2513 | 0 | uint32_t c2Value=utrie2_get32(newData.trie, c2); |
2514 | 0 | if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
2515 | 0 | utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, |
2516 | 0 | &errorCode); |
2517 | 0 | } |
2518 | 0 | } |
2519 | 0 | } |
2520 | 0 | } |
2521 | 0 | } else { |
2522 | 0 | // c decomposed to c2 algorithmically; c has cc==0 |
2523 | 0 | newData.addToStartSet(c, c2, errorCode); |
2524 | 0 | } |
2525 | 0 | } |
2526 | 0 | if(newValue!=oldValue) { |
2527 | 0 | utrie2_set32(newData.trie, c, newValue, &errorCode); |
2528 | 0 | } |
2529 | 0 | } |
2530 | 0 | } |
2531 | | |
2532 | 0 | UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
2533 | 0 | // Logically const: Synchronized instantiation. |
2534 | 0 | Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
2535 | 0 | umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode); |
2536 | 0 | return U_SUCCESS(errorCode); |
2537 | 0 | } |
2538 | | |
2539 | 0 | int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
2540 | 0 | return (int32_t)utrie2_get32(fCanonIterData->trie, c); |
2541 | 0 | } |
2542 | | |
2543 | 0 | const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
2544 | 0 | return *(const UnicodeSet *)fCanonIterData->canonStartSets[n]; |
2545 | 0 | } |
2546 | | |
2547 | 0 | UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
2548 | 0 | return getCanonValue(c)>=0; |
2549 | 0 | } |
2550 | | |
2551 | 0 | UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
2552 | 0 | int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
2553 | 0 | if(canonValue==0) { |
2554 | 0 | return FALSE; |
2555 | 0 | } |
2556 | 0 | set.clear(); |
2557 | 0 | int32_t value=canonValue&CANON_VALUE_MASK; |
2558 | 0 | if((canonValue&CANON_HAS_SET)!=0) { |
2559 | 0 | set.addAll(getCanonStartSet(value)); |
2560 | 0 | } else if(value!=0) { |
2561 | 0 | set.add(value); |
2562 | 0 | } |
2563 | 0 | if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
2564 | 0 | uint16_t norm16=getNorm16(c); |
2565 | 0 | if(norm16==JAMO_L) { |
2566 | 0 | UChar32 syllable= |
2567 | 0 | (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); |
2568 | 0 | set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
2569 | 0 | } else { |
2570 | 0 | addComposites(getCompositionsList(norm16), set); |
2571 | 0 | } |
2572 | 0 | } |
2573 | 0 | return TRUE; |
2574 | 0 | } |
2575 | | |
2576 | | U_NAMESPACE_END |
2577 | | |
2578 | | // Normalizer2 data swapping ----------------------------------------------- *** |
2579 | | |
2580 | | U_NAMESPACE_USE |
2581 | | |
2582 | | U_CAPI int32_t U_EXPORT2 |
2583 | | unorm2_swap(const UDataSwapper *ds, |
2584 | | const void *inData, int32_t length, void *outData, |
2585 | 0 | UErrorCode *pErrorCode) { |
2586 | 0 | const UDataInfo *pInfo; |
2587 | 0 | int32_t headerSize; |
2588 | 0 |
|
2589 | 0 | const uint8_t *inBytes; |
2590 | 0 | uint8_t *outBytes; |
2591 | 0 |
|
2592 | 0 | const int32_t *inIndexes; |
2593 | 0 | int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1]; |
2594 | 0 |
|
2595 | 0 | int32_t i, offset, nextOffset, size; |
2596 | 0 |
|
2597 | 0 | /* udata_swapDataHeader checks the arguments */ |
2598 | 0 | headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
2599 | 0 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
2600 | 0 | return 0; |
2601 | 0 | } |
2602 | 0 | |
2603 | 0 | /* check data format and format version */ |
