Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/intl/icu/source/common/ucnvsel.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
*******************************************************************************
5
*
6
*   Copyright (C) 2008-2011, International Business Machines
7
*   Corporation, Google and others.  All Rights Reserved.
8
*
9
*******************************************************************************
10
*/
11
// Author : eldawy@google.com (Mohamed Eldawy)
12
// ucnvsel.cpp
13
//
14
// Purpose: To generate a list of encodings capable of handling
15
// a given Unicode text
16
//
17
// Started 09-April-2008
18
19
/**
20
 * \file
21
 *
22
 * This is an implementation of an encoding selector.
23
 * The goal is, given a unicode string, find the encodings
24
 * this string can be mapped to. To make processing faster
25
 * a trie is built when you call ucnvsel_open() that
26
 * stores all encodings a codepoint can map to
27
 */
28
29
#include "unicode/ucnvsel.h"
30
31
#if !UCONFIG_NO_CONVERSION
32
33
#include <string.h>
34
35
#include "unicode/uchar.h"
36
#include "unicode/uniset.h"
37
#include "unicode/ucnv.h"
38
#include "unicode/ustring.h"
39
#include "unicode/uchriter.h"
40
#include "utrie2.h"
41
#include "propsvec.h"
42
#include "uassert.h"
43
#include "ucmndata.h"
44
#include "uenumimp.h"
45
#include "cmemory.h"
46
#include "cstring.h"
47
48
U_NAMESPACE_USE
49
50
struct UConverterSelector {
51
  UTrie2 *trie;              // 16 bit trie containing offsets into pv
52
  uint32_t* pv;              // table of bits!
53
  int32_t pvCount;
54
  char** encodings;          // which encodings did user ask to use?
55
  int32_t encodingsCount;
56
  int32_t encodingStrLength;
57
  uint8_t* swapped;
58
  UBool ownPv, ownEncodingStrings;
59
};
60
61
static void generateSelectorData(UConverterSelector* result,
62
                                 UPropsVectors *upvec,
63
                                 const USet* excludedCodePoints,
64
                                 const UConverterUnicodeSet whichSet,
65
0
                                 UErrorCode* status) {
66
0
  if (U_FAILURE(*status)) {
67
0
    return;
68
0
  }
69
0
70
0
  int32_t columns = (result->encodingsCount+31)/32;
71
0
72
0
  // set errorValue to all-ones
73
0
  for (int32_t col = 0; col < columns; col++) {
74
0
    upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
75
0
                   col, ~0, ~0, status);
76
0
  }
77
0
78
0
  for (int32_t i = 0; i < result->encodingsCount; ++i) {
79
0
    uint32_t mask;
80
0
    uint32_t column;
81
0
    int32_t item_count;
82
0
    int32_t j;
83
0
    UConverter* test_converter = ucnv_open(result->encodings[i], status);
84
0
    if (U_FAILURE(*status)) {
85
0
      return;
86
0
    }
87
0
    USet* unicode_point_set;
88
0
    unicode_point_set = uset_open(1, 0);  // empty set
89
0
90
0
    ucnv_getUnicodeSet(test_converter, unicode_point_set,
91
0
                       whichSet, status);
92
0
    if (U_FAILURE(*status)) {
93
0
      ucnv_close(test_converter);
94
0
      return;
95
0
    }
96
0
97
0
    column = i / 32;
98
0
    mask = 1 << (i%32);
99
0
    // now iterate over intervals on set i!
100
0
    item_count = uset_getItemCount(unicode_point_set);
101
0
102
0
    for (j = 0; j < item_count; ++j) {
103
0
      UChar32 start_char;
104
0
      UChar32 end_char;
105
0
      UErrorCode smallStatus = U_ZERO_ERROR;
106
0
      uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
107
0
                   &smallStatus);
108
0
      if (U_FAILURE(smallStatus)) {
109
0
        // this will be reached for the converters that fill the set with
110
0
        // strings. Those should be ignored by our system
111
0
      } else {
112
0
        upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
113
0
                       status);
114
0
      }
115
0
    }
116
0
    ucnv_close(test_converter);
117
0
    uset_close(unicode_point_set);
118
0
    if (U_FAILURE(*status)) {
119
0
      return;
120
0
    }
121
0
  }
122
0
123
0
  // handle excluded encodings! Simply set their values to all 1's in the upvec
124
0
  if (excludedCodePoints) {
125
0
    int32_t item_count = uset_getItemCount(excludedCodePoints);
126
0
    for (int32_t j = 0; j < item_count; ++j) {
127
0
      UChar32 start_char;
128
0
      UChar32 end_char;
129
0
130
0
      uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
131
0
                   status);
132
0
      for (int32_t col = 0; col < columns; col++) {
133
0
        upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
134
0
                      status);
135
0
      }
136
0
    }
137
0
  }
138
0
139
0
  // alright. Now, let's put things in the same exact form you'd get when you
140
0
  // unserialize things.
141
0
  result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
142
0
  result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
143
0
  result->pvCount *= columns;  // number of uint32_t = rows * columns
144
0
  result->ownPv = TRUE;
145
0
}
146
147
/* open a selector. If converterListSize is 0, build for all converters.
148
   If excludedCodePoints is NULL, don't exclude any codepoints */
149
U_CAPI UConverterSelector* U_EXPORT2
150
ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
151
             const USet* excludedCodePoints,
152
0
             const UConverterUnicodeSet whichSet, UErrorCode* status) {
153
0
  // check if already failed
154
0
  if (U_FAILURE(*status)) {
155
0
    return NULL;
156
0
  }
157
0
  // ensure args make sense!
158
0
  if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
159
0
    *status = U_ILLEGAL_ARGUMENT_ERROR;
160
0
    return NULL;
161
0
  }
162
0
163
0
  // allocate a new converter
164
0
  LocalUConverterSelectorPointer newSelector(
165
0
    (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
166
0
  if (newSelector.isNull()) {
167
0
    *status = U_MEMORY_ALLOCATION_ERROR;
168
0
    return NULL;
169
0
  }
170
0
  uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
171
0
172
0
  if (converterListSize == 0) {
173
0
    converterList = NULL;
174
0
    converterListSize = ucnv_countAvailable();
175
0
  }
176
0
  newSelector->encodings =
177
0
    (char**)uprv_malloc(converterListSize * sizeof(char*));
178
0
  if (!newSelector->encodings) {
179
0
    *status = U_MEMORY_ALLOCATION_ERROR;
180
0
    return NULL;
181
0
  }
182
0
  newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
183
0
184
0
  // make a backup copy of the list of converters
185
0
  int32_t totalSize = 0;
186
0
  int32_t i;
187
0
  for (i = 0; i < converterListSize; i++) {
188
0
    totalSize +=
189
0
      (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
190
0
  }
191
0
  // 4-align the totalSize to 4-align the size of the serialized form
192
0
  int32_t encodingStrPadding = totalSize & 3;
193
0
  if (encodingStrPadding != 0) {
194
0
    encodingStrPadding = 4 - encodingStrPadding;
195
0
  }
196
0
  newSelector->encodingStrLength = totalSize += encodingStrPadding;
197
0
  char* allStrings = (char*) uprv_malloc(totalSize);
198
0
  if (!allStrings) {
199
0
    *status = U_MEMORY_ALLOCATION_ERROR;
200
0
    return NULL;
201
0
  }
202
0
203
0
  for (i = 0; i < converterListSize; i++) {
204
0
    newSelector->encodings[i] = allStrings;
205
0
    uprv_strcpy(newSelector->encodings[i],
206
0
                converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
207
0
    allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
208
0
  }
209
0
  while (encodingStrPadding > 0) {
210
0
    *allStrings++ = 0;
211
0
    --encodingStrPadding;
212
0
  }
213
0
214
0
  newSelector->ownEncodingStrings = TRUE;
215
0
  newSelector->encodingsCount = converterListSize;
216
0
  UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
217
0
  generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
218
0
  upvec_close(upvec);
219
0
220
0
  if (U_FAILURE(*status)) {
221
0
    return NULL;
222
0
  }
223
0
224
0
  return newSelector.orphan();
225
0
}
226
227
/* close opened selector */
228
U_CAPI void U_EXPORT2
229
0
ucnvsel_close(UConverterSelector *sel) {
230
0
  if (!sel) {
231
0
    return;
232
0
  }
233
0
  if (sel->ownEncodingStrings) {
234
0
    uprv_free(sel->encodings[0]);
235
0
  }
236
0
  uprv_free(sel->encodings);
237
0
  if (sel->ownPv) {
238
0
    uprv_free(sel->pv);
239
0
  }
240
0
  utrie2_close(sel->trie);
241
0
  uprv_free(sel->swapped);
242
0
  uprv_free(sel);
243
0
}
244
245
static const UDataInfo dataInfo = {
246
  sizeof(UDataInfo),
247
  0,
248
249
  U_IS_BIG_ENDIAN,
250
  U_CHARSET_FAMILY,
251
  U_SIZEOF_UCHAR,
252
  0,
253
254
  { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
255
  { 1, 0, 0, 0 },               /* formatVersion */
256
  { 0, 0, 0, 0 }                /* dataVersion */
257
};
258
259
enum {
260
  UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
261
  UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
262
  UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
263
  UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
264
  UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
265
  UCNVSEL_INDEX_COUNT = 16
266
};
267
268
/*
269
 * Serialized form of a UConverterSelector, formatVersion 1:
270
 *
271
 * The serialized form begins with a standard ICU DataHeader with a UDataInfo
272
 * as the template above.
