Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/intl/icu/source/i18n/number_decimalquantity.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2017 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
4
#include "unicode/utypes.h"
5
6
#if !UCONFIG_NO_FORMATTING
7
8
#include <cstdlib>
9
#include <cmath>
10
#include <limits>
11
#include <stdlib.h>
12
13
#include "unicode/plurrule.h"
14
#include "cmemory.h"
15
#include "number_decnum.h"
16
#include "putilimp.h"
17
#include "number_decimalquantity.h"
18
#include "number_roundingutils.h"
19
#include "double-conversion.h"
20
#include "charstr.h"
21
#include "number_utils.h"
22
#include "uassert.h"
23
24
using namespace icu;
25
using namespace icu::number;
26
using namespace icu::number::impl;
27
28
using icu::double_conversion::DoubleToStringConverter;
29
using icu::double_conversion::StringToDoubleConverter;
30
31
namespace {
32
33
int8_t NEGATIVE_FLAG = 1;
34
int8_t INFINITY_FLAG = 2;
35
int8_t NAN_FLAG = 4;
36
37
/** Helper function for safe subtraction (no overflow). */
38
0
inline int32_t safeSubtract(int32_t a, int32_t b) {
39
0
    // Note: In C++, signed integer subtraction is undefined behavior.
40
0
    int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
41
0
    if (b < 0 && diff < a) { return INT32_MAX; }
42
0
    if (b > 0 && diff > a) { return INT32_MIN; }
43
0
    return diff;
44
0
}
45
46
static double DOUBLE_MULTIPLIERS[] = {
47
        1e0,
48
        1e1,
49
        1e2,
50
        1e3,
51
        1e4,
52
        1e5,
53
        1e6,
54
        1e7,
55
        1e8,
56
        1e9,
57
        1e10,
58
        1e11,
59
        1e12,
60
        1e13,
61
        1e14,
62
        1e15,
63
        1e16,
64
        1e17,
65
        1e18,
66
        1e19,
67
        1e20,
68
        1e21};
69
70
}  // namespace
71
72
0
icu::IFixedDecimal::~IFixedDecimal() = default;
73
74
0
DecimalQuantity::DecimalQuantity() {
75
0
    setBcdToZero();
76
0
    flags = 0;
77
0
}
78
79
0
DecimalQuantity::~DecimalQuantity() {
80
0
    if (usingBytes) {
81
0
        uprv_free(fBCD.bcdBytes.ptr);
82
0
        fBCD.bcdBytes.ptr = nullptr;
83
0
        usingBytes = false;
84
0
    }
85
0
}
86
87
0
DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
88
0
    *this = other;
89
0
}
90
91
0
DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
92
0
    *this = std::move(src);
93
0
}
94
95
0
DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
96
0
    if (this == &other) {
97
0
        return *this;
98
0
    }
99
0
    copyBcdFrom(other);
100
0
    copyFieldsFrom(other);
101
0
    return *this;
102
0
}
103
104
0
DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
105
0
    if (this == &src) {
106
0
        return *this;
107
0
    }
108
0
    moveBcdFrom(src);
109
0
    copyFieldsFrom(src);
110
0
    return *this;
111
0
}
112
113
0
void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
114
0
    bogus = other.bogus;
115
0
    lOptPos = other.lOptPos;
116
0
    lReqPos = other.lReqPos;
117
0
    rReqPos = other.rReqPos;
118
0
    rOptPos = other.rOptPos;
119
0
    scale = other.scale;
120
0
    precision = other.precision;
121
0
    flags = other.flags;
122
0
    origDouble = other.origDouble;
123
0
    origDelta = other.origDelta;
124
0
    isApproximate = other.isApproximate;
125
0
}
126
127
0
void DecimalQuantity::clear() {
128
0
    lOptPos = INT32_MAX;
129
0
    lReqPos = 0;
130
0
    rReqPos = 0;
131
0
    rOptPos = INT32_MIN;
132
0
    flags = 0;
133
0
    setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
134
0
}
135
136
0
void DecimalQuantity::setIntegerLength(int32_t minInt, int32_t maxInt) {
137
0
    // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
138
0
    U_ASSERT(minInt >= 0);
139
0
    U_ASSERT(maxInt >= minInt);
140
0
141
0
    // Special behavior: do not set minInt to be less than what is already set.
142
0
    // This is so significant digits rounding can set the integer length.
143
0
    if (minInt < lReqPos) {
144
0
        minInt = lReqPos;
145
0
    }
146
0
147
0
    // Save values into internal state
148
0
    // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
149
0
    lOptPos = maxInt;
150
0
    lReqPos = minInt;
151
0
}
152
153
0
void DecimalQuantity::setFractionLength(int32_t minFrac, int32_t maxFrac) {
154
0
    // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
155
0
    U_ASSERT(minFrac >= 0);
156
0
    U_ASSERT(maxFrac >= minFrac);
157
0
158
0
    // Save values into internal state
159
0
    // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
160
0
    rReqPos = -minFrac;
161
0
    rOptPos = -maxFrac;
162
0
}
163
164
0
uint64_t DecimalQuantity::getPositionFingerprint() const {
165
0
    uint64_t fingerprint = 0;
166
0
    fingerprint ^= lOptPos;
167
0
    fingerprint ^= (lReqPos << 16);
168
0
    fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
169
0
    fingerprint ^= (static_cast<uint64_t>(rOptPos) << 48);
170
0
    return fingerprint;
171
0
}
172
173
void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
174
0
                                       int32_t maxFrac, UErrorCode& status) {
175
0
    // TODO(13701): This is innefficient.  Improve?
176
0
    // TODO(13701): Should we convert to decNumber instead?
177
0
    roundToInfinity();
178
0
    double temp = toDouble();
179
0
    temp /= roundingIncrement;
180
0
    // Use another DecimalQuantity to perform the actual rounding...
181
0
    DecimalQuantity dq;
182
0
    dq.setToDouble(temp);
183
0
    dq.roundToMagnitude(0, roundingMode, status);
184
0
    temp = dq.toDouble();
185
0
    temp *= roundingIncrement;
186
0
    setToDouble(temp);
187
0
    // Since we reset the value to a double, we need to specify the rounding boundary
188
0
    // in order to get the DecimalQuantity out of approximation mode.
189
0
    // NOTE: In Java, we have minMaxFrac, but in C++, the two are differentiated.
190
0
    roundToMagnitude(-maxFrac, roundingMode, status);
191
0
}
192
193
0
void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
194
0
    if (isInfinite() || isZero() || isNaN()) {
195
0
        return;
196
0
    }
197
0
    // Convert to DecNum, multiply, and convert back.
198
0
    DecNum decnum;
199
0
    toDecNum(decnum, status);
200
0
    if (U_FAILURE(status)) { return; }
201
0
    decnum.multiplyBy(multiplicand, status);
202
0
    if (U_FAILURE(status)) { return; }
203
0
    setToDecNum(decnum, status);
204
0
}
205
206
0
void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
207
0
    if (isInfinite() || isZero() || isNaN()) {
208
0
        return;
209
0
    }
210
0
    // Convert to DecNum, multiply, and convert back.
211
0
    DecNum decnum;
212
0
    toDecNum(decnum, status);
213
0
    if (U_FAILURE(status)) { return; }
214
0
    decnum.divideBy(divisor, status);
215
0
    if (U_FAILURE(status)) { return; }
216
0
    setToDecNum(decnum, status);
217
0
}
218
219
0
void DecimalQuantity::negate() {
220
0
    flags ^= NEGATIVE_FLAG;
221
0
}
222
223
0
int32_t DecimalQuantity::getMagnitude() const {
224
0
    U_ASSERT(precision != 0);
225
0
    return scale + precision - 1;
226
0
}
227
228
0
bool DecimalQuantity::adjustMagnitude(int32_t delta) {
229
0
    if (precision != 0) {
230
0
        // i.e., scale += delta; origDelta += delta
231
0
        bool overflow = uprv_add32_overflow(scale, delta, &scale);
232
0
        overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
233
0
        // Make sure that precision + scale won't overflow, either
234
0
        int32_t dummy;
235
0
        overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
236
0
        return overflow;
237
0
    }
238
0
    return false;
239
0
}
240
241
0
double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
242
0
    // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
243
0
    // See the comment at the top of this file explaining the "isApproximate" field.
244
0
    U_ASSERT(!isApproximate);
245
0
246
0
    switch (operand) {
247
0
        case PLURAL_OPERAND_I:
248
0
            // Invert the negative sign if necessary
249
0
            return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
250
0
        case PLURAL_OPERAND_F:
251
0
            return static_cast<double>(toFractionLong(true));
252
0
        case PLURAL_OPERAND_T:
253
0
            return static_cast<double>(toFractionLong(false));
254
0
        case PLURAL_OPERAND_V:
255
0
            return fractionCount();
256
0
        case PLURAL_OPERAND_W:
257
0
            return fractionCountWithoutTrailingZeros();
258
0
        default:
259
0
            return std::abs(toDouble());
260
0
    }
261
0
}
262
263
0
bool DecimalQuantity::hasIntegerValue() const {
264
0
    return scale >= 0;
265
0
}
266
267
0
int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
268
0
    // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
269
0
    // See the comment in the header file explaining the "isApproximate" field.
270
0
    U_ASSERT(!isApproximate);
271
0
272
0
    int32_t magnitude = scale + precision;
273
0
    int32_t result = (lReqPos > magnitude) ? lReqPos : (lOptPos < magnitude) ? lOptPos : magnitude;
274
0
    return result - 1;
275
0
}
276
277
0
int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
278
0
    // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
279
0
    // See the comment in the header file explaining the "isApproximate" field.
280
0
    U_ASSERT(!isApproximate);
281
0
282
0
    int32_t magnitude = scale;
283
0
    int32_t result = (rReqPos < magnitude) ? rReqPos : (rOptPos > magnitude) ? rOptPos : magnitude;
284
0
    return result;
285
0
}
286
287
0
int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
288
0
    // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
289
0
    // See the comment at the top of this file explaining the "isApproximate" field.
290
0
    U_ASSERT(!isApproximate);
291
0
292
0
    return getDigitPos(magnitude - scale);
293
0
}
294
295
0
int32_t DecimalQuantity::fractionCount() const {
296
0
    return -getLowerDisplayMagnitude();
297
0
}
298
299
0
int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
300
0
    return -scale > 0 ? -scale : 0;  // max(-scale, 0)
301
0
}
302
303
0
bool DecimalQuantity::isNegative() const {
304
0
    return (flags & NEGATIVE_FLAG) != 0;
305
0
}
306
307
0
int8_t DecimalQuantity::signum() const {
308
0
    return isNegative() ? -1 : isZero() ? 0 : 1;
309
0
}
310
311
0
bool DecimalQuantity::isInfinite() const {
312
0
    return (flags & INFINITY_FLAG) != 0;
313
0
}
314
315
0
bool DecimalQuantity::isNaN() const {
316
0
    return (flags & NAN_FLAG) != 0;
317
0
}
318
319
0
bool DecimalQuantity::isZero() const {
320
0
    return precision == 0;
321
0
}
322
323
0
DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
324
0
    setBcdToZero();
325
0
    flags = 0;
326
0
    if (n == INT32_MIN) {
327
0
        flags |= NEGATIVE_FLAG;
328
0
        // leave as INT32_MIN; handled below in _setToInt()
329
0
    } else if (n < 0) {
330
0
        flags |= NEGATIVE_FLAG;
331
0
        n = -n;
332
0
    }
333
0
    if (n != 0) {
334
0
        _setToInt(n);
335
0
        compact();
336
0
    }
337
0
    return *this;
338
0
}
339
340
0
void DecimalQuantity::_setToInt(int32_t n) {
341
0
    if (n == INT32_MIN) {
342
0
        readLongToBcd(-static_cast<int64_t>(n));
343
0
    } else {
344
0
        readIntToBcd(n);
345
0
    }
346
0
}
347
348
0
DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
349
0
    setBcdToZero();
350
0
    flags = 0;
351
0
    if (n < 0 && n > INT64_MIN) {
352
0
        flags |= NEGATIVE_FLAG;
353
0
        n = -n;
354
0
    }
355
0
    if (n != 0) {
356
0
        _setToLong(n);
357
0
        compact();
358
0
    }
359
0
    return *this;
360
0
}
361
362
0
void DecimalQuantity::_setToLong(int64_t n) {
363
0
    if (n == INT64_MIN) {
364
0
        DecNum decnum;
365
0
        UErrorCode localStatus = U_ZERO_ERROR;
366
0
        decnum.setTo("9.223372036854775808E+18", localStatus);
367
0
        if (U_FAILURE(localStatus)) { return; } // unexpected
368
0
        flags |= NEGATIVE_FLAG;
369
0
        readDecNumberToBcd(decnum);
370
0
    } else if (n <= INT32_MAX) {
371
0
        readIntToBcd(static_cast<int32_t>(n));
372
0
    } else {
373
0
        readLongToBcd(n);
374
0
    }
375
0
}
376
377
0
DecimalQuantity &DecimalQuantity::setToDouble(double n) {
378
0
    setBcdToZero();
379
0
    flags = 0;
380
0
    // signbit() from <math.h> handles +0.0 vs -0.0
381
0
    if (std::signbit(n)) {
382
0
        flags |= NEGATIVE_FLAG;
383
0
        n = -n;
384
0
    }
385
0
    if (std::isnan(n) != 0) {
386
0
        flags |= NAN_FLAG;
387
0
    } else if (std::isfinite(n) == 0) {
388
0
        flags |= INFINITY_FLAG;
389
0
    } else if (n != 0) {
390
0
        _setToDoubleFast(n);
391
0
        compact();
392
0
    }
393
0
    return *this;
394
0
}
395
396
0
void DecimalQuantity::_setToDoubleFast(double n) {
397
0
    isApproximate = true;
398
0
    origDouble = n;
399
0
    origDelta = 0;
400
0
401
0
    // Make sure the double is an IEEE 754 double.  If not, fall back to the slow path right now.
402
0
    // TODO: Make a fast path for other types of doubles.
403
0
    if (!std::numeric_limits<double>::is_iec559) {
404
0
        convertToAccurateDouble();
405
0
        // Turn off the approximate double flag, since the value is now exact.
406
0
        isApproximate = false;
407
0
        origDouble = 0.0;
408
0
        return;
409
0
    }
410
0
411
0
    // To get the bits from the double, use memcpy, which takes care of endianness.
412
0
    uint64_t ieeeBits;
413
0
    uprv_memcpy(&ieeeBits, &n, sizeof(n));
414
0
    int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
415
0
416
0
    // Not all integers can be represented exactly for exponent > 52
417
0
    if (exponent <= 52 && static_cast<int64_t>(n) == n) {
418
0
        _setToLong(static_cast<int64_t>(n));
419
0
        return;
420
0
    }
421
0
422
0
    // 3.3219... is log2(10)
423
0
    auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809489);
424
0
    if (fracLength >= 0) {
425
0
        int32_t i = fracLength;
426
0
        // 1e22 is the largest exact double.
427
0
        for (; i >= 22; i -= 22) n *= 1e22;
428
0
        n *= DOUBLE_MULTIPLIERS[i];
429
0
    } else {
430
0
        int32_t i = fracLength;
431
0
        // 1e22 is the largest exact double.
432
0
        for (; i <= -22; i += 22) n /= 1e22;
433
0
        n /= DOUBLE_MULTIPLIERS[-i];
434
0
    }
435
0
    auto result = static_cast<int64_t>(std::round(n));
436
0
    if (result != 0) {
437
0
        _setToLong(result);
438
0
        scale -= fracLength;
439
0
    }
440
0
}
441
442
0
void DecimalQuantity::convertToAccurateDouble() {
443
0
    U_ASSERT(origDouble != 0);
444
0
    int32_t delta = origDelta;
445
0
446
0
    // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
447
0
    char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
448
0
    bool sign; // unused; always positive
449
0
    int32_t length;
450
0
    int32_t point;
451
0
    DoubleToStringConverter::DoubleToAscii(
452
0
        origDouble,
453
0
        DoubleToStringConverter::DtoaMode::SHORTEST,
454
0
        0,
455
0
        buffer,
456
0
        sizeof(buffer),
457
0
        &sign,
458
0
        &length,
459
0
        &point
460
0
    );
461
0
462
0
    setBcdToZero();
463
0
    readDoubleConversionToBcd(buffer, length, point);
464
0
    scale += delta;
465
0
    explicitExactDouble = true;
466
0
}
467
468
0
DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
469
0
    setBcdToZero();
470
0
    flags = 0;
471
0
472
0
    // Compute the decNumber representation
473
0
    DecNum decnum;
474
0
    decnum.setTo(n, status);
475
0
476
0
    _setToDecNum(decnum, status);
477
0
    return *this;
478
0
}
479
480
0
DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
481
0
    setBcdToZero();
482
0
    flags = 0;
483
0
484
0
    _setToDecNum(decnum, status);
485
0
    return *this;
486
0
}
487
488
0
void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
489
0
    if (U_FAILURE(status)) { return; }
490
0
    if (decnum.isNegative()) {
491
0
        flags |= NEGATIVE_FLAG;
492
0
    }
493
0
    if (!decnum.isZero()) {
494
0
        readDecNumberToBcd(decnum);
495
0
        compact();
496
0
    }
497
0
}
498
499
0
int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
500
0
    // NOTE: Call sites should be guarded by fitsInLong(), like this:
501
0
    // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
502
0
    // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
503
0
    uint64_t result = 0L;
504
0
    int32_t upperMagnitude = std::min(scale + precision, lOptPos) - 1;
505
0
    if (truncateIfOverflow) {
506
0
        upperMagnitude = std::min(upperMagnitude, 17);
507
0
    }
508
0
    for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
509
0
        result = result * 10 + getDigitPos(magnitude - scale);
510
0
    }
511
0
    if (isNegative()) {
512
0
        return static_cast<int64_t>(0LL - result); // i.e., -result
513
0
    }
514
0
    return static_cast<int64_t>(result);
515
0
}
516
517
0
uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
518
0
    uint64_t result = 0L;
519
0
    int32_t magnitude = -1;
520
0
    int32_t lowerMagnitude = std::max(scale, rOptPos);
521
0
    if (includeTrailingZeros) {
522
0
        lowerMagnitude = std::min(lowerMagnitude, rReqPos);
523
0
    }
524
0
    for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
525
0
        result = result * 10 + getDigitPos(magnitude - scale);
526
0
    }
527
0
    // Remove trailing zeros; this can happen during integer overflow cases.
528
0
    if (!includeTrailingZeros) {
529
0
        while (result > 0 && (result % 10) == 0) {
530
0
            result /= 10;
531
0
        }
532
0
    }
533
0
    return result;
534
0
}
535
536
0
bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
537
0
    if (isZero()) {
538
0
        return true;
539
0
    }
540
0
    if (scale < 0 && !ignoreFraction) {
541
0
        return false;
542
0
    }
543
0
    int magnitude = getMagnitude();
544
0
    if (magnitude < 18) {
545
0
        return true;
546
0
    }
547
0
    if (magnitude > 18) {
548
0
        return false;
549
0
    }
550
0
    // Hard case: the magnitude is 10^18.
551
0
    // The largest int64 is: 9,223,372,036,854,775,807
552
0
    for (int p = 0; p < precision; p++) {
553
0
        int8_t digit = getDigit(18 - p);
554
0
        static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
555
0
        if (digit < INT64_BCD[p]) {
556
0
            return true;
557
0
        } else if (digit > INT64_BCD[p]) {
558
0
            return false;
559
0
        }
560
0
    }
561
0
    // Exactly equal to max long plus one.
562
0
    return isNegative();
563
0
}
564
565
0
double DecimalQuantity::toDouble() const {
566
0
    // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
567
0
    // See the comment in the header file explaining the "isApproximate" field.
568
0
    U_ASSERT(!isApproximate);
569
0
570
0
    if (isNaN()) {
571
0
        return NAN;
572
0
    } else if (isInfinite()) {
573
0
        return isNegative() ? -INFINITY : INFINITY;
574
0
    }
575
0
576
0
    // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
577
0
    StringToDoubleConverter converter(0, 0, 0, "", "");
578
0
    UnicodeString numberString = this->toScientificString();
579
0
    int32_t count;
580
0
    return converter.StringToDouble(
581
0
            reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
582
0
            numberString.length(),
583
0
            &count);
584
0
}
585
586
0
void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
587
0
    // Special handling for zero
588
0
    if (precision == 0) {
589
0
        output.setTo("0", status);
590
0
    }
591
0
592
0
    // Use the BCD constructor. We need to do a little bit of work to convert, though.
593
0
    // The decNumber constructor expects most-significant first, but we store least-significant first.
594
0
    MaybeStackArray<uint8_t, 20> ubcd(precision);
595
0
    for (int32_t m = 0; m < precision; m++) {
596
0
        ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
597
0
    }
598
0
    output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
599
0
}
600
601
0
void DecimalQuantity::truncate() {
602
0
    if (scale < 0) {
603
0
        shiftRight(-scale);
604
0
        scale = 0;
605
0
        compact();
606
0
    }
607
0
}
608
609
0
void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
610
0
    // The position in the BCD at which rounding will be performed; digits to the right of position
611
0
    // will be rounded away.
612
0
    // TODO: Andy: There was a test failure because of integer overflow here. Should I do
613
0
    // "safe subtraction" everywhere in the code?  What's the nicest way to do it?
614
0
    int position = safeSubtract(magnitude, scale);
615
0
616
0
    if (position <= 0 && !isApproximate) {
617
0
        // All digits are to the left of the rounding magnitude.
618
0
    } else if (precision == 0) {
619
0
        // No rounding for zero.
620
0
    } else {
621
0
        // Perform rounding logic.
622
0
        // "leading" = most significant digit to the right of rounding
623
0
        // "trailing" = least significant digit to the left of rounding
624
0
        int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
625
0
        int8_t trailingDigit = getDigitPos(position);
626
0
627
0
        // Compute which section of the number we are in.
628
0
        // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
629
0
        // LOWER means we are between the bottom edge and the midpoint, like 1.391
630
0
        // MIDPOINT means we are exactly in the middle, like 1.500
631
0
        // UPPER means we are between the midpoint and the top edge, like 1.916
632
0
        roundingutils::Section section = roundingutils::SECTION_MIDPOINT;
633
0
        if (!isApproximate) {
634
0
            if (leadingDigit < 5) {
635
0
                section = roundingutils::SECTION_LOWER;
636
0
            } else if (leadingDigit > 5) {
637
0
                section = roundingutils::SECTION_UPPER;
638
0
            } else {
639
0
                for (int p = safeSubtract(position, 2); p >= 0; p--) {
640
0
                    if (getDigitPos(p) != 0) {
641
0
                        section = roundingutils::SECTION_UPPER;
642
0
                        break;
643
0
                    }
644
0
                }
645
0
            }
646
0
        } else {
647
0
            int32_t p = safeSubtract(position, 2);
648
0
            int32_t minP = uprv_max(0, precision - 14);
649
0
            if (leadingDigit == 0) {
650
0
                section = roundingutils::SECTION_LOWER_EDGE;
651
0
                for (; p >= minP; p--) {
652
0
                    if (getDigitPos(p) != 0) {
653
0
                        section = roundingutils::SECTION_LOWER;
654
0
                        break;
655
0
                    }
656
0
                }
657
0
            } else if (leadingDigit == 4) {
658
0
                for (; p >= minP; p--) {
659
0
                    if (getDigitPos(p) != 9) {
660
0
                        section = roundingutils::SECTION_LOWER;
661
0
                        break;
662
0
                    }
663
0
                }
664
0
            } else if (leadingDigit == 5) {
665
0
                for (; p >= minP; p--) {
666
0
                    if (getDigitPos(p) != 0) {
667
0
                        section = roundingutils::SECTION_UPPER;
668
0
                        break;
669
0
                    }
670
0
                }
671
0
            } else if (leadingDigit == 9) {
672
0
                section = roundingutils::SECTION_UPPER_EDGE;
673
0
                for (; p >= minP; p--) {
674
0
                    if (getDigitPos(p) != 9) {
675
0
                        section = roundingutils::SECTION_UPPER;
676
0
                        break;
677
0
                    }
678
0
                }
679
0
            } else if (leadingDigit < 5) {
680
0
                section = roundingutils::SECTION_LOWER;
681
0
            } else {
682
0
                section = roundingutils::SECTION_UPPER;
683
0
            }
684
0
685
0
            bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
686
0
            if (safeSubtract(position, 1) < precision - 14 ||
687
0
                (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
688
0
                (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
689
0
                // Oops! This means that we have to get the exact representation of the double, because
690
0
                // the zone of uncertainty is along the rounding boundary.
691
0
                convertToAccurateDouble();
692
0
                roundToMagnitude(magnitude, roundingMode, status); // start over
693
0
                return;
694
0
            }
695
0
696
0
            // Turn off the approximate double flag, since the value is now confirmed to be exact.
697
0
            isApproximate = false;
698
0
            origDouble = 0.0;
699
0
            origDelta = 0;
700
0
701
0
            if (position <= 0) {
702
0
                // All digits are to the left of the rounding magnitude.
703
0
                return;
704
0
            }
705
0
706
0
            // Good to continue rounding.
707
0
            if (section == -1) { section = roundingutils::SECTION_LOWER; }
708
0
            if (section == -2) { section = roundingutils::SECTION_UPPER; }
709
0
        }
710
0
711
0
        bool roundDown = roundingutils::getRoundingDirection((trailingDigit % 2) == 0,
712
0
                isNegative(),
713
0
                section,
714
0
                roundingMode,
715
0
                status);
716
0
        if (U_FAILURE(status)) {
717
0
            return;
718
0
        }
719
0
720
0
        // Perform truncation
721
0
        if (position >= precision) {
722
0
            setBcdToZero();
723
0
            scale = magnitude;
724
0
        } else {
725
0
            shiftRight(position);
726
0
        }
727
0
728
0
        // Bubble the result to the higher digits
729
0
        if (!roundDown) {
730
0
            if (trailingDigit == 9) {
731
0
                int bubblePos = 0;
732
0
                // Note: in the long implementation, the most digits BCD can have at this point is 15,
733
0
                // so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
734
0
                for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
735
0
                shiftRight(bubblePos); // shift off the trailing 9s
736
0
            }
737
0
            int8_t digit0 = getDigitPos(0);
738
0
            U_ASSERT(digit0 != 9);
739
0
            setDigitPos(0, static_cast<int8_t>(digit0 + 1));
740
0
            precision += 1; // in case an extra digit got added
741
0
        }
742
0
743
0
        compact();
744
0
    }
745
0
}
746
747
0
void DecimalQuantity::roundToInfinity() {
748
0
    if (isApproximate) {
749
0
        convertToAccurateDouble();
750
0
    }
751
0
}
752
753
0
void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
754
0
    U_ASSERT(leadingZeros >= 0);
755
0
756
0
    // Zero requires special handling to maintain the invariant that the least-significant digit
757
0
    // in the BCD is nonzero.
758
0
    if (value == 0) {
759
0
        if (appendAsInteger && precision != 0) {
760
0
            scale += leadingZeros + 1;
761
0
        }
762
0
        return;
763
0
    }
764
0
765
0
    // Deal with trailing zeros
766
0
    if (scale > 0) {
767
0
        leadingZeros += scale;
768
0
        if (appendAsInteger) {
769
0
            scale = 0;
770
0
        }
771
0
    }
772
0
773
0
    // Append digit
774
0
    shiftLeft(leadingZeros + 1);
775
0
    setDigitPos(0, value);
776
0
777
0
    // Fix scale if in integer mode
778
0
    if (appendAsInteger) {
779
0
        scale += leadingZeros + 1;
780
0
    }
781
0
}
782
783
0
UnicodeString DecimalQuantity::toPlainString() const {
784
0
    U_ASSERT(!isApproximate);
785
0
    UnicodeString sb;
786
0
    if (isNegative()) {
787
0
        sb.append(u'-');
788
0
    }
789
0
    if (precision == 0 || getMagnitude() < 0) {
790
0
        sb.append(u'0');
791
0
    }
792
0
    for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
793
0
        if (m == -1) { sb.append(u'.'); }
794
0
        sb.append(getDigit(m) + u'0');
795
0
    }
796
0
    return sb;
797
0
}
798
799
0
UnicodeString DecimalQuantity::toScientificString() const {
800
0
    U_ASSERT(!isApproximate);
801
0
    UnicodeString result;
802
0
    if (isNegative()) {
803
0
        result.append(u'-');
804
0
    }
805
0
    if (precision == 0) {
806
0
        result.append(u"0E+0", -1);
807
0
        return result;
808
0
    }
809
0
    // NOTE: It is not safe to add to lOptPos (aka maxInt) or subtract from
810
0
    // rOptPos (aka -maxFrac) due to overflow.
811
0
    int32_t upperPos = std::min(precision + scale, lOptPos) - scale - 1;
812
0
    int32_t lowerPos = std::max(scale, rOptPos) - scale;
813
0
    int32_t p = upperPos;
814
0
    result.append(u'0' + getDigitPos(p));
815
0
    if ((--p) >= lowerPos) {
816
0
        result.append(u'.');
817
0
        for (; p >= lowerPos; p--) {
818
0
            result.append(u'0' + getDigitPos(p));
819
0
        }
820
0
    }
821
0
    result.append(u'E');
822
0
    int32_t _scale = upperPos + scale;
823
0
    if (_scale < 0) {
824
0
        _scale *= -1;
825
0
        result.append(u'-');
826
0
    } else {
827
0
        result.append(u'+');
828
0
    }
829
0
    if (_scale == 0) {
830
0
        result.append(u'0');
831
0
    }
832
0
    int32_t insertIndex = result.length();
833
0
    while (_scale > 0) {
834
0
        std::div_t res = std::div(_scale, 10);
835
0
        result.insert(insertIndex, u'0' + res.rem);
836
0
        _scale = res.quot;
837
0
    }
838
0
    return result;
839
0
}
840
841
////////////////////////////////////////////////////
842
/// End of DecimalQuantity_AbstractBCD.java      ///
843
/// Start of DecimalQuantity_DualStorageBCD.java ///
844
////////////////////////////////////////////////////
845
846
0
int8_t DecimalQuantity::getDigitPos(int32_t position) const {
847
0
    if (usingBytes) {
848
0
        if (position < 0 || position >= precision) { return 0; }
849
0
        return fBCD.bcdBytes.ptr[position];
850
0
    } else {
851
0
        if (position < 0 || position >= 16) { return 0; }
852
0
        return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
853
0
    }
854
0
}
855
856
0
void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
857
0
    U_ASSERT(position >= 0);
858
0
    if (usingBytes) {
859
0
        ensureCapacity(position + 1);
860
0
        fBCD.bcdBytes.ptr[position] = value;
861
0
    } else if (position >= 16) {
862
0
        switchStorage();
863
0
        ensureCapacity(position + 1);
864
0
        fBCD.bcdBytes.ptr[position] = value;
865
0
    } else {
866
0
        int shift = position * 4;
867
0
        fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
868
0
    }
869
0
}
870
871
0
void DecimalQuantity::shiftLeft(int32_t numDigits) {
872
0
    if (!usingBytes && precision + numDigits > 16) {
873
0
        switchStorage();
874
0
    }
875
0
    if (usingBytes) {
876
0
        ensureCapacity(precision + numDigits);
877
0
        int i = precision + numDigits - 1;
878
0
        for (; i >= numDigits; i--) {
879
0
            fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits];
880
0
        }
881
0
        for (; i >= 0; i--) {
882
0
            fBCD.bcdBytes.ptr[i] = 0;
883
0
        }
884
0
    } else {
885
0
        fBCD.bcdLong <<= (numDigits * 4);
886
0
    }
887
0
    scale -= numDigits;
888
0
    precision += numDigits;
889
0
}
890
891
0
void DecimalQuantity::shiftRight(int32_t numDigits) {
892
0
    if (usingBytes) {
893
0
        int i = 0;
894
0
        for (; i < precision - numDigits; i++) {
895
0
            fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
896
0
        }
897
0
        for (; i < precision; i++) {
898
0
            fBCD.bcdBytes.ptr[i] = 0;
899
0
        }
900
0
    } else {
901
0
        fBCD.bcdLong >>= (numDigits * 4);
902
0
    }
903
0
    scale += numDigits;
904
0
    precision -= numDigits;
905
0
}
906
907
0
void DecimalQuantity::setBcdToZero() {
908
0
    if (usingBytes) {
909
0
        uprv_free(fBCD.bcdBytes.ptr);
910
0
        fBCD.bcdBytes.ptr = nullptr;
911
0
        usingBytes = false;
912
0
    }
913
0
    fBCD.bcdLong = 0L;
914
0
    scale = 0;
915
0
    precision = 0;
916
0
    isApproximate = false;
917
0
    origDouble = 0;
918
0
    origDelta = 0;
919
0
}
920
921
0
void DecimalQuantity::readIntToBcd(int32_t n) {
922
0
    U_ASSERT(n != 0);
923
0
    // ints always fit inside the long implementation.
924
0
    uint64_t result = 0L;
925
0
    int i = 16;
926
0
    for (; n != 0; n /= 10, i--) {
927
0
        result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
928
0
    }
929
0
    U_ASSERT(!usingBytes);
930
0
    fBCD.bcdLong = result >> (i * 4);
931
0
    scale = 0;
932
0
    precision = 16 - i;
933
0
}
934
935
0
void DecimalQuantity::readLongToBcd(int64_t n) {
936
0
    U_ASSERT(n != 0);
937
0
    if (n >= 10000000000000000L) {
938
0
        ensureCapacity();
939
0
        int i = 0;
940
0
        for (; n != 0L; n /= 10L, i++) {
941
0
            fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
942
0
        }
943
0
        U_ASSERT(usingBytes);
944
0
        scale = 0;
945
0
        precision = i;
946
0
    } else {
947
0
        uint64_t result = 0L;
948
0
        int i = 16;
949
0
        for (; n != 0L; n /= 10L, i--) {
950
0
            result = (result >> 4) + ((n % 10) << 60);
951
0
        }
952
0
        U_ASSERT(i >= 0);
953
0
        U_ASSERT(!usingBytes);
954
0
        fBCD.bcdLong = result >> (i * 4);
955
0
        scale = 0;
956
0
        precision = 16 - i;
957
0
    }
958
0
}
959
960
0
void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
961
0
    const decNumber* dn = decnum.getRawDecNumber();
962
0
    if (dn->digits > 16) {
963
0
        ensureCapacity(dn->digits);
964
0
        for (int32_t i = 0; i < dn->digits; i++) {
965
0
            fBCD.bcdBytes.ptr[i] = dn->lsu[i];
966
0
        }
967
0
    } else {
968
0
        uint64_t result = 0L;
969
0
        for (int32_t i = 0; i < dn->digits; i++) {
970
0
            result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
971
0
        }
972
0
        fBCD.bcdLong = result;
973
0
    }
974
0
    scale = dn->exponent;
975
0
    precision = dn->digits;
976
0
}
977
978
void DecimalQuantity::readDoubleConversionToBcd(
979
0
        const char* buffer, int32_t length, int32_t point) {
980
0
    // NOTE: Despite the fact that double-conversion's API is called
981
0
    // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
982
0
    if (length > 16) {
983
0
        ensureCapacity(length);
984
0
        for (int32_t i = 0; i < length; i++) {
985
0
            fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
986
0
        }
987
0
    } else {
988
0
        uint64_t result = 0L;
989
0
        for (int32_t i = 0; i < length; i++) {
990
0
            result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
991
0
        }
992
0
        fBCD.bcdLong = result;
993
0
    }
994
0
    scale = point - length;
995
0
    precision = length;
996
0
}
997
998
0
void DecimalQuantity::compact() {
999
0
    if (usingBytes) {
1000
0
        int32_t delta = 0;
1001
0
        for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
1002
0
        if (delta == precision) {
1003
0
            // Number is zero
1004
0
            setBcdToZero();
1005
0
            return;
1006
0
        } else {
1007
0
            // Remove trailing zeros
1008
0
            shiftRight(delta);
1009
0
        }
1010
0
1011
0
        // Compute precision
1012
0
        int32_t leading = precision - 1;
1013
0
        for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
1014
0
        precision = leading + 1;
1015
0
1016
0
        // Switch storage mechanism if possible
1017
0
        if (precision <= 16) {
1018
0
            switchStorage();
1019
0
        }
1020
0
1021
0
    } else {
1022
0
        if (fBCD.bcdLong == 0L) {
1023
0
            // Number is zero
1024
0
            setBcdToZero();
1025
0
            return;
1026
0
        }
1027
0
1028
0
        // Compact the number (remove trailing zeros)
1029
0
        // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
1030
0
        int32_t delta = 0;
1031
0
        for (; delta < precision && getDigitPos(delta) == 0; delta++);
1032
0
        fBCD.bcdLong >>= delta * 4;
1033
0
        scale += delta;
1034
0
1035
0
        // Compute precision
1036
0
        int32_t leading = precision - 1;
1037
0
        for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
1038
0
        precision = leading + 1;
1039
0
    }
1040
0
}
1041
1042
0
void DecimalQuantity::ensureCapacity() {
1043
0
    ensureCapacity(40);
1044
0
}
1045
1046
0
void DecimalQuantity::ensureCapacity(int32_t capacity) {
1047
0
    if (capacity == 0) { return; }
1048
0
    int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
1049
0
    if (!usingBytes) {
1050
0
        // TODO: There is nothing being done to check for memory allocation failures.
1051
0
        // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
1052
0
        // make these arrays half the size.
1053
0
        fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
1054
0
        fBCD.bcdBytes.len = capacity;
1055
0
        // Initialize the byte array to zeros (this is done automatically in Java)
1056
0
        uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
1057
0
    } else if (oldCapacity < capacity) {
1058
0
        auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
1059
0
        uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
1060
0
        // Initialize the rest of the byte array to zeros (this is done automatically in Java)
1061
0
        uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
1062
0
        uprv_free(fBCD.bcdBytes.ptr);
1063
0
        fBCD.bcdBytes.ptr = bcd1;
1064
0
        fBCD.bcdBytes.len = capacity * 2;
1065
0
    }
1066
0
    usingBytes = true;
1067
0
}
1068
1069
0
void DecimalQuantity::switchStorage() {
1070
0
    if (usingBytes) {
1071
0
        // Change from bytes to long
1072
0
        uint64_t bcdLong = 0L;
1073
0
        for (int i = precision - 1; i >= 0; i--) {
1074
0
            bcdLong <<= 4;
1075
0
            bcdLong |= fBCD.bcdBytes.ptr[i];
1076
0
        }
1077
0
        uprv_free(fBCD.bcdBytes.ptr);
1078
0
        fBCD.bcdBytes.ptr = nullptr;
1079
0
        fBCD.bcdLong = bcdLong;
1080
0
        usingBytes = false;
1081
0
    } else {
1082
0
        // Change from long to bytes
1083
0
        // Copy the long into a local variable since it will get munged when we allocate the bytes
1084
0
        uint64_t bcdLong = fBCD.bcdLong;
1085
0
        ensureCapacity();
1086
0
        for (int i = 0; i < precision; i++) {
1087
0
            fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
1088
0
            bcdLong >>= 4;
1089
0
        }
1090
0
        U_ASSERT(usingBytes);
1091
0
    }
1092
0
}
1093
1094
0
void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
1095
0
    setBcdToZero();
1096
0
    if (other.usingBytes) {
1097
0
        ensureCapacity(other.precision);
1098
0
        uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
1099
0
    } else {
1100
0
        fBCD.bcdLong = other.fBCD.bcdLong;
1101
0
    }
1102
0
}
1103
1104
0
void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
1105
0
    setBcdToZero();
1106
0
    if (other.usingBytes) {
1107
0
        usingBytes = true;
1108
0
        fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
1109
0
        fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
1110
0
        // Take ownership away from the old instance:
1111
0
        other.fBCD.bcdBytes.ptr = nullptr;
1112
0
        other.usingBytes = false;
1113
0
    } else {
1114
0
        fBCD.bcdLong = other.fBCD.bcdLong;
1115
0
    }
1116
0
}
1117
1118
0
const char16_t* DecimalQuantity::checkHealth() const {
1119
0
    if (usingBytes) {
1120
0
        if (precision == 0) { return u"Zero precision but we are in byte mode"; }
1121
0
        int32_t capacity = fBCD.bcdBytes.len;
1122
0
        if (precision > capacity) { return u"Precision exceeds length of byte array"; }
1123
0
        if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
1124
0
        if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
1125
0
        for (int i = 0; i < precision; i++) {
1126
0
            if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
1127
0
            if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
1128
0
        }
1129
0
        for (int i = precision; i < capacity; i++) {
1130
0
            if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
1131
0
        }
1132
0
    } else {
1133
0
        if (precision == 0 && fBCD.bcdLong != 0) {
1134
0
            return u"Value in bcdLong even though precision is zero";
1135
0
        }
1136
0
        if (precision > 16) { return u"Precision exceeds length of long"; }
1137
0
        if (precision != 0 && getDigitPos(precision - 1) == 0) {
1138
0
            return u"Most significant digit is zero in long mode";
1139
0
        }
1140
0
        if (precision != 0 && getDigitPos(0) == 0) {
1141
0
            return u"Least significant digit is zero in long mode";
1142
0
        }
1143
0
        for (int i = 0; i < precision; i++) {
1144
0
            if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
1145
0
            if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
1146
0
        }
1147
0
        for (int i = precision; i < 16; i++) {
1148
0
            if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
1149
0
        }
1150
0
    }
1151
0
1152
0
    // No error
1153
0
    return nullptr;
1154
0
}
1155
1156
0
bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
1157
0
    // FIXME: Make a faster implementation.
1158
0
    return toString() == other.toString();
1159
0
}
1160
1161
0
UnicodeString DecimalQuantity::toString() const {
1162
0
    MaybeStackArray<char, 30> digits(precision + 1);
1163
0
    for (int32_t i = 0; i < precision; i++) {
1164
0
        digits[i] = getDigitPos(precision - i - 1) + '0';
1165
0
    }
1166
0
    digits[precision] = 0; // terminate buffer
1167
0
    char buffer8[100];
1168
0
    snprintf(
1169
0
            buffer8,
1170
0
            sizeof(buffer8),
1171
0
            "<DecimalQuantity %d:%d:%d:%d %s %s%s%s%d>",
1172
0
            (lOptPos > 999 ? 999 : lOptPos),
1173
0
            lReqPos,
1174
0
            rReqPos,
1175
0
            (rOptPos < -999 ? -999 : rOptPos),
1176
0
            (usingBytes ? "bytes" : "long"),
1177
0
            (isNegative() ? "-" : ""),
1178
0
            (precision == 0 ? "0" : digits.getAlias()),
1179
0
            "E",
1180
0
            scale);
1181
0
    return UnicodeString(buffer8, -1, US_INV);
1182
0
}
1183
1184
#endif /* #if !UCONFIG_NO_FORMATTING */