2604 | 0 | pInfo=(const UDataInfo *)((const char *)inData+4); |
2605 | 0 | uint8_t formatVersion0=pInfo->formatVersion[0]; |
2606 | 0 | if(!( |
2607 | 0 | pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
2608 | 0 | pInfo->dataFormat[1]==0x72 && |
2609 | 0 | pInfo->dataFormat[2]==0x6d && |
2610 | 0 | pInfo->dataFormat[3]==0x32 && |
2611 | 0 | (1<=formatVersion0 && formatVersion0<=3) |
2612 | 0 | )) { |
2613 | 0 | udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", |
2614 | 0 | pInfo->dataFormat[0], pInfo->dataFormat[1], |
2615 | 0 | pInfo->dataFormat[2], pInfo->dataFormat[3], |
2616 | 0 | pInfo->formatVersion[0]); |
2617 | 0 | *pErrorCode=U_UNSUPPORTED_ERROR; |
2618 | 0 | return 0; |
2619 | 0 | } |
2620 | 0 |
|
2621 | 0 | inBytes=(const uint8_t *)inData+headerSize; |
2622 | 0 | outBytes=(uint8_t *)outData+headerSize; |
2623 | 0 |
|
2624 | 0 | inIndexes=(const int32_t *)inBytes; |
2625 | 0 | int32_t minIndexesLength; |
2626 | 0 | if(formatVersion0==1) { |
2627 | 0 | minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1; |
2628 | 0 | } else if(formatVersion0==2) { |
2629 | 0 | minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1; |
2630 | 0 | } else { |
2631 | 0 | minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1; |
2632 | 0 | } |
2633 | 0 |
|
2634 | 0 | if(length>=0) { |
2635 | 0 | length-=headerSize; |
2636 | 0 | if(length<minIndexesLength*4) { |
2637 | 0 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", |
2638 | 0 | length); |
2639 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2640 | 0 | return 0; |
2641 | 0 | } |
2642 | 0 | } |
2643 | 0 |
|
2644 | 0 | /* read the first few indexes */ |
2645 | 0 | for(i=0; i<UPRV_LENGTHOF(indexes); ++i) { |
2646 | 0 | indexes[i]=udata_readInt32(ds, inIndexes[i]); |
2647 | 0 | } |
2648 | 0 |
|
2649 | 0 | /* get the total length of the data */ |
2650 | 0 | size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
2651 | 0 |
|
2652 | 0 | if(length>=0) { |
2653 | 0 | if(length<size) { |
2654 | 0 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", |
2655 | 0 | length); |
2656 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2657 | 0 | return 0; |
2658 | 0 | } |
2659 | 0 |
|
2660 | 0 | /* copy the data for inaccessible bytes */ |
2661 | 0 | if(inBytes!=outBytes) { |
2662 | 0 | uprv_memcpy(outBytes, inBytes, size); |
2663 | 0 | } |
2664 | 0 |
|
2665 | 0 | offset=0; |
2666 | 0 |
|
2667 | 0 | /* swap the int32_t indexes[] */ |
2668 | 0 | nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; |
2669 | 0 | ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); |
2670 | 0 | offset=nextOffset; |
2671 | 0 |
|
2672 | 0 | /* swap the UTrie2 */ |
2673 | 0 | nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; |
2674 | 0 | utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2675 | 0 | offset=nextOffset; |
2676 | 0 |
|
2677 | 0 | /* swap the uint16_t extraData[] */ |
2678 | 0 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; |
2679 | 0 | ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2680 | 0 | offset=nextOffset; |
2681 | 0 |
|
2682 | 0 | /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ |
2683 | 0 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; |
2684 | 0 | offset=nextOffset; |
2685 | 0 |
|
2686 | 0 | U_ASSERT(offset==size); |
2687 | 0 | } |
2688 | 0 |
|
2689 | 0 | return headerSize+size; |
2690 | 0 | } |
2691 | | |
2692 | | #endif // !UCONFIG_NO_NORMALIZATION |