273
 * This is followed by:
274
 *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
275
 *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
276
 *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
277
 *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
278
 */
279
280
/* serialize a selector */
281
U_CAPI int32_t U_EXPORT2
282
ucnvsel_serialize(const UConverterSelector* sel,
283
0
                  void* buffer, int32_t bufferCapacity, UErrorCode* status) {
284
0
  // check if already failed
285
0
  if (U_FAILURE(*status)) {
286
0
    return 0;
287
0
  }
288
0
  // ensure args make sense!
289
0
  uint8_t *p = (uint8_t *)buffer;
290
0
  if (bufferCapacity < 0 ||
291
0
      (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
292
0
  ) {
293
0
    *status = U_ILLEGAL_ARGUMENT_ERROR;
294
0
    return 0;
295
0
  }
296
0
  // add up the size of the serialized form
297
0
  int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
298
0
  if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
299
0
    return 0;
300
0
  }
301
0
  *status = U_ZERO_ERROR;
302
0
303
0
  DataHeader header;
304
0
  uprv_memset(&header, 0, sizeof(header));
305
0
  header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
306
0
  header.dataHeader.magic1 = 0xda;
307
0
  header.dataHeader.magic2 = 0x27;
308
0
  uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
309
0
310
0
  int32_t indexes[UCNVSEL_INDEX_COUNT] = {
311
0
    serializedTrieSize,
312
0
    sel->pvCount,
313
0
    sel->encodingsCount,
314
0
    sel->encodingStrLength
315
0
  };
316
0
317
0
  int32_t totalSize =
318
0
    header.dataHeader.headerSize +
319
0
    (int32_t)sizeof(indexes) +
320
0
    serializedTrieSize +
321
0
    sel->pvCount * 4 +
322
0
    sel->encodingStrLength;
323
0
  indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
324
0
  if (totalSize > bufferCapacity) {
325
0
    *status = U_BUFFER_OVERFLOW_ERROR;
326
0
    return totalSize;
327
0
  }
328
0
  // ok, save!
