/src/mozilla-central/intl/icu/source/common/ucnvsel.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ******************************************************************************* |
5 | | * |
6 | | * Copyright (C) 2008-2011, International Business Machines |
7 | | * Corporation, Google and others. All Rights Reserved. |
8 | | * |
9 | | ******************************************************************************* |
10 | | */ |
11 | | // Author : eldawy@google.com (Mohamed Eldawy) |
12 | | // ucnvsel.cpp |
13 | | // |
14 | | // Purpose: To generate a list of encodings capable of handling |
15 | | // a given Unicode text |
16 | | // |
17 | | // Started 09-April-2008 |
18 | | |
19 | | /** |
20 | | * \file |
21 | | * |
22 | | * This is an implementation of an encoding selector. |
23 | | * The goal is, given a unicode string, find the encodings |
24 | | * this string can be mapped to. To make processing faster |
25 | | * a trie is built when you call ucnvsel_open() that |
26 | | * stores all encodings a codepoint can map to |
27 | | */ |
28 | | |
29 | | #include "unicode/ucnvsel.h" |
30 | | |
31 | | #if !UCONFIG_NO_CONVERSION |
32 | | |
33 | | #include <string.h> |
34 | | |
35 | | #include "unicode/uchar.h" |
36 | | #include "unicode/uniset.h" |
37 | | #include "unicode/ucnv.h" |
38 | | #include "unicode/ustring.h" |
39 | | #include "unicode/uchriter.h" |
40 | | #include "utrie2.h" |
41 | | #include "propsvec.h" |
42 | | #include "uassert.h" |
43 | | #include "ucmndata.h" |
44 | | #include "uenumimp.h" |
45 | | #include "cmemory.h" |
46 | | #include "cstring.h" |
47 | | |
48 | | U_NAMESPACE_USE |
49 | | |
50 | | struct UConverterSelector { |
51 | | UTrie2 *trie; // 16 bit trie containing offsets into pv |
52 | | uint32_t* pv; // table of bits! |
53 | | int32_t pvCount; |
54 | | char** encodings; // which encodings did user ask to use? |
55 | | int32_t encodingsCount; |
56 | | int32_t encodingStrLength; |
57 | | uint8_t* swapped; |
58 | | UBool ownPv, ownEncodingStrings; |
59 | | }; |
60 | | |
61 | | static void generateSelectorData(UConverterSelector* result, |
62 | | UPropsVectors *upvec, |
63 | | const USet* excludedCodePoints, |
64 | | const UConverterUnicodeSet whichSet, |
65 | 0 | UErrorCode* status) { |
66 | 0 | if (U_FAILURE(*status)) { |
67 | 0 | return; |
68 | 0 | } |
69 | 0 | |
70 | 0 | int32_t columns = (result->encodingsCount+31)/32; |
71 | 0 |
|
72 | 0 | // set errorValue to all-ones |
73 | 0 | for (int32_t col = 0; col < columns; col++) { |
74 | 0 | upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, |
75 | 0 | col, ~0, ~0, status); |
76 | 0 | } |
77 | 0 |
|
78 | 0 | for (int32_t i = 0; i < result->encodingsCount; ++i) { |
79 | 0 | uint32_t mask; |
80 | 0 | uint32_t column; |
81 | 0 | int32_t item_count; |
82 | 0 | int32_t j; |
83 | 0 | UConverter* test_converter = ucnv_open(result->encodings[i], status); |
84 | 0 | if (U_FAILURE(*status)) { |
85 | 0 | return; |
86 | 0 | } |
87 | 0 | USet* unicode_point_set; |
88 | 0 | unicode_point_set = uset_open(1, 0); // empty set |
89 | 0 |
|
90 | 0 | ucnv_getUnicodeSet(test_converter, unicode_point_set, |
91 | 0 | whichSet, status); |
92 | 0 | if (U_FAILURE(*status)) { |
93 | 0 | ucnv_close(test_converter); |
94 | 0 | return; |
95 | 0 | } |
96 | 0 |
|
97 | 0 | column = i / 32; |
98 | 0 | mask = 1 << (i%32); |
99 | 0 | // now iterate over intervals on set i! |
100 | 0 | item_count = uset_getItemCount(unicode_point_set); |
101 | 0 |
|
102 | 0 | for (j = 0; j < item_count; ++j) { |
103 | 0 | UChar32 start_char; |
104 | 0 | UChar32 end_char; |
105 | 0 | UErrorCode smallStatus = U_ZERO_ERROR; |
106 | 0 | uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, |
107 | 0 | &smallStatus); |
108 | 0 | if (U_FAILURE(smallStatus)) { |
109 | 0 | // this will be reached for the converters that fill the set with |
110 | 0 | // strings. Those should be ignored by our system |
111 | 0 | } else { |
112 | 0 | upvec_setValue(upvec, start_char, end_char, column, ~0, mask, |
113 | 0 | status); |
114 | 0 | } |
115 | 0 | } |
116 | 0 | ucnv_close(test_converter); |
117 | 0 | uset_close(unicode_point_set); |
118 | 0 | if (U_FAILURE(*status)) { |
119 | 0 | return; |
120 | 0 | } |
121 | 0 | } |
122 | 0 |
|
123 | 0 | // handle excluded encodings! Simply set their values to all 1's in the upvec |
124 | 0 | if (excludedCodePoints) { |
125 | 0 | int32_t item_count = uset_getItemCount(excludedCodePoints); |
126 | 0 | for (int32_t j = 0; j < item_count; ++j) { |
127 | 0 | UChar32 start_char; |
128 | 0 | UChar32 end_char; |
129 | 0 |
|
130 | 0 | uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, |
131 | 0 | status); |
132 | 0 | for (int32_t col = 0; col < columns; col++) { |
133 | 0 | upvec_setValue(upvec, start_char, end_char, col, ~0, ~0, |
134 | 0 | status); |
135 | 0 | } |
136 | 0 | } |
137 | 0 | } |
138 | 0 |
|
139 | 0 | // alright. Now, let's put things in the same exact form you'd get when you |
140 | 0 | // unserialize things. |
141 | 0 | result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); |
142 | 0 | result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); |
143 | 0 | result->pvCount *= columns; // number of uint32_t = rows * columns |
144 | 0 | result->ownPv = TRUE; |
145 | 0 | } |
146 | | |
147 | | /* open a selector. If converterListSize is 0, build for all converters. |
148 | | If excludedCodePoints is NULL, don't exclude any codepoints */ |
149 | | U_CAPI UConverterSelector* U_EXPORT2 |
150 | | ucnvsel_open(const char* const* converterList, int32_t converterListSize, |
151 | | const USet* excludedCodePoints, |
152 | 0 | const UConverterUnicodeSet whichSet, UErrorCode* status) { |
153 | 0 | // check if already failed |
154 | 0 | if (U_FAILURE(*status)) { |
155 | 0 | return NULL; |
156 | 0 | } |
157 | 0 | // ensure args make sense! |
158 | 0 | if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) { |
159 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
160 | 0 | return NULL; |
161 | 0 | } |
162 | 0 | |
163 | 0 | // allocate a new converter |
164 | 0 | LocalUConverterSelectorPointer newSelector( |
165 | 0 | (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); |
166 | 0 | if (newSelector.isNull()) { |
167 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
168 | 0 | return NULL; |
169 | 0 | } |
170 | 0 | uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); |
171 | 0 |
|
172 | 0 | if (converterListSize == 0) { |
173 | 0 | converterList = NULL; |
174 | 0 | converterListSize = ucnv_countAvailable(); |
175 | 0 | } |
176 | 0 | newSelector->encodings = |
177 | 0 | (char**)uprv_malloc(converterListSize * sizeof(char*)); |
178 | 0 | if (!newSelector->encodings) { |
179 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
180 | 0 | return NULL; |
181 | 0 | } |
182 | 0 | newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() |
183 | 0 |
|
184 | 0 | // make a backup copy of the list of converters |
185 | 0 | int32_t totalSize = 0; |
186 | 0 | int32_t i; |
187 | 0 | for (i = 0; i < converterListSize; i++) { |
188 | 0 | totalSize += |
189 | 0 | (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1; |
190 | 0 | } |
191 | 0 | // 4-align the totalSize to 4-align the size of the serialized form |
192 | 0 | int32_t encodingStrPadding = totalSize & 3; |
193 | 0 | if (encodingStrPadding != 0) { |
194 | 0 | encodingStrPadding = 4 - encodingStrPadding; |
195 | 0 | } |
196 | 0 | newSelector->encodingStrLength = totalSize += encodingStrPadding; |
197 | 0 | char* allStrings = (char*) uprv_malloc(totalSize); |
198 | 0 | if (!allStrings) { |
199 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
200 | 0 | return NULL; |
201 | 0 | } |
202 | 0 | |
203 | 0 | for (i = 0; i < converterListSize; i++) { |
