Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/intl/icu/source/i18n/double-conversion-bignum.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2018 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
//
4
// From the double-conversion library. Original license:
5
//
6
// Copyright 2010 the V8 project authors. All rights reserved.
7
// Redistribution and use in source and binary forms, with or without
8
// modification, are permitted provided that the following conditions are
9
// met:
10
//
11
//     * Redistributions of source code must retain the above copyright
12
//       notice, this list of conditions and the following disclaimer.
13
//     * Redistributions in binary form must reproduce the above
14
//       copyright notice, this list of conditions and the following
15
//       disclaimer in the documentation and/or other materials provided
16
//       with the distribution.
17
//     * Neither the name of Google Inc. nor the names of its
18
//       contributors may be used to endorse or promote products derived
19
//       from this software without specific prior written permission.
20
//
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34
#include "unicode/utypes.h"
35
#if !UCONFIG_NO_FORMATTING
36
37
// ICU PATCH: Customize header file paths for ICU.
38
39
#include "double-conversion-bignum.h"
40
#include "double-conversion-utils.h"
41
42
// ICU PATCH: Wrap in ICU namespace
43
U_NAMESPACE_BEGIN
44
45
namespace double_conversion {
46
47
Bignum::Bignum()
48
0
    : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
49
0
  for (int i = 0; i < kBigitCapacity; ++i) {
50
0
    bigits_[i] = 0;
51
0
  }
52
0
}
53
54
55
template<typename S>
56
static int BitSize(S value) {
57
  (void) value;  // Mark variable as used.
58
  return 8 * sizeof(value);
59
}
60
61
// Guaranteed to lie in one Bigit.
62
0
void Bignum::AssignUInt16(uint16_t value) {
63
0
  ASSERT(kBigitSize >= BitSize(value));
64
0
  Zero();
65
0
  if (value == 0) return;
66
0
67
0
  EnsureCapacity(1);
68
0
  bigits_[0] = value;
69
0
  used_digits_ = 1;
70
0
}
71
72
73
0
void Bignum::AssignUInt64(uint64_t value) {
74
0
  const int kUInt64Size = 64;
75
0
76
0
  Zero();
77
0
  if (value == 0) return;
78
0
79
0
  int needed_bigits = kUInt64Size / kBigitSize + 1;
80
0
  EnsureCapacity(needed_bigits);
81
0
  for (int i = 0; i < needed_bigits; ++i) {
82
0
    bigits_[i] = value & kBigitMask;
83
0
    value = value >> kBigitSize;
84
0
  }
85
0
  used_digits_ = needed_bigits;
86
0
  Clamp();
87
0
}
88
89
90
0
void Bignum::AssignBignum(const Bignum& other) {
91
0
  exponent_ = other.exponent_;
92
0
  for (int i = 0; i < other.used_digits_; ++i) {
93
0
    bigits_[i] = other.bigits_[i];
94
0
  }
95
0
  // Clear the excess digits (if there were any).
96
0
  for (int i = other.used_digits_; i < used_digits_; ++i) {
97
0
    bigits_[i] = 0;
98
0
  }
99
0
  used_digits_ = other.used_digits_;
100
0
}
101
102
103
static uint64_t ReadUInt64(Vector<const char> buffer,
104
                           int from,
105
0
                           int digits_to_read) {
106
0
  uint64_t result = 0;
107
0
  for (int i = from; i < from + digits_to_read; ++i) {
108
0
    int digit = buffer[i] - '0';
109
0
    ASSERT(0 <= digit && digit <= 9);
110
0
    result = result * 10 + digit;
111
0
  }
112
0
  return result;
113
0
}
114
115
116
0
void Bignum::AssignDecimalString(Vector<const char> value) {
117
0
  // 2^64 = 18446744073709551616 > 10^19
118
0
  const int kMaxUint64DecimalDigits = 19;
119
0
  Zero();
120
0
  int length = value.length();
121
0
  unsigned int pos = 0;
122
0
  // Let's just say that each digit needs 4 bits.
123
0
  while (length >= kMaxUint64DecimalDigits) {
124
0
    uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
125
0
    pos += kMaxUint64DecimalDigits;
126
0
    length -= kMaxUint64DecimalDigits;
127
0
    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
128
0
    AddUInt64(digits);
129
0
  }
130
0
  uint64_t digits = ReadUInt64(value, pos, length);
131
0
  MultiplyByPowerOfTen(length);
132
0
  AddUInt64(digits);
133
0
  Clamp();
134
0
}
135
136
137
0
static int HexCharValue(char c) {
138
0
  if ('0' <= c && c <= '9') return c - '0';
139
0
  if ('a' <= c && c <= 'f') return 10 + c - 'a';
140
0
  ASSERT('A' <= c && c <= 'F');
141
0
  return 10 + c - 'A';
142
0
}
143
144
145
0
void Bignum::AssignHexString(Vector<const char> value) {
146
0
  Zero();
147
0
  int length = value.length();
148
0
149
0
  int needed_bigits = length * 4 / kBigitSize + 1;
150
0
  EnsureCapacity(needed_bigits);
151
0
  int string_index = length - 1;
152
0
  for (int i = 0; i < needed_bigits - 1; ++i) {
153
0
    // These bigits are guaranteed to be "full".
154
0
    Chunk current_bigit = 0;
155
0
    for (int j = 0; j < kBigitSize / 4; j++) {
156
0
      current_bigit += HexCharValue(value[string_index--]) << (j * 4);
157
0
    }
158
0
    bigits_[i] = current_bigit;
159
0
  }
160
0
  used_digits_ = needed_bigits - 1;
161
0
162
0
  Chunk most_significant_bigit = 0;  // Could be = 0;
163
0
  for (int j = 0; j <= string_index; ++j) {
164
0
    most_significant_bigit <<= 4;
165
0
    most_significant_bigit += HexCharValue(value[j]);
166
0
  }
167
0
  if (most_significant_bigit != 0) {
168
0
    bigits_[used_digits_] = most_significant_bigit;
169
0
    used_digits_++;
170
0
  }
171
0
  Clamp();
172
0
}
173
174
175
0
void Bignum::AddUInt64(uint64_t operand) {
176
0
  if (operand == 0) return;
177
0
  Bignum other;
178
0
  other.AssignUInt64(operand);
179
0
  AddBignum(other);
180
0
}
181
182
183
0
void Bignum::AddBignum(const Bignum& other) {
184
0
  ASSERT(IsClamped());
185
0
  ASSERT(other.IsClamped());
186
0
187
0
  // If this has a greater exponent than other append zero-bigits to this.
188
0
  // After this call exponent_ <= other.exponent_.
189
0
  Align(other);
190
0
191
0
  // There are two possibilities:
192
0
  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
193
0
  //     bbbbb 00000000
194
0
  //   ----------------
195
0
  //   ccccccccccc 0000
196
0
  // or
197
0
  //    aaaaaaaaaa 0000
198
0
  //  bbbbbbbbb 0000000
199
0
  //  -----------------
200
0
  //  cccccccccccc 0000
201
0
  // In both cases we might need a carry bigit.
202
0
203
0
  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
204
0
  Chunk carry = 0;
205
0
  int bigit_pos = other.exponent_ - exponent_;
206
0
  ASSERT(bigit_pos >= 0);
207
0
  for (int i = 0; i < other.used_digits_; ++i) {
208
0
    Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
209
0
    bigits_[bigit_pos] = sum & kBigitMask;
210
0
    carry = sum >> kBigitSize;
211
0
    bigit_pos++;
212
0
  }
213
0
214
0
  while (carry != 0) {
215
0
    Chunk sum = bigits_[bigit_pos] + carry;
216
0
    bigits_[bigit_pos] = sum & kBigitMask;
217
0
    carry = sum >> kBigitSize;
218
0
    bigit_pos++;
219
0
  }
220
0
  used_digits_ = Max(bigit_pos, used_digits_);
221
0
  ASSERT(IsClamped());
222
0
}
223
224
225
0
void Bignum::SubtractBignum(const Bignum& other) {
226
0
  ASSERT(IsClamped());
227
0
  ASSERT(other.IsClamped());
228
0
  // We require this to be bigger than other.
229
0
  ASSERT(LessEqual(other, *this));
230
0
231
0
  Align(other);
232
0
233
0
  int offset = other.exponent_ - exponent_;
234
0
  Chunk borrow = 0;
235
0
  int i;
236
0
  for (i = 0; i < other.used_digits_; ++i) {
237
0
    ASSERT((borrow == 0) || (borrow == 1));
238
0
    Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
239
0
    bigits_[i + offset] = difference & kBigitMask;
240
0
    borrow = difference >> (kChunkSize - 1);
241
0
  }
242
0
  while (borrow != 0) {
243
0
    Chunk difference = bigits_[i + offset] - borrow;
244
0
    bigits_[i + offset] = difference & kBigitMask;
245
0
    borrow = difference >> (kChunkSize - 1);
246
0
    ++i;
247
0
  }
248
0
  Clamp();
249
0
}
250
251
252
0
void Bignum::ShiftLeft(int shift_amount) {
253
0
  if (used_digits_ == 0) return;
254
0
  exponent_ += shift_amount / kBigitSize;
255
0
  int local_shift = shift_amount % kBigitSize;
256
0
  EnsureCapacity(used_digits_ + 1);
257
0
  BigitsShiftLeft(local_shift);
258
0
}
259
260
261
0
void Bignum::MultiplyByUInt32(uint32_t factor) {
262
0
  if (factor == 1) return;
263
0
  if (factor == 0) {
264
0
    Zero();
265
0
    return;
266
0
  }
267
0
  if (used_digits_ == 0) return;
268
0
269
0
  // The product of a bigit with the factor is of size kBigitSize + 32.
270
0
  // Assert that this number + 1 (for the carry) fits into double chunk.
271
0
  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
272
0
  DoubleChunk carry = 0;
273
0
  for (int i = 0; i < used_digits_; ++i) {
274
0
    DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
275
0
    bigits_[i] = static_cast<Chunk>(product & kBigitMask);
276
0
    carry = (product >> kBigitSize);
277
0
  }
278
0
  while (carry != 0) {
279
0
    EnsureCapacity(used_digits_ + 1);
280
0
    bigits_[used_digits_] = carry & kBigitMask;
281
0
    used_digits_++;
282
0
    carry >>= kBigitSize;
283
0
  }
284
0
}
285
286
287
0
void Bignum::MultiplyByUInt64(uint64_t factor) {
288
0
  if (factor == 1) return;
289
0
  if (factor == 0) {
290
0
    Zero();
291
0
    return;
292
0
  }
293
0
  ASSERT(kBigitSize < 32);
294
0
  uint64_t carry = 0;
295
0
  uint64_t low = factor & 0xFFFFFFFF;
296
0
  uint64_t high = factor >> 32;
297
0
  for (int i = 0; i < used_digits_; ++i) {
298
0
    uint64_t product_low = low * bigits_[i];
299
0
    uint64_t product_high = high * bigits_[i];
300
0
    uint64_t tmp = (carry & kBigitMask) + product_low;
301
0
    bigits_[i] = tmp & kBigitMask;
302
0
    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
303
0
        (product_high << (32 - kBigitSize));
304
0
  }
305
0
  while (carry != 0) {
306
0
    EnsureCapacity(used_digits_ + 1);
307
0
    bigits_[used_digits_] = carry & kBigitMask;
308
0
    used_digits_++;
309
0
    carry >>= kBigitSize;
310
0
  }
311
0
}
312
313
314
0
void Bignum::MultiplyByPowerOfTen(int exponent) {
315
0
  const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
316
0
  const uint16_t kFive1 = 5;
317
0
  const uint16_t kFive2 = kFive1 * 5;
318
0
  const uint16_t kFive3 = kFive2 * 5;
319
0
  const uint16_t kFive4 = kFive3 * 5;
320
0
  const uint16_t kFive5 = kFive4 * 5;
321
0
  const uint16_t kFive6 = kFive5 * 5;
322
0
  const uint32_t kFive7 = kFive6 * 5;
323
0
  const uint32_t kFive8 = kFive7 * 5;
324
0
  const uint32_t kFive9 = kFive8 * 5;
325
0
  const uint32_t kFive10 = kFive9 * 5;
326
0
  const uint32_t kFive11 = kFive10 * 5;
327
0
  const uint32_t kFive12 = kFive11 * 5;
328
0
  const uint32_t kFive13 = kFive12 * 5;
329
0
  const uint32_t kFive1_to_12[] =
330
0
      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
331
0
        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
332
0
333
0
  ASSERT(exponent >= 0);
334
0
  if (exponent == 0) return;
335
0
  if (used_digits_ == 0) return;
336
0
337
0
  // We shift by exponent at the end just before returning.
338
0
  int remaining_exponent = exponent;
339
0
  while (remaining_exponent >= 27) {
340
0
    MultiplyByUInt64(kFive27);
341
0
    remaining_exponent -= 27;
342
0
  }
343
0
  while (remaining_exponent >= 13) {
344
0
    MultiplyByUInt32(kFive13);
345
0
    remaining_exponent -= 13;
346
0
  }
347
0
  if (remaining_exponent > 0) {
348
0
    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
349
0
  }
350
0
  ShiftLeft(exponent);
351
0
}
352
353
354
0
void Bignum::Square() {
355
0
  ASSERT(IsClamped());
356
0
  int product_length = 2 * used_digits_;
357
0
  EnsureCapacity(product_length);
358
0
359
0
  // Comba multiplication: compute each column separately.
360
0
  // Example: r = a2a1a0 * b2b1b0.
361
0
  //    r =  1    * a0b0 +
362
0
  //        10    * (a1b0 + a0b1) +
363
0
  //        100   * (a2b0 + a1b1 + a0b2) +
364
0
  //        1000  * (a2b1 + a1b2) +
365
0
  //        10000 * a2b2
366
0
  //
367
0
  // In the worst case we have to accumulate nb-digits products of digit*digit.
368
0
  //
369
0
  // Assert that the additional number of bits in a DoubleChunk are enough to
370
0
  // sum up used_digits of Bigit*Bigit.
371
0
  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
372
0
    UNIMPLEMENTED();
373
0
  }
374
0
  DoubleChunk accumulator = 0;
375
0
  // First shift the digits so we don't overwrite them.
376
0
  int copy_offset = used_digits_;
377
0
  for (int i = 0; i < used_digits_; ++i) {
378
0
    bigits_[copy_offset + i] = bigits_[i];
379
0
  }
380
0
  // We have two loops to avoid some 'if's in the loop.
381
0
  for (int i = 0; i < used_digits_; ++i) {
382
0
    // Process temporary digit i with power i.
383
0
    // The sum of the two indices must be equal to i.
384
0
    int bigit_index1 = i;
385
0
    int bigit_index2 = 0;
386
0
    // Sum all of the sub-products.
387
0
    while (bigit_index1 >= 0) {
388
0
      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
389
0
      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
390
0
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
391
0
      bigit_index1--;
392
0
      bigit_index2++;
393
0
    }
394
0
    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
395
0
    accumulator >>= kBigitSize;
396
0
  }
397
0
  for (int i = used_digits_; i < product_length; ++i) {
398
0
    int bigit_index1 = used_digits_ - 1;
399
0
    int bigit_index2 = i - bigit_index1;
400
0
    // Invariant: sum of both indices is again equal to i.
401
0
    // Inner loop runs 0 times on last iteration, emptying accumulator.
402
0
    while (bigit_index2 < used_digits_) {
403
0
      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
404
0
      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
405
0
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
406
0
      bigit_index1--;
407
0
      bigit_index2++;
408
0
    }
409
0
    // The overwritten bigits_[i] will never be read in further loop iterations,
410
0
    // because bigit_index1 and bigit_index2 are always greater
411
0
    // than i - used_digits_.
412
0
    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
413
0
    accumulator >>= kBigitSize;
414
0
  }
415
0
  // Since the result was guaranteed to lie inside the number the
416
0
  // accumulator must be 0 now.
417
0
  ASSERT(accumulator == 0);
418
0
419
0
  // Don't forget to update the used_digits and the exponent.
420
0
  used_digits_ = product_length;
421
0
  exponent_ *= 2;
422
0
  Clamp();
423
0
}
424
425
426
0
void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
427
0
  ASSERT(base != 0);
428
0
  ASSERT(power_exponent >= 0);
429
0
  if (power_exponent == 0) {
430
0
    AssignUInt16(1);
431
0
    return;
432
0
  }
433
0
  Zero();
434
0
  int shifts = 0;
435
0
  // We expect base to be in range 2-32, and most often to be 10.
436
0
  // It does not make much sense to implement different algorithms for counting
437
0
  // the bits.
438
0
  while ((base & 1) == 0) {
439
0
    base >>= 1;
440
0
    shifts++;
441
0
  }
442
0
  int bit_size = 0;
443
0
  int tmp_base = base;
444
0
  while (tmp_base != 0) {
445
0
    tmp_base >>= 1;
446
0
    bit_size++;
447
0
  }
448
0
  int final_size = bit_size * power_exponent;
449
0
  // 1 extra bigit for the shifting, and one for rounded final_size.
450
0
  EnsureCapacity(final_size / kBigitSize + 2);
451
0
452
0
  // Left to Right exponentiation.
453
0
  int mask = 1;
454
0
  while (power_exponent >= mask) mask <<= 1;
455
0
456
0
  // The mask is now pointing to the bit above the most significant 1-bit of
457
0
  // power_exponent.
458
0
  // Get rid of first 1-bit;
459
0
  mask >>= 2;
460
0
  uint64_t this_value = base;
461
0
462
0
  bool delayed_multipliciation = false;
463
0
  const uint64_t max_32bits = 0xFFFFFFFF;
464
0
  while (mask != 0 && this_value <= max_32bits) {
465
0
    this_value = this_value * this_value;
466
0
    // Verify that there is enough space in this_value to perform the
467
0
    // multiplication.  The first bit_size bits must be 0.
468
0
    if ((power_exponent & mask) != 0) {
469
0
      uint64_t base_bits_mask =
470
0
          ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
471
0
      bool high_bits_zero = (this_value & base_bits_mask) == 0;
472
0
      if (high_bits_zero) {
473
0
        this_value *= base;
474
0
      } else {
475
0
        delayed_multipliciation = true;
476
0
      }
477
0
    }
478
0
    mask >>= 1;
479
0
  }
480
0
  AssignUInt64(this_value);
481
0
  if (delayed_multipliciation) {
482
0
    MultiplyByUInt32(base);
483
0
  }
484
0
485
0
  // Now do the same thing as a bignum.
486
0
  while (mask != 0) {
487
0
    Square();
488
0
    if ((power_exponent & mask) != 0) {
489
0
      MultiplyByUInt32(base);
490
0
    }
491
0
    mask >>= 1;
492
0
  }
493
0
494
0
  // And finally add the saved shifts.
495
0
  ShiftLeft(shifts * power_exponent);
496
0
}
497
498
499
// Precondition: this/other < 16bit.
500
0
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
501
0
  ASSERT(IsClamped());
502
0
  ASSERT(other.IsClamped());
503
0
  ASSERT(other.used_digits_ > 0);
504
0
505
0
  // Easy case: if we have less digits than the divisor than the result is 0.
506
0
  // Note: this handles the case where this == 0, too.
507
0
  if (BigitLength() < other.BigitLength()) {
508
0
    return 0;
509
0
  }
510
0
511
0
  Align(other);
512
0
513
0
  uint16_t result = 0;
514
0
515
0
  // Start by removing multiples of 'other' until both numbers have the same
516
0
  // number of digits.
517
0
  while (BigitLength() > other.BigitLength()) {
518
0
    // This naive approach is extremely inefficient if `this` divided by other
519
0
    // is big. This function is implemented for doubleToString where
520
0
    // the result should be small (less than 10).
521
0
    ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
522
0
    ASSERT(bigits_[used_digits_ - 1] < 0x10000);
523
0
    // Remove the multiples of the first digit.
524
0
    // Example this = 23 and other equals 9. -> Remove 2 multiples.
525
0
    result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
526
0
    SubtractTimes(other, bigits_[used_digits_ - 1]);
527
0
  }
528
0
529
0
  ASSERT(BigitLength() == other.BigitLength());
530
0
531
0
  // Both bignums are at the same length now.
532
0
  // Since other has more than 0 digits we know that the access to
533
0
  // bigits_[used_digits_ - 1] is safe.
534
0
  Chunk this_bigit = bigits_[used_digits_ - 1];
535
0
  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
536
0
537
0
  if (other.used_digits_ == 1) {
538
0
    // Shortcut for easy (and common) case.
539
0
    int quotient = this_bigit / other_bigit;
540
0
    bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
541
0
    ASSERT(quotient < 0x10000);
542
0
    result += static_cast<uint16_t>(quotient);
543
0
    Clamp();
544
0
    return result;
545
0
  }
546
0
547
0
  int division_estimate = this_bigit / (other_bigit + 1);
548
0
  ASSERT(division_estimate < 0x10000);
549
0
  result += static_cast<uint16_t>(division_estimate);
550
0
  SubtractTimes(other, division_estimate);
551
0
552
0
  if (other_bigit * (division_estimate + 1) > this_bigit) {
553
0
    // No need to even try to subtract. Even if other's remaining digits were 0
554
0
    // another subtraction would be too much.
555
0
    return result;
556
0
  }
557
0
558
0
  while (LessEqual(other, *this)) {
559
0
    SubtractBignum(other);
560
0
    result++;
561
0
  }
562
0
  return result;
563
0
}
564
565
566
template<typename S>
567
0
static int SizeInHexChars(S number) {
568
0
  ASSERT(number > 0);
569
0
  int result = 0;
570
0
  while (number != 0) {
571
0
    number >>= 4;
572
0
    result++;
573
0
  }
574
0
  return result;
575
0
}
576
577
578
0
static char HexCharOfValue(int value) {
579
0
  ASSERT(0 <= value && value <= 16);
580
0
  if (value < 10) return static_cast<char>(value + '0');
581
0
  return static_cast<char>(value - 10 + 'A');
582
0
}
583
584
585
0
bool Bignum::ToHexString(char* buffer, int buffer_size) const {
586
0
  ASSERT(IsClamped());
587
0
  // Each bigit must be printable as separate hex-character.
588
0
  ASSERT(kBigitSize % 4 == 0);
589
0
  const int kHexCharsPerBigit = kBigitSize / 4;
590
0
591
0
  if (used_digits_ == 0) {
592
0
    if (buffer_size < 2) return false;
593
0
    buffer[0] = '0';
594
0
    buffer[1] = '\0';
595
0
    return true;
596
0
  }
597
0
  // We add 1 for the terminating '\0' character.
598
0
  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
599
0
      SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
600
0
  if (needed_chars > buffer_size) return false;
601
0
  int string_index = needed_chars - 1;
602
0
  buffer[string_index--] = '\0';
603
0
  for (int i = 0; i < exponent_; ++i) {
604
0
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
605
0
      buffer[string_index--] = '0';
606
0
    }
607
0
  }
608
0
  for (int i = 0; i < used_digits_ - 1; ++i) {
609
0
    Chunk current_bigit = bigits_[i];
610
0
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
611
0
      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
612
0
      current_bigit >>= 4;
613
0
    }
614
0
  }
615
0
  // And finally the last bigit.
616
0
  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
617
0
  while (most_significant_bigit != 0) {
618
0
    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
619
0
    most_significant_bigit >>= 4;
620
0
  }
621
0
  return true;
622
0
}
623
624
625
0
Bignum::Chunk Bignum::BigitAt(int index) const {
626
0
  if (index >= BigitLength()) return 0;
627
0
  if (index < exponent_) return 0;
628
0
  return bigits_[index - exponent_];
629
0
}
630
631
632
0
int Bignum::Compare(const Bignum& a, const Bignum& b) {
633
0
  ASSERT(a.IsClamped());
634
0
  ASSERT(b.IsClamped());
635
0
  int bigit_length_a = a.BigitLength();
636
0
  int bigit_length_b = b.BigitLength();
637
0
  if (bigit_length_a < bigit_length_b) return -1;
638
0
  if (bigit_length_a > bigit_length_b) return +1;
639
0
  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
640
0
    Chunk bigit_a = a.BigitAt(i);
641
0
    Chunk bigit_b = b.BigitAt(i);
642
0
    if (bigit_a < bigit_b) return -1;
643
0
    if (bigit_a > bigit_b) return +1;
644
0
    // Otherwise they are equal up to this digit. Try the next digit.
645
0
  }
646
0
  return 0;
647
0
}
648
649
650
0
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
651
0
  ASSERT(a.IsClamped());
652
0
  ASSERT(b.IsClamped());
653
0
  ASSERT(c.IsClamped());
654
0
  if (a.BigitLength() < b.BigitLength()) {
655
0
    return PlusCompare(b, a, c);
656
0
  }
657
0
  if (a.BigitLength() + 1 < c.BigitLength()) return -1;
658
0
  if (a.BigitLength() > c.BigitLength()) return +1;
659
0
  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
660
0
  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
661
0
  // of 'a'.
662
0
  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
663
0
    return -1;
664
0
  }
665
0
666
0
  Chunk borrow = 0;
667
0
  // Starting at min_exponent all digits are == 0. So no need to compare them.
668
0
  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
669
0
  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
670
0
    Chunk chunk_a = a.BigitAt(i);
671
0
    Chunk chunk_b = b.BigitAt(i);
672
0
    Chunk chunk_c = c.BigitAt(i);
673
0
    Chunk sum = chunk_a + chunk_b;
674
0
    if (sum > chunk_c + borrow) {
675
0
      return +1;
676
0
    } else {
677
0
      borrow = chunk_c + borrow - sum;
678
0
      if (borrow > 1) return -1;
679
0
      borrow <<= kBigitSize;
680
0
    }
681
0
  }
682
0
  if (borrow == 0) return 0;
683
0
  return -1;
684
0
}
685
686
687
0
void Bignum::Clamp() {
688
0
  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
689
0
    used_digits_--;
690
0
  }
691
0
  if (used_digits_ == 0) {
692
0
    // Zero.
693
0
    exponent_ = 0;
694
0
  }
695
0
}
696
697
698
0
bool Bignum::IsClamped() const {
699
0
  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
700
0
}
701
702
703
0
void Bignum::Zero() {
704
0
  for (int i = 0; i < used_digits_; ++i) {
705
0
    bigits_[i] = 0;
706
0
  }
707
0
  used_digits_ = 0;
708
0
  exponent_ = 0;
709
0
}
710
711
712
0
void Bignum::Align(const Bignum& other) {
713
0
  if (exponent_ > other.exponent_) {
714
0
    // If "X" represents a "hidden" digit (by the exponent) then we are in the
715
0
    // following case (a == this, b == other):
716
0
    // a:  aaaaaaXXXX   or a:   aaaaaXXX
717
0
    // b:     bbbbbbX      b: bbbbbbbbXX
718
0
    // We replace some of the hidden digits (X) of a with 0 digits.
719
0
    // a:  aaaaaa000X   or a:   aaaaa0XX
720
0
    int zero_digits = exponent_ - other.exponent_;
721
0
    EnsureCapacity(used_digits_ + zero_digits);
722
0
    for (int i = used_digits_ - 1; i >= 0; --i) {
723
0
      bigits_[i + zero_digits] = bigits_[i];
724
0
    }
725
0
    for (int i = 0; i < zero_digits; ++i) {
726
0
      bigits_[i] = 0;
727
0
    }
728
0
    used_digits_ += zero_digits;
729
0
    exponent_ -= zero_digits;
730
0
    ASSERT(used_digits_ >= 0);
731
0
    ASSERT(exponent_ >= 0);
732
0
  }
733
0
}
734
735
736
0
void Bignum::BigitsShiftLeft(int shift_amount) {
737
0
  ASSERT(shift_amount < kBigitSize);
738
0
  ASSERT(shift_amount >= 0);
739
0
  Chunk carry = 0;
740
0
  for (int i = 0; i < used_digits_; ++i) {
741
0
    Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
742
0
    bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
743
0
    carry = new_carry;
744
0
  }
745
0
  if (carry != 0) {
746
0
    bigits_[used_digits_] = carry;
747
0
    used_digits_++;
748
0
  }
749
0
}
750
751
752
0
void Bignum::SubtractTimes(const Bignum& other, int factor) {
753
0
  ASSERT(exponent_ <= other.exponent_);
754
0
  if (factor < 3) {
755
0
    for (int i = 0; i < factor; ++i) {
756
0
      SubtractBignum(other);
757
0
    }
758
0
    return;
759
0
  }
760
0
  Chunk borrow = 0;
761
0
  int exponent_diff = other.exponent_ - exponent_;
762
0
  for (int i = 0; i < other.used_digits_; ++i) {
763
0
    DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
764
0
    DoubleChunk remove = borrow + product;
765
0
    Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
766
0
    bigits_[i + exponent_diff] = difference & kBigitMask;
767
0
    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
768
0
                                (remove >> kBigitSize));
769
0
  }
770
0
  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
771
0
    if (borrow == 0) return;
772
0
    Chunk difference = bigits_[i] - borrow;
773
0
    bigits_[i] = difference & kBigitMask;
774
0
    borrow = difference >> (kChunkSize - 1);
775
0
  }
776
0
  Clamp();
777
0
}
778
779
780
}  // namespace double_conversion
781
782
// ICU PATCH: Close ICU namespace
783
U_NAMESPACE_END
784
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING