/src/mozilla-central/intl/icu/source/common/uhash.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * Copyright (C) 1997-2016, International Business Machines |
6 | | * Corporation and others. All Rights Reserved. |
7 | | ****************************************************************************** |
8 | | * Date Name Description |
9 | | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. |
10 | | * 07/06/01 aliu Modified to support int32_t keys on |
11 | | * platforms with sizeof(void*) < 32. |
12 | | ****************************************************************************** |
13 | | */ |
14 | | |
15 | | #include "uhash.h" |
16 | | #include "unicode/ustring.h" |
17 | | #include "cstring.h" |
18 | | #include "cmemory.h" |
19 | | #include "uassert.h" |
20 | | #include "ustr_imp.h" |
21 | | |
22 | | /* This hashtable is implemented as a double hash. All elements are |
23 | | * stored in a single array with no secondary storage for collision |
24 | | * resolution (no linked list, etc.). When there is a hash collision |
25 | | * (when two unequal keys have the same hashcode) we resolve this by |
26 | | * using a secondary hash. The secondary hash is an increment |
27 | | * computed as a hash function (a different one) of the primary |
28 | | * hashcode. This increment is added to the initial hash value to |
29 | | * obtain further slots assigned to the same hash code. For this to |
30 | | * work, the length of the array and the increment must be relatively |
31 | | * prime. The easiest way to achieve this is to have the length of |
32 | | * the array be prime, and the increment be any value from |
33 | | * 1..length-1. |
34 | | * |
35 | | * Hashcodes are 32-bit integers. We make sure all hashcodes are |
36 | | * non-negative by masking off the top bit. This has two effects: (1) |
37 | | * modulo arithmetic is simplified. If we allowed negative hashcodes, |
38 | | * then when we computed hashcode % length, we could get a negative |
39 | | * result, which we would then have to adjust back into range. It's |
40 | | * simpler to just make hashcodes non-negative. (2) It makes it easy |
41 | | * to check for empty vs. occupied slots in the table. We just mark |
42 | | * empty or deleted slots with a negative hashcode. |
43 | | * |
44 | | * The central function is _uhash_find(). This function looks for a |
45 | | * slot matching the given key and hashcode. If one is found, it |
46 | | * returns a pointer to that slot. If the table is full, and no match |
47 | | * is found, it returns NULL -- in theory. This would make the code |
48 | | * more complicated, since all callers of _uhash_find() would then |
49 | | * have to check for a NULL result. To keep this from happening, we |
50 | | * don't allow the table to fill. When there is only one |
51 | | * empty/deleted slot left, uhash_put() will refuse to increase the |
52 | | * count, and fail. This simplifies the code. In practice, one will |
53 | | * seldom encounter this using default UHashtables. However, if a |
54 | | * hashtable is set to a U_FIXED resize policy, or if memory is |
55 | | * exhausted, then the table may fill. |
56 | | * |
57 | | * High and low water ratios control rehashing. They establish levels |
58 | | * of fullness (from 0 to 1) outside of which the data array is |
59 | | * reallocated and repopulated. Setting the low water ratio to zero |
60 | | * means the table will never shrink. Setting the high water ratio to |
61 | | * one means the table will never grow. The ratios should be |
62 | | * coordinated with the ratio between successive elements of the |
63 | | * PRIMES table, so that when the primeIndex is incremented or |
64 | | * decremented during rehashing, it brings the ratio of count / length |
65 | | * back into the desired range (between low and high water ratios). |
66 | | */ |
67 | | |
68 | | /******************************************************************** |
69 | | * PRIVATE Constants, Macros |
70 | | ********************************************************************/ |
71 | | |
72 | | /* This is a list of non-consecutive primes chosen such that |
73 | | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 |
74 | | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this |
75 | | * ratio is changed, the low and high water ratios should also be |
76 | | * adjusted to suit. |
77 | | * |
78 | | * These prime numbers were also chosen so that they are the largest |
79 | | * prime number while being less than a power of two. |
80 | | */ |
81 | | static const int32_t PRIMES[] = { |
82 | | 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
83 | | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, |
84 | | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, |
85 | | 1073741789, 2147483647 /*, 4294967291 */ |
86 | | }; |
87 | | |
88 | 0 | #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) |
89 | 6 | #define DEFAULT_PRIME_INDEX 4 |
90 | | |
91 | | /* These ratios are tuned to the PRIMES array such that a resize |
92 | | * places the table back into the zone of non-resizing. That is, |
93 | | * after a call to _uhash_rehash(), a subsequent call to |
94 | | * _uhash_rehash() should do nothing (should not churn). This is only |
95 | | * a potential problem with U_GROW_AND_SHRINK. |
96 | | */ |
97 | | static const float RESIZE_POLICY_RATIO_TABLE[6] = { |
98 | | /* low, high water ratio */ |
99 | | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ |
100 | | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ |
101 | | 0.0F, 1.0F /* U_FIXED: Never change size */ |
102 | | }; |
103 | | |
104 | | /* |
105 | | Invariants for hashcode values: |
106 | | |
107 | | * DELETED < 0 |
108 | | * EMPTY < 0 |
109 | | * Real hashes >= 0 |
110 | | |
111 | | Hashcodes may not start out this way, but internally they are |
112 | | adjusted so that they are always positive. We assume 32-bit |
113 | | hashcodes; adjust these constants for other hashcode sizes. |
114 | | */ |
115 | 792 | #define HASH_DELETED ((int32_t) 0x80000000) |
116 | 792 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) |
117 | | |
118 | 21 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) |
119 | | |
120 | | /* This macro expects a UHashTok.pointer as its keypointer and |
121 | | valuepointer parameters */ |
122 | | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ |
123 | 0 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ |
124 | 0 | (*hash->keyDeleter)(keypointer); \ |
125 | 0 | } \ |
126 | 0 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ |
127 | 0 | (*hash->valueDeleter)(valuepointer); \ |
128 | 0 | } |
129 | | |
130 | | /* |
131 | | * Constants for hinting whether a key or value is an integer |
132 | | * or a pointer. If a hint bit is zero, then the associated |
133 | | * token is assumed to be an integer. |
134 | | */ |
135 | 12 | #define HINT_KEY_POINTER (1) |
136 | 18 | #define HINT_VALUE_POINTER (2) |
137 | | |
138 | | /******************************************************************** |
139 | | * PRIVATE Implementation |
140 | | ********************************************************************/ |
141 | | |
142 | | static UHashTok |
143 | | _uhash_setElement(UHashtable *hash, UHashElement* e, |
144 | | int32_t hashcode, |
145 | 6 | UHashTok key, UHashTok value, int8_t hint) { |
146 | 6 | |
147 | 6 | UHashTok oldValue = e->value; |
148 | 6 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && |
149 | 6 | e->key.pointer != key.pointer) { /* Avoid double deletion */ |
150 | 0 | (*hash->keyDeleter)(e->key.pointer); |
151 | 0 | } |
152 | 6 | if (hash->valueDeleter != NULL) { |
153 | 3 | if (oldValue.pointer != NULL && |
154 | 3 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ |
155 | 0 | (*hash->valueDeleter)(oldValue.pointer); |
156 | 0 | } |
157 | 3 | oldValue.pointer = NULL; |
158 | 3 | } |
159 | 6 | /* Compilers should copy the UHashTok union correctly, but even if |
160 | 6 | * they do, memory heap tools (e.g. BoundsChecker) can get |
161 | 6 | * confused when a pointer is cloaked in a union and then copied. |
162 | 6 | * TO ALLEVIATE THIS, we use hints (based on what API the user is |
163 | 6 | * calling) to copy pointers when we know the user thinks |
164 | 6 | * something is a pointer. */ |
165 | 6 | if (hint & HINT_KEY_POINTER) { |
166 | 6 | e->key.pointer = key.pointer; |
167 | 6 | } else { |
168 | 0 | e->key = key; |
169 | 0 | } |
170 | 6 | if (hint & HINT_VALUE_POINTER) { |
171 | 6 | e->value.pointer = value.pointer; |
172 | 6 | } else { |
173 | 0 | e->value = value; |
174 | 0 | } |
175 | 6 | e->hashcode = hashcode; |
176 | 6 | return oldValue; |
177 | 6 | } |
178 | | |
179 | | /** |
180 | | * Assumes that the given element is not empty or deleted. |
181 | | */ |
182 | | static UHashTok |
183 | 0 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { |
184 | 0 | UHashTok empty; |
185 | 0 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); |
186 | 0 | --hash->count; |
187 | 0 | empty.pointer = NULL; empty.integer = 0; |
188 | 0 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); |
189 | 0 | } |
190 | | |
191 | | static void |
192 | 6 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
193 | 6 | U_ASSERT(hash != NULL); |
194 | 6 | U_ASSERT(((int32_t)policy) >= 0); |
195 | 6 | U_ASSERT(((int32_t)policy) < 3); |
196 | 6 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; |
197 | 6 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; |
198 | 6 | } |
199 | | |
200 | | /** |
201 | | * Allocate internal data array of a size determined by the given |
202 | | * prime index. If the index is out of range it is pinned into range. |
203 | | * If the allocation fails the status is set to |
204 | | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In |
205 | | * either case the previous array pointer is overwritten. |
206 | | * |
207 | | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. |
208 | | */ |
209 | | static void |
210 | | _uhash_allocate(UHashtable *hash, |
211 | | int32_t primeIndex, |
212 | 6 | UErrorCode *status) { |
213 | 6 | |
214 | 6 | UHashElement *p, *limit; |
215 | 6 | UHashTok emptytok; |
216 | 6 | |
217 | 6 | if (U_FAILURE(*status)) return; |
218 | 6 | |
219 | 6 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
220 | 6 | |
221 | 6 | hash->primeIndex = primeIndex; |
222 | 6 | hash->length = PRIMES[primeIndex]; |
223 | 6 | |
224 | 6 | p = hash->elements = (UHashElement*) |
225 | 6 | uprv_malloc(sizeof(UHashElement) * hash->length); |
226 | 6 | |
227 | 6 | if (hash->elements == NULL) { |
228 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
229 | 0 | return; |
230 | 0 | } |
231 | 6 | |
232 | 6 | emptytok.pointer = NULL; /* Only one of these two is needed */ |
233 | 6 | emptytok.integer = 0; /* but we don't know which one. */ |
234 | 6 | |
235 | 6 | limit = p + hash->length; |
236 | 768 | while (p < limit) { |
237 | 762 | p->key = emptytok; |
238 | 762 | p->value = emptytok; |
239 | 762 | p->hashcode = HASH_EMPTY; |
240 | 762 | ++p; |
241 | 762 | } |
242 | 6 | |
243 | 6 | hash->count = 0; |
244 | 6 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
245 | 6 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
246 | 6 | } |
247 | | |
248 | | static UHashtable* |
249 | | _uhash_init(UHashtable *result, |
250 | | UHashFunction *keyHash, |
251 | | UKeyComparator *keyComp, |
252 | | UValueComparator *valueComp, |
253 | | int32_t primeIndex, |
254 | | UErrorCode *status) |
255 | 6 | { |
256 | 6 | if (U_FAILURE(*status)) return NULL; |
257 | 6 | U_ASSERT(keyHash != NULL); |
258 | 6 | U_ASSERT(keyComp != NULL); |
259 | 6 | |
260 | 6 | result->keyHasher = keyHash; |
261 | 6 | result->keyComparator = keyComp; |
262 | 6 | result->valueComparator = valueComp; |
263 | 6 | result->keyDeleter = NULL; |
264 | 6 | result->valueDeleter = NULL; |
265 | 6 | result->allocated = FALSE; |
266 | 6 | _uhash_internalSetResizePolicy(result, U_GROW); |
267 | 6 | |
268 | 6 | _uhash_allocate(result, primeIndex, status); |
269 | 6 | |
270 | 6 | if (U_FAILURE(*status)) { |
271 | 0 | return NULL; |
272 | 0 | } |
273 | 6 | |
274 | 6 | return result; |
275 | 6 | } |
276 | | |
277 | | static UHashtable* |
278 | | _uhash_create(UHashFunction *keyHash, |
279 | | UKeyComparator *keyComp, |
280 | | UValueComparator *valueComp, |
281 | | int32_t primeIndex, |
282 | 6 | UErrorCode *status) { |
283 | 6 | UHashtable *result; |
284 | 6 | |
285 | 6 | if (U_FAILURE(*status)) return NULL; |
286 | 6 | |
287 | 6 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
288 | 6 | if (result == NULL) { |
289 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
290 | 0 | return NULL; |
291 | 0 | } |
292 | 6 | |
293 | 6 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
294 | 6 | result->allocated = TRUE; |
295 | 6 | |
296 | 6 | if (U_FAILURE(*status)) { |
297 | 0 | uprv_free(result); |
298 | 0 | return NULL; |
299 | 0 | } |
300 | 6 | |
301 | 6 | return result; |
302 | 6 | } |
303 | | |
304 | | /** |
305 | | * Look for a key in the table, or if no such key exists, the first |
306 | | * empty slot matching the given hashcode. Keys are compared using |
307 | | * the keyComparator function. |
308 | | * |
309 | | * First find the start position, which is the hashcode modulo |
310 | | * the length. Test it to see if it is: |
311 | | * |
312 | | * a. identical: First check the hash values for a quick check, |
313 | | * then compare keys for equality using keyComparator. |
314 | | * b. deleted |
315 | | * c. empty |
316 | | * |
317 | | * Stop if it is identical or empty, otherwise continue by adding a |
318 | | * "jump" value (moduloing by the length again to keep it within |
319 | | * range) and retesting. For efficiency, there need enough empty |
320 | | * values so that the searchs stop within a reasonable amount of time. |
321 | | * This can be changed by changing the high/low water marks. |
322 | | * |
323 | | * In theory, this function can return NULL, if it is full (no empty |
324 | | * or deleted slots) and if no matching key is found. In practice, we |
325 | | * prevent this elsewhere (in uhash_put) by making sure the last slot |
326 | | * in the table is never filled. |
327 | | * |
328 | | * The size of the table should be prime for this algorithm to work; |
329 | | * otherwise we are not guaranteed that the jump value (the secondary |
330 | | * hash) is relatively prime to the table length. |
331 | | */ |
332 | | static UHashElement* |
333 | | _uhash_find(const UHashtable *hash, UHashTok key, |
334 | 24 | int32_t hashcode) { |
335 | 24 | |
336 | 24 | int32_t firstDeleted = -1; /* assume invalid index */ |
337 | 24 | int32_t theIndex, startIndex; |
338 | 24 | int32_t jump = 0; /* lazy evaluate */ |
339 | 24 | int32_t tableHash; |
340 | 24 | UHashElement *elements = hash->elements; |
341 | 24 | |
342 | 24 | hashcode &= 0x7FFFFFFF; /* must be positive */ |
343 | 24 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; |
344 | 24 | |
345 | 24 | do { |
346 | 24 | tableHash = elements[theIndex].hashcode; |
347 | 24 | if (tableHash == hashcode) { /* quick check */ |
348 | 9 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { |
349 | 9 | return &(elements[theIndex]); |
350 | 9 | } |
351 | 15 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { |
352 | 0 | /* We have hit a slot which contains a key-value pair, |
353 | 0 | * but for which the hash code does not match. Keep |
354 | 0 | * looking. |
355 | 0 | */ |
356 | 15 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ |
357 | 15 | break; |
358 | 15 | } else if (firstDeleted < 0) { /* remember first deleted */ |
359 | 0 | firstDeleted = theIndex; |
360 | 0 | } |
361 | 24 | if (jump == 0) { /* lazy compute jump */ |
362 | 0 | /* The jump value must be relatively prime to the table |
363 | 0 | * length. As long as the length is prime, then any value |
364 | 0 | * 1..length-1 will be relatively prime to it. |
365 | 0 | */ |
366 | 0 | jump = (hashcode % (hash->length - 1)) + 1; |
367 | 0 | } |
368 | 0 | theIndex = (theIndex + jump) % hash->length; |
369 | 0 | } while (theIndex != startIndex); |
370 | 24 | |
371 | 24 | if (firstDeleted >= 0) { |
372 | 0 | theIndex = firstDeleted; /* reset if had deleted slot */ |
373 | 15 | } else if (tableHash != HASH_EMPTY) { |
374 | 0 | /* We get to this point if the hashtable is full (no empty or |
375 | 0 | * deleted slots), and we've failed to find a match. THIS |
376 | 0 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that |
377 | 0 | * count is always < length. |
378 | 0 | */ |
379 | 0 | U_ASSERT(FALSE); |
380 | 0 | return NULL; /* Never happens if uhash_put() behaves */ |
381 | 0 | } |
382 | 15 | return &(elements[theIndex]); |
383 | 15 | } |
384 | | |
385 | | /** |
386 | | * Attempt to grow or shrink the data arrays in order to make the |
387 | | * count fit between the high and low water marks. hash_put() and |
388 | | * hash_remove() call this method when the count exceeds the high or |
389 | | * low water marks. This method may do nothing, if memory allocation |
390 | | * fails, or if the count is already in range, or if the length is |
391 | | * already at the low or high limit. In any case, upon return the |
392 | | * arrays will be valid. |
393 | | */ |
394 | | static void |
395 | 0 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
396 | 0 |
|
397 | 0 | UHashElement *old = hash->elements; |
398 | 0 | int32_t oldLength = hash->length; |
399 | 0 | int32_t newPrimeIndex = hash->primeIndex; |
400 | 0 | int32_t i; |
401 | 0 |
|
402 | 0 | if (hash->count > hash->highWaterMark) { |
403 | 0 | if (++newPrimeIndex >= PRIMES_LENGTH) { |
404 | 0 | return; |
405 | 0 | } |
406 | 0 | } else if (hash->count < hash->lowWaterMark) { |
407 | 0 | if (--newPrimeIndex < 0) { |
408 | 0 | return; |
409 | 0 | } |
410 | 0 | } else { |
411 | 0 | return; |
412 | 0 | } |
413 | 0 | |
414 | 0 | _uhash_allocate(hash, newPrimeIndex, status); |
415 | 0 |
|
416 | 0 | if (U_FAILURE(*status)) { |
417 | 0 | hash->elements = old; |
418 | 0 | hash->length = oldLength; |
419 | 0 | return; |
420 | 0 | } |
421 | 0 | |
422 | 0 | for (i = oldLength - 1; i >= 0; --i) { |
423 | 0 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { |
424 | 0 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); |
425 | 0 | U_ASSERT(e != NULL); |
426 | 0 | U_ASSERT(e->hashcode == HASH_EMPTY); |
427 | 0 | e->key = old[i].key; |
428 | 0 | e->value = old[i].value; |
429 | 0 | e->hashcode = old[i].hashcode; |
430 | 0 | ++hash->count; |
431 | 0 | } |
432 | 0 | } |
433 | 0 |
|
434 | 0 | uprv_free(old); |
435 | 0 | } |
436 | | |
437 | | static UHashTok |
438 | | _uhash_remove(UHashtable *hash, |
439 | 0 | UHashTok key) { |
440 | 0 | /* First find the position of the key in the table. If the object |
441 | 0 | * has not been removed already, remove it. If the user wanted |
442 | 0 | * keys deleted, then delete it also. We have to put a special |
443 | 0 | * hashcode in that position that means that something has been |
444 | 0 | * deleted, since when we do a find, we have to continue PAST any |
445 | 0 | * deleted values. |
446 | 0 | */ |
447 | 0 | UHashTok result; |
448 | 0 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); |
449 | 0 | U_ASSERT(e != NULL); |
450 | 0 | result.pointer = NULL; |
451 | 0 | result.integer = 0; |
452 | 0 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
453 | 0 | result = _uhash_internalRemoveElement(hash, e); |
454 | 0 | if (hash->count < hash->lowWaterMark) { |
455 | 0 | UErrorCode status = U_ZERO_ERROR; |
456 | 0 | _uhash_rehash(hash, &status); |
457 | 0 | } |
458 | 0 | } |
459 | 0 | return result; |
460 | 0 | } |
461 | | |
462 | | static UHashTok |
463 | | _uhash_put(UHashtable *hash, |
464 | | UHashTok key, |
465 | | UHashTok value, |
466 | | int8_t hint, |
467 | 6 | UErrorCode *status) { |
468 | 6 | |
469 | 6 | /* Put finds the position in the table for the new value. If the |
470 | 6 | * key is already in the table, it is deleted, if there is a |
471 | 6 | * non-NULL keyDeleter. Then the key, the hash and the value are |
472 | 6 | * all put at the position in their respective arrays. |
473 | 6 | */ |
474 | 6 | int32_t hashcode; |
475 | 6 | UHashElement* e; |
476 | 6 | UHashTok emptytok; |
477 | 6 | |
478 | 6 | if (U_FAILURE(*status)) { |
479 | 0 | goto err; |
480 | 0 | } |
481 | 6 | U_ASSERT(hash != NULL); |
482 | 6 | /* Cannot always check pointer here or iSeries sees NULL every time. */ |
483 | 6 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { |
484 | 0 | /* Disallow storage of NULL values, since NULL is returned by |
485 | 0 | * get() to indicate an absent key. Storing NULL == removing. |
486 | 0 | */ |
487 | 0 | return _uhash_remove(hash, key); |
488 | 0 | } |
489 | 6 | if (hash->count > hash->highWaterMark) { |
490 | 0 | _uhash_rehash(hash, status); |
491 | 0 | if (U_FAILURE(*status)) { |
492 | 0 | goto err; |
493 | 0 | } |
494 | 6 | } |
495 | 6 | |
496 | 6 | hashcode = (*hash->keyHasher)(key); |
497 | 6 | e = _uhash_find(hash, key, hashcode); |
498 | 6 | U_ASSERT(e != NULL); |
499 | 6 | |
500 | 6 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { |
501 | 6 | /* Important: We must never actually fill the table up. If we |
502 | 6 | * do so, then _uhash_find() will return NULL, and we'll have |
503 | 6 | * to check for NULL after every call to _uhash_find(). To |
504 | 6 | * avoid this we make sure there is always at least one empty |
505 | 6 | * or deleted slot in the table. This only is a problem if we |
506 | 6 | * are out of memory and rehash isn't working. |
507 | 6 | */ |
508 | 6 | ++hash->count; |
509 | 6 | if (hash->count == hash->length) { |
510 | 0 | /* Don't allow count to reach length */ |
511 | 0 | --hash->count; |
512 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
513 | 0 | goto err; |
514 | 0 | } |
515 | 6 | } |
516 | 6 | |
517 | 6 | /* We must in all cases handle storage properly. If there was an |
518 | 6 | * old key, then it must be deleted (if the deleter != NULL). |
519 | 6 | * Make hashcodes stored in table positive. |
520 | 6 | */ |
521 | 6 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); |
522 | 0 | |
523 | 0 | err: |
524 | 0 | /* If the deleters are non-NULL, this method adopts its key and/or |
525 | 0 | * value arguments, and we must be sure to delete the key and/or |
526 | 0 | * value in all cases, even upon failure. |
527 | 0 | */ |
528 | 0 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); |
529 | 0 | emptytok.pointer = NULL; emptytok.integer = 0; |
530 | 0 | return emptytok; |
531 | 6 | } |
532 | | |
533 | | |
534 | | /******************************************************************** |
535 | | * PUBLIC API |
536 | | ********************************************************************/ |
537 | | |
538 | | U_CAPI UHashtable* U_EXPORT2 |
539 | | uhash_open(UHashFunction *keyHash, |
540 | | UKeyComparator *keyComp, |
541 | | UValueComparator *valueComp, |
542 | 6 | UErrorCode *status) { |
543 | 6 | |
544 | 6 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
545 | 6 | } |
546 | | |
547 | | U_CAPI UHashtable* U_EXPORT2 |
548 | | uhash_openSize(UHashFunction *keyHash, |
549 | | UKeyComparator *keyComp, |
550 | | UValueComparator *valueComp, |
551 | | int32_t size, |
552 | 0 | UErrorCode *status) { |
553 | 0 |
|
554 | 0 | /* Find the smallest index i for which PRIMES[i] >= size. */ |
555 | 0 | int32_t i = 0; |
556 | 0 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
557 | 0 | ++i; |
558 | 0 | } |
559 | 0 |
|
560 | 0 | return _uhash_create(keyHash, keyComp, valueComp, i, status); |
561 | 0 | } |
562 | | |
563 | | U_CAPI UHashtable* U_EXPORT2 |
564 | | uhash_init(UHashtable *fillinResult, |
565 | | UHashFunction *keyHash, |
566 | | UKeyComparator *keyComp, |
567 | | UValueComparator *valueComp, |
568 | 0 | UErrorCode *status) { |
569 | 0 |
|
570 | 0 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
571 | 0 | } |
572 | | |
573 | | U_CAPI UHashtable* U_EXPORT2 |
574 | | uhash_initSize(UHashtable *fillinResult, |
575 | | UHashFunction *keyHash, |
576 | | UKeyComparator *keyComp, |
577 | | UValueComparator *valueComp, |
578 | | int32_t size, |
579 | 0 | UErrorCode *status) { |
580 | 0 |
|
581 | 0 | // Find the smallest index i for which PRIMES[i] >= size. |
582 | 0 | int32_t i = 0; |
583 | 0 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
584 | 0 | ++i; |
585 | 0 | } |
586 | 0 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); |
587 | 0 | } |
588 | | |
589 | | U_CAPI void U_EXPORT2 |
590 | 0 | uhash_close(UHashtable *hash) { |
591 | 0 | if (hash == NULL) { |
592 | 0 | return; |
593 | 0 | } |
594 | 0 | if (hash->elements != NULL) { |
595 | 0 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { |
596 | 0 | int32_t pos=UHASH_FIRST; |
597 | 0 | UHashElement *e; |
598 | 0 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { |
599 | 0 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); |
600 | 0 | } |
601 | 0 | } |
602 | 0 | uprv_free(hash->elements); |
603 | 0 | hash->elements = NULL; |
604 | 0 | } |
605 | 0 | if (hash->allocated) { |
606 | 0 | uprv_free(hash); |
607 | 0 | } |
608 | 0 | } |
609 | | |
610 | | U_CAPI UHashFunction *U_EXPORT2 |
611 | 0 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { |
612 | 0 | UHashFunction *result = hash->keyHasher; |
613 | 0 | hash->keyHasher = fn; |
614 | 0 | return result; |
615 | 0 | } |
616 | | |
617 | | U_CAPI UKeyComparator *U_EXPORT2 |
618 | 0 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { |
619 | 0 | UKeyComparator *result = hash->keyComparator; |
620 | 0 | hash->keyComparator = fn; |
621 | 0 | return result; |
622 | 0 | } |
623 | | U_CAPI UValueComparator *U_EXPORT2 |
624 | 0 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ |
625 | 0 | UValueComparator *result = hash->valueComparator; |
626 | 0 | hash->valueComparator = fn; |
627 | 0 | return result; |
628 | 0 | } |
629 | | |
630 | | U_CAPI UObjectDeleter *U_EXPORT2 |
631 | 3 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { |
632 | 3 | UObjectDeleter *result = hash->keyDeleter; |
633 | 3 | hash->keyDeleter = fn; |
634 | 3 | return result; |
635 | 3 | } |
636 | | |
637 | | U_CAPI UObjectDeleter *U_EXPORT2 |
638 | 3 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { |
639 | 3 | UObjectDeleter *result = hash->valueDeleter; |
640 | 3 | hash->valueDeleter = fn; |
641 | 3 | return result; |
642 | 3 | } |
643 | | |
644 | | U_CAPI void U_EXPORT2 |
645 | 0 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
646 | 0 | UErrorCode status = U_ZERO_ERROR; |
647 | 0 | _uhash_internalSetResizePolicy(hash, policy); |
648 | 0 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
649 | 0 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
650 | 0 | _uhash_rehash(hash, &status); |
651 | 0 | } |
652 | | |
653 | | U_CAPI int32_t U_EXPORT2 |
654 | 0 | uhash_count(const UHashtable *hash) { |
655 | 0 | return hash->count; |
656 | 0 | } |
657 | | |
658 | | U_CAPI void* U_EXPORT2 |
659 | | uhash_get(const UHashtable *hash, |
660 | 18 | const void* key) { |
661 | 18 | UHashTok keyholder; |
662 | 18 | keyholder.pointer = (void*) key; |
663 | 18 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
664 | 18 | } |
665 | | |
666 | | U_CAPI void* U_EXPORT2 |
667 | | uhash_iget(const UHashtable *hash, |
668 | 0 | int32_t key) { |
669 | 0 | UHashTok keyholder; |
670 | 0 | keyholder.integer = key; |
671 | 0 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
672 | 0 | } |
673 | | |
674 | | U_CAPI int32_t U_EXPORT2 |
675 | | uhash_geti(const UHashtable *hash, |
676 | 0 | const void* key) { |
677 | 0 | UHashTok keyholder; |
678 | 0 | keyholder.pointer = (void*) key; |
679 | 0 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
680 | 0 | } |
681 | | |
682 | | U_CAPI int32_t U_EXPORT2 |
683 | | uhash_igeti(const UHashtable *hash, |
684 | 0 | int32_t key) { |
685 | 0 | UHashTok keyholder; |
686 | 0 | keyholder.integer = key; |
687 | 0 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
688 | 0 | } |
689 | | |
690 | | U_CAPI void* U_EXPORT2 |
691 | | uhash_put(UHashtable *hash, |
692 | | void* key, |
693 | | void* value, |
694 | 6 | UErrorCode *status) { |
695 | 6 | UHashTok keyholder, valueholder; |
696 | 6 | keyholder.pointer = key; |
697 | 6 | valueholder.pointer = value; |
698 | 6 | return _uhash_put(hash, keyholder, valueholder, |
699 | 6 | HINT_KEY_POINTER | HINT_VALUE_POINTER, |
700 | 6 | status).pointer; |
701 | 6 | } |
702 | | |
703 | | U_CAPI void* U_EXPORT2 |
704 | | uhash_iput(UHashtable *hash, |
705 | | int32_t key, |
706 | | void* value, |
707 | 0 | UErrorCode *status) { |
708 | 0 | UHashTok keyholder, valueholder; |
709 | 0 | keyholder.integer = key; |
710 | 0 | valueholder.pointer = value; |
711 | 0 | return _uhash_put(hash, keyholder, valueholder, |
712 | 0 | HINT_VALUE_POINTER, |
713 | 0 | status).pointer; |
714 | 0 | } |
715 | | |
716 | | U_CAPI int32_t U_EXPORT2 |
717 | | uhash_puti(UHashtable *hash, |
718 | | void* key, |
719 | | int32_t value, |
720 | 0 | UErrorCode *status) { |
721 | 0 | UHashTok keyholder, valueholder; |
722 | 0 | keyholder.pointer = key; |
723 | 0 | valueholder.integer = value; |
724 | 0 | return _uhash_put(hash, keyholder, valueholder, |
725 | 0 | HINT_KEY_POINTER, |
726 | 0 | status).integer; |
727 | 0 | } |
728 | | |
729 | | |
730 | | U_CAPI int32_t U_EXPORT2 |
731 | | uhash_iputi(UHashtable *hash, |
732 | | int32_t key, |
733 | | int32_t value, |
734 | 0 | UErrorCode *status) { |
735 | 0 | UHashTok keyholder, valueholder; |
736 | 0 | keyholder.integer = key; |
737 | 0 | valueholder.integer = value; |
738 | 0 | return _uhash_put(hash, keyholder, valueholder, |
739 | 0 | 0, /* neither is a ptr */ |
740 | 0 | status).integer; |
741 | 0 | } |
742 | | |
743 | | U_CAPI void* U_EXPORT2 |
744 | | uhash_remove(UHashtable *hash, |
745 | 0 | const void* key) { |
746 | 0 | UHashTok keyholder; |
747 | 0 | keyholder.pointer = (void*) key; |
748 | 0 | return _uhash_remove(hash, keyholder).pointer; |
749 | 0 | } |
750 | | |
751 | | U_CAPI void* U_EXPORT2 |
752 | | uhash_iremove(UHashtable *hash, |
753 | 0 | int32_t key) { |
754 | 0 | UHashTok keyholder; |
755 | 0 | keyholder.integer = key; |
756 | 0 | return _uhash_remove(hash, keyholder).pointer; |
757 | 0 | } |
758 | | |
759 | | U_CAPI int32_t U_EXPORT2 |
760 | | uhash_removei(UHashtable *hash, |
761 | 0 | const void* key) { |
762 | 0 | UHashTok keyholder; |
763 | 0 | keyholder.pointer = (void*) key; |
764 | 0 | return _uhash_remove(hash, keyholder).integer; |
765 | 0 | } |
766 | | |
767 | | U_CAPI int32_t U_EXPORT2 |
768 | | uhash_iremovei(UHashtable *hash, |
769 | 0 | int32_t key) { |
770 | 0 | UHashTok keyholder; |
771 | 0 | keyholder.integer = key; |
772 | 0 | return _uhash_remove(hash, keyholder).integer; |
773 | 0 | } |
774 | | |
775 | | U_CAPI void U_EXPORT2 |
776 | 0 | uhash_removeAll(UHashtable *hash) { |
777 | 0 | int32_t pos = UHASH_FIRST; |
778 | 0 | const UHashElement *e; |
779 | 0 | U_ASSERT(hash != NULL); |
780 | 0 | if (hash->count != 0) { |
781 | 0 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { |
782 | 0 | uhash_removeElement(hash, e); |
783 | 0 | } |
784 | 0 | } |
785 | 0 | U_ASSERT(hash->count == 0); |
786 | 0 | } |
787 | | |
788 | | U_CAPI const UHashElement* U_EXPORT2 |
789 | 0 | uhash_find(const UHashtable *hash, const void* key) { |
790 | 0 | UHashTok keyholder; |
791 | 0 | const UHashElement *e; |
792 | 0 | keyholder.pointer = (void*) key; |
793 | 0 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
794 | 0 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; |
795 | 0 | } |
796 | | |
797 | | U_CAPI const UHashElement* U_EXPORT2 |
798 | 0 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { |
799 | 0 | /* Walk through the array until we find an element that is not |
800 | 0 | * EMPTY and not DELETED. |
801 | 0 | */ |
802 | 0 | int32_t i; |
803 | 0 | U_ASSERT(hash != NULL); |
804 | 0 | for (i = *pos + 1; i < hash->length; ++i) { |
805 | 0 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { |
806 | 0 | *pos = i; |
807 | 0 | return &(hash->elements[i]); |
808 | 0 | } |
809 | 0 | } |
810 | 0 |
|
811 | 0 | /* No more elements */ |
812 | 0 | return NULL; |
813 | 0 | } |
814 | | |
815 | | U_CAPI void* U_EXPORT2 |
816 | 0 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { |
817 | 0 | U_ASSERT(hash != NULL); |
818 | 0 | U_ASSERT(e != NULL); |
819 | 0 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
820 | 0 | UHashElement *nce = (UHashElement *)e; |
821 | 0 | return _uhash_internalRemoveElement(hash, nce).pointer; |
822 | 0 | } |
823 | 0 | return NULL; |
824 | 0 | } |
825 | | |
826 | | /******************************************************************** |
827 | | * UHashTok convenience |
828 | | ********************************************************************/ |
829 | | |
830 | | /** |
831 | | * Return a UHashTok for an integer. |
832 | | */ |
833 | | /*U_CAPI UHashTok U_EXPORT2 |
834 | | uhash_toki(int32_t i) { |
835 | | UHashTok tok; |
836 | | tok.integer = i; |
837 | | return tok; |
838 | | }*/ |
839 | | |
840 | | /** |
841 | | * Return a UHashTok for a pointer. |
842 | | */ |
843 | | /*U_CAPI UHashTok U_EXPORT2 |
844 | | uhash_tokp(void* p) { |
845 | | UHashTok tok; |
846 | | tok.pointer = p; |
847 | | return tok; |
848 | | }*/ |
849 | | |
850 | | /******************************************************************** |
851 | | * PUBLIC Key Hash Functions |
852 | | ********************************************************************/ |
853 | | |
854 | | U_CAPI int32_t U_EXPORT2 |
855 | 0 | uhash_hashUChars(const UHashTok key) { |
856 | 0 | const UChar *s = (const UChar *)key.pointer; |
857 | 0 | return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); |
858 | 0 | } |
859 | | |
860 | | U_CAPI int32_t U_EXPORT2 |
861 | 42 | uhash_hashChars(const UHashTok key) { |
862 | 42 | const char *s = (const char *)key.pointer; |
863 | 42 | return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, uprv_strlen(s))); |
864 | 42 | } |
865 | | |
866 | | U_CAPI int32_t U_EXPORT2 |
867 | 0 | uhash_hashIChars(const UHashTok key) { |
868 | 0 | const char *s = (const char *)key.pointer; |
869 | 0 | return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s)); |
870 | 0 | } |
871 | | |
872 | | U_CAPI UBool U_EXPORT2 |
873 | 0 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ |
874 | 0 | int32_t count1, count2, pos, i; |
875 | 0 |
|
876 | 0 | if(hash1==hash2){ |
877 | 0 | return TRUE; |
878 | 0 | } |
879 | 0 |
|
880 | 0 | /* |
881 | 0 | * Make sure that we are comparing 2 valid hashes of the same type |
882 | 0 | * with valid comparison functions. |
883 | 0 | * Without valid comparison functions, a binary comparison |
884 | 0 | * of the hash values will yield random results on machines |
885 | 0 | * with 64-bit pointers and 32-bit integer hashes. |
886 | 0 | * A valueComparator is normally optional. |
887 | 0 | */ |
888 | 0 | if (hash1==NULL || hash2==NULL || |
889 | 0 | hash1->keyComparator != hash2->keyComparator || |
890 | 0 | hash1->valueComparator != hash2->valueComparator || |
891 | 0 | hash1->valueComparator == NULL) |
892 | 0 | { |
893 | 0 | /* |
894 | 0 | Normally we would return an error here about incompatible hash tables, |
895 | 0 | but we return FALSE instead. |
896 | 0 | */ |
897 | 0 | return FALSE; |
898 | 0 | } |
899 | 0 |
|
900 | 0 | count1 = uhash_count(hash1); |
901 | 0 | count2 = uhash_count(hash2); |
902 | 0 | if(count1!=count2){ |
903 | 0 | return FALSE; |
904 | 0 | } |
905 | 0 |
|
906 | 0 | pos=UHASH_FIRST; |
907 | 0 | for(i=0; i<count1; i++){ |
908 | 0 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); |
909 | 0 | const UHashTok key1 = elem1->key; |
910 | 0 | const UHashTok val1 = elem1->value; |
911 | 0 | /* here the keys are not compared, instead the key form hash1 is used to fetch |
912 | 0 | * value from hash2. If the hashes are equal then then both hashes should |
913 | 0 | * contain equal values for the same key! |
914 | 0 | */ |
915 | 0 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
916 | 0 | const UHashTok val2 = elem2->value; |
917 | 0 | if(hash1->valueComparator(val1, val2)==FALSE){ |
918 | 0 | return FALSE; |
919 | 0 | } |
920 | 0 | } |
921 | 0 | return TRUE; |
922 | 0 | } |
923 | | |
924 | | /******************************************************************** |
925 | | * PUBLIC Comparator Functions |
926 | | ********************************************************************/ |
927 | | |
928 | | U_CAPI UBool U_EXPORT2 |
929 | 0 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { |
930 | 0 | const UChar *p1 = (const UChar*) key1.pointer; |
931 | 0 | const UChar *p2 = (const UChar*) key2.pointer; |
932 | 0 | if (p1 == p2) { |
933 | 0 | return TRUE; |
934 | 0 | } |
935 | 0 | if (p1 == NULL || p2 == NULL) { |
936 | 0 | return FALSE; |
937 | 0 | } |
938 | 0 | while (*p1 != 0 && *p1 == *p2) { |
939 | 0 | ++p1; |
940 | 0 | ++p2; |
941 | 0 | } |
942 | 0 | return (UBool)(*p1 == *p2); |
943 | 0 | } |
944 | | |
945 | | U_CAPI UBool U_EXPORT2 |
946 | 18 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { |
947 | 18 | const char *p1 = (const char*) key1.pointer; |
948 | 18 | const char *p2 = (const char*) key2.pointer; |
949 | 18 | if (p1 == p2) { |
950 | 9 | return TRUE; |
951 | 9 | } |
952 | 9 | if (p1 == NULL || p2 == NULL) { |
953 | 0 | return FALSE; |
954 | 0 | } |
955 | 126 | while (*p1 != 0 && *p1 == *p2) { |
956 | 117 | ++p1; |
957 | 117 | ++p2; |
958 | 117 | } |
959 | 9 | return (UBool)(*p1 == *p2); |
960 | 9 | } |
961 | | |
962 | | U_CAPI UBool U_EXPORT2 |
963 | 0 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { |
964 | 0 | const char *p1 = (const char*) key1.pointer; |
965 | 0 | const char *p2 = (const char*) key2.pointer; |
966 | 0 | if (p1 == p2) { |
967 | 0 | return TRUE; |
968 | 0 | } |
969 | 0 | if (p1 == NULL || p2 == NULL) { |
970 | 0 | return FALSE; |
971 | 0 | } |
972 | 0 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
973 | 0 | ++p1; |
974 | 0 | ++p2; |
975 | 0 | } |
976 | 0 | return (UBool)(*p1 == *p2); |
977 | 0 | } |
978 | | |
979 | | /******************************************************************** |
980 | | * PUBLIC int32_t Support Functions |
981 | | ********************************************************************/ |
982 | | |
983 | | U_CAPI int32_t U_EXPORT2 |
984 | 0 | uhash_hashLong(const UHashTok key) { |
985 | 0 | return key.integer; |
986 | 0 | } |
987 | | |
988 | | U_CAPI UBool U_EXPORT2 |
989 | 0 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { |
990 | 0 | return (UBool)(key1.integer == key2.integer); |
991 | 0 | } |