204 | 0 | newSelector->encodings[i] = allStrings; |
205 | 0 | uprv_strcpy(newSelector->encodings[i], |
206 | 0 | converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)); |
207 | 0 | allStrings += uprv_strlen(newSelector->encodings[i]) + 1; |
208 | 0 | } |
209 | 0 | while (encodingStrPadding > 0) { |
210 | 0 | *allStrings++ = 0; |
211 | 0 | --encodingStrPadding; |
212 | 0 | } |
213 | 0 |
|
214 | 0 | newSelector->ownEncodingStrings = TRUE; |
215 | 0 | newSelector->encodingsCount = converterListSize; |
216 | 0 | UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); |
217 | 0 | generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); |
218 | 0 | upvec_close(upvec); |
219 | 0 |
|
220 | 0 | if (U_FAILURE(*status)) { |
221 | 0 | return NULL; |
222 | 0 | } |
223 | 0 | |
224 | 0 | return newSelector.orphan(); |
225 | 0 | } |
226 | | |
227 | | /* close opened selector */ |
228 | | U_CAPI void U_EXPORT2 |
229 | 0 | ucnvsel_close(UConverterSelector *sel) { |
230 | 0 | if (!sel) { |
231 | 0 | return; |
232 | 0 | } |
233 | 0 | if (sel->ownEncodingStrings) { |
234 | 0 | uprv_free(sel->encodings[0]); |
235 | 0 | } |
236 | 0 | uprv_free(sel->encodings); |
237 | 0 | if (sel->ownPv) { |
238 | 0 | uprv_free(sel->pv); |
239 | 0 | } |
240 | 0 | utrie2_close(sel->trie); |
241 | 0 | uprv_free(sel->swapped); |
242 | 0 | uprv_free(sel); |
243 | 0 | } |
244 | | |
245 | | static const UDataInfo dataInfo = { |
246 | | sizeof(UDataInfo), |
247 | | 0, |
248 | | |
249 | | U_IS_BIG_ENDIAN, |
250 | | U_CHARSET_FAMILY, |
251 | | U_SIZEOF_UCHAR, |
252 | | 0, |
253 | | |
254 | | { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ |
255 | | { 1, 0, 0, 0 }, /* formatVersion */ |
256 | | { 0, 0, 0, 0 } /* dataVersion */ |
257 | | }; |
258 | | |
259 | | enum { |
260 | | UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes |
261 | | UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors |
262 | | UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names |
263 | | UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding |
264 | | UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader |
265 | | UCNVSEL_INDEX_COUNT = 16 |
266 | | }; |
267 | | |
268 | | /* |
269 | | * Serialized form of a UConverterSelector, formatVersion 1: |
270 | | * |
271 | | * The serialized form begins with a standard ICU DataHeader with a UDataInfo |
272 | | * as the template above. |
273 | | * This is followed by: |
274 | | * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above |
275 | | * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes |
276 | | * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors |
277 | | * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding |
278 | | */ |
279 | | |
280 | | /* serialize a selector */ |
281 | | U_CAPI int32_t U_EXPORT2 |
282 | | ucnvsel_serialize(const UConverterSelector* sel, |
283 | 0 | void* buffer, int32_t bufferCapacity, UErrorCode* status) { |
284 | 0 | // check if already failed |
285 | 0 | if (U_FAILURE(*status)) { |
286 | 0 | return 0; |
287 | 0 | } |
288 | 0 | // ensure args make sense! |
289 | 0 | uint8_t *p = (uint8_t *)buffer; |
290 | 0 | if (bufferCapacity < 0 || |
291 | 0 | (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) |
292 | 0 | ) { |
293 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
294 | 0 | return 0; |
295 | 0 | } |
296 | 0 | // add up the size of the serialized form |
297 | 0 | int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); |
298 | 0 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { |
299 | 0 | return 0; |
300 | 0 | } |
301 | 0 | *status = U_ZERO_ERROR; |
302 | 0 |
|
303 | 0 | DataHeader header; |
304 | 0 | uprv_memset(&header, 0, sizeof(header)); |
305 | 0 | header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); |
306 | 0 | header.dataHeader.magic1 = 0xda; |
307 | 0 | header.dataHeader.magic2 = 0x27; |
308 | 0 | uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); |
309 | 0 |
|
310 | 0 | int32_t indexes[UCNVSEL_INDEX_COUNT] = { |
311 | 0 | serializedTrieSize, |
312 | 0 | sel->pvCount, |
313 | 0 | sel->encodingsCount, |
314 | 0 | sel->encodingStrLength |
315 | 0 | }; |
316 | 0 |
|
317 | 0 | int32_t totalSize = |
318 | 0 | header.dataHeader.headerSize + |
319 | 0 | (int32_t)sizeof(indexes) + |
320 | 0 | serializedTrieSize + |
321 | 0 | sel->pvCount * 4 + |
322 | 0 | sel->encodingStrLength; |
323 | 0 | indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; |
324 | 0 | if (totalSize > bufferCapacity) { |
325 | 0 | *status = U_BUFFER_OVERFLOW_ERROR; |
326 | 0 | return totalSize; |
327 | 0 | } |
328 | 0 | // ok, save! |
329 | 0 | int32_t length = header.dataHeader.headerSize; |
330 | 0 | uprv_memcpy(p, &header, sizeof(header)); |
331 | 0 | uprv_memset(p + sizeof(header), 0, length - sizeof(header)); |
332 | 0 | p += length; |
333 | 0 |
|
334 | 0 | length = (int32_t)sizeof(indexes); |
335 | 0 | uprv_memcpy(p, indexes, length); |
336 | 0 | p += length; |
337 | 0 |
|
338 | 0 | utrie2_serialize(sel->trie, p, serializedTrieSize, status); |
339 | 0 | p += serializedTrieSize; |
340 | 0 |
|
341 | 0 | length = sel->pvCount * 4; |
342 | 0 | uprv_memcpy(p, sel->pv, length); |
343 | 0 | p += length; |
344 | 0 |
|
345 | 0 | uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); |
346 | 0 | p += sel->encodingStrLength; |
347 | 0 |
|
348 | 0 | return totalSize; |
349 | 0 | } |
350 | | |
351 | | /** |
352 | | * swap a selector into the desired Endianness and Asciiness of |
353 | | * the system. Just as FYI, selectors are always saved in the format |
354 | | * of the system that created them. They are only converted if used |
355 | | * on another system. In other words, selectors created on different |
356 | | * system can be different even if the params are identical (endianness |
357 | | * and Asciiness differences only) |
358 | | * |
359 | | * @param ds pointer to data swapper containing swapping info |
360 | | * @param inData pointer to incoming data |
361 | | * @param length length of inData in bytes |
362 | | * @param outData pointer to output data. Capacity should |
363 | | * be at least equal to capacity of inData |
364 | | * @param status an in/out ICU UErrorCode |
365 | | * @return 0 on failure, number of bytes swapped on success |
366 | | * number of bytes swapped can be smaller than length |
367 | | */ |
368 | | static int32_t |
369 | | ucnvsel_swap(const UDataSwapper *ds, |
370 | | const void *inData, int32_t length, |
371 | 0 | void *outData, UErrorCode *status) { |
372 | 0 | /* udata_swapDataHeader checks the arguments */ |
373 | 0 | int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); |
374 | 0 | if(U_FAILURE(*status)) { |
375 | 0 | return 0; |
376 | 0 | } |
377 | 0 | |
378 | 0 | /* check data format and format version */ |
379 | 0 | const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); |
380 | 0 | if(!( |
381 | 0 | pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ |
382 | 0 | pInfo->dataFormat[1] == 0x53 && |
383 | 0 | pInfo->dataFormat[2] == 0x65 && |
384 | 0 | pInfo->dataFormat[3] == 0x6c |
385 | 0 | )) { |
386 | 0 | udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", |
387 | 0 | pInfo->dataFormat[0], pInfo->dataFormat[1], |
388 | 0 | pInfo->dataFormat[2], pInfo->dataFormat[3]); |
389 | 0 | *status = U_INVALID_FORMAT_ERROR; |
390 | 0 | return 0; |
391 | 0 | } |
392 | 0 | if(pInfo->formatVersion[0] != 1) { |
393 | 0 | udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", |
394 | 0 | pInfo->formatVersion[0]); |
395 | 0 | *status = U_UNSUPPORTED_ERROR; |
396 | 0 | return 0; |
397 | 0 | } |
398 | 0 |
|
399 | 0 | if(length >= 0) { |
400 | 0 | length -= headerSize; |
401 | 0 | if(length < 16*4) { |
402 | 0 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", |
403 | 0 | length); |
404 | 0 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
405 | 0 | return 0; |
406 | 0 | } |
407 | 0 | } |
408 | 0 |
|
409 | 0 | const uint8_t *inBytes = (const uint8_t *)inData + headerSize; |
410 | 0 | uint8_t *outBytes = (uint8_t *)outData + headerSize; |
411 | 0 |
|
412 | 0 | /* read the indexes */ |
413 | 0 | const int32_t *inIndexes = (const int32_t *)inBytes; |
414 | 0 | int32_t indexes[16]; |
415 | 0 | int32_t i; |
416 | 0 | for(i = 0; i < 16; ++i) { |
417 | 0 | indexes[i] = udata_readInt32(ds, inIndexes[i]); |
418 | 0 | } |
419 | 0 |
|
420 | 0 | /* get the total length of the data */ |
421 | 0 | int32_t size = indexes[UCNVSEL_INDEX_SIZE]; |
422 | 0 | if(length >= 0) { |
423 | 0 | if(length < size) { |
424 | 0 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", |
425 | 0 | length); |
426 | 0 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
427 | 0 | return 0; |
428 | 0 | } |
429 | 0 |
|
430 | 0 | /* copy the data for inaccessible bytes */ |
431 | 0 | if(inBytes != outBytes) { |
432 | 0 | uprv_memcpy(outBytes, inBytes, size); |
433 | 0 | } |
434 | 0 |
|
435 | 0 | int32_t offset = 0, count; |
436 | 0 |
|
437 | 0 | /* swap the int32_t indexes[] */ |
438 | 0 | count = UCNVSEL_INDEX_COUNT*4; |
439 | 0 | ds->swapArray32(ds, inBytes, count, outBytes, status); |
440 | 0 | offset += count; |
441 | 0 |
|
442 | 0 | /* swap the UTrie2 */ |
443 | 0 | count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; |
444 | 0 | utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); |
445 | 0 | offset += count; |
446 | 0 |
|
447 | 0 | /* swap the uint32_t pv[] */ |
448 | 0 | count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; |
449 | 0 | ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); |
450 | 0 | offset += count; |
451 | 0 |
|
452 | 0 | /* swap the encoding names */ |
453 | 0 | count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; |
454 | 0 | ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); |
455 | 0 | offset += count; |
456 | 0 |
|
457 | 0 | U_ASSERT(offset == size); |
458 | 0 | } |
459 | 0 |
|
460 | 0 | return headerSize + size; |
461 | 0 | } |
462 | | |
463 | | /* unserialize a selector */ |
464 | | U_CAPI UConverterSelector* U_EXPORT2 |
465 | 0 | ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { |
466 | 0 | // check if already failed |
467 | 0 | if (U_FAILURE(*status)) { |
468 | 0 | return NULL; |
469 | 0 | } |
470 | 0 | // ensure args make sense! |
471 | 0 | const uint8_t *p = (const uint8_t *)buffer; |
472 | 0 | if (length <= 0 || |
473 | 0 | (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) |
474 | 0 | ) { |
475 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
476 | 0 | return NULL; |
477 | 0 | } |
478 | 0 | // header |
479 | 0 | if (length < 32) { |
480 | 0 | // not even enough space for a minimal header |
481 | 0 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
482 | 0 | return NULL; |
483 | 0 | } |
484 | 0 | const DataHeader *pHeader = (const DataHeader *)p; |
485 | 0 | if (!( |
486 | 0 | pHeader->dataHeader.magic1==0xda && |
487 | 0 | pHeader->dataHeader.magic2==0x27 && |
488 | 0 | pHeader->info.dataFormat[0] == 0x43 && |
489 | 0 | pHeader->info.dataFormat[1] == 0x53 && |
490 | 0 | pHeader->info.dataFormat[2] == 0x65 && |
491 | 0 | pHeader->info.dataFormat[3] == 0x6c |
492 | 0 | )) { |
493 | 0 | /* header not valid or dataFormat not recognized */ |
494 | 0 | *status = U_INVALID_FORMAT_ERROR; |
495 | 0 | return NULL; |
496 | 0 | } |
497 | 0 | if (pHeader->info.formatVersion[0] != 1) { |
498 | 0 | *status = U_UNSUPPORTED_ERROR; |
499 | 0 | return NULL; |
500 | 0 | } |
501 | 0 | uint8_t* swapped = NULL; |
502 | 0 | if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || |
503 | 0 | pHeader->info.charsetFamily != U_CHARSET_FAMILY |
504 | 0 | ) { |
505 | 0 | // swap the data |
506 | 0 | UDataSwapper *ds = |
507 | 0 | udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); |
508 | 0 | int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); |
509 | 0 | if (U_FAILURE(*status)) { |
510 | 0 | udata_closeSwapper(ds); |
511 | 0 | return NULL; |
512 | 0 | } |
513 | 0 | if (length < totalSize) { |
514 | 0 | udata_closeSwapper(ds); |
515 | 0 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
516 | 0 | return NULL; |
517 | 0 | } |
518 | 0 | swapped = (uint8_t*)uprv_malloc(totalSize); |
519 | 0 | if (swapped == NULL) { |
520 | 0 | udata_closeSwapper(ds); |
521 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
522 | 0 | return NULL; |
523 | 0 | } |
524 | 0 | ucnvsel_swap(ds, p, length, swapped, status); |
525 | 0 | udata_closeSwapper(ds); |
526 | 0 | if (U_FAILURE(*status)) { |
527 | 0 | uprv_free(swapped); |
528 | 0 | return NULL; |
529 | 0 | } |
530 | 0 | p = swapped; |
531 | 0 | pHeader = (const DataHeader *)p; |
532 | 0 | } |
533 | 0 | if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { |
534 | 0 | // not even enough space for the header and the indexes |
535 | 0 | uprv_free(swapped); |
536 | 0 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
537 | 0 | return NULL; |
538 | 0 | } |
539 | 0 | p += pHeader->dataHeader.headerSize; |
540 | 0 | length -= pHeader->dataHeader.headerSize; |
541 | 0 | // indexes |
542 | 0 | const int32_t *indexes = (const int32_t *)p; |
543 | 0 | if (length < indexes[UCNVSEL_INDEX_SIZE]) { |
544 | 0 | uprv_free(swapped); |
545 | 0 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
546 | 0 | return NULL; |
547 | 0 | } |
548 | 0 | p += UCNVSEL_INDEX_COUNT * 4; |
549 | 0 | // create and populate the selector object |
550 | 0 | UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); |
551 | 0 | char **encodings = |
552 | 0 | (char **)uprv_malloc( |
553 | 0 | indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); |
554 | 0 | if (sel == NULL || encodings == NULL) { |
555 | 0 | uprv_free(swapped); |
556 | 0 | uprv_free(sel); |
557 | 0 | uprv_free(encodings); |
558 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
559 | 0 | return NULL; |
560 | 0 | } |
561 | 0 | uprv_memset(sel, 0, sizeof(UConverterSelector)); |
562 | 0 | sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; |
563 | 0 | sel->encodings = encodings; |
564 | 0 | sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; |
565 | 0 | sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; |
566 | 0 | sel->swapped = swapped; |
567 | 0 | // trie |
568 | 0 | sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, |
569 | 0 | p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL, |
570 | 0 | status); |
571 | 0 | p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; |
572 | 0 | if (U_FAILURE(*status)) { |
573 | 0 | ucnvsel_close(sel); |
574 | 0 | return NULL; |
575 | 0 | } |
576 | 0 | // bit vectors |
577 | 0 | sel->pv = (uint32_t *)p; |
578 | 0 | p += sel->pvCount * 4; |
579 | 0 | // encoding names |
580 | 0 | char* s = (char*)p; |
581 | 0 | for (int32_t i = 0; i < sel->encodingsCount; ++i) { |
582 | 0 | sel->encodings[i] = s; |
583 | 0 | s += uprv_strlen(s) + 1; |
584 | 0 | } |
585 | 0 | p += sel->encodingStrLength; |
586 | 0 |
|
587 | 0 | return sel; |
588 | 0 | } |
589 | | |
590 | | // a bunch of functions for the enumeration thingie! Nothing fancy here. Just |
591 | | // iterate over the selected encodings |
592 | | struct Enumerator { |
593 | | int16_t* index; |
594 | | int16_t length; |
595 | | int16_t cur; |
596 | | const UConverterSelector* sel; |
597 | | }; |
598 | | |
599 | | U_CDECL_BEGIN |
600 | | |
601 | | static void U_CALLCONV |
602 | 0 | ucnvsel_close_selector_iterator(UEnumeration *enumerator) { |
603 | 0 | uprv_free(((Enumerator*)(enumerator->context))->index); |
604 | 0 | uprv_free(enumerator->context); |
