Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/intl/icu/source/common/uhash.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
******************************************************************************
5
*   Copyright (C) 1997-2016, International Business Machines
6
*   Corporation and others.  All Rights Reserved.
7
******************************************************************************
8
*   Date        Name        Description
9
*   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
10
*   07/06/01    aliu        Modified to support int32_t keys on
11
*                           platforms with sizeof(void*) < 32.
12
******************************************************************************
13
*/
14
15
#include "uhash.h"
16
#include "unicode/ustring.h"
17
#include "cstring.h"
18
#include "cmemory.h"
19
#include "uassert.h"
20
#include "ustr_imp.h"
21
22
/* This hashtable is implemented as a double hash.  All elements are
23
 * stored in a single array with no secondary storage for collision
24
 * resolution (no linked list, etc.).  When there is a hash collision
25
 * (when two unequal keys have the same hashcode) we resolve this by
26
 * using a secondary hash.  The secondary hash is an increment
27
 * computed as a hash function (a different one) of the primary
28
 * hashcode.  This increment is added to the initial hash value to
29
 * obtain further slots assigned to the same hash code.  For this to
30
 * work, the length of the array and the increment must be relatively
31
 * prime.  The easiest way to achieve this is to have the length of
32
 * the array be prime, and the increment be any value from
33
 * 1..length-1.
34
 *
35
 * Hashcodes are 32-bit integers.  We make sure all hashcodes are
36
 * non-negative by masking off the top bit.  This has two effects: (1)
37
 * modulo arithmetic is simplified.  If we allowed negative hashcodes,
38
 * then when we computed hashcode % length, we could get a negative
39
 * result, which we would then have to adjust back into range.  It's
40
 * simpler to just make hashcodes non-negative. (2) It makes it easy
41
 * to check for empty vs. occupied slots in the table.  We just mark
42
 * empty or deleted slots with a negative hashcode.
43
 *
44
 * The central function is _uhash_find().  This function looks for a
45
 * slot matching the given key and hashcode.  If one is found, it
46
 * returns a pointer to that slot.  If the table is full, and no match
47
 * is found, it returns NULL -- in theory.  This would make the code
48
 * more complicated, since all callers of _uhash_find() would then
49
 * have to check for a NULL result.  To keep this from happening, we
50
 * don't allow the table to fill.  When there is only one
51
 * empty/deleted slot left, uhash_put() will refuse to increase the
52
 * count, and fail.  This simplifies the code.  In practice, one will
53
 * seldom encounter this using default UHashtables.  However, if a
54
 * hashtable is set to a U_FIXED resize policy, or if memory is
55
 * exhausted, then the table may fill.
56
 *
57
 * High and low water ratios control rehashing.  They establish levels
58
 * of fullness (from 0 to 1) outside of which the data array is
59
 * reallocated and repopulated.  Setting the low water ratio to zero
60
 * means the table will never shrink.  Setting the high water ratio to
61
 * one means the table will never grow.  The ratios should be
62
 * coordinated with the ratio between successive elements of the
63
 * PRIMES table, so that when the primeIndex is incremented or
64
 * decremented during rehashing, it brings the ratio of count / length
65
 * back into the desired range (between low and high water ratios).
66
 */
67
68
/********************************************************************
69
 * PRIVATE Constants, Macros
70
 ********************************************************************/
71
72
/* This is a list of non-consecutive primes chosen such that
73
 * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
74
 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
75
 * ratio is changed, the low and high water ratios should also be
76
 * adjusted to suit.
77
 *
78
 * These prime numbers were also chosen so that they are the largest
79
 * prime number while being less than a power of two.
80
 */
81
static const int32_t PRIMES[] = {
82
    7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
83
    65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84
    16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85
    1073741789, 2147483647 /*, 4294967291 */
86
};
87
88
0
#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89
6
#define DEFAULT_PRIME_INDEX 4
90
91
/* These ratios are tuned to the PRIMES array such that a resize
92
 * places the table back into the zone of non-resizing.  That is,
93
 * after a call to _uhash_rehash(), a subsequent call to
94
 * _uhash_rehash() should do nothing (should not churn).  This is only
95
 * a potential problem with U_GROW_AND_SHRINK.
96
 */
97
static const float RESIZE_POLICY_RATIO_TABLE[6] = {
98
    /* low, high water ratio */
99
    0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
100
    0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101
    0.0F, 1.0F  /* U_FIXED: Never change size */
102
};
103
104
/*
105
  Invariants for hashcode values:
106
107
  * DELETED < 0
108
  * EMPTY < 0
109
  * Real hashes >= 0
110
111
  Hashcodes may not start out this way, but internally they are
112
  adjusted so that they are always positive.  We assume 32-bit
113
  hashcodes; adjust these constants for other hashcode sizes.
114
*/
115
792
#define HASH_DELETED    ((int32_t) 0x80000000)
116
792
#define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
117
118
21
#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
119
120
/* This macro expects a UHashTok.pointer as its keypointer and
121
   valuepointer parameters */
122
#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
123
0
            if (hash->keyDeleter != NULL && keypointer != NULL) { \
124
0
                (*hash->keyDeleter)(keypointer); \
125
0
            } \
126
0
            if (hash->valueDeleter != NULL && valuepointer != NULL) { \
127
0
                (*hash->valueDeleter)(valuepointer); \
128
0
            }
129
130
/*
131
 * Constants for hinting whether a key or value is an integer
132
 * or a pointer.  If a hint bit is zero, then the associated
133
 * token is assumed to be an integer.
134
 */
135
12
#define HINT_KEY_POINTER   (1)
136
18
#define HINT_VALUE_POINTER (2)
137
138
/********************************************************************
139
 * PRIVATE Implementation
140
 ********************************************************************/
141
142
static UHashTok
143
_uhash_setElement(UHashtable *hash, UHashElement* e,
144
                  int32_t hashcode,
145
6
                  UHashTok key, UHashTok value, int8_t hint) {
146
6
147
6
    UHashTok oldValue = e->value;
148
6
    if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
149
6
        e->key.pointer != key.pointer) { /* Avoid double deletion */
150
0
        (*hash->keyDeleter)(e->key.pointer);
151
0
    }
152
6
    if (hash->valueDeleter != NULL) {
153
3
        if (oldValue.pointer != NULL &&
154
3
            oldValue.pointer != value.pointer) { /* Avoid double deletion */
155
0
            (*hash->valueDeleter)(oldValue.pointer);
156
0
        }
157
3
        oldValue.pointer = NULL;
158
3
    }
159
6
    /* Compilers should copy the UHashTok union correctly, but even if
160
6
     * they do, memory heap tools (e.g. BoundsChecker) can get
161
6
     * confused when a pointer is cloaked in a union and then copied.
162
6
     * TO ALLEVIATE THIS, we use hints (based on what API the user is
163
6
     * calling) to copy pointers when we know the user thinks
164
6
     * something is a pointer. */
165
6
    if (hint & HINT_KEY_POINTER) {
166
6
        e->key.pointer = key.pointer;
167
6
    } else {
168
0
        e->key = key;
169
0
    }
170
6
    if (hint & HINT_VALUE_POINTER) {
171
6
        e->value.pointer = value.pointer;
172
6
    } else {
173
0
        e->value = value;
174
0
    }
175
6
    e->hashcode = hashcode;
176
6
    return oldValue;
177
6
}
178
179
/**
180
 * Assumes that the given element is not empty or deleted.
181
 */
182
static UHashTok
183
0
_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
184
0
    UHashTok empty;
185
0
    U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
186
0
    --hash->count;
187
0
    empty.pointer = NULL; empty.integer = 0;
188
0
    return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
189
0
}
190
191
static void
192
6
_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
193
6
    U_ASSERT(hash != NULL);
194
6
    U_ASSERT(((int32_t)policy) >= 0);
195
6
    U_ASSERT(((int32_t)policy) < 3);
196
6
    hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
197
6
    hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
198
6
}
199
200
/**
201
 * Allocate internal data array of a size determined by the given
202
 * prime index.  If the index is out of range it is pinned into range.
203
 * If the allocation fails the status is set to
204
 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
205
 * either case the previous array pointer is overwritten.
206
 *
207
 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
208
 */
209
static void
210
_uhash_allocate(UHashtable *hash,
211
                int32_t primeIndex,
212
6
                UErrorCode *status) {
213
6
214
6
    UHashElement *p, *limit;
215
6
    UHashTok emptytok;
216
6
217
6
    if (U_FAILURE(*status)) return;
218
6
219
6
    U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
220
6
221
6
    hash->primeIndex = primeIndex;
222
6
    hash->length = PRIMES[primeIndex];
223
6
224
6
    p = hash->elements = (UHashElement*)
225
6
        uprv_malloc(sizeof(UHashElement) * hash->length);
226
6
227
6
    if (hash->elements == NULL) {
228
0
        *status = U_MEMORY_ALLOCATION_ERROR;
229
0
        return;
230
0
    }
231
6
232
6
    emptytok.pointer = NULL; /* Only one of these two is needed */
233
6
    emptytok.integer = 0;    /* but we don't know which one. */
234
6
235
6
    limit = p + hash->length;
236
768
    while (p < limit) {
237
762
        p->key = emptytok;
238
762
        p->value = emptytok;
239
762
        p->hashcode = HASH_EMPTY;
240
762
        ++p;
241
762
    }
242
6
243
6
    hash->count = 0;
244
6
    hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
245
6
    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
246
6
}
247
248
static UHashtable*
249
_uhash_init(UHashtable *result,
250
              UHashFunction *keyHash,
251
              UKeyComparator *keyComp,
252
              UValueComparator *valueComp,
253
              int32_t primeIndex,
254
              UErrorCode *status)
255
6
{
256
6
    if (U_FAILURE(*status)) return NULL;
257
6
    U_ASSERT(keyHash != NULL);
258
6
    U_ASSERT(keyComp != NULL);
259
6
260
6
    result->keyHasher       = keyHash;
261
6
    result->keyComparator   = keyComp;
262
6
    result->valueComparator = valueComp;
263
6
    result->keyDeleter      = NULL;
264
6
    result->valueDeleter    = NULL;
265
6
    result->allocated       = FALSE;
266
6
    _uhash_internalSetResizePolicy(result, U_GROW);
267
6
268
6
    _uhash_allocate(result, primeIndex, status);
269
6
270
6
    if (U_FAILURE(*status)) {
271
0
        return NULL;
272
0
    }
273
6
274
6
    return result;
275
6
}
276
277
static UHashtable*
278
_uhash_create(UHashFunction *keyHash,
279
              UKeyComparator *keyComp,
280
              UValueComparator *valueComp,
281
              int32_t primeIndex,
282
6
              UErrorCode *status) {
283
6
    UHashtable *result;
284
6
285
6
    if (U_FAILURE(*status)) return NULL;
286
6
287
6
    result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
288
6
    if (result == NULL) {
289
0
        *status = U_MEMORY_ALLOCATION_ERROR;
290
0
        return NULL;
291
0
    }
292
6
293
6
    _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
294
6
    result->allocated       = TRUE;
295
6
296
6
    if (U_FAILURE(*status)) {
297
0
        uprv_free(result);
298
0
        return NULL;
299
0
    }
300
6
301
6
    return result;
302
6
}
303
304
/**
305
 * Look for a key in the table, or if no such key exists, the first
306
 * empty slot matching the given hashcode.  Keys are compared using
307
 * the keyComparator function.
308
 *
309
 * First find the start position, which is the hashcode modulo
310
 * the length.  Test it to see if it is:
311
 *
312
 * a. identical:  First check the hash values for a quick check,
313
 *    then compare keys for equality using keyComparator.
314
 * b. deleted
315
 * c. empty
316
 *
317
 * Stop if it is identical or empty, otherwise continue by adding a
318
 * "jump" value (moduloing by the length again to keep it within
319
 * range) and retesting.  For efficiency, there need enough empty
320
 * values so that the searchs stop within a reasonable amount of time.
321
 * This can be changed by changing the high/low water marks.
322
 *
323
 * In theory, this function can return NULL, if it is full (no empty
324
 * or deleted slots) and if no matching key is found.  In practice, we
325
 * prevent this elsewhere (in uhash_put) by making sure the last slot
326
 * in the table is never filled.
327
 *
328
 * The size of the table should be prime for this algorithm to work;
329
 * otherwise we are not guaranteed that the jump value (the secondary
330
 * hash) is relatively prime to the table length.
331
 */
332
static UHashElement*
333
_uhash_find(const UHashtable *hash, UHashTok key,
334
24
            int32_t hashcode) {
335
24
336
24
    int32_t firstDeleted = -1;  /* assume invalid index */
337
24
    int32_t theIndex, startIndex;
338
24
    int32_t jump = 0; /* lazy evaluate */
339
24
    int32_t tableHash;
340
24
    UHashElement *elements = hash->elements;
341
24
342
24
    hashcode &= 0x7FFFFFFF; /* must be positive */
343
24
    startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
344
24
345
24
    do {
346
24
        tableHash = elements[theIndex].hashcode;
347
24
        if (tableHash == hashcode) {          /* quick check */
348
9
            if ((*hash->keyComparator)(key, elements[theIndex].key)) {
349
9
                return &(elements[theIndex]);
350
9
            }
351
15
        } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
352
0
            /* We have hit a slot which contains a key-value pair,
353
0
             * but for which the hash code does not match.  Keep
354
0
             * looking.
