/src/mozilla-central/intl/icu/source/common/rbbitblb.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ********************************************************************** |
5 | | * Copyright (c) 2002-2016, International Business Machines |
6 | | * Corporation and others. All Rights Reserved. |
7 | | ********************************************************************** |
8 | | */ |
9 | | // |
10 | | // rbbitblb.cpp |
11 | | // |
12 | | |
13 | | |
14 | | #include "unicode/utypes.h" |
15 | | |
16 | | #if !UCONFIG_NO_BREAK_ITERATION |
17 | | |
18 | | #include "unicode/unistr.h" |
19 | | #include "rbbitblb.h" |
20 | | #include "rbbirb.h" |
21 | | #include "rbbisetb.h" |
22 | | #include "rbbidata.h" |
23 | | #include "cstring.h" |
24 | | #include "uassert.h" |
25 | | #include "uvectr32.h" |
26 | | #include "cmemory.h" |
27 | | |
28 | | U_NAMESPACE_BEGIN |
29 | | |
30 | | RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode, UErrorCode &status) : |
31 | | fRB(rb), |
32 | | fTree(*rootNode), |
33 | | fStatus(&status), |
34 | | fDStates(nullptr), |
35 | 0 | fSafeTable(nullptr) { |
36 | 0 | if (U_FAILURE(status)) { |
37 | 0 | return; |
38 | 0 | } |
39 | 0 | // fDStates is UVector<RBBIStateDescriptor *> |
40 | 0 | fDStates = new UVector(status); |
41 | 0 | if (U_SUCCESS(status) && fDStates == nullptr ) { |
42 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
43 | 0 | } |
44 | 0 | } |
45 | | |
46 | | |
47 | | |
48 | 0 | RBBITableBuilder::~RBBITableBuilder() { |
49 | 0 | int i; |
50 | 0 | for (i=0; i<fDStates->size(); i++) { |
51 | 0 | delete (RBBIStateDescriptor *)fDStates->elementAt(i); |
52 | 0 | } |
53 | 0 | delete fDStates; |
54 | 0 | delete fSafeTable; |
55 | 0 | } |
56 | | |
57 | | |
58 | | //----------------------------------------------------------------------------- |
59 | | // |
60 | | // RBBITableBuilder::buildForwardTable - This is the main function for building |
61 | | // the DFA state transition table from the RBBI rules parse tree. |
62 | | // |
63 | | //----------------------------------------------------------------------------- |
64 | 0 | void RBBITableBuilder::buildForwardTable() { |
65 | 0 |
|
66 | 0 | if (U_FAILURE(*fStatus)) { |
67 | 0 | return; |
68 | 0 | } |
69 | 0 | |
70 | 0 | // If there were no rules, just return. This situation can easily arise |
71 | 0 | // for the reverse rules. |
72 | 0 | if (fTree==NULL) { |
73 | 0 | return; |
74 | 0 | } |
75 | 0 | |
76 | 0 | // |
77 | 0 | // Walk through the tree, replacing any references to $variables with a copy of the |
78 | 0 | // parse tree for the substition expression. |
79 | 0 | // |
80 | 0 | fTree = fTree->flattenVariables(); |
81 | | #ifdef RBBI_DEBUG |
82 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) { |
83 | | RBBIDebugPuts("\nParse tree after flattening variable references."); |
84 | | RBBINode::printTree(fTree, TRUE); |
85 | | } |
86 | | #endif |
87 | |
|
88 | 0 | // |
89 | 0 | // If the rules contained any references to {bof} |
90 | 0 | // add a {bof} <cat> <former root of tree> to the |
91 | 0 | // tree. Means that all matches must start out with the |
92 | 0 | // {bof} fake character. |
93 | 0 | // |
94 | 0 | if (fRB->fSetBuilder->sawBOF()) { |
95 | 0 | RBBINode *bofTop = new RBBINode(RBBINode::opCat); |
96 | 0 | RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar); |
97 | 0 | // Delete and exit if memory allocation failed. |
98 | 0 | if (bofTop == NULL || bofLeaf == NULL) { |
99 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
100 | 0 | delete bofTop; |
101 | 0 | delete bofLeaf; |
102 | 0 | return; |
103 | 0 | } |
104 | 0 | bofTop->fLeftChild = bofLeaf; |
105 | 0 | bofTop->fRightChild = fTree; |
106 | 0 | bofLeaf->fParent = bofTop; |
107 | 0 | bofLeaf->fVal = 2; // Reserved value for {bof}. |
108 | 0 | fTree = bofTop; |
109 | 0 | } |
110 | 0 |
|
111 | 0 | // |
112 | 0 | // Add a unique right-end marker to the expression. |
113 | 0 | // Appears as a cat-node, left child being the original tree, |
114 | 0 | // right child being the end marker. |
115 | 0 | // |
116 | 0 | RBBINode *cn = new RBBINode(RBBINode::opCat); |
117 | 0 | // Exit if memory allocation failed. |
118 | 0 | if (cn == NULL) { |
119 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
120 | 0 | return; |
121 | 0 | } |
122 | 0 | cn->fLeftChild = fTree; |
123 | 0 | fTree->fParent = cn; |
124 | 0 | cn->fRightChild = new RBBINode(RBBINode::endMark); |
125 | 0 | // Delete and exit if memory allocation failed. |
126 | 0 | if (cn->fRightChild == NULL) { |
127 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
128 | 0 | delete cn; |
129 | 0 | return; |
130 | 0 | } |
131 | 0 | cn->fRightChild->fParent = cn; |
132 | 0 | fTree = cn; |
133 | 0 |
|
134 | 0 | // |
135 | 0 | // Replace all references to UnicodeSets with the tree for the equivalent |
136 | 0 | // expression. |
137 | 0 | // |
138 | 0 | fTree->flattenSets(); |
139 | | #ifdef RBBI_DEBUG |
140 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) { |
141 | | RBBIDebugPuts("\nParse tree after flattening Unicode Set references."); |
142 | | RBBINode::printTree(fTree, TRUE); |
143 | | } |
144 | | #endif |
145 | |
|
146 | 0 |
|
147 | 0 | // |
148 | 0 | // calculate the functions nullable, firstpos, lastpos and followpos on |
149 | 0 | // nodes in the parse tree. |
150 | 0 | // See the alogrithm description in Aho. |
151 | 0 | // Understanding how this works by looking at the code alone will be |
152 | 0 | // nearly impossible. |
153 | 0 | // |
154 | 0 | calcNullable(fTree); |
155 | 0 | calcFirstPos(fTree); |
156 | 0 | calcLastPos(fTree); |
157 | 0 | calcFollowPos(fTree); |
158 | 0 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) { |
159 | 0 | RBBIDebugPuts("\n"); |
160 | 0 | printPosSets(fTree); |
161 | 0 | } |
162 | 0 |
|
163 | 0 | // |
164 | 0 | // For "chained" rules, modify the followPos sets |
165 | 0 | // |
166 | 0 | if (fRB->fChainRules) { |
167 | 0 | calcChainedFollowPos(fTree); |
168 | 0 | } |
169 | 0 |
|
170 | 0 | // |
171 | 0 | // BOF (start of input) test fixup. |
172 | 0 | // |
173 | 0 | if (fRB->fSetBuilder->sawBOF()) { |
174 | 0 | bofFixup(); |
175 | 0 | } |
176 | 0 |
|
177 | 0 | // |
178 | 0 | // Build the DFA state transition tables. |
179 | 0 | // |
180 | 0 | buildStateTable(); |
181 | 0 | flagAcceptingStates(); |
182 | 0 | flagLookAheadStates(); |
183 | 0 | flagTaggedStates(); |
184 | 0 |
|
185 | 0 | // |
186 | 0 | // Update the global table of rule status {tag} values |
187 | 0 | // The rule builder has a global vector of status values that are common |
188 | 0 | // for all tables. Merge the ones from this table into the global set. |
189 | 0 | // |
190 | 0 | mergeRuleStatusVals(); |
191 | 0 | } |
192 | | |
193 | | |
194 | | |
195 | | //----------------------------------------------------------------------------- |
196 | | // |
197 | | // calcNullable. Impossible to explain succinctly. See Aho, section 3.9 |
198 | | // |
199 | | //----------------------------------------------------------------------------- |
200 | 0 | void RBBITableBuilder::calcNullable(RBBINode *n) { |
201 | 0 | if (n == NULL) { |
202 | 0 | return; |
203 | 0 | } |
204 | 0 | if (n->fType == RBBINode::setRef || |
205 | 0 | n->fType == RBBINode::endMark ) { |
206 | 0 | // These are non-empty leaf node types. |
207 | 0 | n->fNullable = FALSE; |
208 | 0 | return; |
209 | 0 | } |
210 | 0 |
|
211 | 0 | if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) { |
212 | 0 | // Lookahead marker node. It's a leaf, so no recursion on children. |
213 | 0 | // It's nullable because it does not match any literal text from the input stream. |
214 | 0 | n->fNullable = TRUE; |
215 | 0 | return; |
216 | 0 | } |
217 | 0 |
|
218 | 0 |
|
219 | 0 | // The node is not a leaf. |
220 | 0 | // Calculate nullable on its children. |
221 | 0 | calcNullable(n->fLeftChild); |
222 | 0 | calcNullable(n->fRightChild); |
223 | 0 |
|
224 | 0 | // Apply functions from table 3.40 in Aho |
225 | 0 | if (n->fType == RBBINode::opOr) { |
226 | 0 | n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable; |
227 | 0 | } |
228 | 0 | else if (n->fType == RBBINode::opCat) { |
229 | 0 | n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable; |
230 | 0 | } |
231 | 0 | else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) { |
232 | 0 | n->fNullable = TRUE; |
233 | 0 | } |
234 | 0 | else { |