329
0
  int32_t length = header.dataHeader.headerSize;
330
0
  uprv_memcpy(p, &header, sizeof(header));
331
0
  uprv_memset(p + sizeof(header), 0, length - sizeof(header));
332
0
  p += length;
333
0
334
0
  length = (int32_t)sizeof(indexes);
335
0
  uprv_memcpy(p, indexes, length);
336
0
  p += length;
337
0
338
0
  utrie2_serialize(sel->trie, p, serializedTrieSize, status);
339
0
  p += serializedTrieSize;
340
0
341
0
  length = sel->pvCount * 4;
342
0
  uprv_memcpy(p, sel->pv, length);
343
0
  p += length;
344
0
345
0
  uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
346
0
  p += sel->encodingStrLength;
347
0
348
0
  return totalSize;
349
0
}
350
351
/**
352
 * swap a selector into the desired Endianness and Asciiness of
353
 * the system. Just as FYI, selectors are always saved in the format
354
 * of the system that created them. They are only converted if used
355
 * on another system. In other words, selectors created on different
356
 * system can be different even if the params are identical (endianness
357
 * and Asciiness differences only)
358
 *
359
 * @param ds pointer to data swapper containing swapping info
360
 * @param inData pointer to incoming data
361
 * @param length length of inData in bytes
362
 * @param outData pointer to output data. Capacity should
363
 *                be at least equal to capacity of inData
364
 * @param status an in/out ICU UErrorCode
365
 * @return 0 on failure, number of bytes swapped on success
366
 *         number of bytes swapped can be smaller than length
367
 */
368
static int32_t
369
ucnvsel_swap(const UDataSwapper *ds,
370
             const void *inData, int32_t length,
371
0
             void *outData, UErrorCode *status) {
372
0
  /* udata_swapDataHeader checks the arguments */
373
0
  int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
374
0
  if(U_FAILURE(*status)) {
375
0
    return 0;
376
0
  }
377
0
378
0
  /* check data format and format version */
379
0
  const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
380
0
  if(!(
381
0
    pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
382
0
    pInfo->dataFormat[1] == 0x53 &&
383
0
    pInfo->dataFormat[2] == 0x65 &&
384
0
    pInfo->dataFormat[3] == 0x6c
385
0
  )) {
386
0
    udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
387
0
                     pInfo->dataFormat[0], pInfo->dataFormat[1],
388
0
                     pInfo->dataFormat[2], pInfo->dataFormat[3]);
389
0
    *status = U_INVALID_FORMAT_ERROR;
390
0
    return 0;
391
0
  }
392
0
  if(pInfo->formatVersion[0] != 1) {
393
0
    udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
394
0
                     pInfo->formatVersion[0]);
395
0
    *status = U_UNSUPPORTED_ERROR;
396
0
    return 0;
397
0
  }
398
0
399
0
  if(length >= 0) {
400
0
    length -= headerSize;
401
0
    if(length < 16*4) {
402
0
      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
403
0
                       length);
404
0
      *status = U_INDEX_OUTOFBOUNDS_ERROR;
405
0
      return 0;
406
0
    }
407
0
  }
408
0
409
0
  const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
410
0
  uint8_t *outBytes = (uint8_t *)outData + headerSize;
411
0
412
0
  /* read the indexes */
413
0
  const int32_t *inIndexes = (const int32_t *)inBytes;
414
0
  int32_t indexes[16];
415
0
  int32_t i;
416
0
  for(i = 0; i < 16; ++i) {
417
0
    indexes[i] = udata_readInt32(ds, inIndexes[i]);
418
0
  }
419
0
420
0
  /* get the total length of the data */
421
0
  int32_t size = indexes[UCNVSEL_INDEX_SIZE];
422
0
  if(length >= 0) {
423
0
    if(length < size) {
424
0
      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
425
0
                       length);
426
0
      *status = U_INDEX_OUTOFBOUNDS_ERROR;
427
0
      return 0;
428
0
    }
429
0
430
0
    /* copy the data for inaccessible bytes */
431
0
    if(inBytes != outBytes) {
432
0
      uprv_memcpy(outBytes, inBytes, size);
433
0
    }
434
0
435
0
    int32_t offset = 0, count;
436
0
437
0
    /* swap the int32_t indexes[] */
438
0
    count = UCNVSEL_INDEX_COUNT*4;
439
0
    ds->swapArray32(ds, inBytes, count, outBytes, status);
440
0
    offset += count;
441
0
442
0
    /* swap the UTrie2 */
443
0
    count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
444
0
    utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
445
0
    offset += count;
446
0
447
0
    /* swap the uint32_t pv[] */
448
0
    count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
449
0
    ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
450
0
    offset += count;
451
0
452
0
    /* swap the encoding names */
453
0
    count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
454
0
    ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
455
0
    offset += count;
456
0
457
0
    U_ASSERT(offset == size);
458
0
  }
459
0
460
0
  return headerSize + size;
461
0
}
462
463
/* unserialize a selector */
464
U_CAPI UConverterSelector* U_EXPORT2
465
0
ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
466
0
  // check if already failed
467
0
  if (U_FAILURE(*status)) {
468
0
    return NULL;
469
0
  }
470
0
  // ensure args make sense!
471
0
  const uint8_t *p = (const uint8_t *)buffer;
472
0
  if (length <= 0 ||
473
0
      (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
474
0
  ) {
475
0
    *status = U_ILLEGAL_ARGUMENT_ERROR;
476
0
    return NULL;
477
0
  }
478
0
  // header
479
0
  if (length < 32) {
480
0
    // not even enough space for a minimal header
481
0
    *status = U_INDEX_OUTOFBOUNDS_ERROR;
482
0
    return NULL;
483
0
  }
484
0
  const DataHeader *pHeader = (const DataHeader *)p;
485
0
  if (!(
486
0
    pHeader->dataHeader.magic1==0xda &&
487
0
    pHeader->dataHeader.magic2==0x27 &&
488
0
    pHeader->info.dataFormat[0] == 0x43 &&
489
0
    pHeader->info.dataFormat[1] == 0x53 &&
490
0
    pHeader->info.dataFormat[2] == 0x65 &&
491
0
    pHeader->info.dataFormat[3] == 0x6c
492
0
  )) {
493
0
    /* header not valid or dataFormat not recognized */
494
0
    *status = U_INVALID_FORMAT_ERROR;
495
0
    return NULL;
496
0
  }
497
0
  if (pHeader->info.formatVersion[0] != 1) {
498
0
    *status = U_UNSUPPORTED_ERROR;
499
0
    return NULL;
500
0
  }
501
0
  uint8_t* swapped = NULL;
502
0
  if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
503
0
      pHeader->info.charsetFamily != U_CHARSET_FAMILY
504
0
  ) {
505
0
    // swap the data
506
0
    UDataSwapper *ds =
507
0
      udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
508
0
    int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
509
0
    if (U_FAILURE(*status)) {
510
0
      udata_closeSwapper(ds);
511
0
      return NULL;
512
0
    }
513
0
    if (length < totalSize) {
514
0
      udata_closeSwapper(ds);
515
0
      *status = U_INDEX_OUTOFBOUNDS_ERROR;
516
0
      return NULL;
517
0
    }
518
0
    swapped = (uint8_t*)uprv_malloc(totalSize);
519
0
    if (swapped == NULL) {
520
0
      udata_closeSwapper(ds);
521
0
      *status = U_MEMORY_ALLOCATION_ERROR;
522
0
      return NULL;
523
0
    }
524
0
    ucnvsel_swap(ds, p, length, swapped, status);
525
0
    udata_closeSwapper(ds);
526
0
    if (U_FAILURE(*status)) {
527
0
      uprv_free(swapped);
528
0
      return NULL;
529
0
    }
530
0
    p = swapped;
531
0
    pHeader = (const DataHeader *)p;
532
0
  }
533
0
  if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
534
0
    // not even enough space for the header and the indexes
535
0
    uprv_free(swapped);
536
0
    *status = U_INDEX_OUTOFBOUNDS_ERROR;
537
0
    return NULL;
538
0
  }
539
0
  p += pHeader->dataHeader.headerSize;
540
0
  length -= pHeader->dataHeader.headerSize;
541
0
  // indexes
542
0
  const int32_t *indexes = (const int32_t *)p;
543
0
  if (length < indexes[UCNVSEL_INDEX_SIZE]) {
544
0
    uprv_free(swapped);
545
0
    *status = U_INDEX_OUTOFBOUNDS_ERROR;
546
0
    return NULL;
547
0
  }
548
0
  p += UCNVSEL_INDEX_COUNT * 4;
549
0
  // create and populate the selector object
550
0
  UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
551
0
  char **encodings =
552
0
    (char **)uprv_malloc(
553
0
      indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
554
0
  if (sel == NULL || encodings == NULL) {
555
0
    uprv_free(swapped);
556
0
    uprv_free(sel);
557
0
    uprv_free(encodings);
558
0
    *status = U_MEMORY_ALLOCATION_ERROR;
559
0
    return NULL;
560
0
  }
561
0
  uprv_memset(sel, 0, sizeof(UConverterSelector));
562
0
  sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
563
0
  sel->encodings = encodings;
564
0
  sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
565
0
  sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
566
0
  sel->swapped = swapped;
567
0
  // trie
568
0
  sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
569
0
                                        p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
570
0
                                        status);
571
0
  p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
572
0
  if (U_FAILURE(*status)) {
573
0
    ucnvsel_close(sel);
574
0
    return NULL;
575
0
  }
576
0
  // bit vectors
577
0
  sel->pv = (uint32_t *)p;
578
0
  p += sel->pvCount * 4;
579
0
  // encoding names
580
0
  char* s = (char*)p;
581
0
  for (int32_t i = 0; i < sel->encodingsCount; ++i) {
582
0
    sel->encodings[i] = s;
583
0
    s += uprv_strlen(s) + 1;
584
0
  }
585
0
  p += sel->encodingStrLength;
586
0
587
0
  return sel;
588
0
}
589
590
// a bunch of functions for the enumeration thingie! Nothing fancy here. Just
591
// iterate over the selected encodings
592
struct Enumerator {
593
  int16_t* index;
594
  int16_t length;
595
  int16_t cur;
596
  const UConverterSelector* sel;
597
};
598
599
U_CDECL_BEGIN
600
601
static void U_CALLCONV
602
0
ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
603
0
  uprv_free(((Enumerator*)(enumerator->context))->index);
604
0
  uprv_free(enumerator->context);
605
0
  uprv_free(enumerator);
606
0
}
607
608
609
static int32_t U_CALLCONV
610
0
ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
611
0
  // check if already failed
612
0
  if (U_FAILURE(*status)) {
613
0
    return 0;
614
0
  }
615
0
  return ((Enumerator*)(enumerator->context))->length;
616
0
}
617
618
619
static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
620
                                                 int32_t* resultLength,
621
0
                                                 UErrorCode* status) {
622
0
  // check if already failed
623
0
  if (U_FAILURE(*status)) {
624
0
    return NULL;
625
0
  }
626
0
627
0
  int16_t cur = ((Enumerator*)(enumerator->context))->cur;
628
0
  const UConverterSelector* sel;
629
0
  const char* result;
630
0
  if (cur >= ((Enumerator*)(enumerator->context))->length) {
631
0
    return NULL;
632
0
  }
633
0
  sel = ((Enumerator*)(enumerator->context))->sel;
634
0
  result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
635
0
  ((Enumerator*)(enumerator->context))->cur++;
636
0
  if (resultLength) {
637
0
    *resultLength = (int32_t)uprv_strlen(result);
638
0
  }
639
0
  return result;
640
0
}
641
642
static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
643
0
                                           UErrorCode* status) {
644
0
  // check if already failed
645
0
  if (U_FAILURE(*status)) {
646
0
    return ;
647
0
  }
648
0
  ((Enumerator*)(enumerator->context))->cur = 0;
649
0
}
650
651
U_CDECL_END
652
653
654
static const UEnumeration defaultEncodings = {
655
  NULL,
656
    NULL,
657
    ucnvsel_close_selector_iterator,
658
    ucnvsel_count_encodings,
659
    uenum_unextDefault,
660
    ucnvsel_next_encoding, 
661
    ucnvsel_reset_iterator
662
};
663
664
665
// internal fn to intersect two sets of masks
666
// returns whether the mask has reduced to all zeros
667
0
static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
668
0
  int32_t i;
669
0
  uint32_t oredDest = 0;
670
0
  for (i = 0 ; i < len ; ++i) {
671
0
    oredDest |= (dest[i] &= source1[i]);
672
0
  }
673
0
  return oredDest == 0;
674
0
}
675
676
// internal fn to count how many 1's are there in a mask
677
// algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
678
0
static int16_t countOnes(uint32_t* mask, int32_t len) {
679
0
  int32_t i, totalOnes = 0;
680
0
  for (i = 0 ; i < len ; ++i) {
681
0
    uint32_t ent = mask[i];
682
0
    for (; ent; totalOnes++)
683
0
    {
684
0
      ent &= ent - 1; // clear the least significant bit set
685
0
    }
686
0
  }
687
0
  return totalOnes;
688
0
}
689
690
691
/* internal function! */
692
static UEnumeration *selectForMask(const UConverterSelector* sel,
693
0
                                   uint32_t *mask, UErrorCode *status) {
694
0
  // this is the context we will use. Store a table of indices to which
695
0
  // encodings are legit.
696
0
  struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
697
0
  if (result == NULL) {
698
0
    uprv_free(mask);
699
0
    *status = U_MEMORY_ALLOCATION_ERROR;
700
0
    return NULL;
701
0
  }
702
0
  result->index = NULL;  // this will be allocated later!
703
0
  result->length = result->cur = 0;
704
0
  result->sel = sel;
705
0
706
0
  UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
707
0
  if (en == NULL) {
708
0
    // TODO(markus): Combine Enumerator and UEnumeration into one struct.
709
0
    uprv_free(mask);
710
0
    uprv_free(result);
711
0
    *status = U_MEMORY_ALLOCATION_ERROR;
712
0
    return NULL;
713
0
  }
714
0
  memcpy(en, &defaultEncodings, sizeof(UEnumeration));
715
0
  en->context = result;
716
0
717
0
  int32_t columns = (sel->encodingsCount+31)/32;
718
0
  int16_t numOnes = countOnes(mask, columns);
719
0
  // now, we know the exact space we need for index
720
0
  if (numOnes > 0) {
721
0
    result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
722
0
723
0
    int32_t i, j;
724
0
    int16_t k = 0;
725
0
    for (j = 0 ; j < columns; j++) {
726
0
      uint32_t v = mask[j];
727
0
      for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
728
0
        if ((v & 1) != 0) {
729
0
          result->index[result->length++] = k;
730
0
        }
731
0
        v >>= 1;
732
0
      }
733
0
    }
734
0
  } //otherwise, index will remain NULL (and will never be touched by
735
0
    //the enumerator code anyway)
736
0
  uprv_free(mask);
737
0
  return en;
738
0
}
739
740
/* check a string against the selector - UTF16 version */
741
U_CAPI UEnumeration * U_EXPORT2
742
ucnvsel_selectForString(const UConverterSelector* sel,
743
0
                        const UChar *s, int32_t length, UErrorCode *status) {
744
0
  // check if already failed
745
0
  if (U_FAILURE(*status)) {
746
0
    return NULL;
747
0
  }
748
0
  // ensure args make sense!
749
0
  if (sel == NULL || (s == NULL && length != 0)) {
750
0
    *status = U_ILLEGAL_ARGUMENT_ERROR;
751
0
    return NULL;
752
0
  }
753
0
754
0
  int32_t columns = (sel->encodingsCount+31)/32;
755
0
  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
756
0
  if (mask == NULL) {
757
0
    *status = U_MEMORY_ALLOCATION_ERROR;
758
0
    return NULL;
759
0
  }
760
0
  uprv_memset(mask, ~0, columns *4);
761
0
762
0
  if(s!=NULL) {
763
0
    const UChar *limit;
764
0
    if (length >= 0) {
765
0
      limit = s + length;
766
0
    } else {
767
0
      limit = NULL;
768
0
    }
769
0
    
770
0
    while (limit == NULL ? *s != 0 : s != limit) {
771
0
      UChar32 c;
772
0
      uint16_t pvIndex;
773
0
      UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
774
0
      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
775
0
        break;
776
0
      }
777
0
    }
778
0
  }
779
0
  return selectForMask(sel, mask, status);
780
0
}
781
782
/* check a string against the selector - UTF8 version */
783
U_CAPI UEnumeration * U_EXPORT2
784
ucnvsel_selectForUTF8(const UConverterSelector* sel,
785
0
                      const char *s, int32_t length, UErrorCode *status) {
786
0
  // check if already failed
787
0
  if (U_FAILURE(*status)) {
788
0
    return NULL;
789
0
  }
790
0
  // ensure args make sense!
791
0
  if (sel == NULL || (s == NULL && length != 0)) {
792
0
    *status = U_ILLEGAL_ARGUMENT_ERROR;
793
0
    return NULL;
794
0
  }
795
0
796
0
  int32_t columns = (sel->encodingsCount+31)/32;
797
0
  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
798
0
  if (mask == NULL) {
799
0
    *status = U_MEMORY_ALLOCATION_ERROR;
800
0
    return NULL;
801
0
  }
802
0
  uprv_memset(mask, ~0, columns *4);
803
0
804
0
  if (length < 0) {
805
0
    length = (int32_t)uprv_strlen(s);
806
0
  }
807
0
808
0
  if(s!=NULL) {
809
0
    const char *limit = s + length;
810
0
    
811
0
    while (s != limit) {
812
0
      uint16_t pvIndex;
813
0
      UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
814
0
      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
815
0
        break;
816
0
      }
817
0
    }
818
0
  }
819
0
  return selectForMask(sel, mask, status);
820
0
}
821
822
#endif  // !UCONFIG_NO_CONVERSION