605 | 0 | uprv_free(enumerator); |
606 | 0 | } |
607 | | |
608 | | |
609 | | static int32_t U_CALLCONV |
610 | 0 | ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { |
611 | 0 | // check if already failed |
612 | 0 | if (U_FAILURE(*status)) { |
613 | 0 | return 0; |
614 | 0 | } |
615 | 0 | return ((Enumerator*)(enumerator->context))->length; |
616 | 0 | } |
617 | | |
618 | | |
619 | | static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, |
620 | | int32_t* resultLength, |
621 | 0 | UErrorCode* status) { |
622 | 0 | // check if already failed |
623 | 0 | if (U_FAILURE(*status)) { |
624 | 0 | return NULL; |
625 | 0 | } |
626 | 0 | |
627 | 0 | int16_t cur = ((Enumerator*)(enumerator->context))->cur; |
628 | 0 | const UConverterSelector* sel; |
629 | 0 | const char* result; |
630 | 0 | if (cur >= ((Enumerator*)(enumerator->context))->length) { |
631 | 0 | return NULL; |
632 | 0 | } |
633 | 0 | sel = ((Enumerator*)(enumerator->context))->sel; |
634 | 0 | result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; |
635 | 0 | ((Enumerator*)(enumerator->context))->cur++; |
636 | 0 | if (resultLength) { |
637 | 0 | *resultLength = (int32_t)uprv_strlen(result); |
638 | 0 | } |
639 | 0 | return result; |
640 | 0 | } |
641 | | |
642 | | static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, |
643 | 0 | UErrorCode* status) { |
644 | 0 | // check if already failed |
645 | 0 | if (U_FAILURE(*status)) { |
646 | 0 | return ; |
647 | 0 | } |
648 | 0 | ((Enumerator*)(enumerator->context))->cur = 0; |
649 | 0 | } |
650 | | |
651 | | U_CDECL_END |
652 | | |
653 | | |
654 | | static const UEnumeration defaultEncodings = { |
655 | | NULL, |
656 | | NULL, |
657 | | ucnvsel_close_selector_iterator, |
658 | | ucnvsel_count_encodings, |
659 | | uenum_unextDefault, |
660 | | ucnvsel_next_encoding, |
661 | | ucnvsel_reset_iterator |
662 | | }; |
663 | | |
664 | | |
665 | | // internal fn to intersect two sets of masks |
666 | | // returns whether the mask has reduced to all zeros |
667 | 0 | static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { |
668 | 0 | int32_t i; |
669 | 0 | uint32_t oredDest = 0; |
670 | 0 | for (i = 0 ; i < len ; ++i) { |
671 | 0 | oredDest |= (dest[i] &= source1[i]); |
672 | 0 | } |
673 | 0 | return oredDest == 0; |
674 | 0 | } |
675 | | |
676 | | // internal fn to count how many 1's are there in a mask |
677 | | // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html |
678 | 0 | static int16_t countOnes(uint32_t* mask, int32_t len) { |
679 | 0 | int32_t i, totalOnes = 0; |
680 | 0 | for (i = 0 ; i < len ; ++i) { |
681 | 0 | uint32_t ent = mask[i]; |
682 | 0 | for (; ent; totalOnes++) |
683 | 0 | { |
684 | 0 | ent &= ent - 1; // clear the least significant bit set |
685 | 0 | } |
686 | 0 | } |
687 | 0 | return totalOnes; |
688 | 0 | } |
689 | | |
690 | | |
691 | | /* internal function! */ |
692 | | static UEnumeration *selectForMask(const UConverterSelector* sel, |
693 | 0 | uint32_t *mask, UErrorCode *status) { |
694 | 0 | // this is the context we will use. Store a table of indices to which |
695 | 0 | // encodings are legit. |
696 | 0 | struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator)); |
697 | 0 | if (result == NULL) { |
698 | 0 | uprv_free(mask); |
699 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
700 | 0 | return NULL; |
701 | 0 | } |
702 | 0 | result->index = NULL; // this will be allocated later! |
703 | 0 | result->length = result->cur = 0; |
704 | 0 | result->sel = sel; |
705 | 0 |
|
706 | 0 | UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration)); |
707 | 0 | if (en == NULL) { |
708 | 0 | // TODO(markus): Combine Enumerator and UEnumeration into one struct. |
709 | 0 | uprv_free(mask); |
710 | 0 | uprv_free(result); |
711 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
712 | 0 | return NULL; |
713 | 0 | } |
714 | 0 | memcpy(en, &defaultEncodings, sizeof(UEnumeration)); |
715 | 0 | en->context = result; |
716 | 0 |
|
717 | 0 | int32_t columns = (sel->encodingsCount+31)/32; |
718 | 0 | int16_t numOnes = countOnes(mask, columns); |
719 | 0 | // now, we know the exact space we need for index |
720 | 0 | if (numOnes > 0) { |
721 | 0 | result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t)); |
722 | 0 |
|
723 | 0 | int32_t i, j; |
724 | 0 | int16_t k = 0; |
725 | 0 | for (j = 0 ; j < columns; j++) { |
726 | 0 | uint32_t v = mask[j]; |
727 | 0 | for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { |
728 | 0 | if ((v & 1) != 0) { |
729 | 0 | result->index[result->length++] = k; |
730 | 0 | } |
731 | 0 | v >>= 1; |
732 | 0 | } |
733 | 0 | } |
734 | 0 | } //otherwise, index will remain NULL (and will never be touched by |
735 | 0 | //the enumerator code anyway) |
736 | 0 | uprv_free(mask); |
737 | 0 | return en; |
738 | 0 | } |
739 | | |
740 | | /* check a string against the selector - UTF16 version */ |
741 | | U_CAPI UEnumeration * U_EXPORT2 |
742 | | ucnvsel_selectForString(const UConverterSelector* sel, |
743 | 0 | const UChar *s, int32_t length, UErrorCode *status) { |
744 | 0 | // check if already failed |
745 | 0 | if (U_FAILURE(*status)) { |
746 | 0 | return NULL; |
747 | 0 | } |
748 | 0 | // ensure args make sense! |
749 | 0 | if (sel == NULL || (s == NULL && length != 0)) { |
750 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
751 | 0 | return NULL; |
752 | 0 | } |
753 | 0 | |
754 | 0 | int32_t columns = (sel->encodingsCount+31)/32; |
755 | 0 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); |
756 | 0 | if (mask == NULL) { |
757 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
758 | 0 | return NULL; |
759 | 0 | } |
760 | 0 | uprv_memset(mask, ~0, columns *4); |
761 | 0 |
|
762 | 0 | if(s!=NULL) { |
763 | 0 | const UChar *limit; |
764 | 0 | if (length >= 0) { |
765 | 0 | limit = s + length; |
766 | 0 | } else { |
767 | 0 | limit = NULL; |
768 | 0 | } |
769 | 0 | |
770 | 0 | while (limit == NULL ? *s != 0 : s != limit) { |
771 | 0 | UChar32 c; |
772 | 0 | uint16_t pvIndex; |
773 | 0 | UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); |
774 | 0 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { |
775 | 0 | break; |
776 | 0 | } |
777 | 0 | } |
778 | 0 | } |
779 | 0 | return selectForMask(sel, mask, status); |
780 | 0 | } |
781 | | |
782 | | /* check a string against the selector - UTF8 version */ |
783 | | U_CAPI UEnumeration * U_EXPORT2 |
784 | | ucnvsel_selectForUTF8(const UConverterSelector* sel, |
785 | 0 | const char *s, int32_t length, UErrorCode *status) { |
786 | 0 | // check if already failed |
787 | 0 | if (U_FAILURE(*status)) { |
788 | 0 | return NULL; |
789 | 0 | } |
790 | 0 | // ensure args make sense! |
791 | 0 | if (sel == NULL || (s == NULL && length != 0)) { |
792 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
793 | 0 | return NULL; |
794 | 0 | } |
795 | 0 | |
796 | 0 | int32_t columns = (sel->encodingsCount+31)/32; |
797 | 0 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); |
798 | 0 | if (mask == NULL) { |
799 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
800 | 0 | return NULL; |
801 | 0 | } |
802 | 0 | uprv_memset(mask, ~0, columns *4); |
803 | 0 |
|
804 | 0 | if (length < 0) { |
805 | 0 | length = (int32_t)uprv_strlen(s); |
806 | 0 | } |
807 | 0 |
|
808 | 0 | if(s!=NULL) { |
809 | 0 | const char *limit = s + length; |
810 | 0 | |
811 | 0 | while (s != limit) { |
812 | 0 | uint16_t pvIndex; |
813 | 0 | UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); |
814 | 0 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { |
815 | 0 | break; |
816 | 0 | } |
817 | 0 | } |
818 | 0 | } |
819 | 0 | return selectForMask(sel, mask, status); |
820 | 0 | } |
821 | | |
822 | | #endif // !UCONFIG_NO_CONVERSION |