355
0
             */
356
15
        } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
357
15
            break;
358
15
        } else if (firstDeleted < 0) { /* remember first deleted */
359
0
            firstDeleted = theIndex;
360
0
        }
361
24
        if (jump == 0) { /* lazy compute jump */
362
0
            /* The jump value must be relatively prime to the table
363
0
             * length.  As long as the length is prime, then any value
364
0
             * 1..length-1 will be relatively prime to it.
365
0
             */
366
0
            jump = (hashcode % (hash->length - 1)) + 1;
367
0
        }
368
0
        theIndex = (theIndex + jump) % hash->length;
369
0
    } while (theIndex != startIndex);
370
24
371
24
    if (firstDeleted >= 0) {
372
0
        theIndex = firstDeleted; /* reset if had deleted slot */
373
15
    } else if (tableHash != HASH_EMPTY) {
374
0
        /* We get to this point if the hashtable is full (no empty or
375
0
         * deleted slots), and we've failed to find a match.  THIS
376
0
         * WILL NEVER HAPPEN as long as uhash_put() makes sure that
377
0
         * count is always < length.
378
0
         */
379
0
        U_ASSERT(FALSE);
380
0
        return NULL; /* Never happens if uhash_put() behaves */
381
0
    }
382
15
    return &(elements[theIndex]);
383
15
}
384
385
/**
386
 * Attempt to grow or shrink the data arrays in order to make the
387
 * count fit between the high and low water marks.  hash_put() and
388
 * hash_remove() call this method when the count exceeds the high or
389
 * low water marks.  This method may do nothing, if memory allocation
390
 * fails, or if the count is already in range, or if the length is
391
 * already at the low or high limit.  In any case, upon return the
392
 * arrays will be valid.
393
 */
394
static void
395
0
_uhash_rehash(UHashtable *hash, UErrorCode *status) {
396
0
397
0
    UHashElement *old = hash->elements;
398
0
    int32_t oldLength = hash->length;
399
0
    int32_t newPrimeIndex = hash->primeIndex;
400
0
    int32_t i;
401
0
402
0
    if (hash->count > hash->highWaterMark) {
403
0
        if (++newPrimeIndex >= PRIMES_LENGTH) {
404
0
            return;
405
0
        }
406
0
    } else if (hash->count < hash->lowWaterMark) {
407
0
        if (--newPrimeIndex < 0) {
408
0
            return;
409
0
        }
410
0
    } else {
411
0
        return;
412
0
    }
413
0
414
0
    _uhash_allocate(hash, newPrimeIndex, status);
415
0
416
0
    if (U_FAILURE(*status)) {
417
0
        hash->elements = old;
418
0
        hash->length = oldLength;
419
0
        return;
420
0
    }
421
0
422
0
    for (i = oldLength - 1; i >= 0; --i) {
423
0
        if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
424
0
            UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
425
0
            U_ASSERT(e != NULL);
426
0
            U_ASSERT(e->hashcode == HASH_EMPTY);
427
0
            e->key = old[i].key;
428
0
            e->value = old[i].value;
429
0
            e->hashcode = old[i].hashcode;
430
0
            ++hash->count;
431
0
        }
432
0
    }
433
0
434
0
    uprv_free(old);
435
0
}
436
437
static UHashTok
438
_uhash_remove(UHashtable *hash,
439
0
              UHashTok key) {
440
0
    /* First find the position of the key in the table.  If the object
441
0
     * has not been removed already, remove it.  If the user wanted
442
0
     * keys deleted, then delete it also.  We have to put a special
443
0
     * hashcode in that position that means that something has been
444
0
     * deleted, since when we do a find, we have to continue PAST any
445
0
     * deleted values.
446
0
     */
447
0
    UHashTok result;
448
0
    UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
449
0
    U_ASSERT(e != NULL);
450
0
    result.pointer = NULL;
451
0
    result.integer = 0;
452
0
    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
453
0
        result = _uhash_internalRemoveElement(hash, e);
454
0
        if (hash->count < hash->lowWaterMark) {
455
0
            UErrorCode status = U_ZERO_ERROR;
456
0
            _uhash_rehash(hash, &status);
457
0
        }
458
0
    }
459
0
    return result;
460
0
}
461
462
static UHashTok
463
_uhash_put(UHashtable *hash,
464
           UHashTok key,
465
           UHashTok value,
466
           int8_t hint,
467
6
           UErrorCode *status) {
468
6
469
6
    /* Put finds the position in the table for the new value.  If the
470
6
     * key is already in the table, it is deleted, if there is a
471
6
     * non-NULL keyDeleter.  Then the key, the hash and the value are
472
6
     * all put at the position in their respective arrays.
473
6
     */
474
6
    int32_t hashcode;
475
6
    UHashElement* e;
476
6
    UHashTok emptytok;
477
6
478
6
    if (U_FAILURE(*status)) {
479
0
        goto err;
480
0
    }
481
6
    U_ASSERT(hash != NULL);
482
6
    /* Cannot always check pointer here or iSeries sees NULL every time. */
483
6
    if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
484
0
        /* Disallow storage of NULL values, since NULL is returned by
485
0
         * get() to indicate an absent key.  Storing NULL == removing.
486
0
         */
487
0
        return _uhash_remove(hash, key);
488
0
    }
489
6
    if (hash->count > hash->highWaterMark) {
490
0
        _uhash_rehash(hash, status);
491
0
        if (U_FAILURE(*status)) {
492
0
            goto err;
493
0
        }
494
6
    }
495
6
496
6
    hashcode = (*hash->keyHasher)(key);
497
6
    e = _uhash_find(hash, key, hashcode);
498
6
    U_ASSERT(e != NULL);
499
6
500
6
    if (IS_EMPTY_OR_DELETED(e->hashcode)) {
501
6
        /* Important: We must never actually fill the table up.  If we
502
6
         * do so, then _uhash_find() will return NULL, and we'll have
503
6
         * to check for NULL after every call to _uhash_find().  To
504
6
         * avoid this we make sure there is always at least one empty
505
6
         * or deleted slot in the table.  This only is a problem if we
506
6
         * are out of memory and rehash isn't working.
507
6
         */
508
6
        ++hash->count;
509
6
        if (hash->count == hash->length) {
510
0
            /* Don't allow count to reach length */
511
0
            --hash->count;
512
0
            *status = U_MEMORY_ALLOCATION_ERROR;
513
0
            goto err;
514
0
        }
515
6
    }
516
6
517
6
    /* We must in all cases handle storage properly.  If there was an
518
6
     * old key, then it must be deleted (if the deleter != NULL).
519
6
     * Make hashcodes stored in table positive.
520
6
     */
521
6
    return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
522
0
523
0
 err:
524
0
    /* If the deleters are non-NULL, this method adopts its key and/or
525
0
     * value arguments, and we must be sure to delete the key and/or
526
0
     * value in all cases, even upon failure.
527
0
     */
528
0
    HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
529
0
    emptytok.pointer = NULL; emptytok.integer = 0;
530
0
    return emptytok;
531
6
}
532
533
534
/********************************************************************
535
 * PUBLIC API
536
 ********************************************************************/
537
538
U_CAPI UHashtable* U_EXPORT2
539
uhash_open(UHashFunction *keyHash,
540
           UKeyComparator *keyComp,
541
           UValueComparator *valueComp,
542
6
           UErrorCode *status) {
543
6
544
6
    return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
545
6
}
546
547
U_CAPI UHashtable* U_EXPORT2
548
uhash_openSize(UHashFunction *keyHash,
549
               UKeyComparator *keyComp,
550
               UValueComparator *valueComp,
551
               int32_t size,
552
0
               UErrorCode *status) {
553
0
554
0
    /* Find the smallest index i for which PRIMES[i] >= size. */
555
0
    int32_t i = 0;
556
0
    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
557
0
        ++i;
558
0
    }
559
0
560
0
    return _uhash_create(keyHash, keyComp, valueComp, i, status);
561
0
}
562
563
U_CAPI UHashtable* U_EXPORT2
564
uhash_init(UHashtable *fillinResult,
565
           UHashFunction *keyHash,
566
           UKeyComparator *keyComp,
567
           UValueComparator *valueComp,
568
0
           UErrorCode *status) {
569
0
570
0
    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
571
0
}
572
573
U_CAPI UHashtable* U_EXPORT2
574
uhash_initSize(UHashtable *fillinResult,
575
               UHashFunction *keyHash,
576
               UKeyComparator *keyComp,
577
               UValueComparator *valueComp,
578
               int32_t size,
579
0
               UErrorCode *status) {
580
0
581
0
    // Find the smallest index i for which PRIMES[i] >= size.
582
0
    int32_t i = 0;
583
0
    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
584
0
        ++i;
585
0
    }
586
0
    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
587
0
}
588
589
U_CAPI void U_EXPORT2
590
0
uhash_close(UHashtable *hash) {
591
0
    if (hash == NULL) {
592
0
        return;
593
0
    }
594
0
    if (hash->elements != NULL) {
595
0
        if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
596
0
            int32_t pos=UHASH_FIRST;
597
0
            UHashElement *e;
598
0
            while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
599
0
                HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
600
0
            }
601
0
        }
602
0
        uprv_free(hash->elements);
603
0
        hash->elements = NULL;
604
0
    }
605
0
    if (hash->allocated) {
606
0
        uprv_free(hash);
607
0
    }
608
0
}
609
610
U_CAPI UHashFunction *U_EXPORT2
611
0
uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
612
0
    UHashFunction *result = hash->keyHasher;
613
0
    hash->keyHasher = fn;
614
0
    return result;
615
0
}
616
617
U_CAPI UKeyComparator *U_EXPORT2
618
0
uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
619
0
    UKeyComparator *result = hash->keyComparator;
620
0
    hash->keyComparator = fn;
621
0
    return result;
622
0
}
623
U_CAPI UValueComparator *U_EXPORT2
624
0
uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
625
0
    UValueComparator *result = hash->valueComparator;
626
0
    hash->valueComparator = fn;
627
0
    return result;
628
0
}
629
630
U_CAPI UObjectDeleter *U_EXPORT2
631
3
uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
632
3
    UObjectDeleter *result = hash->keyDeleter;
633
3
    hash->keyDeleter = fn;
634
3
    return result;
635
3
}
636
637
U_CAPI UObjectDeleter *U_EXPORT2
638
3
uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
639
3
    UObjectDeleter *result = hash->valueDeleter;
640
3
    hash->valueDeleter = fn;
641
3
    return result;
642
3
}
643
644
U_CAPI void U_EXPORT2
645
0
uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
646
0
    UErrorCode status = U_ZERO_ERROR;
647
0
    _uhash_internalSetResizePolicy(hash, policy);
648
0
    hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
649
0
    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
650
0
    _uhash_rehash(hash, &status);
651
0
}
652
653
U_CAPI int32_t U_EXPORT2
654
0
uhash_count(const UHashtable *hash) {
655
0
    return hash->count;
656
0
}
657
658
U_CAPI void* U_EXPORT2
659
uhash_get(const UHashtable *hash,
660
18
          const void* key) {
661
18
    UHashTok keyholder;
662
18
    keyholder.pointer = (void*) key;
663
18
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
664
18
}
665
666
U_CAPI void* U_EXPORT2
667
uhash_iget(const UHashtable *hash,
668
0
           int32_t key) {
669
0
    UHashTok keyholder;
670
0
    keyholder.integer = key;
671
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
672
0
}
673
674
U_CAPI int32_t U_EXPORT2
675
uhash_geti(const UHashtable *hash,
676
0
           const void* key) {
677
0
    UHashTok keyholder;
678
0
    keyholder.pointer = (void*) key;
679
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
680
0
}
681
682
U_CAPI int32_t U_EXPORT2
683
uhash_igeti(const UHashtable *hash,
684
0
           int32_t key) {
685
0
    UHashTok keyholder;
686
0
    keyholder.integer = key;
687
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
688
0
}
689
690
U_CAPI void* U_EXPORT2
691
uhash_put(UHashtable *hash,
692
          void* key,
693
          void* value,
694
6
          UErrorCode *status) {
695
6
    UHashTok keyholder, valueholder;
696
6
    keyholder.pointer = key;
697
6
    valueholder.pointer = value;
698
6
    return _uhash_put(hash, keyholder, valueholder,
699
6
                      HINT_KEY_POINTER | HINT_VALUE_POINTER,
700
6
                      status).pointer;
701
6
}
702
703
U_CAPI void* U_EXPORT2
704
uhash_iput(UHashtable *hash,
705
           int32_t key,
706
           void* value,
707
0
           UErrorCode *status) {
708
0
    UHashTok keyholder, valueholder;
709
0
    keyholder.integer = key;
710
0
    valueholder.pointer = value;
711
0
    return _uhash_put(hash, keyholder, valueholder,
712
0
                      HINT_VALUE_POINTER,
713
0
                      status).pointer;
714
0
}
715
716
U_CAPI int32_t U_EXPORT2
717
uhash_puti(UHashtable *hash,
718
           void* key,
719
           int32_t value,
720
0
           UErrorCode *status) {
721
0
    UHashTok keyholder, valueholder;
722
0
    keyholder.pointer = key;
723
0
    valueholder.integer = value;
724
0
    return _uhash_put(hash, keyholder, valueholder,
725
0
                      HINT_KEY_POINTER,
726
0
                      status).integer;
727
0
}
728
729
730
U_CAPI int32_t U_EXPORT2
731
uhash_iputi(UHashtable *hash,
732
           int32_t key,
733
           int32_t value,
734
0
           UErrorCode *status) {
735
0
    UHashTok keyholder, valueholder;
736
0
    keyholder.integer = key;
737
0
    valueholder.integer = value;
738
0
    return _uhash_put(hash, keyholder, valueholder,
739
0
                      0, /* neither is a ptr */
740
0
                      status).integer;
741
0
}
742
743
U_CAPI void* U_EXPORT2
744
uhash_remove(UHashtable *hash,
745
0
             const void* key) {
746
0
    UHashTok keyholder;
747
0
    keyholder.pointer = (void*) key;
748
0
    return _uhash_remove(hash, keyholder).pointer;
749
0
}
750
751
U_CAPI void* U_EXPORT2
752
uhash_iremove(UHashtable *hash,
753
0
              int32_t key) {
754
0
    UHashTok keyholder;
755
0
    keyholder.integer = key;
756
0
    return _uhash_remove(hash, keyholder).pointer;
757
0
}
758
759
U_CAPI int32_t U_EXPORT2
760
uhash_removei(UHashtable *hash,
761
0
              const void* key) {
762
0
    UHashTok keyholder;
763
0
    keyholder.pointer = (void*) key;
764
0
    return _uhash_remove(hash, keyholder).integer;
765
0
}
766
767
U_CAPI int32_t U_EXPORT2
768
uhash_iremovei(UHashtable *hash,
769
0
               int32_t key) {
770
0
    UHashTok keyholder;
771
0
    keyholder.integer = key;
772
0
    return _uhash_remove(hash, keyholder).integer;
773
0
}
774
775
U_CAPI void U_EXPORT2
776
0
uhash_removeAll(UHashtable *hash) {
777
0
    int32_t pos = UHASH_FIRST;
778
0
    const UHashElement *e;
779
0
    U_ASSERT(hash != NULL);
780
0
    if (hash->count != 0) {
781
0
        while ((e = uhash_nextElement(hash, &pos)) != NULL) {
782
0
            uhash_removeElement(hash, e);
783
0
        }
784
0
    }
785
0
    U_ASSERT(hash->count == 0);
786
0
}
787
788
U_CAPI const UHashElement* U_EXPORT2
789
0
uhash_find(const UHashtable *hash, const void* key) {
790
0
    UHashTok keyholder;
791
0
    const UHashElement *e;
792
0
    keyholder.pointer = (void*) key;
793
0
    e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
794
0
    return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
795
0
}
796
797
U_CAPI const UHashElement* U_EXPORT2
798
0
uhash_nextElement(const UHashtable *hash, int32_t *pos) {
799
0
    /* Walk through the array until we find an element that is not
800
0
     * EMPTY and not DELETED.
801
0
     */
802
0
    int32_t i;
803
0
    U_ASSERT(hash != NULL);
804
0
    for (i = *pos + 1; i < hash->length; ++i) {
805
0
        if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
806
0
            *pos = i;
807
0
            return &(hash->elements[i]);
808
0
        }
809
0
    }
810
0
811
0
    /* No more elements */
812
0
    return NULL;
813
0
}
814
815
U_CAPI void* U_EXPORT2
816
0
uhash_removeElement(UHashtable *hash, const UHashElement* e) {
817
0
    U_ASSERT(hash != NULL);
818
0
    U_ASSERT(e != NULL);
819
0
    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
820
0
        UHashElement *nce = (UHashElement *)e;
821
0
        return _uhash_internalRemoveElement(hash, nce).pointer;
822
0
    }
823
0
    return NULL;
824
0
}
825
826
/********************************************************************
827
 * UHashTok convenience
828
 ********************************************************************/
829
830
/**
831
 * Return a UHashTok for an integer.
832
 */
833
/*U_CAPI UHashTok U_EXPORT2
834
uhash_toki(int32_t i) {
835
    UHashTok tok;
836
    tok.integer = i;
837
    return tok;
838
}*/
839
840
/**
841
 * Return a UHashTok for a pointer.
842
 */
843
/*U_CAPI UHashTok U_EXPORT2
844
uhash_tokp(void* p) {
845
    UHashTok tok;
846
    tok.pointer = p;
847
    return tok;
848
}*/
849
850
/********************************************************************
851
 * PUBLIC Key Hash Functions
852
 ********************************************************************/
853
854
U_CAPI int32_t U_EXPORT2
855
0
uhash_hashUChars(const UHashTok key) {
856
0
    const UChar *s = (const UChar *)key.pointer;
857
0
    return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
858
0
}
859
860
U_CAPI int32_t U_EXPORT2
861
42
uhash_hashChars(const UHashTok key) {
862
42
    const char *s = (const char *)key.pointer;
863
42
    return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, uprv_strlen(s)));
864
42
}
865
866
U_CAPI int32_t U_EXPORT2
867
0
uhash_hashIChars(const UHashTok key) {
868
0
    const char *s = (const char *)key.pointer;
869
0
    return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
870
0
}
871
872
U_CAPI UBool U_EXPORT2
873
0
uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
874
0
    int32_t count1, count2, pos, i;
875
0
876
0
    if(hash1==hash2){
877
0
        return TRUE;
878
0
    }
879
0
880
0
    /*
881
0
     * Make sure that we are comparing 2 valid hashes of the same type
882
0
     * with valid comparison functions.
883
0
     * Without valid comparison functions, a binary comparison
884
0
     * of the hash values will yield random results on machines
885
0
     * with 64-bit pointers and 32-bit integer hashes.
886
0
     * A valueComparator is normally optional.
887
0
     */
888
0
    if (hash1==NULL || hash2==NULL ||
889
0
        hash1->keyComparator != hash2->keyComparator ||
890
0
        hash1->valueComparator != hash2->valueComparator ||
891
0
        hash1->valueComparator == NULL)
892
0
    {
893
0
        /*
894
0
        Normally we would return an error here about incompatible hash tables,
895
0
        but we return FALSE instead.
896
0
        */
897
0
        return FALSE;
898
0
    }
899
0
900
0
    count1 = uhash_count(hash1);
901
0
    count2 = uhash_count(hash2);
902
0
    if(count1!=count2){
903
0
        return FALSE;
904
0
    }
905
0
906
0
    pos=UHASH_FIRST;
907
0
    for(i=0; i<count1; i++){
908
0
        const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
909
0
        const UHashTok key1 = elem1->key;
910
0
        const UHashTok val1 = elem1->value;
911
0
        /* here the keys are not compared, instead the key form hash1 is used to fetch
912
0
         * value from hash2. If the hashes are equal then then both hashes should
913
0
         * contain equal values for the same key!
914
0
         */
915
0
        const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
916
0
        const UHashTok val2 = elem2->value;
917
0
        if(hash1->valueComparator(val1, val2)==FALSE){
918
0
            return FALSE;
919
0
        }
920
0
    }
921
0
    return TRUE;
922
0
}
923
924
/********************************************************************
925
 * PUBLIC Comparator Functions
926
 ********************************************************************/
927
928
U_CAPI UBool U_EXPORT2
929
0
uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
930
0
    const UChar *p1 = (const UChar*) key1.pointer;
931
0
    const UChar *p2 = (const UChar*) key2.pointer;
932
0
    if (p1 == p2) {
933
0
        return TRUE;
934
0
    }
935
0
    if (p1 == NULL || p2 == NULL) {
936
0
        return FALSE;
937
0
    }
938
0
    while (*p1 != 0 && *p1 == *p2) {
939
0
        ++p1;
940
0
        ++p2;
941
0
    }
942
0
    return (UBool)(*p1 == *p2);
943
0
}
944
945
U_CAPI UBool U_EXPORT2
946
18
uhash_compareChars(const UHashTok key1, const UHashTok key2) {
947
18
    const char *p1 = (const char*) key1.pointer;
948
18
    const char *p2 = (const char*) key2.pointer;
949
18
    if (p1 == p2) {
950
9
        return TRUE;
951
9
    }
952
9
    if (p1 == NULL || p2 == NULL) {
953
0
        return FALSE;
954
0
    }
955
126
    while (*p1 != 0 && *p1 == *p2) {
956
117
        ++p1;
957
117
        ++p2;
958
117
    }
959
9
    return (UBool)(*p1 == *p2);
960
9
}
961
962
U_CAPI UBool U_EXPORT2
963
0
uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
964
0
    const char *p1 = (const char*) key1.pointer;
965
0
    const char *p2 = (const char*) key2.pointer;
966
0
    if (p1 == p2) {
967
0
        return TRUE;
968
0
    }
969
0
    if (p1 == NULL || p2 == NULL) {
970
0
        return FALSE;
971
0
    }
972
0
    while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
973
0
        ++p1;
974
0
        ++p2;
975
0
    }
976
0
    return (UBool)(*p1 == *p2);
977
0
}
978
979
/********************************************************************
980
 * PUBLIC int32_t Support Functions
981
 ********************************************************************/
982
983
U_CAPI int32_t U_EXPORT2
984
0
uhash_hashLong(const UHashTok key) {
985
0
    return key.integer;
986
0
}
987
988
U_CAPI UBool U_EXPORT2
989
0
uhash_compareLong(const UHashTok key1, const UHashTok key2) {
990
0
    return (UBool)(key1.integer == key2.integer);
991
0
}