235 | 0 | n->fNullable = FALSE; |
236 | 0 | } |
237 | 0 | } |
238 | | |
239 | | |
240 | | |
241 | | |
242 | | //----------------------------------------------------------------------------- |
243 | | // |
244 | | // calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9 |
245 | | // |
246 | | //----------------------------------------------------------------------------- |
247 | 0 | void RBBITableBuilder::calcFirstPos(RBBINode *n) { |
248 | 0 | if (n == NULL) { |
249 | 0 | return; |
250 | 0 | } |
251 | 0 | if (n->fType == RBBINode::leafChar || |
252 | 0 | n->fType == RBBINode::endMark || |
253 | 0 | n->fType == RBBINode::lookAhead || |
254 | 0 | n->fType == RBBINode::tag) { |
255 | 0 | // These are non-empty leaf node types. |
256 | 0 | // Note: In order to maintain the sort invariant on the set, |
257 | 0 | // this function should only be called on a node whose set is |
258 | 0 | // empty to start with. |
259 | 0 | n->fFirstPosSet->addElement(n, *fStatus); |
260 | 0 | return; |
261 | 0 | } |
262 | 0 | |
263 | 0 | // The node is not a leaf. |
264 | 0 | // Calculate firstPos on its children. |
265 | 0 | calcFirstPos(n->fLeftChild); |
266 | 0 | calcFirstPos(n->fRightChild); |
267 | 0 |
|
268 | 0 | // Apply functions from table 3.40 in Aho |
269 | 0 | if (n->fType == RBBINode::opOr) { |
270 | 0 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); |
271 | 0 | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); |
272 | 0 | } |
273 | 0 | else if (n->fType == RBBINode::opCat) { |
274 | 0 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); |
275 | 0 | if (n->fLeftChild->fNullable) { |
276 | 0 | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); |
277 | 0 | } |
278 | 0 | } |
279 | 0 | else if (n->fType == RBBINode::opStar || |
280 | 0 | n->fType == RBBINode::opQuestion || |
281 | 0 | n->fType == RBBINode::opPlus) { |
282 | 0 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | | |
287 | | |
288 | | //----------------------------------------------------------------------------- |
289 | | // |
290 | | // calcLastPos. Impossible to explain succinctly. See Aho, section 3.9 |
291 | | // |
292 | | //----------------------------------------------------------------------------- |
293 | 0 | void RBBITableBuilder::calcLastPos(RBBINode *n) { |
294 | 0 | if (n == NULL) { |
295 | 0 | return; |
296 | 0 | } |
297 | 0 | if (n->fType == RBBINode::leafChar || |
298 | 0 | n->fType == RBBINode::endMark || |
299 | 0 | n->fType == RBBINode::lookAhead || |
300 | 0 | n->fType == RBBINode::tag) { |
301 | 0 | // These are non-empty leaf node types. |
302 | 0 | // Note: In order to maintain the sort invariant on the set, |
303 | 0 | // this function should only be called on a node whose set is |
304 | 0 | // empty to start with. |
305 | 0 | n->fLastPosSet->addElement(n, *fStatus); |
306 | 0 | return; |
307 | 0 | } |
308 | 0 | |
309 | 0 | // The node is not a leaf. |
310 | 0 | // Calculate lastPos on its children. |
311 | 0 | calcLastPos(n->fLeftChild); |
312 | 0 | calcLastPos(n->fRightChild); |
313 | 0 |
|
314 | 0 | // Apply functions from table 3.40 in Aho |
315 | 0 | if (n->fType == RBBINode::opOr) { |
316 | 0 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); |
317 | 0 | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); |
318 | 0 | } |
319 | 0 | else if (n->fType == RBBINode::opCat) { |
320 | 0 | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); |
321 | 0 | if (n->fRightChild->fNullable) { |
322 | 0 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); |
323 | 0 | } |
324 | 0 | } |
325 | 0 | else if (n->fType == RBBINode::opStar || |
326 | 0 | n->fType == RBBINode::opQuestion || |
327 | 0 | n->fType == RBBINode::opPlus) { |
328 | 0 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); |
329 | 0 | } |
330 | 0 | } |
331 | | |
332 | | |
333 | | |
334 | | //----------------------------------------------------------------------------- |
335 | | // |
336 | | // calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9 |
337 | | // |
338 | | //----------------------------------------------------------------------------- |
339 | 0 | void RBBITableBuilder::calcFollowPos(RBBINode *n) { |
340 | 0 | if (n == NULL || |
341 | 0 | n->fType == RBBINode::leafChar || |
342 | 0 | n->fType == RBBINode::endMark) { |
343 | 0 | return; |
344 | 0 | } |
345 | 0 | |
346 | 0 | calcFollowPos(n->fLeftChild); |
347 | 0 | calcFollowPos(n->fRightChild); |
348 | 0 |
|
349 | 0 | // Aho rule #1 |
350 | 0 | if (n->fType == RBBINode::opCat) { |
351 | 0 | RBBINode *i; // is 'i' in Aho's description |
352 | 0 | uint32_t ix; |
353 | 0 |
|
354 | 0 | UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet; |
355 | 0 |
|
356 | 0 | for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) { |
357 | 0 | i = (RBBINode *)LastPosOfLeftChild->elementAt(ix); |
358 | 0 | setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet); |
359 | 0 | } |
360 | 0 | } |
361 | 0 |
|
362 | 0 | // Aho rule #2 |
363 | 0 | if (n->fType == RBBINode::opStar || |
364 | 0 | n->fType == RBBINode::opPlus) { |
365 | 0 | RBBINode *i; // again, n and i are the names from Aho's description. |
366 | 0 | uint32_t ix; |
367 | 0 |
|
368 | 0 | for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) { |
369 | 0 | i = (RBBINode *)n->fLastPosSet->elementAt(ix); |
370 | 0 | setAdd(i->fFollowPos, n->fFirstPosSet); |
371 | 0 | } |
372 | 0 | } |
373 | 0 |
|
374 | 0 |
|
375 | 0 |
|
376 | 0 | } |
377 | | |
378 | | //----------------------------------------------------------------------------- |
379 | | // |
380 | | // addRuleRootNodes Recursively walk a parse tree, adding all nodes flagged |
381 | | // as roots of a rule to a destination vector. |
382 | | // |
383 | | //----------------------------------------------------------------------------- |
384 | 0 | void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) { |
385 | 0 | if (node == NULL || U_FAILURE(*fStatus)) { |
386 | 0 | return; |
387 | 0 | } |
388 | 0 | if (node->fRuleRoot) { |
389 | 0 | dest->addElement(node, *fStatus); |
390 | 0 | // Note: rules cannot nest. If we found a rule start node, |
391 | 0 | // no child node can also be a start node. |
392 | 0 | return; |
393 | 0 | } |
394 | 0 | addRuleRootNodes(dest, node->fLeftChild); |
395 | 0 | addRuleRootNodes(dest, node->fRightChild); |
396 | 0 | } |
397 | | |
398 | | //----------------------------------------------------------------------------- |
399 | | // |
400 | | // calcChainedFollowPos. Modify the previously calculated followPos sets |
401 | | // to implement rule chaining. NOT described by Aho |
402 | | // |
403 | | //----------------------------------------------------------------------------- |
404 | 0 | void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) { |
405 | 0 |
|
406 | 0 | UVector endMarkerNodes(*fStatus); |
407 | 0 | UVector leafNodes(*fStatus); |
408 | 0 | int32_t i; |
409 | 0 |
|
410 | 0 | if (U_FAILURE(*fStatus)) { |
411 | 0 | return; |
412 | 0 | } |
413 | 0 | |
414 | 0 | // get a list of all endmarker nodes. |
415 | 0 | tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); |
416 | 0 |
|
417 | 0 | // get a list all leaf nodes |
418 | 0 | tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus); |
419 | 0 | if (U_FAILURE(*fStatus)) { |
420 | 0 | return; |
421 | 0 | } |
422 | 0 | |
423 | 0 | // Collect all leaf nodes that can start matches for rules |
424 | 0 | // with inbound chaining enabled, which is the union of the |
425 | 0 | // firstPosition sets from each of the rule root nodes. |
426 | 0 | |
427 | 0 | UVector ruleRootNodes(*fStatus); |
428 | 0 | addRuleRootNodes(&ruleRootNodes, tree); |
429 | 0 |
|
430 | 0 | UVector matchStartNodes(*fStatus); |
431 | 0 | for (int i=0; i<ruleRootNodes.size(); ++i) { |
432 | 0 | RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(i)); |
433 | 0 | if (node->fChainIn) { |
434 | 0 | setAdd(&matchStartNodes, node->fFirstPosSet); |
435 | 0 | } |
436 | 0 | } |
437 | 0 | if (U_FAILURE(*fStatus)) { |
438 | 0 | return; |
439 | 0 | } |
440 | 0 | |
441 | 0 | int32_t endNodeIx; |
442 | 0 | int32_t startNodeIx; |
443 | 0 |
|
444 | 0 | for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) { |
445 | 0 | RBBINode *tNode = (RBBINode *)leafNodes.elementAt(endNodeIx); |
446 | 0 | RBBINode *endNode = NULL; |
447 | 0 |
|
448 | 0 | // Identify leaf nodes that correspond to overall rule match positions. |
449 | 0 | // These include an endMarkerNode in their followPos sets. |
450 | 0 | for (i=0; i<endMarkerNodes.size(); i++) { |
451 | 0 | if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) { |
452 | 0 | endNode = tNode; |
453 | 0 | break; |
454 | 0 | } |
455 | 0 | } |
456 | 0 | if (endNode == NULL) { |
457 | 0 | // node wasn't an end node. Try again with the next. |
458 | 0 | continue; |
459 | 0 | } |
460 | 0 | |
461 | 0 | // We've got a node that can end a match. |
462 | 0 | |
463 | 0 | // Line Break Specific hack: If this node's val correspond to the $CM char class, |
464 | 0 | // don't chain from it. |
465 | 0 | // TODO: Add rule syntax for this behavior, get specifics out of here and |
466 | 0 | // into the rule file. |
467 | 0 | if (fRB->fLBCMNoChain) { |
468 | 0 | UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal); |
469 | 0 | if (c != -1) { |
470 | 0 | // c == -1 occurs with sets containing only the {eof} marker string. |
471 | 0 | ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK); |
472 | 0 | if (cLBProp == U_LB_COMBINING_MARK) { |
473 | 0 | continue; |
474 | 0 | } |
475 | 0 | } |
476 | 0 | } |
477 | 0 | |
478 | 0 | |
479 | 0 | // Now iterate over the nodes that can start a match, looking for ones |
480 | 0 | // with the same char class as our ending node. |
481 | 0 | RBBINode *startNode; |
482 | 0 | for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) { |
483 | 0 | startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx); |
484 | 0 | if (startNode->fType != RBBINode::leafChar) { |
485 | 0 | continue; |
486 | 0 | } |
487 | 0 | |
488 | 0 | if (endNode->fVal == startNode->fVal) { |
489 | 0 | // The end val (character class) of one possible match is the |
490 | 0 | // same as the start of another. |
491 | 0 |
|
492 | 0 | // Add all nodes from the followPos of the start node to the |
493 | 0 | // followPos set of the end node, which will have the effect of |
494 | 0 | // letting matches transition from a match state at endNode |
495 | 0 | // to the second char of a match starting with startNode. |
496 | 0 | setAdd(endNode->fFollowPos, startNode->fFollowPos); |
497 | 0 | } |
498 | 0 | } |
499 | 0 | } |
500 | 0 | } |
501 | | |
502 | | |
503 | | //----------------------------------------------------------------------------- |
504 | | // |
505 | | // bofFixup. Fixup for state tables that include {bof} beginning of input testing. |
506 | | // Do an swizzle similar to chaining, modifying the followPos set of |
507 | | // the bofNode to include the followPos nodes from other {bot} nodes |
508 | | // scattered through the tree. |
509 | | // |
510 | | // This function has much in common with calcChainedFollowPos(). |
511 | | // |
512 | | //----------------------------------------------------------------------------- |
513 | 0 | void RBBITableBuilder::bofFixup() { |
514 | 0 |
|
515 | 0 | if (U_FAILURE(*fStatus)) { |
516 | 0 | return; |
517 | 0 | } |
518 | 0 | |
519 | 0 | // The parse tree looks like this ... |
520 | 0 | // fTree root ---> <cat> |
521 | 0 | // / \ . |
522 | 0 | // <cat> <#end node> |
523 | 0 | // / \ . |
524 | 0 | // <bofNode> rest |
525 | 0 | // of tree |
526 | 0 | // |
527 | 0 | // We will be adding things to the followPos set of the <bofNode> |
528 | 0 | // |
529 | 0 | RBBINode *bofNode = fTree->fLeftChild->fLeftChild; |
530 | 0 | U_ASSERT(bofNode->fType == RBBINode::leafChar); |
531 | 0 | U_ASSERT(bofNode->fVal == 2); |
532 | 0 |
|
533 | 0 | // Get all nodes that can be the start a match of the user-written rules |
534 | 0 | // (excluding the fake bofNode) |
535 | 0 | // We want the nodes that can start a match in the |
536 | 0 | // part labeled "rest of tree" |
537 | 0 | // |
538 | 0 | UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet; |
539 | 0 |
|
540 | 0 | RBBINode *startNode; |
541 | 0 | int startNodeIx; |
542 | 0 | for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { |
543 | 0 | startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); |
544 | 0 | if (startNode->fType != RBBINode::leafChar) { |
545 | 0 | continue; |
546 | 0 | } |
547 | 0 | |
548 | 0 | if (startNode->fVal == bofNode->fVal) { |
549 | 0 | // We found a leaf node corresponding to a {bof} that was |
550 | 0 | // explicitly written into a rule. |
551 | 0 | // Add everything from the followPos set of this node to the |
552 | 0 | // followPos set of the fake bofNode at the start of the tree. |
553 | 0 | // |
554 | 0 | setAdd(bofNode->fFollowPos, startNode->fFollowPos); |
555 | 0 | } |
556 | 0 | } |
557 | 0 | } |
558 | | |
559 | | //----------------------------------------------------------------------------- |
560 | | // |
561 | | // buildStateTable() Determine the set of runtime DFA states and the |
562 | | // transition tables for these states, by the algorithm |
563 | | // of fig. 3.44 in Aho. |
564 | | // |
565 | | // Most of the comments are quotes of Aho's psuedo-code. |
566 | | // |
567 | | //----------------------------------------------------------------------------- |
568 | 0 | void RBBITableBuilder::buildStateTable() { |
569 | 0 | if (U_FAILURE(*fStatus)) { |
570 | 0 | return; |
571 | 0 | } |
572 | 0 | RBBIStateDescriptor *failState; |
573 | 0 | // Set it to NULL to avoid uninitialized warning |
574 | 0 | RBBIStateDescriptor *initialState = NULL; |
575 | 0 | // |
576 | 0 | // Add a dummy state 0 - the stop state. Not from Aho. |
577 | 0 | int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1; |
578 | 0 | failState = new RBBIStateDescriptor(lastInputSymbol, fStatus); |
579 | 0 | if (failState == NULL) { |
580 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
581 | 0 | goto ExitBuildSTdeleteall; |
582 | 0 | } |
583 | 0 | failState->fPositions = new UVector(*fStatus); |
584 | 0 | if (failState->fPositions == NULL) { |
585 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
586 | 0 | } |
587 | 0 | if (failState->fPositions == NULL || U_FAILURE(*fStatus)) { |
588 | 0 | goto ExitBuildSTdeleteall; |
589 | 0 | } |
590 | 0 | fDStates->addElement(failState, *fStatus); |
591 | 0 | if (U_FAILURE(*fStatus)) { |
592 | 0 | goto ExitBuildSTdeleteall; |
593 | 0 | } |
594 | 0 | |
595 | 0 | // initially, the only unmarked state in Dstates is firstpos(root), |
596 | 0 | // where toot is the root of the syntax tree for (r)#; |
597 | 0 | initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus); |
598 | 0 | if (initialState == NULL) { |
599 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
600 | 0 | } |
601 | 0 | if (U_FAILURE(*fStatus)) { |
602 | 0 | goto ExitBuildSTdeleteall; |
603 | 0 | } |
604 | 0 | initialState->fPositions = new UVector(*fStatus); |
605 | 0 | if (initialState->fPositions == NULL) { |
606 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
607 | 0 | } |
608 | 0 | if (U_FAILURE(*fStatus)) { |
609 | 0 | goto ExitBuildSTdeleteall; |
610 | 0 | } |
611 | 0 | setAdd(initialState->fPositions, fTree->fFirstPosSet); |
612 | 0 | fDStates->addElement(initialState, *fStatus); |
613 | 0 | if (U_FAILURE(*fStatus)) { |
614 | 0 | goto ExitBuildSTdeleteall; |
615 | 0 | } |
616 | 0 | |
617 | 0 | // while there is an unmarked state T in Dstates do begin |
618 | 0 | for (;;) { |
619 | 0 | RBBIStateDescriptor *T = NULL; |
620 | 0 | int32_t tx; |
621 | 0 | for (tx=1; tx<fDStates->size(); tx++) { |
622 | 0 | RBBIStateDescriptor *temp; |
623 | 0 | temp = (RBBIStateDescriptor *)fDStates->elementAt(tx); |
624 | 0 | if (temp->fMarked == FALSE) { |
625 | 0 | T = temp; |
626 | 0 | break; |
627 | 0 | } |
628 | 0 | } |
629 | 0 | if (T == NULL) { |
630 | 0 | break; |
631 | 0 | } |
632 | 0 | |
633 | 0 | // mark T; |
634 | 0 | T->fMarked = TRUE; |
635 | 0 |
|
636 | 0 | // for each input symbol a do begin |
637 | 0 | int32_t a; |
638 | 0 | for (a = 1; a<=lastInputSymbol; a++) { |
639 | 0 | // let U be the set of positions that are in followpos(p) |
640 | 0 | // for some position p in T |
641 | 0 | // such that the symbol at position p is a; |
642 | 0 | UVector *U = NULL; |
643 | 0 | RBBINode *p; |
644 | 0 | int32_t px; |
645 | 0 | for (px=0; px<T->fPositions->size(); px++) { |
646 | 0 | p = (RBBINode *)T->fPositions->elementAt(px); |
647 | 0 | if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) { |
648 | 0 | if (U == NULL) { |
649 | 0 | U = new UVector(*fStatus); |
650 | 0 | if (U == NULL) { |
651 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
652 | 0 | goto ExitBuildSTdeleteall; |
653 | 0 | } |
654 | 0 | } |
655 | 0 | setAdd(U, p->fFollowPos); |
656 | 0 | } |
657 | 0 | } |
658 | 0 |
|
659 | 0 | // if U is not empty and not in DStates then |
660 | 0 | int32_t ux = 0; |
661 | 0 | UBool UinDstates = FALSE; |
662 | 0 | if (U != NULL) { |
663 | 0 | U_ASSERT(U->size() > 0); |
664 | 0 | int ix; |
665 | 0 | for (ix=0; ix<fDStates->size(); ix++) { |
666 | 0 | RBBIStateDescriptor *temp2; |
667 | 0 | temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix); |
668 | 0 | if (setEquals(U, temp2->fPositions)) { |
669 | 0 | delete U; |
670 | 0 | U = temp2->fPositions; |
671 | 0 | ux = ix; |
672 | 0 | UinDstates = TRUE; |
673 | 0 | break; |
674 | 0 | } |
675 | 0 | } |
676 | 0 |
|
677 | 0 | // Add U as an unmarked state to Dstates |
678 | 0 | if (!UinDstates) |
679 | 0 | { |
680 | 0 | RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus); |
681 | 0 | if (newState == NULL) { |
682 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
683 | 0 | } |
684 | 0 | if (U_FAILURE(*fStatus)) { |
685 | 0 | goto ExitBuildSTdeleteall; |
686 | 0 | } |
687 | 0 | newState->fPositions = U; |
688 | 0 | fDStates->addElement(newState, *fStatus); |
689 | 0 | if (U_FAILURE(*fStatus)) { |
690 | 0 | return; |
691 | 0 | } |
692 | 0 | ux = fDStates->size()-1; |
693 | 0 | } |
694 | 0 |
|
695 | 0 | // Dtran[T, a] := U; |
696 | 0 | T->fDtran->setElementAt(ux, a); |
697 | 0 | } |
698 | 0 | } |
699 | 0 | } |
700 | 0 | return; |
701 | 0 | // delete local pointers only if error occured. |
702 | 0 | ExitBuildSTdeleteall: |
703 | 0 | delete initialState; |
704 | 0 | delete failState; |
705 | 0 | } |
706 | | |
707 | | |
708 | | |
709 | | //----------------------------------------------------------------------------- |
710 | | // |
711 | | // flagAcceptingStates Identify accepting states. |
712 | | // First get a list of all of the end marker nodes. |
713 | | // Then, for each state s, |
714 | | // if s contains one of the end marker nodes in its list of tree positions then |
715 | | // s is an accepting state. |
716 | | // |
717 | | //----------------------------------------------------------------------------- |
718 | 0 | void RBBITableBuilder::flagAcceptingStates() { |
719 | 0 | if (U_FAILURE(*fStatus)) { |
720 | 0 | return; |
721 | 0 | } |
722 | 0 | UVector endMarkerNodes(*fStatus); |
723 | 0 | RBBINode *endMarker; |
724 | 0 | int32_t i; |
725 | 0 | int32_t n; |
726 | 0 |
|
727 | 0 | if (U_FAILURE(*fStatus)) { |
728 | 0 | return; |
729 | 0 | } |
730 | 0 | |
731 | 0 | fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); |
732 | 0 | if (U_FAILURE(*fStatus)) { |
733 | 0 | return; |
734 | 0 | } |
735 | 0 | |
736 | 0 | for (i=0; i<endMarkerNodes.size(); i++) { |
737 | 0 | endMarker = (RBBINode *)endMarkerNodes.elementAt(i); |
738 | 0 | for (n=0; n<fDStates->size(); n++) { |
739 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
740 | 0 | if (sd->fPositions->indexOf(endMarker) >= 0) { |
741 | 0 | // Any non-zero value for fAccepting means this is an accepting node. |
742 | 0 | // The value is what will be returned to the user as the break status. |
743 | 0 | // If no other value was specified, force it to -1. |
744 | 0 |
|
745 | 0 | if (sd->fAccepting==0) { |
746 | 0 | // State hasn't been marked as accepting yet. Do it now. |
747 | 0 | sd->fAccepting = endMarker->fVal; |
748 | 0 | if (sd->fAccepting == 0) { |
749 | 0 | sd->fAccepting = -1; |
750 | 0 | } |
751 | 0 | } |
752 | 0 | if (sd->fAccepting==-1 && endMarker->fVal != 0) { |
753 | 0 | // Both lookahead and non-lookahead accepting for this state. |
754 | 0 | // Favor the look-ahead. Expedient for line break. |
755 | 0 | // TODO: need a more elegant resolution for conflicting rules. |
756 | 0 | sd->fAccepting = endMarker->fVal; |
757 | 0 | } |
758 | 0 | // implicit else: |
759 | 0 | // if sd->fAccepting already had a value other than 0 or -1, leave it be. |
760 | 0 |
|
761 | 0 | // If the end marker node is from a look-ahead rule, set |
762 | 0 | // the fLookAhead field for this state also. |
763 | 0 | if (endMarker->fLookAheadEnd) { |
764 | 0 | // TODO: don't change value if already set? |
765 | 0 | // TODO: allow for more than one active look-ahead rule in engine. |
766 | 0 | // Make value here an index to a side array in engine? |
767 | 0 | sd->fLookAhead = sd->fAccepting; |
768 | 0 | } |
769 | 0 | } |
770 | 0 | } |
771 | 0 | } |
772 | 0 | } |
773 | | |
774 | | |
775 | | //----------------------------------------------------------------------------- |
776 | | // |
777 | | // flagLookAheadStates Very similar to flagAcceptingStates, above. |
778 | | // |
779 | | //----------------------------------------------------------------------------- |
780 | 0 | void RBBITableBuilder::flagLookAheadStates() { |
781 | 0 | if (U_FAILURE(*fStatus)) { |
782 | 0 | return; |
783 | 0 | } |
784 | 0 | UVector lookAheadNodes(*fStatus); |
785 | 0 | RBBINode *lookAheadNode; |
786 | 0 | int32_t i; |
787 | 0 | int32_t n; |
788 | 0 |
|
789 | 0 | fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus); |
790 | 0 | if (U_FAILURE(*fStatus)) { |
791 | 0 | return; |
792 | 0 | } |
793 | 0 | for (i=0; i<lookAheadNodes.size(); i++) { |
794 | 0 | lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i); |
795 | 0 |
|
796 | 0 | for (n=0; n<fDStates->size(); n++) { |
797 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
798 | 0 | if (sd->fPositions->indexOf(lookAheadNode) >= 0) { |
799 | 0 | sd->fLookAhead = lookAheadNode->fVal; |
800 | 0 | } |
801 | 0 | } |
802 | 0 | } |
803 | 0 | } |
804 | | |
805 | | |
806 | | |
807 | | |
808 | | //----------------------------------------------------------------------------- |
809 | | // |
810 | | // flagTaggedStates |
811 | | // |
812 | | //----------------------------------------------------------------------------- |
813 | 0 | void RBBITableBuilder::flagTaggedStates() { |
814 | 0 | if (U_FAILURE(*fStatus)) { |
815 | 0 | return; |
816 | 0 | } |
817 | 0 | UVector tagNodes(*fStatus); |
818 | 0 | RBBINode *tagNode; |
819 | 0 | int32_t i; |
820 | 0 | int32_t n; |
821 | 0 |
|
822 | 0 | if (U_FAILURE(*fStatus)) { |
823 | 0 | return; |
824 | 0 | } |
825 | 0 | fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus); |
826 | 0 | if (U_FAILURE(*fStatus)) { |
827 | 0 | return; |
828 | 0 | } |
829 | 0 | for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em) |
830 | 0 | tagNode = (RBBINode *)tagNodes.elementAt(i); |
831 | 0 |
|
832 | 0 | for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table) |
833 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
834 | 0 | if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t |
835 | 0 | sortedAdd(&sd->fTagVals, tagNode->fVal); |
836 | 0 | } |
837 | 0 | } |
838 | 0 | } |
839 | 0 | } |
840 | | |
841 | | |
842 | | |
843 | | |
844 | | //----------------------------------------------------------------------------- |
845 | | // |
846 | | // mergeRuleStatusVals |
847 | | // |
848 | | // Update the global table of rule status {tag} values |
849 | | // The rule builder has a global vector of status values that are common |
850 | | // for all tables. Merge the ones from this table into the global set. |
851 | | // |
852 | | //----------------------------------------------------------------------------- |
853 | 0 | void RBBITableBuilder::mergeRuleStatusVals() { |
854 | 0 | // |
855 | 0 | // The basic outline of what happens here is this... |
856 | 0 | // |
857 | 0 | // for each state in this state table |
858 | 0 | // if the status tag list for this state is in the global statuses list |
859 | 0 | // record where and |
860 | 0 | // continue with the next state |
861 | 0 | // else |
862 | 0 | // add the tag list for this state to the global list. |
863 | 0 | // |
864 | 0 | int i; |
865 | 0 | int n; |
866 | 0 |
|
867 | 0 | // Pre-set a single tag of {0} into the table. |
868 | 0 | // We will need this as a default, for rule sets with no explicit tagging. |
869 | 0 | if (fRB->fRuleStatusVals->size() == 0) { |
870 | 0 | fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group |
871 | 0 | fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero |
872 | 0 | } |
873 | 0 |
|
874 | 0 | // For each state |
875 | 0 | for (n=0; n<fDStates->size(); n++) { |
876 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
877 | 0 | UVector *thisStatesTagValues = sd->fTagVals; |
878 | 0 | if (thisStatesTagValues == NULL) { |
879 | 0 | // No tag values are explicitly associated with this state. |
880 | 0 | // Set the default tag value. |
881 | 0 | sd->fTagsIdx = 0; |
882 | 0 | continue; |
883 | 0 | } |
884 | 0 | |
885 | 0 | // There are tag(s) associated with this state. |
886 | 0 | // fTagsIdx will be the index into the global tag list for this state's tag values. |
887 | 0 | // Initial value of -1 flags that we haven't got it set yet. |
888 | 0 | sd->fTagsIdx = -1; |
889 | 0 | int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list |
890 | 0 | int32_t nextTagGroupStart = 0; |
891 | 0 |
|
892 | 0 | // Loop runs once per group of tags in the global list |
893 | 0 | while (nextTagGroupStart < fRB->fRuleStatusVals->size()) { |
894 | 0 | thisTagGroupStart = nextTagGroupStart; |
895 | 0 | nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1; |
896 | 0 | if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) { |
897 | 0 | // The number of tags for this state is different from |
898 | 0 | // the number of tags in this group from the global list. |
899 | 0 | // Continue with the next group from the global list. |
900 | 0 | continue; |
901 | 0 | } |
902 | 0 | // The lengths match, go ahead and compare the actual tag values |
903 | 0 | // between this state and the group from the global list. |
904 | 0 | for (i=0; i<thisStatesTagValues->size(); i++) { |
905 | 0 | if (thisStatesTagValues->elementAti(i) != |
906 | 0 | fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) { |
907 | 0 | // Mismatch. |
908 | 0 | break; |
909 | 0 | } |
910 | 0 | } |
911 | 0 |
|
912 | 0 | if (i == thisStatesTagValues->size()) { |
913 | 0 | // We found a set of tag values in the global list that match |
914 | 0 | // those for this state. Use them. |
915 | 0 | sd->fTagsIdx = thisTagGroupStart; |
916 | 0 | break; |
917 | 0 | } |
918 | 0 | } |
919 | 0 |
|
920 | 0 | if (sd->fTagsIdx == -1) { |
921 | 0 | // No suitable entry in the global tag list already. Add one |
922 | 0 | sd->fTagsIdx = fRB->fRuleStatusVals->size(); |
923 | 0 | fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus); |
924 | 0 | for (i=0; i<thisStatesTagValues->size(); i++) { |
925 | 0 | fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus); |
926 | 0 | } |
927 | 0 | } |
928 | 0 | } |
929 | 0 | } |
930 | | |
931 | | |
932 | | |
933 | | |
934 | | |
935 | | |
936 | | |
937 | | //----------------------------------------------------------------------------- |
938 | | // |
939 | | // sortedAdd Add a value to a vector of sorted values (ints). |
940 | | // Do not replicate entries; if the value is already there, do not |
941 | | // add a second one. |
942 | | // Lazily create the vector if it does not already exist. |
943 | | // |
944 | | //----------------------------------------------------------------------------- |
945 | 0 | void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) { |
946 | 0 | int32_t i; |
947 | 0 |
|
948 | 0 | if (*vector == NULL) { |
949 | 0 | *vector = new UVector(*fStatus); |
950 | 0 | } |
951 | 0 | if (*vector == NULL || U_FAILURE(*fStatus)) { |
952 | 0 | return; |
953 | 0 | } |
954 | 0 | UVector *vec = *vector; |
955 | 0 | int32_t vSize = vec->size(); |
956 | 0 | for (i=0; i<vSize; i++) { |
957 | 0 | int32_t valAtI = vec->elementAti(i); |
958 | 0 | if (valAtI == val) { |
959 | 0 | // The value is already in the vector. Don't add it again. |
960 | 0 | return; |
961 | 0 | } |
962 | 0 | if (valAtI > val) { |
963 | 0 | break; |
964 | 0 | } |
965 | 0 | } |
966 | 0 | vec->insertElementAt(val, i, *fStatus); |
967 | 0 | } |
968 | | |
969 | | |
970 | | |
971 | | //----------------------------------------------------------------------------- |
972 | | // |
973 | | // setAdd Set operation on UVector |
974 | | // dest = dest union source |
975 | | // Elements may only appear once and must be sorted. |
976 | | // |
977 | | //----------------------------------------------------------------------------- |
978 | 0 | void RBBITableBuilder::setAdd(UVector *dest, UVector *source) { |
979 | 0 | int32_t destOriginalSize = dest->size(); |
980 | 0 | int32_t sourceSize = source->size(); |
981 | 0 | int32_t di = 0; |
982 | 0 | MaybeStackArray<void *, 16> destArray, sourceArray; // Handle small cases without malloc |
983 | 0 | void **destPtr, **sourcePtr; |
984 | 0 | void **destLim, **sourceLim; |
985 | 0 |
|
986 | 0 | if (destOriginalSize > destArray.getCapacity()) { |
987 | 0 | if (destArray.resize(destOriginalSize) == NULL) { |
988 | 0 | return; |
989 | 0 | } |
990 | 0 | } |
991 | 0 | destPtr = destArray.getAlias(); |
992 | 0 | destLim = destPtr + destOriginalSize; // destArray.getArrayLimit()? |
993 | 0 |
|
994 | 0 | if (sourceSize > sourceArray.getCapacity()) { |
995 | 0 | if (sourceArray.resize(sourceSize) == NULL) { |
996 | 0 | return; |
997 | 0 | } |
998 | 0 | } |
999 | 0 | sourcePtr = sourceArray.getAlias(); |
1000 | 0 | sourceLim = sourcePtr + sourceSize; // sourceArray.getArrayLimit()? |
1001 | 0 |
|
1002 | 0 | // Avoid multiple "get element" calls by getting the contents into arrays |
1003 | 0 | (void) dest->toArray(destPtr); |
1004 | 0 | (void) source->toArray(sourcePtr); |
1005 | 0 |
|
1006 | 0 | dest->setSize(sourceSize+destOriginalSize, *fStatus); |
1007 | 0 |
|
1008 | 0 | while (sourcePtr < sourceLim && destPtr < destLim) { |
1009 | 0 | if (*destPtr == *sourcePtr) { |
1010 | 0 | dest->setElementAt(*sourcePtr++, di++); |
1011 | 0 | destPtr++; |
1012 | 0 | } |
1013 | 0 | // This check is required for machines with segmented memory, like i5/OS. |
1014 | 0 | // Direct pointer comparison is not recommended. |
1015 | 0 | else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) { |
1016 | 0 | dest->setElementAt(*destPtr++, di++); |
1017 | 0 | } |
1018 | 0 | else { /* *sourcePtr < *destPtr */ |
1019 | 0 | dest->setElementAt(*sourcePtr++, di++); |
1020 | 0 | } |
1021 | 0 | } |
1022 | 0 |
|
1023 | 0 | // At most one of these two cleanup loops will execute |
1024 | 0 | while (destPtr < destLim) { |
1025 | 0 | dest->setElementAt(*destPtr++, di++); |
1026 | 0 | } |
1027 | 0 | while (sourcePtr < sourceLim) { |
1028 | 0 | dest->setElementAt(*sourcePtr++, di++); |
1029 | 0 | } |
1030 | 0 |
|
1031 | 0 | dest->setSize(di, *fStatus); |
1032 | 0 | } |
1033 | | |
1034 | | |
1035 | | |
1036 | | //----------------------------------------------------------------------------- |
1037 | | // |
1038 | | // setEqual Set operation on UVector. |
1039 | | // Compare for equality. |
1040 | | // Elements must be sorted. |
1041 | | // |
1042 | | //----------------------------------------------------------------------------- |
1043 | 0 | UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) { |
1044 | 0 | return a->equals(*b); |
1045 | 0 | } |
1046 | | |
1047 | | |
1048 | | //----------------------------------------------------------------------------- |
1049 | | // |
1050 | | // printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos |
1051 | | // for each node in the tree. |
1052 | | // |
1053 | | //----------------------------------------------------------------------------- |
1054 | | #ifdef RBBI_DEBUG |
1055 | | void RBBITableBuilder::printPosSets(RBBINode *n) { |
1056 | | if (n==NULL) { |
1057 | | return; |
1058 | | } |
1059 | | printf("\n"); |
1060 | | RBBINode::printNodeHeader(); |
1061 | | RBBINode::printNode(n); |
1062 | | RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE"); |
1063 | | |
1064 | | RBBIDebugPrintf(" firstpos: "); |
1065 | | printSet(n->fFirstPosSet); |
1066 | | |
1067 | | RBBIDebugPrintf(" lastpos: "); |
1068 | | printSet(n->fLastPosSet); |
1069 | | |
1070 | | RBBIDebugPrintf(" followpos: "); |
1071 | | printSet(n->fFollowPos); |
1072 | | |
1073 | | printPosSets(n->fLeftChild); |
1074 | | printPosSets(n->fRightChild); |
1075 | | } |
1076 | | #endif |
1077 | | |
1078 | | // |
1079 | | // findDuplCharClassFrom() |
1080 | | // |
1081 | 0 | bool RBBITableBuilder::findDuplCharClassFrom(IntPair *categories) { |
1082 | 0 | int32_t numStates = fDStates->size(); |
1083 | 0 | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); |
1084 | 0 |
|
1085 | 0 | uint16_t table_base; |
1086 | 0 | uint16_t table_dupl; |
1087 | 0 | for (; categories->first < numCols-1; categories->first++) { |
1088 | 0 | for (categories->second=categories->first+1; categories->second < numCols; categories->second++) { |
1089 | 0 | for (int32_t state=0; state<numStates; state++) { |
1090 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1091 | 0 | table_base = (uint16_t)sd->fDtran->elementAti(categories->first); |
1092 | 0 | table_dupl = (uint16_t)sd->fDtran->elementAti(categories->second); |
1093 | 0 | if (table_base != table_dupl) { |
1094 | 0 | break; |
1095 | 0 | } |
1096 | 0 | } |
1097 | 0 | if (table_base == table_dupl) { |
1098 | 0 | return true; |
1099 | 0 | } |
1100 | 0 | } |
1101 | 0 | } |
1102 | 0 | return false; |
1103 | 0 | } |
1104 | | |
1105 | | |
1106 | | // |
1107 | | // removeColumn() |
1108 | | // |
1109 | 0 | void RBBITableBuilder::removeColumn(int32_t column) { |
1110 | 0 | int32_t numStates = fDStates->size(); |
1111 | 0 | for (int32_t state=0; state<numStates; state++) { |
1112 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1113 | 0 | U_ASSERT(column < sd->fDtran->size()); |
1114 | 0 | sd->fDtran->removeElementAt(column); |
1115 | 0 | } |
1116 | 0 | } |
1117 | | |
1118 | | /* |
1119 | | * findDuplicateState |
1120 | | */ |
1121 | 0 | bool RBBITableBuilder::findDuplicateState(IntPair *states) { |
1122 | 0 | int32_t numStates = fDStates->size(); |
1123 | 0 | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); |
1124 | 0 |
|
1125 | 0 | for (; states->first<numStates-1; states->first++) { |
1126 | 0 | RBBIStateDescriptor *firstSD = (RBBIStateDescriptor *)fDStates->elementAt(states->first); |
1127 | 0 | for (states->second=states->first+1; states->second<numStates; states->second++) { |
1128 | 0 | RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(states->second); |
1129 | 0 | if (firstSD->fAccepting != duplSD->fAccepting || |
1130 | 0 | firstSD->fLookAhead != duplSD->fLookAhead || |
1131 | 0 | firstSD->fTagsIdx != duplSD->fTagsIdx) { |
1132 | 0 | continue; |
1133 | 0 | } |
1134 | 0 | bool rowsMatch = true; |
1135 | 0 | for (int32_t col=0; col < numCols; ++col) { |
1136 | 0 | int32_t firstVal = firstSD->fDtran->elementAti(col); |
1137 | 0 | int32_t duplVal = duplSD->fDtran->elementAti(col); |
1138 | 0 | if (!((firstVal == duplVal) || |
1139 | 0 | ((firstVal == states->first || firstVal == states->second) && |
1140 | 0 | (duplVal == states->first || duplVal == states->second)))) { |
1141 | 0 | rowsMatch = false; |
1142 | 0 | break; |
1143 | 0 | } |
1144 | 0 | } |
1145 | 0 | if (rowsMatch) { |
1146 | 0 | return true; |
1147 | 0 | } |
1148 | 0 | } |
1149 | 0 | } |
1150 | 0 | return false; |
1151 | 0 | } |
1152 | | |
1153 | | |
1154 | 0 | bool RBBITableBuilder::findDuplicateSafeState(IntPair *states) { |
1155 | 0 | int32_t numStates = fSafeTable->size(); |
1156 | 0 |
|
1157 | 0 | for (; states->first<numStates-1; states->first++) { |
1158 | 0 | UnicodeString *firstRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->first)); |
1159 | 0 | for (states->second=states->first+1; states->second<numStates; states->second++) { |
1160 | 0 | UnicodeString *duplRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->second)); |
1161 | 0 | bool rowsMatch = true; |
1162 | 0 | int32_t numCols = firstRow->length(); |
1163 | 0 | for (int32_t col=0; col < numCols; ++col) { |
1164 | 0 | int32_t firstVal = firstRow->charAt(col); |
1165 | 0 | int32_t duplVal = duplRow->charAt(col); |
1166 | 0 | if (!((firstVal == duplVal) || |
1167 | 0 | ((firstVal == states->first || firstVal == states->second) && |
1168 | 0 | (duplVal == states->first || duplVal == states->second)))) { |
1169 | 0 | rowsMatch = false; |
1170 | 0 | break; |
1171 | 0 | } |
1172 | 0 | } |
1173 | 0 | if (rowsMatch) { |
1174 | 0 | return true; |
1175 | 0 | } |
1176 | 0 | } |
1177 | 0 | } |
1178 | 0 | return false; |
1179 | 0 | } |
1180 | | |
1181 | | |
1182 | 0 | void RBBITableBuilder::removeState(IntPair duplStates) { |
1183 | 0 | const int32_t keepState = duplStates.first; |
1184 | 0 | const int32_t duplState = duplStates.second; |
1185 | 0 | U_ASSERT(keepState < duplState); |
1186 | 0 | U_ASSERT(duplState < fDStates->size()); |
1187 | 0 |
|
1188 | 0 | RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(duplState); |
1189 | 0 | fDStates->removeElementAt(duplState); |
1190 | 0 | delete duplSD; |
1191 | 0 |
|
1192 | 0 | int32_t numStates = fDStates->size(); |
1193 | 0 | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); |
1194 | 0 | for (int32_t state=0; state<numStates; ++state) { |
1195 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1196 | 0 | for (int32_t col=0; col<numCols; col++) { |
1197 | 0 | int32_t existingVal = sd->fDtran->elementAti(col); |
1198 | 0 | int32_t newVal = existingVal; |
1199 | 0 | if (existingVal == duplState) { |
1200 | 0 | newVal = keepState; |
1201 | 0 | } else if (existingVal > duplState) { |
1202 | 0 | newVal = existingVal - 1; |
1203 | 0 | } |
1204 | 0 | sd->fDtran->setElementAt(newVal, col); |
1205 | 0 | } |
1206 | 0 | if (sd->fAccepting == duplState) { |
1207 | 0 | sd->fAccepting = keepState; |
1208 | 0 | } else if (sd->fAccepting > duplState) { |
1209 | 0 | sd->fAccepting--; |
1210 | 0 | } |
1211 | 0 | if (sd->fLookAhead == duplState) { |
1212 | 0 | sd->fLookAhead = keepState; |
1213 | 0 | } else if (sd->fLookAhead > duplState) { |
1214 | 0 | sd->fLookAhead--; |
1215 | 0 | } |
1216 | 0 | } |
1217 | 0 | } |
1218 | | |
1219 | 0 | void RBBITableBuilder::removeSafeState(IntPair duplStates) { |
1220 | 0 | const int32_t keepState = duplStates.first; |
1221 | 0 | const int32_t duplState = duplStates.second; |
1222 | 0 | U_ASSERT(keepState < duplState); |
1223 | 0 | U_ASSERT(duplState < fSafeTable->size()); |
1224 | 0 |
|
1225 | 0 | fSafeTable->removeElementAt(duplState); // Note that fSafeTable has a deleter function |
1226 | 0 | // and will auto-delete the removed element. |
1227 | 0 | int32_t numStates = fSafeTable->size(); |
1228 | 0 | for (int32_t state=0; state<numStates; ++state) { |
1229 | 0 | UnicodeString *sd = (UnicodeString *)fSafeTable->elementAt(state); |
1230 | 0 | int32_t numCols = sd->length(); |
1231 | 0 | for (int32_t col=0; col<numCols; col++) { |
1232 | 0 | int32_t existingVal = sd->charAt(col); |
1233 | 0 | int32_t newVal = existingVal; |
1234 | 0 | if (existingVal == duplState) { |
1235 | 0 | newVal = keepState; |
1236 | 0 | } else if (existingVal > duplState) { |
1237 | 0 | newVal = existingVal - 1; |
1238 | 0 | } |
1239 | 0 | sd->setCharAt(col, newVal); |
1240 | 0 | } |
1241 | 0 | } |
1242 | 0 | } |
1243 | | |
1244 | | |
1245 | | /* |
1246 | | * RemoveDuplicateStates |
1247 | | */ |
1248 | 0 | void RBBITableBuilder::removeDuplicateStates() { |
1249 | 0 | IntPair dupls = {3, 0}; |
1250 | 0 | while (findDuplicateState(&dupls)) { |
1251 | 0 | // printf("Removing duplicate states (%d, %d)\n", dupls.first, dupls.second); |
1252 | 0 | removeState(dupls); |
1253 | 0 | } |
1254 | 0 | } |
1255 | | |
1256 | | |
1257 | | //----------------------------------------------------------------------------- |
1258 | | // |
1259 | | // getTableSize() Calculate the size of the runtime form of this |
1260 | | // state transition table. |
1261 | | // |
1262 | | //----------------------------------------------------------------------------- |
1263 | 0 | int32_t RBBITableBuilder::getTableSize() const { |
1264 | 0 | int32_t size = 0; |
1265 | 0 | int32_t numRows; |
1266 | 0 | int32_t numCols; |
1267 | 0 | int32_t rowSize; |
1268 | 0 |
|
1269 | 0 | if (fTree == NULL) { |
1270 | 0 | return 0; |
1271 | 0 | } |
1272 | 0 | |
1273 | 0 | size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table. |
1274 | 0 |
|
1275 | 0 | numRows = fDStates->size(); |
1276 | 0 | numCols = fRB->fSetBuilder->getNumCharCategories(); |
1277 | 0 |
|
1278 | 0 | rowSize = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t)*numCols; |
1279 | 0 | size += numRows * rowSize; |
1280 | 0 | return size; |
1281 | 0 | } |
1282 | | |
1283 | | |
1284 | | //----------------------------------------------------------------------------- |
1285 | | // |
1286 | | // exportTable() export the state transition table in the format required |
1287 | | // by the runtime engine. getTableSize() bytes of memory |
1288 | | // must be available at the output address "where". |
1289 | | // |
1290 | | //----------------------------------------------------------------------------- |
1291 | 0 | void RBBITableBuilder::exportTable(void *where) { |
1292 | 0 | RBBIStateTable *table = (RBBIStateTable *)where; |
1293 | 0 | uint32_t state; |
1294 | 0 | int col; |
1295 | 0 |
|
1296 | 0 | if (U_FAILURE(*fStatus) || fTree == NULL) { |
1297 | 0 | return; |
1298 | 0 | } |
1299 | 0 | |
1300 | 0 | int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); |
1301 | 0 | if (catCount > 0x7fff || |
1302 | 0 | fDStates->size() > 0x7fff) { |
1303 | 0 | *fStatus = U_BRK_INTERNAL_ERROR; |
1304 | 0 | return; |
1305 | 0 | } |
1306 | 0 | |
1307 | 0 | table->fRowLen = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t) * catCount; |
1308 | 0 | table->fNumStates = fDStates->size(); |
1309 | 0 | table->fFlags = 0; |
1310 | 0 | if (fRB->fLookAheadHardBreak) { |
1311 | 0 | table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK; |
1312 | 0 | } |
1313 | 0 | if (fRB->fSetBuilder->sawBOF()) { |
1314 | 0 | table->fFlags |= RBBI_BOF_REQUIRED; |
1315 | 0 | } |
1316 | 0 | table->fReserved = 0; |
1317 | 0 |
|
1318 | 0 | for (state=0; state<table->fNumStates; state++) { |
1319 | 0 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1320 | 0 | RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); |
1321 | 0 | U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767); |
1322 | 0 | U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767); |
1323 | 0 | row->fAccepting = (int16_t)sd->fAccepting; |
1324 | 0 | row->fLookAhead = (int16_t)sd->fLookAhead; |
1325 | 0 | row->fTagIdx = (int16_t)sd->fTagsIdx; |
1326 | 0 | for (col=0; col<catCount; col++) { |
1327 | 0 | row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col); |
1328 | 0 | } |
1329 | 0 | } |
1330 | 0 | } |
1331 | | |
1332 | | |
1333 | | /** |
1334 | | * Synthesize a safe state table from the main state table. |
1335 | | */ |
1336 | 0 | void RBBITableBuilder::buildSafeReverseTable(UErrorCode &status) { |
1337 | 0 | // The safe table creation has three steps: |
1338 | 0 |
|
1339 | 0 | // 1. Identifiy pairs of character classes that are "safe." Safe means that boundaries |
1340 | 0 | // following the pair do not depend on context or state before the pair. To test |
1341 | 0 | // whether a pair is safe, run it through the main forward state table, starting |
1342 | 0 | // from each state. If the the final state is the same, no matter what the starting state, |
1343 | 0 | // the pair is safe. |
1344 | 0 | // |
1345 | 0 | // 2. Build a state table that recognizes the safe pairs. It's similar to their |
1346 | 0 | // forward table, with a column for each input character [class], and a row for |
1347 | 0 | // each state. Row 1 is the start state, and row 0 is the stop state. Initially |
1348 | 0 | // create an additional state for each input character category; being in |
1349 | 0 | // one of these states means that the character has been seen, and is potentially |
1350 | 0 | // the first of a pair. In each of these rows, the entry for the second character |
1351 | 0 | // of a safe pair is set to the stop state (0), indicating that a match was found. |
1352 | 0 | // All other table entries are set to the state corresponding the current input |
1353 | 0 | // character, allowing that charcter to be the of a start following pair. |
1354 | 0 | // |
1355 | 0 | // Because the safe rules are to be run in reverse, moving backwards in the text, |
1356 | 0 | // the first and second pair categories are swapped when building the table. |
1357 | 0 | // |
1358 | 0 | // 3. Compress the table. There are typically many rows (states) that are |
1359 | 0 | // equivalent - that have zeroes (match completed) in the same columns - |
1360 | 0 | // and can be folded together. |
1361 | 0 |
|
1362 | 0 | // Each safe pair is stored as two UChars in the safePair string. |
1363 | 0 | UnicodeString safePairs; |
1364 | 0 |
|
1365 | 0 | int32_t numCharClasses = fRB->fSetBuilder->getNumCharCategories(); |
1366 | 0 | int32_t numStates = fDStates->size(); |
1367 | 0 |
|
1368 | 0 | for (int32_t c1=0; c1<numCharClasses; ++c1) { |
1369 | 0 | for (int32_t c2=0; c2 < numCharClasses; ++c2) { |
1370 | 0 | int32_t wantedEndState = -1; |
1371 | 0 | int32_t endState = 0; |
1372 | 0 | for (int32_t startState = 1; startState < numStates; ++startState) { |
1373 | 0 | RBBIStateDescriptor *startStateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(startState)); |
1374 | 0 | int32_t s2 = startStateD->fDtran->elementAti(c1); |
1375 | 0 | RBBIStateDescriptor *s2StateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(s2)); |
1376 | 0 | endState = s2StateD->fDtran->elementAti(c2); |
1377 | 0 | if (wantedEndState < 0) { |
1378 | 0 | wantedEndState = endState; |
1379 | 0 | } else { |
1380 | 0 | if (wantedEndState != endState) { |
1381 | 0 | break; |
1382 | 0 | } |
1383 | 0 | } |
1384 | 0 | } |
1385 | 0 | if (wantedEndState == endState) { |
1386 | 0 | safePairs.append((char16_t)c1); |
1387 | 0 | safePairs.append((char16_t)c2); |
1388 | 0 | // printf("(%d, %d) ", c1, c2); |
1389 | 0 | } |
1390 | 0 | } |
1391 | 0 | // printf("\n"); |
1392 | 0 | } |
1393 | 0 |
|
1394 | 0 | // Populate the initial safe table. |
1395 | 0 | // The table as a whole is UVector<UnicodeString> |
1396 | 0 | // Each row is represented by a UnicodeString, being used as a Vector<int16>. |
1397 | 0 | // Row 0 is the stop state. |
1398 | 0 | // Row 1 is the start sate. |
1399 | 0 | // Row 2 and beyond are other states, initially one per char class, but |
1400 | 0 | // after initial construction, many of the states will be combined, compacting the table. |
1401 | 0 | // The String holds the nextState data only. The four leading fields of a row, fAccepting, |
1402 | 0 | // fLookAhead, etc. are not needed for the safe table, and are omitted at this stage of building. |
1403 | 0 |
|
1404 | 0 | U_ASSERT(fSafeTable == nullptr); |
1405 | 0 | fSafeTable = new UVector(uprv_deleteUObject, uhash_compareUnicodeString, numCharClasses + 2, status); |
1406 | 0 | for (int32_t row=0; row<numCharClasses + 2; ++row) { |
1407 | 0 | fSafeTable->addElement(new UnicodeString(numCharClasses, 0, numCharClasses+4), status); |
1408 | 0 | } |
1409 | 0 |
|
1410 | 0 | // From the start state, each input char class transitions to the state for that input. |
1411 | 0 | UnicodeString &startState = *static_cast<UnicodeString *>(fSafeTable->elementAt(1)); |
1412 | 0 | for (int32_t charClass=0; charClass < numCharClasses; ++charClass) { |
1413 | 0 | // Note: +2 for the start & stop state. |
1414 | 0 | startState.setCharAt(charClass, charClass+2); |
1415 | 0 | } |
1416 | 0 |
|
1417 | 0 | // Initially make every other state table row look like the start state row, |
1418 | 0 | for (int32_t row=2; row<numCharClasses+2; ++row) { |
1419 | 0 | UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(row)); |
1420 | 0 | rowState = startState; // UnicodeString assignment, copies contents. |
1421 | 0 | } |
1422 | 0 |
|
1423 | 0 | // Run through the safe pairs, set the next state to zero when pair has been seen. |
1424 | 0 | // Zero being the stop state, meaning we found a safe point. |
1425 | 0 | for (int32_t pairIdx=0; pairIdx<safePairs.length(); pairIdx+=2) { |
1426 | 0 | int32_t c1 = safePairs.charAt(pairIdx); |
1427 | 0 | int32_t c2 = safePairs.charAt(pairIdx + 1); |
1428 | 0 |
|
1429 | 0 | UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(c2 + 2)); |
1430 | 0 | rowState.setCharAt(c1, 0); |
1431 | 0 | } |
1432 | 0 |
|
1433 | 0 | // Remove duplicate or redundant rows from the table. |
1434 | 0 | IntPair states = {1, 0}; |
1435 | 0 | while (findDuplicateSafeState(&states)) { |
1436 | 0 | // printf("Removing duplicate safe states (%d, %d)\n", states.first, states.second); |
1437 | 0 | removeSafeState(states); |
1438 | 0 | } |
1439 | 0 | } |
1440 | | |
1441 | | |
1442 | | //----------------------------------------------------------------------------- |
1443 | | // |
1444 | | // getSafeTableSize() Calculate the size of the runtime form of this |
1445 | | // safe state table. |
1446 | | // |
1447 | | //----------------------------------------------------------------------------- |
1448 | 0 | int32_t RBBITableBuilder::getSafeTableSize() const { |
1449 | 0 | int32_t size = 0; |
1450 | 0 | int32_t numRows; |
1451 | 0 | int32_t numCols; |
1452 | 0 | int32_t rowSize; |
1453 | 0 |
|
1454 | 0 | if (fSafeTable == nullptr) { |
1455 | 0 | return 0; |
1456 | 0 | } |
1457 | 0 | |
1458 | 0 | size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table. |
1459 | 0 |
|
1460 | 0 | numRows = fSafeTable->size(); |
1461 | 0 | numCols = fRB->fSetBuilder->getNumCharCategories(); |
1462 | 0 |
|
1463 | 0 | rowSize = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t)*numCols; |
1464 | 0 | size += numRows * rowSize; |
1465 | 0 | return size; |
1466 | 0 | } |
1467 | | |
1468 | | |
1469 | | //----------------------------------------------------------------------------- |
1470 | | // |
1471 | | // exportSafeTable() export the state transition table in the format required |
1472 | | // by the runtime engine. getTableSize() bytes of memory |
1473 | | // must be available at the output address "where". |
1474 | | // |
1475 | | //----------------------------------------------------------------------------- |
1476 | 0 | void RBBITableBuilder::exportSafeTable(void *where) { |
1477 | 0 | RBBIStateTable *table = (RBBIStateTable *)where; |
1478 | 0 | uint32_t state; |
1479 | 0 | int col; |
1480 | 0 |
|
1481 | 0 | if (U_FAILURE(*fStatus) || fSafeTable == nullptr) { |
1482 | 0 | return; |
1483 | 0 | } |
1484 | 0 | |
1485 | 0 | int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); |
1486 | 0 | if (catCount > 0x7fff || |
1487 | 0 | fSafeTable->size() > 0x7fff) { |
1488 | 0 | *fStatus = U_BRK_INTERNAL_ERROR; |
1489 | 0 | return; |
1490 | 0 | } |
1491 | 0 | |
1492 | 0 | table->fRowLen = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t) * catCount; |
1493 | 0 | table->fNumStates = fSafeTable->size(); |
1494 | 0 | table->fFlags = 0; |
1495 | 0 | table->fReserved = 0; |
1496 | 0 |
|
1497 | 0 | for (state=0; state<table->fNumStates; state++) { |
1498 | 0 | UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(state); |
1499 | 0 | RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); |
1500 | 0 | row->fAccepting = 0; |
1501 | 0 | row->fLookAhead = 0; |
1502 | 0 | row->fTagIdx = 0; |
1503 | 0 | row->fReserved = 0; |
1504 | 0 | for (col=0; col<catCount; col++) { |
1505 | 0 | row->fNextState[col] = rowString->charAt(col); |
1506 | 0 | } |
1507 | 0 | } |
1508 | 0 | } |
1509 | | |
1510 | | |
1511 | | |
1512 | | |
1513 | | //----------------------------------------------------------------------------- |
1514 | | // |
1515 | | // printSet Debug function. Print the contents of a UVector |
1516 | | // |
1517 | | //----------------------------------------------------------------------------- |
1518 | | #ifdef RBBI_DEBUG |
1519 | | void RBBITableBuilder::printSet(UVector *s) { |
1520 | | int32_t i; |
1521 | | for (i=0; i<s->size(); i++) { |
1522 | | const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i)); |
1523 | | RBBIDebugPrintf("%5d", v==NULL? -1 : v->fSerialNum); |
1524 | | } |
1525 | | RBBIDebugPrintf("\n"); |
1526 | | } |
1527 | | #endif |
1528 | | |
1529 | | |
1530 | | //----------------------------------------------------------------------------- |
1531 | | // |
1532 | | // printStates Debug Function. Dump the fully constructed state transition table. |
1533 | | // |
1534 | | //----------------------------------------------------------------------------- |
1535 | | #ifdef RBBI_DEBUG |
1536 | | void RBBITableBuilder::printStates() { |
1537 | | int c; // input "character" |
1538 | | int n; // state number |
1539 | | |
1540 | | RBBIDebugPrintf("state | i n p u t s y m b o l s \n"); |
1541 | | RBBIDebugPrintf(" | Acc LA Tag"); |
1542 | | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1543 | | RBBIDebugPrintf(" %2d", c); |
1544 | | } |
1545 | | RBBIDebugPrintf("\n"); |
1546 | | RBBIDebugPrintf(" |---------------"); |
1547 | | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1548 | | RBBIDebugPrintf("---"); |
1549 | | } |
1550 | | RBBIDebugPrintf("\n"); |
1551 | | |
1552 | | for (n=0; n<fDStates->size(); n++) { |
1553 | | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
1554 | | RBBIDebugPrintf(" %3d | " , n); |
1555 | | RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx); |
1556 | | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1557 | | RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c)); |
1558 | | } |
1559 | | RBBIDebugPrintf("\n"); |
1560 | | } |
1561 | | RBBIDebugPrintf("\n\n"); |
1562 | | } |
1563 | | #endif |
1564 | | |
1565 | | |
1566 | | //----------------------------------------------------------------------------- |
1567 | | // |
1568 | | // printSafeTable Debug Function. Dump the fully constructed safe table. |
1569 | | // |
1570 | | //----------------------------------------------------------------------------- |
1571 | | #ifdef RBBI_DEBUG |
1572 | | void RBBITableBuilder::printReverseTable() { |
1573 | | int c; // input "character" |
1574 | | int n; // state number |
1575 | | |
1576 | | RBBIDebugPrintf(" Safe Reverse Table \n"); |
1577 | | if (fSafeTable == nullptr) { |
1578 | | RBBIDebugPrintf(" --- nullptr ---\n"); |
1579 | | return; |
1580 | | } |
1581 | | RBBIDebugPrintf("state | i n p u t s y m b o l s \n"); |
1582 | | RBBIDebugPrintf(" | Acc LA Tag"); |
1583 | | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1584 | | RBBIDebugPrintf(" %2d", c); |
1585 | | } |
1586 | | RBBIDebugPrintf("\n"); |
1587 | | RBBIDebugPrintf(" |---------------"); |
1588 | | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1589 | | RBBIDebugPrintf("---"); |
1590 | | } |
1591 | | RBBIDebugPrintf("\n"); |
1592 | | |
1593 | | for (n=0; n<fSafeTable->size(); n++) { |
1594 | | UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(n); |
1595 | | RBBIDebugPrintf(" %3d | " , n); |
1596 | | RBBIDebugPrintf("%3d %3d %5d ", 0, 0, 0); // Accepting, LookAhead, Tags |
1597 | | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1598 | | RBBIDebugPrintf(" %2d", rowString->charAt(c)); |
1599 | | } |
1600 | | RBBIDebugPrintf("\n"); |
1601 | | } |
1602 | | RBBIDebugPrintf("\n\n"); |
1603 | | } |
1604 | | #endif |
1605 | | |
1606 | | |
1607 | | |
1608 | | //----------------------------------------------------------------------------- |
1609 | | // |
1610 | | // printRuleStatusTable Debug Function. Dump the common rule status table |
1611 | | // |
1612 | | //----------------------------------------------------------------------------- |
1613 | | #ifdef RBBI_DEBUG |
1614 | | void RBBITableBuilder::printRuleStatusTable() { |
1615 | | int32_t thisRecord = 0; |
1616 | | int32_t nextRecord = 0; |
1617 | | int i; |
1618 | | UVector *tbl = fRB->fRuleStatusVals; |
1619 | | |
1620 | | RBBIDebugPrintf("index | tags \n"); |
1621 | | RBBIDebugPrintf("-------------------\n"); |
1622 | | |
1623 | | while (nextRecord < tbl->size()) { |
1624 | | thisRecord = nextRecord; |
1625 | | nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1; |
1626 | | RBBIDebugPrintf("%4d ", thisRecord); |
1627 | | for (i=thisRecord+1; i<nextRecord; i++) { |
1628 | | RBBIDebugPrintf(" %5d", tbl->elementAti(i)); |
1629 | | } |
1630 | | RBBIDebugPrintf("\n"); |
1631 | | } |
1632 | | RBBIDebugPrintf("\n\n"); |
1633 | | } |
1634 | | #endif |
1635 | | |
1636 | | |
1637 | | //----------------------------------------------------------------------------- |
1638 | | // |
1639 | | // RBBIStateDescriptor Methods. This is a very struct-like class |
1640 | | // Most access is directly to the fields. |
1641 | | // |
1642 | | //----------------------------------------------------------------------------- |
1643 | | |
1644 | 0 | RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) { |
1645 | 0 | fMarked = FALSE; |
1646 | 0 | fAccepting = 0; |
1647 | 0 | fLookAhead = 0; |
1648 | 0 | fTagsIdx = 0; |
1649 | 0 | fTagVals = NULL; |
1650 | 0 | fPositions = NULL; |
1651 | 0 | fDtran = NULL; |
1652 | 0 |
|
1653 | 0 | fDtran = new UVector32(lastInputSymbol+1, *fStatus); |
1654 | 0 | if (U_FAILURE(*fStatus)) { |
1655 | 0 | return; |
1656 | 0 | } |
1657 | 0 | if (fDtran == NULL) { |
1658 | 0 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
1659 | 0 | return; |
1660 | 0 | } |
1661 | 0 | fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized. |
1662 | 0 | // It is indexed by input symbols, and will |
1663 | 0 | // hold the next state number for each |
1664 | 0 | // symbol. |
1665 | 0 | } |
1666 | | |
1667 | | |
1668 | 0 | RBBIStateDescriptor::~RBBIStateDescriptor() { |
1669 | 0 | delete fPositions; |
1670 | 0 | delete fDtran; |
1671 | 0 | delete fTagVals; |
1672 | 0 | fPositions = NULL; |
1673 | 0 | fDtran = NULL; |
1674 | 0 | fTagVals = NULL; |
1675 | 0 | } |
1676 | | |
1677 | | U_NAMESPACE_END |
1678 | | |
1679 | | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |