Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/intl/icu/source/i18n/double-conversion.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2018 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
//
4
// From the double-conversion library. Original license:
5
//
6
// Copyright 2010 the V8 project authors. All rights reserved.
7
// Redistribution and use in source and binary forms, with or without
8
// modification, are permitted provided that the following conditions are
9
// met:
10
//
11
//     * Redistributions of source code must retain the above copyright
12
//       notice, this list of conditions and the following disclaimer.
13
//     * Redistributions in binary form must reproduce the above
14
//       copyright notice, this list of conditions and the following
15
//       disclaimer in the documentation and/or other materials provided
16
//       with the distribution.
17
//     * Neither the name of Google Inc. nor the names of its
18
//       contributors may be used to endorse or promote products derived
19
//       from this software without specific prior written permission.
20
//
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34
#include "unicode/utypes.h"
35
#if !UCONFIG_NO_FORMATTING
36
37
#include <limits.h>
38
#include <math.h>
39
40
// ICU PATCH: Customize header file paths for ICU.
41
// The file fixed-dtoa.h is not needed.
42
43
#include "double-conversion.h"
44
45
#include "double-conversion-bignum-dtoa.h"
46
#include "double-conversion-fast-dtoa.h"
47
#include "double-conversion-ieee.h"
48
#include "double-conversion-strtod.h"
49
#include "double-conversion-utils.h"
50
51
// ICU PATCH: Wrap in ICU namespace
52
U_NAMESPACE_BEGIN
53
54
namespace double_conversion {
55
56
#if 0  // not needed for ICU
57
const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
58
  int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
59
  static DoubleToStringConverter converter(flags,
60
                                           "Infinity",
61
                                           "NaN",
62
                                           'e',
63
                                           -6, 21,
64
                                           6, 0);
65
  return converter;
66
}
67
68
69
bool DoubleToStringConverter::HandleSpecialValues(
70
    double value,
71
    StringBuilder* result_builder) const {
72
  Double double_inspect(value);
73
  if (double_inspect.IsInfinite()) {
74
    if (infinity_symbol_ == NULL) return false;
75
    if (value < 0) {
76
      result_builder->AddCharacter('-');
77
    }
78
    result_builder->AddString(infinity_symbol_);
79
    return true;
80
  }
81
  if (double_inspect.IsNan()) {
82
    if (nan_symbol_ == NULL) return false;
83
    result_builder->AddString(nan_symbol_);
84
    return true;
85
  }
86
  return false;
87
}
88
89
90
void DoubleToStringConverter::CreateExponentialRepresentation(
91
    const char* decimal_digits,
92
    int length,
93
    int exponent,
94
    StringBuilder* result_builder) const {
95
  ASSERT(length != 0);
96
  result_builder->AddCharacter(decimal_digits[0]);
97
  if (length != 1) {
98
    result_builder->AddCharacter('.');
99
    result_builder->AddSubstring(&decimal_digits[1], length-1);
100
  }
101
  result_builder->AddCharacter(exponent_character_);
102
  if (exponent < 0) {
103
    result_builder->AddCharacter('-');
104
    exponent = -exponent;
105
  } else {
106
    if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
107
      result_builder->AddCharacter('+');
108
    }
109
  }
110
  if (exponent == 0) {
111
    result_builder->AddCharacter('0');
112
    return;
113
  }
114
  ASSERT(exponent < 1e4);
115
  const int kMaxExponentLength = 5;
116
  char buffer[kMaxExponentLength + 1];
117
  buffer[kMaxExponentLength] = '\0';
118
  int first_char_pos = kMaxExponentLength;
119
  while (exponent > 0) {
120
    buffer[--first_char_pos] = '0' + (exponent % 10);
121
    exponent /= 10;
122
  }
123
  result_builder->AddSubstring(&buffer[first_char_pos],
124
                               kMaxExponentLength - first_char_pos);
125
}
126
127
128
void DoubleToStringConverter::CreateDecimalRepresentation(
129
    const char* decimal_digits,
130
    int length,
131
    int decimal_point,
132
    int digits_after_point,
133
    StringBuilder* result_builder) const {
134
  // Create a representation that is padded with zeros if needed.
135
  if (decimal_point <= 0) {
136
      // "0.00000decimal_rep" or "0.000decimal_rep00".
137
    result_builder->AddCharacter('0');
138
    if (digits_after_point > 0) {
139
      result_builder->AddCharacter('.');
140
      result_builder->AddPadding('0', -decimal_point);
141
      ASSERT(length <= digits_after_point - (-decimal_point));
142
      result_builder->AddSubstring(decimal_digits, length);
143
      int remaining_digits = digits_after_point - (-decimal_point) - length;
144
      result_builder->AddPadding('0', remaining_digits);
145
    }
146
  } else if (decimal_point >= length) {
147
    // "decimal_rep0000.00000" or "decimal_rep.0000".
148
    result_builder->AddSubstring(decimal_digits, length);
149
    result_builder->AddPadding('0', decimal_point - length);
150
    if (digits_after_point > 0) {
151
      result_builder->AddCharacter('.');
152
      result_builder->AddPadding('0', digits_after_point);
153
    }
154
  } else {
155
    // "decima.l_rep000".
156
    ASSERT(digits_after_point > 0);
157
    result_builder->AddSubstring(decimal_digits, decimal_point);
158
    result_builder->AddCharacter('.');
159
    ASSERT(length - decimal_point <= digits_after_point);
160
    result_builder->AddSubstring(&decimal_digits[decimal_point],
161
                                 length - decimal_point);
162
    int remaining_digits = digits_after_point - (length - decimal_point);
163
    result_builder->AddPadding('0', remaining_digits);
164
  }
165
  if (digits_after_point == 0) {
166
    if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
167
      result_builder->AddCharacter('.');
168
    }
169
    if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
170
      result_builder->AddCharacter('0');
171
    }
172
  }
173
}
174
175
176
bool DoubleToStringConverter::ToShortestIeeeNumber(
177
    double value,
178
    StringBuilder* result_builder,
179
    DoubleToStringConverter::DtoaMode mode) const {
180
  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE);
181
  if (Double(value).IsSpecial()) {
182
    return HandleSpecialValues(value, result_builder);
183
  }
184
185
  int decimal_point;
186
  bool sign;
187
  const int kDecimalRepCapacity = kBase10MaximalLength + 1;
188
  char decimal_rep[kDecimalRepCapacity];
189
  int decimal_rep_length;
190
191
  DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity,
192
                &sign, &decimal_rep_length, &decimal_point);
193
194
  bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
195
  if (sign && (value != 0.0 || !unique_zero)) {
196
    result_builder->AddCharacter('-');
197
  }
198
199
  int exponent = decimal_point - 1;
200
  if ((decimal_in_shortest_low_ <= exponent) &&
201
      (exponent < decimal_in_shortest_high_)) {
202
    CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
203
                                decimal_point,
204
                                Max(0, decimal_rep_length - decimal_point),
205
                                result_builder);
206
  } else {
207
    CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
208
                                    result_builder);
209
  }
210
  return true;
211
}
212
213
214
bool DoubleToStringConverter::ToFixed(double value,
215
                                      int requested_digits,
216
                                      StringBuilder* result_builder) const {
217
  ASSERT(kMaxFixedDigitsBeforePoint == 60);
218
  const double kFirstNonFixed = 1e60;
219
220
  if (Double(value).IsSpecial()) {
221
    return HandleSpecialValues(value, result_builder);
222
  }
223
224
  if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
225
  if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
226
227
  // Find a sufficiently precise decimal representation of n.
228
  int decimal_point;
229
  bool sign;
230
  // Add space for the '\0' byte.
231
  const int kDecimalRepCapacity =
232
      kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
233
  char decimal_rep[kDecimalRepCapacity];
234
  int decimal_rep_length;
235
  DoubleToAscii(value, FIXED, requested_digits,
236
                decimal_rep, kDecimalRepCapacity,
237
                &sign, &decimal_rep_length, &decimal_point);
238
239
  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
240
  if (sign && (value != 0.0 || !unique_zero)) {
241
    result_builder->AddCharacter('-');
242
  }
243
244
  CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
245
                              requested_digits, result_builder);
246
  return true;
247
}
248
249
250
bool DoubleToStringConverter::ToExponential(
251
    double value,
252
    int requested_digits,
253
    StringBuilder* result_builder) const {
254
  if (Double(value).IsSpecial()) {
255
    return HandleSpecialValues(value, result_builder);
256
  }
257
258
  if (requested_digits < -1) return false;
259
  if (requested_digits > kMaxExponentialDigits) return false;
260
261
  int decimal_point;
262
  bool sign;
263
  // Add space for digit before the decimal point and the '\0' character.
264
  const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
265
  ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
266
  char decimal_rep[kDecimalRepCapacity];
267
  int decimal_rep_length;
268
269
  if (requested_digits == -1) {
270
    DoubleToAscii(value, SHORTEST, 0,
271
                  decimal_rep, kDecimalRepCapacity,
272
                  &sign, &decimal_rep_length, &decimal_point);
273
  } else {
274
    DoubleToAscii(value, PRECISION, requested_digits + 1,
275
                  decimal_rep, kDecimalRepCapacity,
276
                  &sign, &decimal_rep_length, &decimal_point);
277
    ASSERT(decimal_rep_length <= requested_digits + 1);
278
279
    for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
280
      decimal_rep[i] = '0';
281
    }
282
    decimal_rep_length = requested_digits + 1;
283
  }
284
285
  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
286
  if (sign && (value != 0.0 || !unique_zero)) {
287
    result_builder->AddCharacter('-');
288
  }
289
290
  int exponent = decimal_point - 1;
291
  CreateExponentialRepresentation(decimal_rep,
292
                                  decimal_rep_length,
293
                                  exponent,
294
                                  result_builder);
295
  return true;
296
}
297
298
299
bool DoubleToStringConverter::ToPrecision(double value,
300
                                          int precision,
301
                                          StringBuilder* result_builder) const {
302
  if (Double(value).IsSpecial()) {
303
    return HandleSpecialValues(value, result_builder);
304
  }
305
306
  if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
307
    return false;
308
  }
309
310
  // Find a sufficiently precise decimal representation of n.
311
  int decimal_point;
312
  bool sign;
313
  // Add one for the terminating null character.
314
  const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
315
  char decimal_rep[kDecimalRepCapacity];
316
  int decimal_rep_length;
317
318
  DoubleToAscii(value, PRECISION, precision,
319
                decimal_rep, kDecimalRepCapacity,
320
                &sign, &decimal_rep_length, &decimal_point);
321
  ASSERT(decimal_rep_length <= precision);
322
323
  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
324
  if (sign && (value != 0.0 || !unique_zero)) {
325
    result_builder->AddCharacter('-');
326
  }
327
328
  // The exponent if we print the number as x.xxeyyy. That is with the
329
  // decimal point after the first digit.
330
  int exponent = decimal_point - 1;
331
332
  int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
333
  if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
334
      (decimal_point - precision + extra_zero >
335
       max_trailing_padding_zeroes_in_precision_mode_)) {
336
    // Fill buffer to contain 'precision' digits.
337
    // Usually the buffer is already at the correct length, but 'DoubleToAscii'
338
    // is allowed to return less characters.
339
    for (int i = decimal_rep_length; i < precision; ++i) {
340
      decimal_rep[i] = '0';
341
    }
342
343
    CreateExponentialRepresentation(decimal_rep,
344
                                    precision,
345
                                    exponent,
346
                                    result_builder);
347
  } else {
348
    CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
349
                                Max(0, precision - decimal_point),
350
                                result_builder);
351
  }
352
  return true;
353
}
354
#endif // not needed for ICU
355
356
357
static BignumDtoaMode DtoaToBignumDtoaMode(
358
0
    DoubleToStringConverter::DtoaMode dtoa_mode) {
359
0
  switch (dtoa_mode) {
360
0
    case DoubleToStringConverter::SHORTEST:  return BIGNUM_DTOA_SHORTEST;
361
0
    case DoubleToStringConverter::SHORTEST_SINGLE:
362
0
        return BIGNUM_DTOA_SHORTEST_SINGLE;
363
0
    case DoubleToStringConverter::FIXED:     return BIGNUM_DTOA_FIXED;
364
0
    case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
365
0
    default:
366
0
      UNREACHABLE();
367
0
  }
368
0
}
369
370
371
void DoubleToStringConverter::DoubleToAscii(double v,
372
                                            DtoaMode mode,
373
                                            int requested_digits,
374
                                            char* buffer,
375
                                            int buffer_length,
376
                                            bool* sign,
377
                                            int* length,
378
0
                                            int* point) {
379
0
  Vector<char> vector(buffer, buffer_length);
380
0
  ASSERT(!Double(v).IsSpecial());
381
0
  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0);
382
0
383
0
  if (Double(v).Sign() < 0) {
384
0
    *sign = true;
385
0
    v = -v;
386
0
  } else {
387
0
    *sign = false;
388
0
  }
389
0
390
0
  if (mode == PRECISION && requested_digits == 0) {
391
0
    vector[0] = '\0';
392
0
    *length = 0;
393
0
    return;
394
0
  }
395
0
396
0
  if (v == 0) {
397
0
    vector[0] = '0';
398
0
    vector[1] = '\0';
399
0
    *length = 1;
400
0
    *point = 1;
401
0
    return;
402
0
  }
403
0
404
0
  bool fast_worked;
405
0
  switch (mode) {
406
0
    case SHORTEST:
407
0
      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
408
0
      break;
409
#if 0 // not needed for ICU
410
    case SHORTEST_SINGLE:
411
      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0,
412
                             vector, length, point);
413
      break;
414
    case FIXED:
415
      fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
416
      break;
417
    case PRECISION:
418
      fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
419
                             vector, length, point);
420
      break;
421
#endif // not needed for ICU
422
0
    default:
423
0
      fast_worked = false;
424
0
      UNREACHABLE();
425
0
  }
426
0
  if (fast_worked) return;
427
0
428
0
  // If the fast dtoa didn't succeed use the slower bignum version.
429
0
  BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
430
0
  BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
431
0
  vector[*length] = '\0';
432
0
}
433
434
435
// Consumes the given substring from the iterator.
436
// Returns false, if the substring does not match.
437
template <class Iterator>
438
static bool ConsumeSubString(Iterator* current,
439
                             Iterator end,
440
0
                             const char* substring) {
441
0
  ASSERT(**current == *substring);
442
0
  for (substring++; *substring != '\0'; substring++) {
443
0
    ++*current;
444
0
    if (*current == end || **current != *substring) return false;
445
0
  }
446
0
  ++*current;
447
0
  return true;
448
0
}
Unexecuted instantiation: double-conversion.cpp:bool icu_62::double_conversion::ConsumeSubString<char const*>(char const**, char const*, char const*)
Unexecuted instantiation: double-conversion.cpp:bool icu_62::double_conversion::ConsumeSubString<unsigned short const*>(unsigned short const**, unsigned short const*, char const*)
449
450
451
// Maximum number of significant digits in decimal representation.
452
// The longest possible double in decimal representation is
453
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
454
// (768 digits). If we parse a number whose first digits are equal to a
455
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
456
// must be rounded to the bigger one unless the tail consists of zeros, so
457
// we don't need to preserve all the digits.
458
const int kMaxSignificantDigits = 772;
459
460
461
static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
462
static const int kWhitespaceTable7Length = ARRAY_SIZE(kWhitespaceTable7);
463
464
465
static const uc16 kWhitespaceTable16[] = {
466
  160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
467
  8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
468
};
469
static const int kWhitespaceTable16Length = ARRAY_SIZE(kWhitespaceTable16);
470
471
472
473
0
static bool isWhitespace(int x) {
474
0
  if (x < 128) {
475
0
    for (int i = 0; i < kWhitespaceTable7Length; i++) {
476
0
      if (kWhitespaceTable7[i] == x) return true;
477
0
    }
478
0
  } else {
479
0
    for (int i = 0; i < kWhitespaceTable16Length; i++) {
480
0
      if (kWhitespaceTable16[i] == x) return true;
481
0
    }
482
0
  }
483
0
  return false;
484
0
}
485
486
487
// Returns true if a nonspace found and false if the end has reached.
488
template <class Iterator>
489
0
static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
490
0
  while (*current != end) {
491
0
    if (!isWhitespace(**current)) return true;
492
0
    ++*current;
493
0
  }
494
0
  return false;
495
0
}
Unexecuted instantiation: double-conversion.cpp:bool icu_62::double_conversion::AdvanceToNonspace<char const*>(char const**, char const*)
Unexecuted instantiation: double-conversion.cpp:bool icu_62::double_conversion::AdvanceToNonspace<char*>(char**, char*)
Unexecuted instantiation: double-conversion.cpp:bool icu_62::double_conversion::AdvanceToNonspace<unsigned short const*>(unsigned short const**, unsigned short const*)
496
497
498
0
static bool isDigit(int x, int radix) {
499
0
  return (x >= '0' && x <= '9' && x < '0' + radix)
500
0
      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
501
0
      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
502
0
}
503
504
505
0
static double SignedZero(bool sign) {
506
0
  return sign ? -0.0 : 0.0;
507
0
}
508
509
510
// Returns true if 'c' is a decimal digit that is valid for the given radix.
511
//
512
// The function is small and could be inlined, but VS2012 emitted a warning
513
// because it constant-propagated the radix and concluded that the last
514
// condition was always true. By moving it into a separate function the
515
// compiler wouldn't warn anymore.
516
#if _MSC_VER
517
#pragma optimize("",off)
518
static bool IsDecimalDigitForRadix(int c, int radix) {
519
  return '0' <= c && c <= '9' && (c - '0') < radix;
520
}
521
#pragma optimize("",on)
522
#else
523
0
static bool inline IsDecimalDigitForRadix(int c, int radix) {
524
0
  return '0' <= c && c <= '9' && (c - '0') < radix;
525
0
}
526
#endif
527
// Returns true if 'c' is a character digit that is valid for the given radix.
528
// The 'a_character' should be 'a' or 'A'.
529
//
530
// The function is small and could be inlined, but VS2012 emitted a warning
531
// because it constant-propagated the radix and concluded that the first
532
// condition was always false. By moving it into a separate function the
533
// compiler wouldn't warn anymore.
534
0
static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
535
0
  return radix > 10 && c >= a_character && c < a_character + radix - 10;
536
0
}
537
538
539
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
540
template <int radix_log_2, class Iterator>
541
static double RadixStringToIeee(Iterator* current,
542
                                Iterator end,
543
                                bool sign,
544
                                bool allow_trailing_junk,
545
                                double junk_string_value,
546
                                bool read_as_double,
547
0
                                bool* result_is_junk) {
548
0
  ASSERT(*current != end);
549
0
550
0
  const int kDoubleSize = Double::kSignificandSize;
551
0
  const int kSingleSize = Single::kSignificandSize;
552
0
  const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
553
0
554
0
  *result_is_junk = true;
555
0
556
0
  // Skip leading 0s.
557
0
  while (**current == '0') {
558
0
    ++(*current);
559
0
    if (*current == end) {
560
0
      *result_is_junk = false;
561
0
      return SignedZero(sign);
562
0
    }
563
0
  }
564
0
565
0
  int64_t number = 0;
566
0
  int exponent = 0;
567
0
  const int radix = (1 << radix_log_2);
568
0
569
0
  do {
570
0
    int digit;
571
0
    if (IsDecimalDigitForRadix(**current, radix)) {
572
0
      digit = static_cast<char>(**current) - '0';
573
0
    } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
574
0
      digit = static_cast<char>(**current) - 'a' + 10;
575
0
    } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
576
0
      digit = static_cast<char>(**current) - 'A' + 10;
577
0
    } else {
578
0
      if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
579
0
        break;
580
0
      } else {
581
0
        return junk_string_value;
582
0
      }
583
0
    }
584
0
585
0
    number = number * radix + digit;
586
0
    int overflow = static_cast<int>(number >> kSignificandSize);
587
0
    if (overflow != 0) {
588
0
      // Overflow occurred. Need to determine which direction to round the
589
0
      // result.
590
0
      int overflow_bits_count = 1;
591
0
      while (overflow > 1) {
592
0
        overflow_bits_count++;
593
0
        overflow >>= 1;
594
0
      }
595
0
596
0
      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
597
0
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
598
0
      number >>= overflow_bits_count;
599
0
      exponent = overflow_bits_count;
600
0
601
0
      bool zero_tail = true;
602
0
      for (;;) {
603
0
        ++(*current);
604
0
        if (*current == end || !isDigit(**current, radix)) break;
605
0
        zero_tail = zero_tail && **current == '0';
606
0
        exponent += radix_log_2;
607
0
      }
608
0
609
0
      if (!allow_trailing_junk && AdvanceToNonspace(current, end)) {
610
0
        return junk_string_value;
611
0
      }
612
0
613
0
      int middle_value = (1 << (overflow_bits_count - 1));
614
0
      if (dropped_bits > middle_value) {
615
0
        number++;  // Rounding up.
616
0
      } else if (dropped_bits == middle_value) {
617
0
        // Rounding to even to consistency with decimals: half-way case rounds
618
0
        // up if significant part is odd and down otherwise.
619
0
        if ((number & 1) != 0 || !zero_tail) {
620
0
          number++;  // Rounding up.
621
0
        }
622
0
      }
623
0
624
0
      // Rounding up may cause overflow.
625
0
      if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
626
0
        exponent++;
627
0
        number >>= 1;
628
0
      }
629
0
      break;
630
0
    }
631
0
    ++(*current);
632
0
  } while (*current != end);
633
0
634
0
  ASSERT(number < ((int64_t)1 << kSignificandSize));
635
0
  ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
636
0
637
0
  *result_is_junk = false;
638
0
639
0
  if (exponent == 0) {
640
0
    if (sign) {
641
0
      if (number == 0) return -0.0;
642
0
      number = -number;
643
0
    }
644
0
    return static_cast<double>(number);
645
0
  }
646
0
647
0
  ASSERT(number != 0);
648
0
  return Double(DiyFp(number, exponent)).value();
649
0
}
Unexecuted instantiation: double-conversion.cpp:double icu_62::double_conversion::RadixStringToIeee<4, char const*>(char const**, char const*, bool, bool, double, bool, bool*)
Unexecuted instantiation: double-conversion.cpp:double icu_62::double_conversion::RadixStringToIeee<3, char*>(char**, char*, bool, bool, double, bool, bool*)
Unexecuted instantiation: double-conversion.cpp:double icu_62::double_conversion::RadixStringToIeee<4, unsigned short const*>(unsigned short const**, unsigned short const*, bool, bool, double, bool, bool*)
650
651
template <class Iterator>
652
double StringToDoubleConverter::StringToIeee(
653
    Iterator input,
654
    int length,
655
    bool read_as_double,
656
0
    int* processed_characters_count) const {
657
0
  Iterator current = input;
658
0
  Iterator end = input + length;
659
0
660
0
  *processed_characters_count = 0;
661
0
662
0
  const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
663
0
  const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
664
0
  const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
665
0
  const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
666
0
667
0
  // To make sure that iterator dereferencing is valid the following
668
0
  // convention is used:
669
0
  // 1. Each '++current' statement is followed by check for equality to 'end'.
670
0
  // 2. If AdvanceToNonspace returned false then current == end.
671
0
  // 3. If 'current' becomes equal to 'end' the function returns or goes to
672
0
  // 'parsing_done'.
673
0
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
674
0
  // 5. Code before 'parsing_done' may rely on 'current != end'.
675
0
  if (current == end) return empty_string_value_;
676
0
677
0
  if (allow_leading_spaces || allow_trailing_spaces) {
678
0
    if (!AdvanceToNonspace(&current, end)) {
679
0
      *processed_characters_count = static_cast<int>(current - input);
680
0
      return empty_string_value_;
681
0
    }
682
0
    if (!allow_leading_spaces && (input != current)) {
683
0
      // No leading spaces allowed, but AdvanceToNonspace moved forward.
684
0
      return junk_string_value_;
685
0
    }
686
0
  }
687
0
688
0
  // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
689
0
  const int kBufferSize = kMaxSignificantDigits + 10;
690
0
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
691
0
  int buffer_pos = 0;
692
0
693
0
  // Exponent will be adjusted if insignificant digits of the integer part
694
0
  // or insignificant leading zeros of the fractional part are dropped.
695
0
  int exponent = 0;
696
0
  int significant_digits = 0;
697
0
  int insignificant_digits = 0;
698
0
  bool nonzero_digit_dropped = false;
699
0
700
0
  bool sign = false;
701
0
702
0
  if (*current == '+' || *current == '-') {
703
0
    sign = (*current == '-');
704
0
    ++current;
705
0
    Iterator next_non_space = current;
706
0
    // Skip following spaces (if allowed).
707
0
    if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
708
0
    if (!allow_spaces_after_sign && (current != next_non_space)) {
709
0
      return junk_string_value_;
710
0
    }
711
0
    current = next_non_space;
712
0
  }
713
0
714
0
  if (infinity_symbol_ != NULL) {
715
0
    if (*current == infinity_symbol_[0]) {
716
0
      if (!ConsumeSubString(&current, end, infinity_symbol_)) {
717
0
        return junk_string_value_;
718
0
      }
719
0
720
0
      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
721
0
        return junk_string_value_;
722
0
      }
723
0
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
724
0
        return junk_string_value_;
725
0
      }
726
0
727
0
      ASSERT(buffer_pos == 0);
728
0
      *processed_characters_count = static_cast<int>(current - input);
729
0
      return sign ? -Double::Infinity() : Double::Infinity();
730
0
    }
731
0
  }
732
0
733
0
  if (nan_symbol_ != NULL) {
734
0
    if (*current == nan_symbol_[0]) {
735
0
      if (!ConsumeSubString(&current, end, nan_symbol_)) {
736
0
        return junk_string_value_;
737
0
      }
738
0
739
0
      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
740
0
        return junk_string_value_;
741
0
      }
742
0
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
743
0
        return junk_string_value_;
744
0
      }
745
0
746
0
      ASSERT(buffer_pos == 0);
747
0
      *processed_characters_count = static_cast<int>(current - input);
748
0
      return sign ? -Double::NaN() : Double::NaN();
749
0
    }
750
0
  }
751
0
752
0
  bool leading_zero = false;
753
0
  if (*current == '0') {
754
0
    ++current;
755
0
    if (current == end) {
756
0
      *processed_characters_count = static_cast<int>(current - input);
757
0
      return SignedZero(sign);
758
0
    }
759
0
760
0
    leading_zero = true;
761
0
762
0
    // It could be hexadecimal value.
763
0
    if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
764
0
      ++current;
765
0
      if (current == end || !isDigit(*current, 16)) {
766
0
        return junk_string_value_;  // "0x".
767
0
      }
768
0
769
0
      bool result_is_junk;
770
0
      double result = RadixStringToIeee<4>(&current,
771
0
                                           end,
772
0
                                           sign,
773
0
                                           allow_trailing_junk,
774
0
                                           junk_string_value_,
775
0
                                           read_as_double,
776
0
                                           &result_is_junk);
777
0
      if (!result_is_junk) {
778
0
        if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
779
0
        *processed_characters_count = static_cast<int>(current - input);
780
0
      }
781
0
      return result;
782
0
    }
783
0
784
0
    // Ignore leading zeros in the integer part.
785
0
    while (*current == '0') {
786
0
      ++current;
787
0
      if (current == end) {
788
0
        *processed_characters_count = static_cast<int>(current - input);
789
0
        return SignedZero(sign);
790
0
      }
791
0
    }
792
0
  }
793
0
794
0
  bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
795
0
796
0
  // Copy significant digits of the integer part (if any) to the buffer.
797
0
  while (*current >= '0' && *current <= '9') {
798
0
    if (significant_digits < kMaxSignificantDigits) {
799
0
      ASSERT(buffer_pos < kBufferSize);
800
0
      buffer[buffer_pos++] = static_cast<char>(*current);
801
0
      significant_digits++;
802
0
      // Will later check if it's an octal in the buffer.
803
0
    } else {
804
0
      insignificant_digits++;  // Move the digit into the exponential part.
805
0
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
806
0
    }
807
0
    octal = octal && *current < '8';
808
0
    ++current;
809
0
    if (current == end) goto parsing_done;
810
0
  }
811
0
812
0
  if (significant_digits == 0) {
813
0
    octal = false;
814
0
  }
815
0
816
0
  if (*current == '.') {
817
0
    if (octal && !allow_trailing_junk) return junk_string_value_;
818
0
    if (octal) goto parsing_done;
819
0
820
0
    ++current;
821
0
    if (current == end) {
822
0
      if (significant_digits == 0 && !leading_zero) {
823
0
        return junk_string_value_;
824
0
      } else {
825
0
        goto parsing_done;
826
0
      }
827
0
    }
828
0
829
0
    if (significant_digits == 0) {
830
0
      // octal = false;
831
0
      // Integer part consists of 0 or is absent. Significant digits start after
832
0
      // leading zeros (if any).
833
0
      while (*current == '0') {
834
0
        ++current;
835
0
        if (current == end) {
836
0
          *processed_characters_count = static_cast<int>(current - input);
837
0
          return SignedZero(sign);
838
0
        }
839
0
        exponent--;  // Move this 0 into the exponent.
840
0
      }
841
0
    }
842
0
843
0
    // There is a fractional part.
844
0
    // We don't emit a '.', but adjust the exponent instead.
845
0
    while (*current >= '0' && *current <= '9') {
846
0
      if (significant_digits < kMaxSignificantDigits) {
847
0
        ASSERT(buffer_pos < kBufferSize);
848
0
        buffer[buffer_pos++] = static_cast<char>(*current);
849
0
        significant_digits++;
850
0
        exponent--;
851
0
      } else {
852
0
        // Ignore insignificant digits in the fractional part.
853
0
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
854
0
      }
855
0
      ++current;
856
0
      if (current == end) goto parsing_done;
857
0
    }
858
0
  }
859
0
860
0
  if (!leading_zero && exponent == 0 && significant_digits == 0) {
861
0
    // If leading_zeros is true then the string contains zeros.
862
0
    // If exponent < 0 then string was [+-]\.0*...
863
0
    // If significant_digits != 0 the string is not equal to 0.
864
0
    // Otherwise there are no digits in the string.
865
0
    return junk_string_value_;
866
0
  }
867
0
868
0
  // Parse exponential part.
869
0
  if (*current == 'e' || *current == 'E') {
870
0
    if (octal && !allow_trailing_junk) return junk_string_value_;
871
0
    if (octal) goto parsing_done;
872
0
    ++current;
873
0
    if (current == end) {
874
0
      if (allow_trailing_junk) {
875
0
        goto parsing_done;
876
0
      } else {
877
0
        return junk_string_value_;
878
0
      }
879
0
    }
880
0
    char exponen_sign = '+';
881
0
    if (*current == '+' || *current == '-') {
882
0
      exponen_sign = static_cast<char>(*current);
883
0
      ++current;
884
0
      if (current == end) {
885
0
        if (allow_trailing_junk) {
886
0
          goto parsing_done;
887
0
        } else {
888
0
          return junk_string_value_;
889
0
        }
890
0
      }
891
0
    }
892
0
893
0
    if (current == end || *current < '0' || *current > '9') {
894
0
      if (allow_trailing_junk) {
895
0
        goto parsing_done;
896
0
      } else {
897
0
        return junk_string_value_;
898
0
      }
899
0
    }
900
0
901
0
    const int max_exponent = INT_MAX / 2;
902
0
    ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
903
0
    int num = 0;
904
0
    do {
905
0
      // Check overflow.
906
0
      int digit = *current - '0';
907
0
      if (num >= max_exponent / 10
908
0
          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
909
0
        num = max_exponent;
910
0
      } else {
911
0
        num = num * 10 + digit;
912
0
      }
913
0
      ++current;
914
0
    } while (current != end && *current >= '0' && *current <= '9');
915
0
916
0
    exponent += (exponen_sign == '-' ? -num : num);
917
0
  }
918
0
919
0
  if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
920
0
    return junk_string_value_;
921
0
  }
922
0
  if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
923
0
    return junk_string_value_;
924
0
  }
925
0
  if (allow_trailing_spaces) {
926
0
    AdvanceToNonspace(&current, end);
927
0
  }
928
0
929
0
  parsing_done:
930
0
  exponent += insignificant_digits;
931
0
932
0
  if (octal) {
933
0
    double result;
934
0
    bool result_is_junk;
935
0
    char* start = buffer;
936
0
    result = RadixStringToIeee<3>(&start,
937
0
                                  buffer + buffer_pos,
938
0
                                  sign,
939
0
                                  allow_trailing_junk,
940
0
                                  junk_string_value_,
941
0
                                  read_as_double,
942
0
                                  &result_is_junk);
943
0
    ASSERT(!result_is_junk);
944
0
    *processed_characters_count = static_cast<int>(current - input);
945
0
    return result;
946
0
  }
947
0
948
0
  if (nonzero_digit_dropped) {
949
0
    buffer[buffer_pos++] = '1';
950
0
    exponent--;
951
0
  }
952
0
953
0
  ASSERT(buffer_pos < kBufferSize);
954
0
  buffer[buffer_pos] = '\0';
955
0
956
0
  double converted;
957
0
  if (read_as_double) {
958
0
    converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
959
0
  } else {
960
0
    converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
961
0
  }
962
0
  *processed_characters_count = static_cast<int>(current - input);
963
0
  return sign? -converted: converted;
964
0
}
Unexecuted instantiation: double icu_62::double_conversion::StringToDoubleConverter::StringToIeee<char const*>(char const*, int, bool, int*) const
Unexecuted instantiation: double icu_62::double_conversion::StringToDoubleConverter::StringToIeee<unsigned short const*>(unsigned short const*, int, bool, int*) const
965
966
967
double StringToDoubleConverter::StringToDouble(
968
    const char* buffer,
969
    int length,
970
0
    int* processed_characters_count) const {
971
0
  return StringToIeee(buffer, length, true, processed_characters_count);
972
0
}
973
974
975
double StringToDoubleConverter::StringToDouble(
976
    const uc16* buffer,
977
    int length,
978
0
    int* processed_characters_count) const {
979
0
  return StringToIeee(buffer, length, true, processed_characters_count);
980
0
}
981
982
983
float StringToDoubleConverter::StringToFloat(
984
    const char* buffer,
985
    int length,
986
0
    int* processed_characters_count) const {
987
0
  return static_cast<float>(StringToIeee(buffer, length, false,
988
0
                                         processed_characters_count));
989
0
}
990
991
992
float StringToDoubleConverter::StringToFloat(
993
    const uc16* buffer,
994
    int length,
995
0
    int* processed_characters_count) const {
996
0
  return static_cast<float>(StringToIeee(buffer, length, false,
997
0
                                         processed_characters_count));
998
0
}
999
1000
}  // namespace double_conversion
1001
1002
// ICU PATCH: Close ICU namespace
1003
U_NAMESPACE_END
1004
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING