Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/intl/icu/source/i18n/double-conversion.h
Line
Count
Source (jump to first uncovered line)
1
// © 2018 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
//
4
// From the double-conversion library. Original license:
5
//
6
// Copyright 2012 the V8 project authors. All rights reserved.
7
// Redistribution and use in source and binary forms, with or without
8
// modification, are permitted provided that the following conditions are
9
// met:
10
//
11
//     * Redistributions of source code must retain the above copyright
12
//       notice, this list of conditions and the following disclaimer.
13
//     * Redistributions in binary form must reproduce the above
14
//       copyright notice, this list of conditions and the following
15
//       disclaimer in the documentation and/or other materials provided
16
//       with the distribution.
17
//     * Neither the name of Google Inc. nor the names of its
18
//       contributors may be used to endorse or promote products derived
19
//       from this software without specific prior written permission.
20
//
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34
#include "unicode/utypes.h"
35
#if !UCONFIG_NO_FORMATTING
36
37
#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
38
#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
39
40
// ICU PATCH: Customize header file paths for ICU.
41
42
#include "double-conversion-utils.h"
43
44
// ICU PATCH: Wrap in ICU namespace
45
U_NAMESPACE_BEGIN
46
47
namespace double_conversion {
48
49
class DoubleToStringConverter {
50
 public:
51
#if 0 // not needed for ICU
52
  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
53
  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
54
  // function returns false.
55
  static const int kMaxFixedDigitsBeforePoint = 60;
56
  static const int kMaxFixedDigitsAfterPoint = 60;
57
58
  // When calling ToExponential with a requested_digits
59
  // parameter > kMaxExponentialDigits then the function returns false.
60
  static const int kMaxExponentialDigits = 120;
61
62
  // When calling ToPrecision with a requested_digits
63
  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
64
  // then the function returns false.
65
  static const int kMinPrecisionDigits = 1;
66
  static const int kMaxPrecisionDigits = 120;
67
68
  enum Flags {
69
    NO_FLAGS = 0,
70
    EMIT_POSITIVE_EXPONENT_SIGN = 1,
71
    EMIT_TRAILING_DECIMAL_POINT = 2,
72
    EMIT_TRAILING_ZERO_AFTER_POINT = 4,
73
    UNIQUE_ZERO = 8
74
  };
75
76
  // Flags should be a bit-or combination of the possible Flags-enum.
77
  //  - NO_FLAGS: no special flags.
78
  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
79
  //    form, emits a '+' for positive exponents. Example: 1.2e+2.
80
  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
81
  //    converted into decimal format then a trailing decimal point is appended.
82
  //    Example: 2345.0 is converted to "2345.".
83
  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
84
  //    emits a trailing '0'-character. This flag requires the
85
  //    EXMIT_TRAILING_DECIMAL_POINT flag.
86
  //    Example: 2345.0 is converted to "2345.0".
87
  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
88
  //
89
  // Infinity symbol and nan_symbol provide the string representation for these
90
  // special values. If the string is NULL and the special value is encountered
91
  // then the conversion functions return false.
92
  //
93
  // The exponent_character is used in exponential representations. It is
94
  // usually 'e' or 'E'.
95
  //
96
  // When converting to the shortest representation the converter will
97
  // represent input numbers in decimal format if they are in the interval
98
  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
99
  //    (lower boundary included, greater boundary excluded).
100
  // Example: with decimal_in_shortest_low = -6 and
101
  //               decimal_in_shortest_high = 21:
102
  //   ToShortest(0.000001)  -> "0.000001"
103
  //   ToShortest(0.0000001) -> "1e-7"
104
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
105
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
106
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
107
  //
108
  // When converting to precision mode the converter may add
109
  // max_leading_padding_zeroes before returning the number in exponential
110
  // format.
111
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
112
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
113
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
114
  // Similarily the converter may add up to
115
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
116
  // returning an exponential representation. A zero added by the
117
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
118
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
119
  //   ToPrecision(230.0, 2) -> "230"
120
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
121
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
122
  DoubleToStringConverter(int flags,
123
                          const char* infinity_symbol,
124
                          const char* nan_symbol,
125
                          char exponent_character,
126
                          int decimal_in_shortest_low,
127
                          int decimal_in_shortest_high,
128
                          int max_leading_padding_zeroes_in_precision_mode,
129
                          int max_trailing_padding_zeroes_in_precision_mode)
130
      : flags_(flags),
131
        infinity_symbol_(infinity_symbol),
132
        nan_symbol_(nan_symbol),
133
        exponent_character_(exponent_character),
134
        decimal_in_shortest_low_(decimal_in_shortest_low),
135
        decimal_in_shortest_high_(decimal_in_shortest_high),
136
        max_leading_padding_zeroes_in_precision_mode_(
137
            max_leading_padding_zeroes_in_precision_mode),
138
        max_trailing_padding_zeroes_in_precision_mode_(
139
            max_trailing_padding_zeroes_in_precision_mode) {
140
    // When 'trailing zero after the point' is set, then 'trailing point'
141
    // must be set too.
142
    ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
143
        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
144
  }
145
146
  // Returns a converter following the EcmaScript specification.
147
  static const DoubleToStringConverter& EcmaScriptConverter();
148
149
  // Computes the shortest string of digits that correctly represent the input
150
  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
151
  // (see constructor) it then either returns a decimal representation, or an
152
  // exponential representation.
153
  // Example with decimal_in_shortest_low = -6,
154
  //              decimal_in_shortest_high = 21,
155
  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
156
  //              EMIT_TRAILING_DECIMAL_POINT deactived:
157
  //   ToShortest(0.000001)  -> "0.000001"
158
  //   ToShortest(0.0000001) -> "1e-7"
159
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
160
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
161
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
162
  //
163
  // Note: the conversion may round the output if the returned string
164
  // is accurate enough to uniquely identify the input-number.
165
  // For example the most precise representation of the double 9e59 equals
166
  // "899999999999999918767229449717619953810131273674690656206848", but
167
  // the converter will return the shorter (but still correct) "9e59".
168
  //
169
  // Returns true if the conversion succeeds. The conversion always succeeds
170
  // except when the input value is special and no infinity_symbol or
171
  // nan_symbol has been given to the constructor.
172
  bool ToShortest(double value, StringBuilder* result_builder) const {
173
    return ToShortestIeeeNumber(value, result_builder, SHORTEST);
174
  }
175
176
  // Same as ToShortest, but for single-precision floats.
177
  bool ToShortestSingle(float value, StringBuilder* result_builder) const {
178
    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
179
  }
180
181
182
  // Computes a decimal representation with a fixed number of digits after the
183
  // decimal point. The last emitted digit is rounded.
184
  //
185
  // Examples:
186
  //   ToFixed(3.12, 1) -> "3.1"
187
  //   ToFixed(3.1415, 3) -> "3.142"
188
  //   ToFixed(1234.56789, 4) -> "1234.5679"
189
  //   ToFixed(1.23, 5) -> "1.23000"
190
  //   ToFixed(0.1, 4) -> "0.1000"
191
  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
192
  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
193
  //   ToFixed(0.1, 17) -> "0.10000000000000001"
194
  //
195
  // If requested_digits equals 0, then the tail of the result depends on
196
  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
197
  // Examples, for requested_digits == 0,
198
  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
199
  //    - false and false: then 123.45 -> 123
200
  //                             0.678 -> 1
201
  //    - true and false: then 123.45 -> 123.
202
  //                            0.678 -> 1.
203
  //    - true and true: then 123.45 -> 123.0
204
  //                           0.678 -> 1.0
205
  //
206
  // Returns true if the conversion succeeds. The conversion always succeeds
207
  // except for the following cases:
208
  //   - the input value is special and no infinity_symbol or nan_symbol has
209
  //     been provided to the constructor,
210
  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
211
  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
212
  // The last two conditions imply that the result will never contain more than
213
  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
214
  // (one additional character for the sign, and one for the decimal point).
215
  bool ToFixed(double value,
216
               int requested_digits,
217
               StringBuilder* result_builder) const;
218
219
  // Computes a representation in exponential format with requested_digits
220
  // after the decimal point. The last emitted digit is rounded.
221
  // If requested_digits equals -1, then the shortest exponential representation
222
  // is computed.
223
  //
224
  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
225
  //               exponent_character set to 'e'.
226
  //   ToExponential(3.12, 1) -> "3.1e0"
227
  //   ToExponential(5.0, 3) -> "5.000e0"
228
  //   ToExponential(0.001, 2) -> "1.00e-3"
229
  //   ToExponential(3.1415, -1) -> "3.1415e0"
230
  //   ToExponential(3.1415, 4) -> "3.1415e0"
231
  //   ToExponential(3.1415, 3) -> "3.142e0"
232
  //   ToExponential(123456789000000, 3) -> "1.235e14"
233
  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
234
  //   ToExponential(1000000000000000019884624838656.0, 32) ->
235
  //                     "1.00000000000000001988462483865600e30"
236
  //   ToExponential(1234, 0) -> "1e3"
237
  //
238
  // Returns true if the conversion succeeds. The conversion always succeeds
239
  // except for the following cases:
240
  //   - the input value is special and no infinity_symbol or nan_symbol has
241
  //     been provided to the constructor,
242
  //   - 'requested_digits' > kMaxExponentialDigits.
243
  // The last condition implies that the result will never contain more than
244
  // kMaxExponentialDigits + 8 characters (the sign, the digit before the
245
  // decimal point, the decimal point, the exponent character, the
246
  // exponent's sign, and at most 3 exponent digits).
247
  bool ToExponential(double value,
248
                     int requested_digits,
249
                     StringBuilder* result_builder) const;
250
251
  // Computes 'precision' leading digits of the given 'value' and returns them
252
  // either in exponential or decimal format, depending on
253
  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
254
  // constructor).
255
  // The last computed digit is rounded.
256
  //
257
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
258
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
259
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
260
  // Similarily the converter may add up to
261
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
262
  // returning an exponential representation. A zero added by the
263
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
264
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
265
  //   ToPrecision(230.0, 2) -> "230"
266
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
267
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
268
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
269
  //    EMIT_TRAILING_ZERO_AFTER_POINT:
270
  //   ToPrecision(123450.0, 6) -> "123450"
271
  //   ToPrecision(123450.0, 5) -> "123450"
272
  //   ToPrecision(123450.0, 4) -> "123500"
273
  //   ToPrecision(123450.0, 3) -> "123000"
274
  //   ToPrecision(123450.0, 2) -> "1.2e5"
275
  //
276
  // Returns true if the conversion succeeds. The conversion always succeeds
277
  // except for the following cases:
278
  //   - the input value is special and no infinity_symbol or nan_symbol has
279
  //     been provided to the constructor,
280
  //   - precision < kMinPericisionDigits
281
  //   - precision > kMaxPrecisionDigits
282
  // The last condition implies that the result will never contain more than
283
  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
284
  // exponent character, the exponent's sign, and at most 3 exponent digits).
285
  bool ToPrecision(double value,
286
                   int precision,
287
                   StringBuilder* result_builder) const;
288
#endif // not needed for ICU
289
290
  enum DtoaMode {
291
    // Produce the shortest correct representation.
292
    // For example the output of 0.299999999999999988897 is (the less accurate
293
    // but correct) 0.3.
294
    SHORTEST,
295
    // Same as SHORTEST, but for single-precision floats.
296
    SHORTEST_SINGLE,
297
    // Produce a fixed number of digits after the decimal point.
298
    // For instance fixed(0.1, 4) becomes 0.1000
299
    // If the input number is big, the output will be big.
300
    FIXED,
301
    // Fixed number of digits (independent of the decimal point).
302
    PRECISION
303
  };
304
305
  // The maximal number of digits that are needed to emit a double in base 10.
306
  // A higher precision can be achieved by using more digits, but the shortest
307
  // accurate representation of any double will never use more digits than
308
  // kBase10MaximalLength.
309
  // Note that DoubleToAscii null-terminates its input. So the given buffer
310
  // should be at least kBase10MaximalLength + 1 characters long.
311
  static const int kBase10MaximalLength = 17;
312
313
  // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
314
  // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
315
  // after it has been casted to a single-precision float. That is, in this
316
  // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
317
  //
318
  // The result should be interpreted as buffer * 10^(point-length).
319
  //
320
  // The output depends on the given mode:
321
  //  - SHORTEST: produce the least amount of digits for which the internal
322
  //   identity requirement is still satisfied. If the digits are printed
323
  //   (together with the correct exponent) then reading this number will give
324
  //   'v' again. The buffer will choose the representation that is closest to
325
  //   'v'. If there are two at the same distance, than the one farther away
326
  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
327
  //   In this mode the 'requested_digits' parameter is ignored.
328
  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
329
  //  - FIXED: produces digits necessary to print a given number with
330
  //   'requested_digits' digits after the decimal point. The produced digits
331
  //   might be too short in which case the caller has to fill the remainder
332
  //   with '0's.
333
  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
334
  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
335
  //   toFixed(0.15, 2) thus returns buffer="2", point=0.
336
  //   The returned buffer may contain digits that would be truncated from the
337
  //   shortest representation of the input.
338
  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
339
  //   Even though the length of produced digits usually equals
340
  //   'requested_digits', the function is allowed to return fewer digits, in
341
  //   which case the caller has to fill the missing digits with '0's.
342
  //   Halfway cases are again rounded away from 0.
343
  // DoubleToAscii expects the given buffer to be big enough to hold all
344
  // digits and a terminating null-character. In SHORTEST-mode it expects a
345
  // buffer of at least kBase10MaximalLength + 1. In all other modes the
346
  // requested_digits parameter and the padding-zeroes limit the size of the
347
  // output. Don't forget the decimal point, the exponent character and the
348
  // terminating null-character when computing the maximal output size.
349
  // The given length is only used in debug mode to ensure the buffer is big
350
  // enough.
351
  // ICU PATCH: Export this as U_I18N_API for unit tests.
352
  static void U_I18N_API DoubleToAscii(double v,
353
                            DtoaMode mode,
354
                            int requested_digits,
355
                            char* buffer,
356
                            int buffer_length,
357
                            bool* sign,
358
                            int* length,
359
                            int* point);
360
361
#if 0 // not needed for ICU
362
 private:
363
  // Implementation for ToShortest and ToShortestSingle.
364
  bool ToShortestIeeeNumber(double value,
365
                            StringBuilder* result_builder,
366
                            DtoaMode mode) const;
367
368
  // If the value is a special value (NaN or Infinity) constructs the
369
  // corresponding string using the configured infinity/nan-symbol.
370
  // If either of them is NULL or the value is not special then the
371
  // function returns false.
372
  bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
373
  // Constructs an exponential representation (i.e. 1.234e56).
374
  // The given exponent assumes a decimal point after the first decimal digit.
375
  void CreateExponentialRepresentation(const char* decimal_digits,
376
                                       int length,
377
                                       int exponent,
378
                                       StringBuilder* result_builder) const;
379
  // Creates a decimal representation (i.e 1234.5678).
380
  void CreateDecimalRepresentation(const char* decimal_digits,
381
                                   int length,
382
                                   int decimal_point,
383
                                   int digits_after_point,
384
                                   StringBuilder* result_builder) const;
385
386
  const int flags_;
387
  const char* const infinity_symbol_;
388
  const char* const nan_symbol_;
389
  const char exponent_character_;
390
  const int decimal_in_shortest_low_;
391
  const int decimal_in_shortest_high_;
392
  const int max_leading_padding_zeroes_in_precision_mode_;
393
  const int max_trailing_padding_zeroes_in_precision_mode_;
394
#endif // not needed for ICU
395
396
  DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
397
};
398
399
400
class StringToDoubleConverter {
401
 public:
402
  // Enumeration for allowing octals and ignoring junk when converting
403
  // strings to numbers.
404
  enum Flags {
405
    NO_FLAGS = 0,
406
    ALLOW_HEX = 1,
407
    ALLOW_OCTALS = 2,
408
    ALLOW_TRAILING_JUNK = 4,
409
    ALLOW_LEADING_SPACES = 8,
410
    ALLOW_TRAILING_SPACES = 16,
411
    ALLOW_SPACES_AFTER_SIGN = 32
412
  };
413
414
  // Flags should be a bit-or combination of the possible Flags-enum.
415
  //  - NO_FLAGS: no special flags.
416
  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
417
  //      Ex: StringToDouble("0x1234") -> 4660.0
418
  //          In StringToDouble("0x1234.56") the characters ".56" are trailing
419
  //          junk. The result of the call is hence dependent on
420
  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
421
  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
422
  //      the string will not be parsed as "0" followed by junk.
423
  //
424
  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
425
  //      If a sequence of octal digits starts with '0', then the number is
426
  //      read as octal integer. Octal numbers may only be integers.
427
  //      Ex: StringToDouble("01234") -> 668.0
428
  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
429
  //                                               // digits.
430
  //          In StringToDouble("01234.56") the characters ".56" are trailing
431
  //          junk. The result of the call is hence dependent on
432
  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
433
  //          In StringToDouble("01234e56") the characters "e56" are trailing
434
  //          junk, too.
435
  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
436
  //      a double literal.
437
  //  - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces,
438
  //                          new-lines, and tabs.
439
  //  - ALLOW_TRAILING_SPACES: ignore trailing whitespace.
440
  //  - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
441
  //       Ex: StringToDouble("-   123.2") -> -123.2.
442
  //           StringToDouble("+   123.2") -> 123.2
443
  //
444
  // empty_string_value is returned when an empty string is given as input.
445
  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
446
  // containing only spaces is converted to the 'empty_string_value', too.
447
  //
448
  // junk_string_value is returned when
449
  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
450
  //     part of a double-literal) is found.
451
  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
452
  //     double literal.
453
  //
454
  // infinity_symbol and nan_symbol are strings that are used to detect
455
  // inputs that represent infinity and NaN. They can be null, in which case
456
  // they are ignored.
457
  // The conversion routine first reads any possible signs. Then it compares the
458
  // following character of the input-string with the first character of
459
  // the infinity, and nan-symbol. If either matches, the function assumes, that
460
  // a match has been found, and expects the following input characters to match
461
  // the remaining characters of the special-value symbol.
462
  // This means that the following restrictions apply to special-value symbols:
463
  //  - they must not start with signs ('+', or '-'),
464
  //  - they must not have the same first character.
465
  //  - they must not start with digits.
466
  //
467
  // Examples:
468
  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
469
  //  empty_string_value = 0.0,
470
  //  junk_string_value = NaN,
471
  //  infinity_symbol = "infinity",
472
  //  nan_symbol = "nan":
473
  //    StringToDouble("0x1234") -> 4660.0.
474
  //    StringToDouble("0x1234K") -> 4660.0.
475
  //    StringToDouble("") -> 0.0  // empty_string_value.
476
  //    StringToDouble(" ") -> NaN  // junk_string_value.
477
  //    StringToDouble(" 1") -> NaN  // junk_string_value.
478
  //    StringToDouble("0x") -> NaN  // junk_string_value.
479
  //    StringToDouble("-123.45") -> -123.45.
480
  //    StringToDouble("--123.45") -> NaN  // junk_string_value.
481
  //    StringToDouble("123e45") -> 123e45.
482
  //    StringToDouble("123E45") -> 123e45.
483
  //    StringToDouble("123e+45") -> 123e45.
484
  //    StringToDouble("123E-45") -> 123e-45.
485
  //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
486
  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
487
  //    StringToDouble("+NaN") -> NaN  // NaN string literal.
488
  //    StringToDouble("-infinity") -> -inf.  // infinity literal.
489
  //    StringToDouble("Infinity") -> NaN  // junk_string_value.
490
  //
491
  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
492
  //  empty_string_value = 0.0,
493
  //  junk_string_value = NaN,
494
  //  infinity_symbol = NULL,
495
  //  nan_symbol = NULL:
496
  //    StringToDouble("0x1234") -> NaN  // junk_string_value.
497
  //    StringToDouble("01234") -> 668.0.
498
  //    StringToDouble("") -> 0.0  // empty_string_value.
499
  //    StringToDouble(" ") -> 0.0  // empty_string_value.
500
  //    StringToDouble(" 1") -> 1.0
501
  //    StringToDouble("0x") -> NaN  // junk_string_value.
502
  //    StringToDouble("0123e45") -> NaN  // junk_string_value.
503
  //    StringToDouble("01239E45") -> 1239e45.
504
  //    StringToDouble("-infinity") -> NaN  // junk_string_value.
505
  //    StringToDouble("NaN") -> NaN  // junk_string_value.
506
  StringToDoubleConverter(int flags,
507
                          double empty_string_value,
508
                          double junk_string_value,
509
                          const char* infinity_symbol,
510
                          const char* nan_symbol)
511
      : flags_(flags),
512
        empty_string_value_(empty_string_value),
513
        junk_string_value_(junk_string_value),
514
        infinity_symbol_(infinity_symbol),
515
0
        nan_symbol_(nan_symbol) {
516
0
  }
517
518
  // Performs the conversion.
519
  // The output parameter 'processed_characters_count' is set to the number
520
  // of characters that have been processed to read the number.
521
  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
522
  // in the 'processed_characters_count'. Trailing junk is never included.
523
  double StringToDouble(const char* buffer,
524
                        int length,
525
                        int* processed_characters_count) const;
526
527
  // Same as StringToDouble above but for 16 bit characters.
528
  double StringToDouble(const uc16* buffer,
529
                        int length,
530
                        int* processed_characters_count) const;
531
532
  // Same as StringToDouble but reads a float.
533
  // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
534
  // due to potential double-rounding.
535
  float StringToFloat(const char* buffer,
536
                      int length,
537
                      int* processed_characters_count) const;
538
539
  // Same as StringToFloat above but for 16 bit characters.
540
  float StringToFloat(const uc16* buffer,
541
                      int length,
542
                      int* processed_characters_count) const;
543
544
 private:
545
  const int flags_;
546
  const double empty_string_value_;
547
  const double junk_string_value_;
548
  const char* const infinity_symbol_;
549
  const char* const nan_symbol_;
550
551
  template <class Iterator>
552
  double StringToIeee(Iterator start_pointer,
553
                      int length,
554
                      bool read_as_double,
555
                      int* processed_characters_count) const;
556
557
  DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
558
};
559
560
}  // namespace double_conversion
561
562
// ICU PATCH: Close ICU namespace
563
U_NAMESPACE_END
564
565
#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
566
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING