/src/mozilla-central/layout/generic/nsGridContainerFrame.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | /* rendering object for CSS "display: grid | inline-grid" */ |
8 | | |
9 | | #include "nsGridContainerFrame.h" |
10 | | |
11 | | #include <functional> |
12 | | #include <limits> |
13 | | #include <stdlib.h> // for div() |
14 | | #include "gfxContext.h" |
15 | | #include "mozilla/AutoRestore.h" |
16 | | #include "mozilla/ComputedStyle.h" |
17 | | #include "mozilla/CSSAlignUtils.h" |
18 | | #include "mozilla/CSSOrderAwareFrameIterator.h" |
19 | | #include "mozilla/dom/GridBinding.h" |
20 | | #include "mozilla/IntegerRange.h" |
21 | | #include "mozilla/Maybe.h" |
22 | | #include "mozilla/PodOperations.h" // for PodZero |
23 | | #include "mozilla/Poison.h" |
24 | | #include "nsAbsoluteContainingBlock.h" |
25 | | #include "nsAlgorithm.h" // for clamped() |
26 | | #include "nsCSSAnonBoxes.h" |
27 | | #include "nsCSSFrameConstructor.h" |
28 | | #include "nsDataHashtable.h" |
29 | | #include "nsDisplayList.h" |
30 | | #include "nsHashKeys.h" |
31 | | #include "nsFieldSetFrame.h" |
32 | | #include "nsIFrameInlines.h" |
33 | | #include "nsPresContext.h" |
34 | | #include "nsReadableUtils.h" |
35 | | #include "nsTableWrapperFrame.h" |
36 | | |
37 | | using namespace mozilla; |
38 | | |
39 | | typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags; |
40 | | typedef nsGridContainerFrame::TrackSize TrackSize; |
41 | | const uint32_t nsGridContainerFrame::kTranslatedMaxLine = |
42 | | uint32_t(nsStyleGridLine::kMaxLine - nsStyleGridLine::kMinLine); |
43 | | const uint32_t nsGridContainerFrame::kAutoLine = kTranslatedMaxLine + 3457U; |
44 | | typedef nsTHashtable< nsPtrHashKey<nsIFrame> > FrameHashtable; |
45 | | typedef mozilla::CSSAlignUtils::AlignJustifyFlags AlignJustifyFlags; |
46 | | typedef nsLayoutUtils::IntrinsicISizeType IntrinsicISizeType; |
47 | | |
48 | | // https://drafts.csswg.org/css-sizing/#constraints |
49 | | enum class SizingConstraint |
50 | | { |
51 | | eMinContent, // sizing under min-content constraint |
52 | | eMaxContent, // sizing under max-content constraint |
53 | | eNoConstraint // no constraint, used during Reflow |
54 | | }; |
55 | | |
56 | | static void |
57 | | ReparentFrame(nsIFrame* aFrame, nsContainerFrame* aOldParent, |
58 | | nsContainerFrame* aNewParent) |
59 | 0 | { |
60 | 0 | NS_ASSERTION(aOldParent == aFrame->GetParent(), |
61 | 0 | "Parent not consistent with expectations"); |
62 | 0 |
|
63 | 0 | aFrame->SetParent(aNewParent); |
64 | 0 |
|
65 | 0 | // When pushing and pulling frames we need to check for whether any |
66 | 0 | // views need to be reparented |
67 | 0 | nsContainerFrame::ReparentFrameView(aFrame, aOldParent, aNewParent); |
68 | 0 | } |
69 | | |
70 | | static void |
71 | | ReparentFrames(nsFrameList& aFrameList, nsContainerFrame* aOldParent, |
72 | | nsContainerFrame* aNewParent) |
73 | 0 | { |
74 | 0 | for (auto f : aFrameList) { |
75 | 0 | ReparentFrame(f, aOldParent, aNewParent); |
76 | 0 | } |
77 | 0 | } |
78 | | |
79 | | static nscoord |
80 | | ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput) |
81 | 0 | { |
82 | 0 | auto maxSize = aReflowInput->ComputedMaxBSize(); |
83 | 0 | if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) { |
84 | 0 | MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize); |
85 | 0 | aSize = std::min(aSize, maxSize); |
86 | 0 | } |
87 | 0 | return aSize; |
88 | 0 | } |
89 | | |
90 | | // Same as above and set aStatus INCOMPLETE if aSize wasn't clamped. |
91 | | // (If we clamp aSize it means our size is less than the break point, |
92 | | // i.e. we're effectively breaking in our overflow, so we should leave |
93 | | // aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)). |
94 | | static nscoord |
95 | | ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput, |
96 | | nsReflowStatus* aStatus) |
97 | 0 | { |
98 | 0 | auto maxSize = aReflowInput->ComputedMaxBSize(); |
99 | 0 | if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) { |
100 | 0 | MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize); |
101 | 0 | if (aSize < maxSize) { |
102 | 0 | aStatus->SetIncomplete(); |
103 | 0 | } else { |
104 | 0 | aSize = maxSize; |
105 | 0 | } |
106 | 0 | } else { |
107 | 0 | aStatus->SetIncomplete(); |
108 | 0 | } |
109 | 0 | return aSize; |
110 | 0 | } |
111 | | |
112 | | static bool |
113 | | IsPercentOfIndefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis) |
114 | 0 | { |
115 | 0 | return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent(); |
116 | 0 | } |
117 | | |
118 | | static nscoord |
119 | | ResolveToDefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis) |
120 | 0 | { |
121 | 0 | MOZ_ASSERT(aCoord.IsCoordPercentCalcUnit()); |
122 | 0 | if (::IsPercentOfIndefiniteSize(aCoord, aPercentBasis)) { |
123 | 0 | return nscoord(0); |
124 | 0 | } |
125 | 0 | return std::max(nscoord(0), aCoord.ComputeCoordPercentCalc(aPercentBasis)); |
126 | 0 | } |
127 | | |
128 | | // Synthesize a baseline from a border box. For an alphabetical baseline |
129 | | // this is the end edge of the border box. For a central baseline it's |
130 | | // the center of the border box. |
131 | | // https://drafts.csswg.org/css-align-3/#synthesize-baselines |
132 | | // For a 'first baseline' the measure is from the border-box start edge and |
133 | | // for a 'last baseline' the measure is from the border-box end edge. |
134 | | static nscoord |
135 | | SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup, |
136 | | WritingMode aWM, |
137 | | nscoord aBorderBoxSize) |
138 | 0 | { |
139 | 0 | if (aGroup == BaselineSharingGroup::eFirst) { |
140 | 0 | return aWM.IsAlphabeticalBaseline() ? aBorderBoxSize : aBorderBoxSize / 2; |
141 | 0 | } |
142 | 0 | MOZ_ASSERT(aGroup == BaselineSharingGroup::eLast); |
143 | 0 | // Round up for central baseline offset, to be consistent with eFirst. |
144 | 0 | return aWM.IsAlphabeticalBaseline() ? 0 : |
145 | 0 | (aBorderBoxSize / 2) + (aBorderBoxSize % 2); |
146 | 0 | } |
147 | | |
148 | | enum class GridLineSide |
149 | | { |
150 | | eBeforeGridGap, |
151 | | eAfterGridGap, |
152 | | }; |
153 | | |
154 | | struct nsGridContainerFrame::TrackSize |
155 | | { |
156 | | enum StateBits : uint16_t { |
157 | | eAutoMinSizing = 0x1, |
158 | | eMinContentMinSizing = 0x2, |
159 | | eMaxContentMinSizing = 0x4, |
160 | | eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing, |
161 | | eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing, |
162 | | eModified = 0x8, |
163 | | eAutoMaxSizing = 0x10, |
164 | | eMinContentMaxSizing = 0x20, |
165 | | eMaxContentMaxSizing = 0x40, |
166 | | eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing, |
167 | | eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing, |
168 | | eFlexMaxSizing = 0x80, |
169 | | eFrozen = 0x100, |
170 | | eSkipGrowUnlimited1 = 0x200, |
171 | | eSkipGrowUnlimited2 = 0x400, |
172 | | eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2, |
173 | | eBreakBefore = 0x800, |
174 | | eFitContent = 0x1000, |
175 | | eInfinitelyGrowable = 0x2000, |
176 | | }; |
177 | | |
178 | | StateBits Initialize(nscoord aPercentageBasis, |
179 | | const nsStyleCoord& aMinCoord, |
180 | | const nsStyleCoord& aMaxCoord); |
181 | 0 | bool IsFrozen() const { return mState & eFrozen; } |
182 | | #ifdef DEBUG |
183 | | void Dump() const; |
184 | | #endif |
185 | | |
186 | | static bool IsMinContent(const nsStyleCoord& aCoord) |
187 | 0 | { |
188 | 0 | return aCoord.GetUnit() == eStyleUnit_Enumerated && |
189 | 0 | aCoord.GetEnumValue<StyleGridTrackBreadth>() == StyleGridTrackBreadth::MinContent; |
190 | 0 | } |
191 | | static bool IsDefiniteMaxSizing(StateBits aStateBits) |
192 | 0 | { |
193 | 0 | return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0; |
194 | 0 | } |
195 | | |
196 | | nscoord mBase; |
197 | | nscoord mLimit; |
198 | | nscoord mPosition; // zero until we apply 'align/justify-content' |
199 | | // mBaselineSubtreeSize is the size of a baseline-aligned subtree within |
200 | | // this track. One subtree per baseline-sharing group (per track). |
201 | | nscoord mBaselineSubtreeSize[2]; |
202 | | StateBits mState; |
203 | | }; |
204 | | |
205 | | MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits) |
206 | | |
207 | | namespace mozilla { |
208 | | template <> |
209 | | struct IsPod<nsGridContainerFrame::TrackSize> : TrueType {}; |
210 | | } |
211 | | |
212 | | TrackSize::StateBits |
213 | | nsGridContainerFrame::TrackSize::Initialize(nscoord aPercentageBasis, |
214 | | const nsStyleCoord& aMinCoord, |
215 | | const nsStyleCoord& aMaxCoord) |
216 | 0 | { |
217 | 0 | MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0, |
218 | 0 | "track size data is expected to be initialized to zero"); |
219 | 0 | auto minSizeUnit = aMinCoord.GetUnit(); |
220 | 0 | auto maxSizeUnit = aMaxCoord.GetUnit(); |
221 | 0 | if (minSizeUnit == eStyleUnit_None) { |
222 | 0 | // This track is sized using fit-content(size) (represented in style system |
223 | 0 | // with minCoord=None,maxCoord=size). In layout, fit-content(size) behaves |
224 | 0 | // as minmax(auto, max-content), with 'size' as an additional upper-bound. |
225 | 0 | mState = eFitContent; |
226 | 0 | minSizeUnit = eStyleUnit_Auto; |
227 | 0 | maxSizeUnit = eStyleUnit_Enumerated; // triggers max-content sizing below |
228 | 0 | } |
229 | 0 | if (::IsPercentOfIndefiniteSize(aMinCoord, aPercentageBasis)) { |
230 | 0 | // https://drafts.csswg.org/css-grid/#valdef-grid-template-columns-percentage |
231 | 0 | // "If the inline or block size of the grid container is indefinite, |
232 | 0 | // <percentage> values relative to that size are treated as 'auto'." |
233 | 0 | minSizeUnit = eStyleUnit_Auto; |
234 | 0 | } |
235 | 0 | if (::IsPercentOfIndefiniteSize(aMaxCoord, aPercentageBasis)) { |
236 | 0 | maxSizeUnit = eStyleUnit_Auto; |
237 | 0 | } |
238 | 0 | // http://dev.w3.org/csswg/css-grid/#algo-init |
239 | 0 | switch (minSizeUnit) { |
240 | 0 | case eStyleUnit_Auto: |
241 | 0 | mState |= eAutoMinSizing; |
242 | 0 | break; |
243 | 0 | case eStyleUnit_Enumerated: |
244 | 0 | mState |= IsMinContent(aMinCoord) ? eMinContentMinSizing |
245 | 0 | : eMaxContentMinSizing; |
246 | 0 | break; |
247 | 0 | default: |
248 | 0 | MOZ_ASSERT(minSizeUnit != eStyleUnit_FlexFraction, |
249 | 0 | "<flex> min-sizing is invalid as a track size"); |
250 | 0 | mBase = ::ResolveToDefiniteSize(aMinCoord, aPercentageBasis); |
251 | 0 | } |
252 | 0 | switch (maxSizeUnit) { |
253 | 0 | case eStyleUnit_Auto: |
254 | 0 | mState |= eAutoMaxSizing; |
255 | 0 | mLimit = NS_UNCONSTRAINEDSIZE; |
256 | 0 | break; |
257 | 0 | case eStyleUnit_Enumerated: |
258 | 0 | mState |= IsMinContent(aMaxCoord) ? eMinContentMaxSizing |
259 | 0 | : eMaxContentMaxSizing; |
260 | 0 | mLimit = NS_UNCONSTRAINEDSIZE; |
261 | 0 | break; |
262 | 0 | case eStyleUnit_FlexFraction: |
263 | 0 | mState |= eFlexMaxSizing; |
264 | 0 | mLimit = mBase; |
265 | 0 | break; |
266 | 0 | default: |
267 | 0 | mLimit = ::ResolveToDefiniteSize(aMaxCoord, aPercentageBasis); |
268 | 0 | if (mLimit < mBase) { |
269 | 0 | mLimit = mBase; |
270 | 0 | } |
271 | 0 | } |
272 | 0 |
|
273 | 0 | mBaselineSubtreeSize[BaselineSharingGroup::eFirst] = nscoord(0); |
274 | 0 | mBaselineSubtreeSize[BaselineSharingGroup::eLast] = nscoord(0); |
275 | 0 | return mState; |
276 | 0 | } |
277 | | |
278 | | /** |
279 | | * Is aFrame1 a prev-continuation of aFrame2? |
280 | | */ |
281 | | static bool |
282 | | IsPrevContinuationOf(nsIFrame* aFrame1, nsIFrame* aFrame2) |
283 | 0 | { |
284 | 0 | nsIFrame* prev = aFrame2; |
285 | 0 | while ((prev = prev->GetPrevContinuation())) { |
286 | 0 | if (prev == aFrame1) { |
287 | 0 | return true; |
288 | 0 | } |
289 | 0 | } |
290 | 0 | return false; |
291 | 0 | } |
292 | | |
293 | | /** |
294 | | * Moves all frames from aSrc into aDest such that the resulting aDest |
295 | | * is still sorted in document content order and continuation order. |
296 | | * Precondition: both |aSrc| and |aDest| must be sorted to begin with. |
297 | | * @param aCommonAncestor a hint for nsLayoutUtils::CompareTreePosition |
298 | | */ |
299 | | static void |
300 | | MergeSortedFrameLists(nsFrameList& aDest, nsFrameList& aSrc, |
301 | | nsIContent* aCommonAncestor) |
302 | 0 | { |
303 | 0 | nsIFrame* dest = aDest.FirstChild(); |
304 | 0 | for (nsIFrame* src = aSrc.FirstChild(); src; ) { |
305 | 0 | if (!dest) { |
306 | 0 | aDest.AppendFrames(nullptr, aSrc); |
307 | 0 | break; |
308 | 0 | } |
309 | 0 | nsIContent* srcContent = src->GetContent(); |
310 | 0 | nsIContent* destContent = dest->GetContent(); |
311 | 0 | int32_t result = nsLayoutUtils::CompareTreePosition(srcContent, |
312 | 0 | destContent, |
313 | 0 | aCommonAncestor); |
314 | 0 | if (MOZ_UNLIKELY(result == 0)) { |
315 | 0 | // NOTE: we get here when comparing ::before/::after for the same element. |
316 | 0 | if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForBefore())) { |
317 | 0 | if (MOZ_LIKELY(!destContent->IsGeneratedContentContainerForBefore()) || |
318 | 0 | ::IsPrevContinuationOf(src, dest)) { |
319 | 0 | result = -1; |
320 | 0 | } |
321 | 0 | } else if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForAfter())) { |
322 | 0 | if (MOZ_UNLIKELY(destContent->IsGeneratedContentContainerForAfter()) && |
323 | 0 | ::IsPrevContinuationOf(src, dest)) { |
324 | 0 | result = -1; |
325 | 0 | } |
326 | 0 | } else if (::IsPrevContinuationOf(src, dest)) { |
327 | 0 | result = -1; |
328 | 0 | } |
329 | 0 | } |
330 | 0 | if (result < 0) { |
331 | 0 | // src should come before dest |
332 | 0 | nsIFrame* next = src->GetNextSibling(); |
333 | 0 | aSrc.RemoveFrame(src); |
334 | 0 | aDest.InsertFrame(nullptr, dest->GetPrevSibling(), src); |
335 | 0 | src = next; |
336 | 0 | } else { |
337 | 0 | dest = dest->GetNextSibling(); |
338 | 0 | } |
339 | 0 | } |
340 | 0 | MOZ_ASSERT(aSrc.IsEmpty()); |
341 | 0 | } |
342 | | |
343 | | static void |
344 | | MergeSortedFrameListsFor(nsFrameList& aDest, nsFrameList& aSrc, |
345 | | nsContainerFrame* aParent) |
346 | 0 | { |
347 | 0 | MergeSortedFrameLists(aDest, aSrc, aParent->GetContent()); |
348 | 0 | } |
349 | | |
350 | | /** |
351 | | * A LineRange can be definite or auto - when it's definite it represents |
352 | | * a consecutive set of tracks between a starting line and an ending line. |
353 | | * Before it's definite it can also represent an auto position with a span, |
354 | | * where mStart == kAutoLine and mEnd is the (non-zero positive) span. |
355 | | * For normal-flow items, the invariant mStart < mEnd holds when both |
356 | | * lines are definite. |
357 | | * |
358 | | * For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning |
359 | | * "attach this side to the grid container containing block edge". |
360 | | * Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine), |
361 | | * i.e. the invariant is slightly relaxed compared to normal flow items. |
362 | | */ |
363 | | struct nsGridContainerFrame::LineRange |
364 | | { |
365 | | LineRange(int32_t aStart, int32_t aEnd) |
366 | | : mUntranslatedStart(aStart), mUntranslatedEnd(aEnd) |
367 | 0 | { |
368 | | #ifdef DEBUG |
369 | | if (!IsAutoAuto()) { |
370 | | if (IsAuto()) { |
371 | | MOZ_ASSERT(aEnd >= nsStyleGridLine::kMinLine && |
372 | | aEnd <= nsStyleGridLine::kMaxLine, "invalid span"); |
373 | | } else { |
374 | | MOZ_ASSERT(aStart >= nsStyleGridLine::kMinLine && |
375 | | aStart <= nsStyleGridLine::kMaxLine, "invalid start line"); |
376 | | MOZ_ASSERT(aEnd == int32_t(kAutoLine) || |
377 | | (aEnd >= nsStyleGridLine::kMinLine && |
378 | | aEnd <= nsStyleGridLine::kMaxLine), "invalid end line"); |
379 | | } |
380 | | } |
381 | | #endif |
382 | | } |
383 | 0 | bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; } |
384 | 0 | bool IsAuto() const { return mStart == kAutoLine; } |
385 | 0 | bool IsDefinite() const { return mStart != kAutoLine; } |
386 | | uint32_t Extent() const |
387 | 0 | { |
388 | 0 | MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'"); |
389 | 0 | if (IsAuto()) { |
390 | 0 | MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(nsStyleGridLine::kMaxLine), |
391 | 0 | "invalid span"); |
392 | 0 | return mEnd; |
393 | 0 | } |
394 | 0 | return mEnd - mStart; |
395 | 0 | } |
396 | | |
397 | | /** |
398 | | * Return an object suitable for iterating this range. |
399 | | */ |
400 | 0 | auto Range() const { return IntegerRange<uint32_t>(mStart, mEnd); } |
401 | | |
402 | | /** |
403 | | * Resolve this auto range to start at aStart, making it definite. |
404 | | * @param aClampMaxLine the maximum allowed line number (zero-based) |
405 | | * Precondition: this range IsAuto() |
406 | | */ |
407 | | void ResolveAutoPosition(uint32_t aStart, uint32_t aClampMaxLine) |
408 | 0 | { |
409 | 0 | MOZ_ASSERT(IsAuto(), "Why call me?"); |
410 | 0 | mStart = aStart; |
411 | 0 | mEnd += aStart; |
412 | 0 | // Clamping to where kMaxLine is in the explicit grid, per |
413 | 0 | // http://dev.w3.org/csswg/css-grid/#overlarge-grids : |
414 | 0 | if (MOZ_UNLIKELY(mStart >= aClampMaxLine)) { |
415 | 0 | mEnd = aClampMaxLine; |
416 | 0 | mStart = mEnd - 1; |
417 | 0 | } else if (MOZ_UNLIKELY(mEnd > aClampMaxLine)) { |
418 | 0 | mEnd = aClampMaxLine; |
419 | 0 | } |
420 | 0 | } |
421 | | /** |
422 | | * Translate the lines to account for (empty) removed tracks. This method |
423 | | * is only for grid items and should only be called after placement. |
424 | | * aNumRemovedTracks contains a count for each line in the grid how many |
425 | | * tracks were removed between the start of the grid and that line. |
426 | | */ |
427 | | void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks) |
428 | 0 | { |
429 | 0 | MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item"); |
430 | 0 | MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item"); |
431 | 0 | uint32_t numRemovedTracks = aNumRemovedTracks[mStart]; |
432 | 0 | MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd], |
433 | 0 | "tracks that a grid item spans can't be removed"); |
434 | 0 | mStart -= numRemovedTracks; |
435 | 0 | mEnd -= numRemovedTracks; |
436 | 0 | } |
437 | | /** |
438 | | * Translate the lines to account for (empty) removed tracks. This method |
439 | | * is only for abs.pos. children and should only be called after placement. |
440 | | * Same as for in-flow items, but we don't touch 'auto' lines here and we |
441 | | * also need to adjust areas that span into the removed tracks. |
442 | | */ |
443 | | void AdjustAbsPosForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks) |
444 | 0 | { |
445 | 0 | if (mStart != nsGridContainerFrame::kAutoLine) { |
446 | 0 | mStart -= aNumRemovedTracks[mStart]; |
447 | 0 | } |
448 | 0 | if (mEnd != nsGridContainerFrame::kAutoLine) { |
449 | 0 | MOZ_ASSERT(mStart == nsGridContainerFrame::kAutoLine || |
450 | 0 | mEnd > mStart, "invalid line range"); |
451 | 0 | mEnd -= aNumRemovedTracks[mEnd]; |
452 | 0 | } |
453 | 0 | } |
454 | | /** |
455 | | * Return the contribution of this line range for step 2 in |
456 | | * http://dev.w3.org/csswg/css-grid/#auto-placement-algo |
457 | | */ |
458 | 0 | uint32_t HypotheticalEnd() const { return mEnd; } |
459 | | /** |
460 | | * Given an array of track sizes, return the starting position and length |
461 | | * of the tracks in this line range. |
462 | | */ |
463 | | void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes, |
464 | | nscoord* aPos, nscoord* aLength) const; |
465 | | /** |
466 | | * Given an array of track sizes, return the length of the tracks in this |
467 | | * line range. |
468 | | */ |
469 | | nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const; |
470 | | /** |
471 | | * Given an array of track sizes and a grid origin coordinate, adjust the |
472 | | * abs.pos. containing block along an axis given by aPos and aLength. |
473 | | * aPos and aLength should already be initialized to the grid container |
474 | | * containing block for this axis before calling this method. |
475 | | */ |
476 | | void ToPositionAndLengthForAbsPos(const Tracks& aTracks, |
477 | | nscoord aGridOrigin, |
478 | | nscoord* aPos, nscoord* aLength) const; |
479 | | |
480 | | /** |
481 | | * @note We'll use the signed member while resolving definite positions |
482 | | * to line numbers (1-based), which may become negative for implicit lines |
483 | | * to the top/left of the explicit grid. PlaceGridItems() then translates |
484 | | * the whole grid to a 0,0 origin and we'll use the unsigned member from |
485 | | * there on. |
486 | | */ |
487 | | union { |
488 | | uint32_t mStart; |
489 | | int32_t mUntranslatedStart; |
490 | | }; |
491 | | union { |
492 | | uint32_t mEnd; |
493 | | int32_t mUntranslatedEnd; |
494 | | }; |
495 | | protected: |
496 | | LineRange() |
497 | | : mStart(0) |
498 | | , mEnd(0) |
499 | 0 | {} |
500 | | }; |
501 | | |
502 | | /** |
503 | | * Helper class to construct a LineRange from translated lines. |
504 | | * The ctor only accepts translated definite line numbers. |
505 | | */ |
506 | | struct nsGridContainerFrame::TranslatedLineRange : public LineRange |
507 | | { |
508 | | TranslatedLineRange(uint32_t aStart, uint32_t aEnd) |
509 | 0 | { |
510 | 0 | MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine); |
511 | 0 | mStart = aStart; |
512 | 0 | mEnd = aEnd; |
513 | 0 | } |
514 | | }; |
515 | | |
516 | | /** |
517 | | * A GridArea is the area in the grid for a grid item. |
518 | | * The area is represented by two LineRanges, both of which can be auto |
519 | | * (@see LineRange) in intermediate steps while the item is being placed. |
520 | | * @see PlaceGridItems |
521 | | */ |
522 | | struct nsGridContainerFrame::GridArea |
523 | | { |
524 | | GridArea(const LineRange& aCols, const LineRange& aRows) |
525 | 0 | : mCols(aCols), mRows(aRows) {} |
526 | 0 | bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); } |
527 | | LineRange mCols; |
528 | | LineRange mRows; |
529 | | }; |
530 | | |
531 | | struct nsGridContainerFrame::GridItemInfo |
532 | | { |
533 | | /** |
534 | | * Item state per axis. |
535 | | */ |
536 | | enum StateBits : uint8_t { |
537 | | eIsFlexing = 0x1, // does the item span a flex track? |
538 | | eFirstBaseline = 0x2, // participate in 'first baseline' alignment? |
539 | | // ditto 'last baseline', mutually exclusive w. eFirstBaseline |
540 | | eLastBaseline = 0x4, |
541 | | eIsBaselineAligned = eFirstBaseline | eLastBaseline, |
542 | | // One of e[Self|Content]Baseline is set when eIsBaselineAligned is true |
543 | | eSelfBaseline = 0x8, // is it *-self:[last ]baseline alignment? |
544 | | // Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline. |
545 | | eContentBaseline = 0x10, |
546 | | eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline, |
547 | | // Should apply Automatic Minimum Size per: |
548 | | // https://drafts.csswg.org/css-grid/#min-size-auto |
549 | | eApplyAutoMinSize = 0x20, |
550 | | // Clamp per https://drafts.csswg.org/css-grid/#min-size-auto |
551 | | eClampMarginBoxMinSize = 0x40, |
552 | | eIsSubgrid = 0x80, |
553 | | }; |
554 | | |
555 | | explicit GridItemInfo(nsIFrame* aFrame, |
556 | | const GridArea& aArea) |
557 | | : mFrame(aFrame) |
558 | | , mArea(aArea) |
559 | 0 | { |
560 | 0 | mState[eLogicalAxisBlock] = StateBits(0); |
561 | 0 | mState[eLogicalAxisInline] = StateBits(0); |
562 | 0 | nsGridContainerFrame* gridFrame = GetGridContainerFrame(mFrame); |
563 | 0 | if (gridFrame) { |
564 | 0 | auto parentWM = aFrame->GetParent()->GetWritingMode(); |
565 | 0 | bool isOrthogonal = parentWM.IsOrthogonalTo(gridFrame->GetWritingMode()); |
566 | 0 | if (gridFrame->IsColSubgrid()) { |
567 | 0 | mState[isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline] = |
568 | 0 | StateBits::eIsSubgrid; |
569 | 0 | } |
570 | 0 | if (gridFrame->IsRowSubgrid()) { |
571 | 0 | mState[isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock] = |
572 | 0 | StateBits::eIsSubgrid; |
573 | 0 | } |
574 | 0 | } |
575 | 0 | mBaselineOffset[eLogicalAxisBlock] = nscoord(0); |
576 | 0 | mBaselineOffset[eLogicalAxisInline] = nscoord(0); |
577 | 0 | } |
578 | | |
579 | | // Is this item a subgrid in the given container axis? |
580 | 0 | bool IsSubgrid(LogicalAxis aAxis) const { |
581 | 0 | return mState[aAxis] & StateBits::eIsSubgrid; |
582 | 0 | } |
583 | | |
584 | | // Is this item a subgrid in either axis? |
585 | 0 | bool IsSubgrid() const { |
586 | 0 | return IsSubgrid(eLogicalAxisInline) || IsSubgrid(eLogicalAxisBlock); |
587 | 0 | } |
588 | | |
589 | | /** |
590 | | * If the item is [align|justify]-self:[last ]baseline aligned in the given |
591 | | * axis then set aBaselineOffset to the baseline offset and return aAlign. |
592 | | * Otherwise, return a fallback alignment. |
593 | | */ |
594 | | uint8_t GetSelfBaseline(uint8_t aAlign, LogicalAxis aAxis, |
595 | | nscoord* aBaselineOffset) const |
596 | 0 | { |
597 | 0 | MOZ_ASSERT(aAlign == NS_STYLE_ALIGN_BASELINE || |
598 | 0 | aAlign == NS_STYLE_ALIGN_LAST_BASELINE); |
599 | 0 | if (!(mState[aAxis] & eSelfBaseline)) { |
600 | 0 | return aAlign == NS_STYLE_ALIGN_BASELINE ? NS_STYLE_ALIGN_SELF_START |
601 | 0 | : NS_STYLE_ALIGN_SELF_END; |
602 | 0 | } |
603 | 0 | *aBaselineOffset = mBaselineOffset[aAxis]; |
604 | 0 | return aAlign; |
605 | 0 | } |
606 | | |
607 | | // Return true if we should apply Automatic Minimum Size to this item. |
608 | | // https://drafts.csswg.org/css-grid/#min-size-auto |
609 | | // @note the caller should also check that the item spans at least one track |
610 | | // that has a min track sizing function that is 'auto' before applying it. |
611 | | bool ShouldApplyAutoMinSize(WritingMode aContainerWM, |
612 | | LogicalAxis aContainerAxis, |
613 | | nscoord aPercentageBasis) const |
614 | 0 | { |
615 | 0 | const auto* pos = mFrame->IsTableWrapperFrame() ? |
616 | 0 | mFrame->PrincipalChildList().FirstChild()->StylePosition() : |
617 | 0 | mFrame->StylePosition(); |
618 | 0 | const auto& size = aContainerAxis == eLogicalAxisInline ? |
619 | 0 | pos->ISize(aContainerWM) : pos->BSize(aContainerWM); |
620 | 0 | // NOTE: if we have a definite size then our automatic minimum size |
621 | 0 | // can't affect our size. Excluding these simplifies applying |
622 | 0 | // the clamping in the right cases later. |
623 | 0 | if (size.GetUnit() != eStyleUnit_Auto && |
624 | 0 | !::IsPercentOfIndefiniteSize(size, aPercentageBasis)) { |
625 | 0 | return false; |
626 | 0 | } |
627 | 0 | const auto& minSize = aContainerAxis == eLogicalAxisInline ? |
628 | 0 | pos->MinISize(aContainerWM) : pos->MinBSize(aContainerWM); |
629 | 0 | return minSize.GetUnit() == eStyleUnit_Auto && |
630 | 0 | mFrame->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE; |
631 | 0 | } |
632 | | |
633 | | #ifdef DEBUG |
634 | | void Dump() const; |
635 | | #endif |
636 | | |
637 | | static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b) |
638 | 0 | { |
639 | 0 | return a->mArea.mRows.mStart < b->mArea.mRows.mStart; |
640 | 0 | } |
641 | | |
642 | | nsIFrame* const mFrame; |
643 | | GridArea mArea; |
644 | | // Offset from the margin edge to the baseline (LogicalAxis index). It's from |
645 | | // the start edge when eFirstBaseline is set, end edge otherwise. It's mutable |
646 | | // since we update the value fairly late (just before reflowing the item). |
647 | | mutable nscoord mBaselineOffset[2]; |
648 | | mutable StateBits mState[2]; // state bits per axis (LogicalAxis index) |
649 | | static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value"); |
650 | | static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value"); |
651 | | }; |
652 | | |
653 | | using GridItemInfo = nsGridContainerFrame::GridItemInfo; |
654 | | using ItemState = GridItemInfo::StateBits; |
655 | | MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState) |
656 | | |
657 | | #ifdef DEBUG |
658 | | void |
659 | | nsGridContainerFrame::GridItemInfo::Dump() const |
660 | | { |
661 | | auto Dump1 = [this] (const char* aMsg, LogicalAxis aAxis) { |
662 | | auto state = mState[aAxis]; |
663 | | if (!state) { |
664 | | return; |
665 | | } |
666 | | printf("%s", aMsg); |
667 | | if (state & ItemState::eIsSubgrid) { |
668 | | printf("subgrid "); |
669 | | } |
670 | | if (state & ItemState::eIsFlexing) { |
671 | | printf("flexing "); |
672 | | } |
673 | | if (state & ItemState::eApplyAutoMinSize) { |
674 | | printf("auto-min-size "); |
675 | | } |
676 | | if (state & ItemState::eClampMarginBoxMinSize) { |
677 | | printf("clamp "); |
678 | | } |
679 | | if (state & ItemState::eFirstBaseline) { |
680 | | printf("first baseline %s-alignment ", |
681 | | (state & ItemState::eSelfBaseline) ? "self" : "content"); |
682 | | } |
683 | | if (state & ItemState::eLastBaseline) { |
684 | | printf("last baseline %s-alignment ", |
685 | | (state & ItemState::eSelfBaseline) ? "self" : "content"); |
686 | | } |
687 | | if (state & ItemState::eIsBaselineAligned) { |
688 | | printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis], |
689 | | AppUnitsPerCSSPixel())); |
690 | | } |
691 | | printf("\n"); |
692 | | }; |
693 | | printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd); |
694 | | Dump1(" grid block-axis: ", eLogicalAxisBlock); |
695 | | printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd); |
696 | | Dump1(" grid inline-axis: ", eLogicalAxisInline); |
697 | | } |
698 | | #endif |
699 | | |
700 | | /** |
701 | | * Utility class to find line names. It provides an interface to lookup line |
702 | | * names with a dynamic number of repeat(auto-fill/fit) tracks taken into |
703 | | * account. |
704 | | */ |
705 | | class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap |
706 | | { |
707 | | public: |
708 | | /** |
709 | | * Create a LineNameMap. |
710 | | * @param aGridTemplate is the grid-template-rows/columns data for this axis |
711 | | * @param aNumRepeatTracks the number of actual tracks associated with |
712 | | * a repeat(auto-fill/fit) track (zero or more), or zero if there is no |
713 | | * specified repeat(auto-fill/fit) track |
714 | | */ |
715 | | LineNameMap(const nsStyleGridTemplate& aGridTemplate, |
716 | | uint32_t aNumRepeatTracks) |
717 | | : mLineNameLists(aGridTemplate.mLineNameLists) |
718 | | , mRepeatAutoLineNameListBefore(aGridTemplate.mRepeatAutoLineNameListBefore) |
719 | | , mRepeatAutoLineNameListAfter(aGridTemplate.mRepeatAutoLineNameListAfter) |
720 | | , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ? |
721 | | aGridTemplate.mRepeatAutoIndex : 0) |
722 | | , mRepeatAutoEnd(mRepeatAutoStart + aNumRepeatTracks) |
723 | | , mRepeatEndDelta(aGridTemplate.HasRepeatAuto() ? |
724 | | int32_t(aNumRepeatTracks) - 1 : |
725 | | 0) |
726 | | , mTemplateLinesEnd(mLineNameLists.Length() + mRepeatEndDelta) |
727 | | , mHasRepeatAuto(aGridTemplate.HasRepeatAuto()) |
728 | 0 | { |
729 | 0 | MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0); |
730 | 0 | MOZ_ASSERT(mRepeatAutoStart <= mLineNameLists.Length()); |
731 | 0 | MOZ_ASSERT(!mHasRepeatAuto || mLineNameLists.Length() >= 2); |
732 | 0 | } |
733 | | |
734 | | /** |
735 | | * Find the aNth occurrence of aName, searching forward if aNth is positive, |
736 | | * and in reverse if aNth is negative (aNth == 0 is invalid), starting from |
737 | | * aFromIndex (not inclusive), and return a 1-based line number. |
738 | | * Also take into account there is an unconditional match at aImplicitLine |
739 | | * unless it's zero. |
740 | | * Return zero if aNth occurrences can't be found. In that case, aNth has |
741 | | * been decremented with the number of occurrences that were found (if any). |
742 | | * |
743 | | * E.g. to search for "A 2" forward from the start of the grid: aName is "A" |
744 | | * aNth is 2 and aFromIndex is zero. To search for "A -2", aNth is -2 and |
745 | | * aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last |
746 | | * line when we're searching in reverse). For "span A 2", aNth is 2 when |
747 | | * used on a grid-[row|column]-end property and -2 for a *-start property, |
748 | | * and aFromIndex is the line (which we should skip) on the opposite property. |
749 | | */ |
750 | | uint32_t FindNamedLine(const nsString& aName, int32_t* aNth, |
751 | | uint32_t aFromIndex, uint32_t aImplicitLine) const |
752 | 0 | { |
753 | 0 | MOZ_ASSERT(aNth && *aNth != 0); |
754 | 0 | if (*aNth > 0) { |
755 | 0 | return FindLine(aName, aNth, aFromIndex, aImplicitLine); |
756 | 0 | } |
757 | 0 | int32_t nth = -*aNth; |
758 | 0 | int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLine); |
759 | 0 | *aNth = -nth; |
760 | 0 | return line; |
761 | 0 | } |
762 | | |
763 | | private: |
764 | | /** |
765 | | * @see FindNamedLine, this function searches forward. |
766 | | */ |
767 | | uint32_t FindLine(const nsString& aName, int32_t* aNth, |
768 | | uint32_t aFromIndex, uint32_t aImplicitLine) const |
769 | 0 | { |
770 | 0 | MOZ_ASSERT(aNth && *aNth > 0); |
771 | 0 | int32_t nth = *aNth; |
772 | 0 | const uint32_t end = mTemplateLinesEnd; |
773 | 0 | uint32_t line; |
774 | 0 | uint32_t i = aFromIndex; |
775 | 0 | for (; i < end; i = line) { |
776 | 0 | line = i + 1; |
777 | 0 | if (line == aImplicitLine || Contains(i, aName)) { |
778 | 0 | if (--nth == 0) { |
779 | 0 | return line; |
780 | 0 | } |
781 | 0 | } |
782 | 0 | } |
783 | 0 | if (aImplicitLine > i) { |
784 | 0 | // aImplicitLine is after the lines we searched above so it's last. |
785 | 0 | // (grid-template-areas has more tracks than grid-template-[rows|columns]) |
786 | 0 | if (--nth == 0) { |
787 | 0 | return aImplicitLine; |
788 | 0 | } |
789 | 0 | } |
790 | 0 | MOZ_ASSERT(nth > 0, "should have returned a valid line above already"); |
791 | 0 | *aNth = nth; |
792 | 0 | return 0; |
793 | 0 | } |
794 | | |
795 | | /** |
796 | | * @see FindNamedLine, this function searches in reverse. |
797 | | */ |
798 | | uint32_t RFindLine(const nsString& aName, int32_t* aNth, |
799 | | uint32_t aFromIndex, uint32_t aImplicitLine) const |
800 | 0 | { |
801 | 0 | MOZ_ASSERT(aNth && *aNth > 0); |
802 | 0 | if (MOZ_UNLIKELY(aFromIndex == 0)) { |
803 | 0 | return 0; // There are no named lines beyond the start of the explicit grid. |
804 | 0 | } |
805 | 0 | --aFromIndex; // (shift aFromIndex so we can treat it as inclusive) |
806 | 0 | int32_t nth = *aNth; |
807 | 0 | // The implicit line may be beyond the explicit grid so we match |
808 | 0 | // this line first if it's within the mTemplateLinesEnd..aFromIndex range. |
809 | 0 | const uint32_t end = mTemplateLinesEnd; |
810 | 0 | if (aImplicitLine > end && aImplicitLine < aFromIndex) { |
811 | 0 | if (--nth == 0) { |
812 | 0 | return aImplicitLine; |
813 | 0 | } |
814 | 0 | } |
815 | 0 | for (uint32_t i = std::min(aFromIndex, end); i; --i) { |
816 | 0 | if (i == aImplicitLine || Contains(i - 1, aName)) { |
817 | 0 | if (--nth == 0) { |
818 | 0 | return i; |
819 | 0 | } |
820 | 0 | } |
821 | 0 | } |
822 | 0 | MOZ_ASSERT(nth > 0, "should have returned a valid line above already"); |
823 | 0 | *aNth = nth; |
824 | 0 | return 0; |
825 | 0 | } |
826 | | |
827 | | // Return true if aName exists at aIndex. |
828 | | bool Contains(uint32_t aIndex, const nsString& aName) const |
829 | 0 | { |
830 | 0 | if (!mHasRepeatAuto) { |
831 | 0 | return mLineNameLists[aIndex].Contains(aName); |
832 | 0 | } |
833 | 0 | if (aIndex < mRepeatAutoEnd && aIndex >= mRepeatAutoStart && |
834 | 0 | mRepeatAutoLineNameListBefore.Contains(aName)) { |
835 | 0 | return true; |
836 | 0 | } |
837 | 0 | if (aIndex <= mRepeatAutoEnd && aIndex > mRepeatAutoStart && |
838 | 0 | mRepeatAutoLineNameListAfter.Contains(aName)) { |
839 | 0 | return true; |
840 | 0 | } |
841 | 0 | if (aIndex <= mRepeatAutoStart) { |
842 | 0 | return mLineNameLists[aIndex].Contains(aName) || |
843 | 0 | (aIndex == mRepeatAutoEnd && |
844 | 0 | mLineNameLists[aIndex + 1].Contains(aName)); |
845 | 0 | } |
846 | 0 | return aIndex >= mRepeatAutoEnd && |
847 | 0 | mLineNameLists[aIndex - mRepeatEndDelta].Contains(aName); |
848 | 0 | } |
849 | | |
850 | | // Some style data references, for easy access. |
851 | | const nsTArray<nsTArray<nsString>>& mLineNameLists; |
852 | | const nsTArray<nsString>& mRepeatAutoLineNameListBefore; |
853 | | const nsTArray<nsString>& mRepeatAutoLineNameListAfter; |
854 | | // The index of the repeat(auto-fill/fit) track, or zero if there is none. |
855 | | const uint32_t mRepeatAutoStart; |
856 | | // The (hypothetical) index of the last such repeat() track. |
857 | | const uint32_t mRepeatAutoEnd; |
858 | | // The difference between mTemplateLinesEnd and mLineNameLists.Length(). |
859 | | const int32_t mRepeatEndDelta; |
860 | | // The end of the line name lists with repeat(auto-fill/fit) tracks accounted |
861 | | // for. It is equal to mLineNameLists.Length() when a repeat() track |
862 | | // generates one track (making mRepeatEndDelta == 0). |
863 | | const uint32_t mTemplateLinesEnd; |
864 | | // True if there is a specified repeat(auto-fill/fit) track. |
865 | | const bool mHasRepeatAuto; |
866 | | }; |
867 | | |
868 | | /** |
869 | | * Encapsulates CSS track-sizing functions. |
870 | | */ |
871 | | struct nsGridContainerFrame::TrackSizingFunctions |
872 | | { |
873 | | TrackSizingFunctions(const nsStyleGridTemplate& aGridTemplate, |
874 | | const nsStyleCoord& aAutoMinSizing, |
875 | | const nsStyleCoord& aAutoMaxSizing) |
876 | | : mMinSizingFunctions(aGridTemplate.mMinTrackSizingFunctions) |
877 | | , mMaxSizingFunctions(aGridTemplate.mMaxTrackSizingFunctions) |
878 | | , mAutoMinSizing(aAutoMinSizing) |
879 | | , mAutoMaxSizing(aAutoMaxSizing) |
880 | | , mExplicitGridOffset(0) |
881 | | , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ? |
882 | | aGridTemplate.mRepeatAutoIndex : 0) |
883 | | , mRepeatAutoEnd(mRepeatAutoStart) |
884 | | , mRepeatEndDelta(0) |
885 | | , mHasRepeatAuto(aGridTemplate.HasRepeatAuto()) |
886 | 0 | { |
887 | 0 | MOZ_ASSERT(mMinSizingFunctions.Length() == mMaxSizingFunctions.Length()); |
888 | 0 | MOZ_ASSERT(!mHasRepeatAuto || |
889 | 0 | (mMinSizingFunctions.Length() >= 1 && |
890 | 0 | mRepeatAutoStart < mMinSizingFunctions.Length())); |
891 | 0 | } |
892 | | |
893 | | /** |
894 | | * Initialize the number of auto-fill/fit tracks to use and return that. |
895 | | * (zero if no auto-fill/fit track was specified) |
896 | | */ |
897 | | uint32_t InitRepeatTracks(const nsStyleCoord& aGridGap, nscoord aMinSize, |
898 | | nscoord aSize, nscoord aMaxSize) |
899 | 0 | { |
900 | 0 | uint32_t repeatTracks = |
901 | 0 | CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize); |
902 | 0 | SetNumRepeatTracks(repeatTracks); |
903 | 0 | // Blank out the removed flags for each of these tracks. |
904 | 0 | mRemovedRepeatTracks.SetLength(repeatTracks); |
905 | 0 | for (auto& track : mRemovedRepeatTracks) { |
906 | 0 | track = false; |
907 | 0 | } |
908 | 0 | return repeatTracks; |
909 | 0 | } |
910 | | |
911 | | uint32_t CalculateRepeatFillCount(const nsStyleCoord& aGridGap, |
912 | | nscoord aMinSize, |
913 | | nscoord aSize, |
914 | | nscoord aMaxSize) const |
915 | 0 | { |
916 | 0 | if (!mHasRepeatAuto) { |
917 | 0 | return 0; |
918 | 0 | } |
919 | 0 | // Spec quotes are from https://drafts.csswg.org/css-grid/#repeat-notation |
920 | 0 | const uint32_t numTracks = mMinSizingFunctions.Length(); |
921 | 0 | MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track"); |
922 | 0 | nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize; |
923 | 0 | if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) { |
924 | 0 | // "Otherwise, the specified track list repeats only once." |
925 | 0 | return 1; |
926 | 0 | } |
927 | 0 | nscoord repeatTrackSize = 0; |
928 | 0 | // Note that one repeat() track size is included in |sum| in this loop. |
929 | 0 | nscoord sum = 0; |
930 | 0 | const nscoord percentBasis = aSize; |
931 | 0 | for (uint32_t i = 0; i < numTracks; ++i) { |
932 | 0 | // "treating each track as its max track sizing function if that is |
933 | 0 | // definite or as its minimum track sizing function otherwise" |
934 | 0 | // https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill |
935 | 0 | const auto& maxCoord = mMaxSizingFunctions[i]; |
936 | 0 | const auto* coord = &maxCoord; |
937 | 0 | if (!coord->IsCoordPercentCalcUnit()) { |
938 | 0 | coord = &mMinSizingFunctions[i]; |
939 | 0 | if (!coord->IsCoordPercentCalcUnit()) { |
940 | 0 | return 1; |
941 | 0 | } |
942 | 0 | } |
943 | 0 | nscoord trackSize = ::ResolveToDefiniteSize(*coord, percentBasis); |
944 | 0 | if (i == mRepeatAutoStart) { |
945 | 0 | // Use a minimum 1px for the repeat() track-size. |
946 | 0 | if (trackSize < AppUnitsPerCSSPixel()) { |
947 | 0 | trackSize = AppUnitsPerCSSPixel(); |
948 | 0 | } |
949 | 0 | repeatTrackSize = trackSize; |
950 | 0 | } |
951 | 0 | sum += trackSize; |
952 | 0 | } |
953 | 0 | nscoord gridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aSize); |
954 | 0 | if (numTracks > 1) { |
955 | 0 | // Add grid-gaps for all the tracks including the repeat() track. |
956 | 0 | sum += gridGap * (numTracks - 1); |
957 | 0 | } |
958 | 0 | // Calculate the max number of tracks that fits without overflow. |
959 | 0 | nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize; |
960 | 0 | nscoord spaceToFill = available - sum; |
961 | 0 | if (spaceToFill <= 0) { |
962 | 0 | // "if any number of repetitions would overflow, then 1 repetition" |
963 | 0 | return 1; |
964 | 0 | } |
965 | 0 | // Calculate the max number of tracks that fits without overflow. |
966 | 0 | div_t q = div(spaceToFill, repeatTrackSize + gridGap); |
967 | 0 | // The +1 here is for the one repeat track we already accounted for above. |
968 | 0 | uint32_t numRepeatTracks = q.quot + 1; |
969 | 0 | if (q.rem != 0 && maxFill == NS_UNCONSTRAINEDSIZE) { |
970 | 0 | // "Otherwise, if the grid container has a definite min size in |
971 | 0 | // the relevant axis, the number of repetitions is the largest possible |
972 | 0 | // positive integer that fulfills that minimum requirement." |
973 | 0 | ++numRepeatTracks; // one more to ensure the grid is at least min-size |
974 | 0 | } |
975 | 0 | // Clamp the number of repeat tracks so that the last line <= kMaxLine. |
976 | 0 | // (note that |numTracks| already includes one repeat() track) |
977 | 0 | const uint32_t maxRepeatTracks = nsStyleGridLine::kMaxLine - numTracks; |
978 | 0 | return std::min(numRepeatTracks, maxRepeatTracks); |
979 | 0 | } |
980 | | |
981 | | /** |
982 | | * Compute the explicit grid end line number (in a zero-based grid). |
983 | | * @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis |
984 | | */ |
985 | | uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd) |
986 | 0 | { |
987 | 0 | uint32_t end = NumExplicitTracks() + 1; |
988 | 0 | end = std::max(end, aGridTemplateAreasEnd); |
989 | 0 | end = std::min(end, uint32_t(nsStyleGridLine::kMaxLine)); |
990 | 0 | return end; |
991 | 0 | } |
992 | | |
993 | | const nsStyleCoord& MinSizingFor(uint32_t aTrackIndex) const |
994 | 0 | { |
995 | 0 | if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) { |
996 | 0 | return mAutoMinSizing; |
997 | 0 | } |
998 | 0 | uint32_t index = aTrackIndex - mExplicitGridOffset; |
999 | 0 | if (index >= mRepeatAutoStart) { |
1000 | 0 | if (index < mRepeatAutoEnd) { |
1001 | 0 | return mMinSizingFunctions[mRepeatAutoStart]; |
1002 | 0 | } |
1003 | 0 | index -= mRepeatEndDelta; |
1004 | 0 | } |
1005 | 0 | return index < mMinSizingFunctions.Length() ? |
1006 | 0 | mMinSizingFunctions[index] : mAutoMinSizing; |
1007 | 0 | } |
1008 | | const nsStyleCoord& MaxSizingFor(uint32_t aTrackIndex) const |
1009 | 0 | { |
1010 | 0 | if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) { |
1011 | 0 | return mAutoMaxSizing; |
1012 | 0 | } |
1013 | 0 | uint32_t index = aTrackIndex - mExplicitGridOffset; |
1014 | 0 | if (index >= mRepeatAutoStart) { |
1015 | 0 | if (index < mRepeatAutoEnd) { |
1016 | 0 | return mMaxSizingFunctions[mRepeatAutoStart]; |
1017 | 0 | } |
1018 | 0 | index -= mRepeatEndDelta; |
1019 | 0 | } |
1020 | 0 | return index < mMaxSizingFunctions.Length() ? |
1021 | 0 | mMaxSizingFunctions[index] : mAutoMaxSizing; |
1022 | 0 | } |
1023 | | uint32_t NumExplicitTracks() const |
1024 | 0 | { |
1025 | 0 | return mMinSizingFunctions.Length() + mRepeatEndDelta; |
1026 | 0 | } |
1027 | | uint32_t NumRepeatTracks() const |
1028 | 0 | { |
1029 | 0 | return mRepeatAutoEnd - mRepeatAutoStart; |
1030 | 0 | } |
1031 | | void SetNumRepeatTracks(uint32_t aNumRepeatTracks) |
1032 | 0 | { |
1033 | 0 | MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0); |
1034 | 0 | mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks; |
1035 | 0 | mRepeatEndDelta = mHasRepeatAuto ? |
1036 | 0 | int32_t(aNumRepeatTracks) - 1 : |
1037 | 0 | 0; |
1038 | 0 | } |
1039 | | |
1040 | | // Some style data references, for easy access. |
1041 | | const nsTArray<nsStyleCoord>& mMinSizingFunctions; |
1042 | | const nsTArray<nsStyleCoord>& mMaxSizingFunctions; |
1043 | | const nsStyleCoord& mAutoMinSizing; |
1044 | | const nsStyleCoord& mAutoMaxSizing; |
1045 | | // Offset from the start of the implicit grid to the first explicit track. |
1046 | | uint32_t mExplicitGridOffset; |
1047 | | // The index of the repeat(auto-fill/fit) track, or zero if there is none. |
1048 | | // Relative to mExplicitGridOffset (repeat tracks are explicit by definition). |
1049 | | const uint32_t mRepeatAutoStart; |
1050 | | // The (hypothetical) index of the last such repeat() track. |
1051 | | uint32_t mRepeatAutoEnd; |
1052 | | // The difference between mExplicitGridEnd and mMinSizingFunctions.Length(). |
1053 | | int32_t mRepeatEndDelta; |
1054 | | // True if there is a specified repeat(auto-fill/fit) track. |
1055 | | const bool mHasRepeatAuto; |
1056 | | // True if this track (relative to mRepeatAutoStart) is a removed auto-fit. |
1057 | | // Indexed relative to mExplicitGridOffset + mRepeatAutoStart. |
1058 | | nsTArray<bool> mRemovedRepeatTracks; |
1059 | | }; |
1060 | | |
1061 | | /** |
1062 | | * State for the tracks in one dimension. |
1063 | | */ |
1064 | | struct nsGridContainerFrame::Tracks |
1065 | | { |
1066 | | explicit Tracks(LogicalAxis aAxis) |
1067 | | : mContentBoxSize(0) |
1068 | | , mGridGap(0) |
1069 | | , mStateUnion(TrackSize::StateBits(0)) |
1070 | | , mAxis(aAxis) |
1071 | | , mCanResolveLineRangeSize(false) |
1072 | 0 | { |
1073 | 0 | mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_AUTO; |
1074 | 0 | mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_AUTO; |
1075 | 0 | mBaseline[BaselineSharingGroup::eFirst] = NS_INTRINSIC_WIDTH_UNKNOWN; |
1076 | 0 | mBaseline[BaselineSharingGroup::eLast] = NS_INTRINSIC_WIDTH_UNKNOWN; |
1077 | 0 | } |
1078 | | |
1079 | | void Initialize(const TrackSizingFunctions& aFunctions, |
1080 | | const nsStyleCoord& aGridGap, |
1081 | | uint32_t aNumTracks, |
1082 | | nscoord aContentBoxSize); |
1083 | | |
1084 | | /** |
1085 | | * Return the union of the state bits for the tracks in aRange. |
1086 | | */ |
1087 | | TrackSize::StateBits StateBitsForRange(const LineRange& aRange) const; |
1088 | | |
1089 | | // Some data we collect for aligning baseline-aligned items. |
1090 | | struct ItemBaselineData |
1091 | | { |
1092 | | uint32_t mBaselineTrack; |
1093 | | nscoord mBaseline; |
1094 | | nscoord mSize; |
1095 | | GridItemInfo* mGridItem; |
1096 | | static bool IsBaselineTrackLessThan(const ItemBaselineData& a, |
1097 | | const ItemBaselineData& b) |
1098 | 0 | { |
1099 | 0 | return a.mBaselineTrack < b.mBaselineTrack; |
1100 | 0 | } |
1101 | | }; |
1102 | | |
1103 | | /** |
1104 | | * Calculate baseline offsets for the given set of items. |
1105 | | * Helper for InitialzeItemBaselines. |
1106 | | */ |
1107 | | void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems, |
1108 | | BaselineSharingGroup aBaselineGroup); |
1109 | | |
1110 | | /** |
1111 | | * Initialize grid item baseline state and offsets. |
1112 | | */ |
1113 | | void InitializeItemBaselines(GridReflowInput& aState, |
1114 | | nsTArray<GridItemInfo>& aGridItems); |
1115 | | |
1116 | | /** |
1117 | | * Apply the additional alignment needed to align the baseline-aligned subtree |
1118 | | * the item belongs to within its baseline track. |
1119 | | */ |
1120 | | void AlignBaselineSubtree(const GridItemInfo& aGridItem) const; |
1121 | | |
1122 | | enum class TrackSizingPhase |
1123 | | { |
1124 | | eIntrinsicMinimums, |
1125 | | eContentBasedMinimums, |
1126 | | eMaxContentMinimums, |
1127 | | eIntrinsicMaximums, |
1128 | | eMaxContentMaximums, |
1129 | | }; |
1130 | | |
1131 | | // Some data we collect on each item for Step 2 of the Track Sizing Algorithm |
1132 | | // in ResolveIntrinsicSize below. |
1133 | | struct Step2ItemData final |
1134 | | { |
1135 | | uint32_t mSpan; |
1136 | | TrackSize::StateBits mState; |
1137 | | LineRange mLineRange; |
1138 | | nscoord mMinSize; |
1139 | | nscoord mMinContentContribution; |
1140 | | nscoord mMaxContentContribution; |
1141 | | nsIFrame* mFrame; |
1142 | | static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b) |
1143 | 0 | { |
1144 | 0 | return a.mSpan < b.mSpan; |
1145 | 0 | } |
1146 | | |
1147 | | template<TrackSizingPhase phase> |
1148 | | nscoord SizeContributionForPhase() const |
1149 | 0 | { |
1150 | 0 | switch (phase) { |
1151 | 0 | case TrackSizingPhase::eIntrinsicMinimums: |
1152 | 0 | case TrackSizingPhase::eIntrinsicMaximums: |
1153 | 0 | return mMinSize; |
1154 | 0 | case TrackSizingPhase::eContentBasedMinimums: |
1155 | 0 | return mMinContentContribution; |
1156 | 0 | case TrackSizingPhase::eMaxContentMinimums: |
1157 | 0 | case TrackSizingPhase::eMaxContentMaximums: |
1158 | 0 | return mMaxContentContribution; |
1159 | 0 | } |
1160 | 0 | MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase"); |
1161 | 0 | } Unexecuted instantiation: int nsGridContainerFrame::Tracks::Step2ItemData::SizeContributionForPhase<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>() const Unexecuted instantiation: int nsGridContainerFrame::Tracks::Step2ItemData::SizeContributionForPhase<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>() const Unexecuted instantiation: int nsGridContainerFrame::Tracks::Step2ItemData::SizeContributionForPhase<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>() const Unexecuted instantiation: int nsGridContainerFrame::Tracks::Step2ItemData::SizeContributionForPhase<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>() const Unexecuted instantiation: int nsGridContainerFrame::Tracks::Step2ItemData::SizeContributionForPhase<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>() const |
1162 | | }; |
1163 | | |
1164 | | using FitContentClamper = |
1165 | | std::function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>; |
1166 | | |
1167 | | // Helper method for ResolveIntrinsicSize. |
1168 | | template<TrackSizingPhase phase> |
1169 | | bool GrowSizeForSpanningItems(nsTArray<Step2ItemData>::iterator aIter, |
1170 | | const nsTArray<Step2ItemData>::iterator aEnd, |
1171 | | nsTArray<uint32_t>& aTracks, |
1172 | | nsTArray<TrackSize>& aPlan, |
1173 | | nsTArray<TrackSize>& aItemPlan, |
1174 | | TrackSize::StateBits aSelector, |
1175 | | const FitContentClamper& aClamper = nullptr, |
1176 | | bool aNeedInfinitelyGrowableFlag = false); |
1177 | | /** |
1178 | | * Resolve Intrinsic Track Sizes. |
1179 | | * http://dev.w3.org/csswg/css-grid/#algo-content |
1180 | | */ |
1181 | | void ResolveIntrinsicSize(GridReflowInput& aState, |
1182 | | nsTArray<GridItemInfo>& aGridItems, |
1183 | | const TrackSizingFunctions& aFunctions, |
1184 | | LineRange GridArea::* aRange, |
1185 | | nscoord aPercentageBasis, |
1186 | | SizingConstraint aConstraint); |
1187 | | |
1188 | | /** |
1189 | | * Helper for ResolveIntrinsicSize. It implements step 1 "size tracks to fit |
1190 | | * non-spanning items" in the spec. Return true if the track has a <flex> |
1191 | | * max-sizing function, false otherwise. |
1192 | | */ |
1193 | | bool ResolveIntrinsicSizeStep1(GridReflowInput& aState, |
1194 | | const TrackSizingFunctions& aFunctions, |
1195 | | nscoord aPercentageBasis, |
1196 | | SizingConstraint aConstraint, |
1197 | | const LineRange& aRange, |
1198 | | const GridItemInfo& aGridItem); |
1199 | | |
1200 | | // Helper method that returns the track size to use in §11.5.1.2 |
1201 | | // https://drafts.csswg.org/css-grid/#extra-space |
1202 | | template<TrackSizingPhase phase> static |
1203 | | nscoord StartSizeInDistribution(const TrackSize& aSize) |
1204 | 0 | { |
1205 | 0 | switch (phase) { |
1206 | 0 | case TrackSizingPhase::eIntrinsicMinimums: |
1207 | 0 | case TrackSizingPhase::eContentBasedMinimums: |
1208 | 0 | case TrackSizingPhase::eMaxContentMinimums: |
1209 | 0 | return aSize.mBase; |
1210 | 0 | case TrackSizingPhase::eIntrinsicMaximums: |
1211 | 0 | case TrackSizingPhase::eMaxContentMaximums: |
1212 | 0 | if (aSize.mLimit == NS_UNCONSTRAINEDSIZE) { |
1213 | 0 | return aSize.mBase; |
1214 | 0 | } |
1215 | 0 | return aSize.mLimit; |
1216 | 0 | } |
1217 | 0 | MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase"); |
1218 | 0 | } Unexecuted instantiation: int nsGridContainerFrame::Tracks::StartSizeInDistribution<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(nsGridContainerFrame::TrackSize const&) Unexecuted instantiation: int nsGridContainerFrame::Tracks::StartSizeInDistribution<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(nsGridContainerFrame::TrackSize const&) Unexecuted instantiation: int nsGridContainerFrame::Tracks::StartSizeInDistribution<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(nsGridContainerFrame::TrackSize const&) Unexecuted instantiation: int nsGridContainerFrame::Tracks::StartSizeInDistribution<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(nsGridContainerFrame::TrackSize const&) Unexecuted instantiation: int nsGridContainerFrame::Tracks::StartSizeInDistribution<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(nsGridContainerFrame::TrackSize const&) |
1219 | | |
1220 | | /** |
1221 | | * Collect the tracks which are growable (matching aSelector) into |
1222 | | * aGrowableTracks, and return the amount of space that can be used |
1223 | | * to grow those tracks. This method implements CSS Grid §11.5.1.2. |
1224 | | * https://drafts.csswg.org/css-grid/#extra-space |
1225 | | */ |
1226 | | template<TrackSizingPhase phase> |
1227 | | nscoord CollectGrowable(nscoord aAvailableSpace, |
1228 | | const LineRange& aRange, |
1229 | | TrackSize::StateBits aSelector, |
1230 | | nsTArray<uint32_t>& aGrowableTracks) const |
1231 | 0 | { |
1232 | 0 | MOZ_ASSERT(aAvailableSpace > 0, "why call me?"); |
1233 | 0 | nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1); |
1234 | 0 | for (auto i : aRange.Range()) { |
1235 | 0 | const TrackSize& sz = mSizes[i]; |
1236 | 0 | space -= StartSizeInDistribution<phase>(sz); |
1237 | 0 | if (space <= 0) { |
1238 | 0 | return 0; |
1239 | 0 | } |
1240 | 0 | if (sz.mState & aSelector) { |
1241 | 0 | aGrowableTracks.AppendElement(i); |
1242 | 0 | } |
1243 | 0 | } |
1244 | 0 | return aGrowableTracks.IsEmpty() ? 0 : space; |
1245 | 0 | } Unexecuted instantiation: int nsGridContainerFrame::Tracks::CollectGrowable<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(int, nsGridContainerFrame::LineRange const&, nsGridContainerFrame::TrackSize::StateBits, nsTArray<unsigned int>&) const Unexecuted instantiation: int nsGridContainerFrame::Tracks::CollectGrowable<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(int, nsGridContainerFrame::LineRange const&, nsGridContainerFrame::TrackSize::StateBits, nsTArray<unsigned int>&) const Unexecuted instantiation: int nsGridContainerFrame::Tracks::CollectGrowable<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(int, nsGridContainerFrame::LineRange const&, nsGridContainerFrame::TrackSize::StateBits, nsTArray<unsigned int>&) const Unexecuted instantiation: int nsGridContainerFrame::Tracks::CollectGrowable<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(int, nsGridContainerFrame::LineRange const&, nsGridContainerFrame::TrackSize::StateBits, nsTArray<unsigned int>&) const Unexecuted instantiation: int nsGridContainerFrame::Tracks::CollectGrowable<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(int, nsGridContainerFrame::LineRange const&, nsGridContainerFrame::TrackSize::StateBits, nsTArray<unsigned int>&) const |
1246 | | |
1247 | | template<TrackSizingPhase phase> |
1248 | | void InitializeItemPlan(nsTArray<TrackSize>& aItemPlan, |
1249 | | const nsTArray<uint32_t>& aTracks) const |
1250 | 0 | { |
1251 | 0 | for (uint32_t track : aTracks) { |
1252 | 0 | auto& plan = aItemPlan[track]; |
1253 | 0 | const TrackSize& sz = mSizes[track]; |
1254 | 0 | plan.mBase = StartSizeInDistribution<phase>(sz); |
1255 | 0 | bool unlimited = sz.mState & TrackSize::eInfinitelyGrowable; |
1256 | 0 | plan.mLimit = unlimited ? NS_UNCONSTRAINEDSIZE : sz.mLimit; |
1257 | 0 | plan.mState = sz.mState; |
1258 | 0 | } |
1259 | 0 | } Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializeItemPlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializeItemPlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializeItemPlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializeItemPlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializeItemPlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&) const |
1260 | | |
1261 | | template<TrackSizingPhase phase> |
1262 | | void InitializePlan(nsTArray<TrackSize>& aPlan) const |
1263 | 0 | { |
1264 | 0 | for (size_t i = 0, len = aPlan.Length(); i < len; ++i) { |
1265 | 0 | auto& plan = aPlan[i]; |
1266 | 0 | const auto& sz = mSizes[i]; |
1267 | 0 | plan.mBase = StartSizeInDistribution<phase>(sz); |
1268 | 0 | MOZ_ASSERT(phase == TrackSizingPhase::eMaxContentMaximums || |
1269 | 0 | !(sz.mState & TrackSize::eInfinitelyGrowable), |
1270 | 0 | "forgot to reset the eInfinitelyGrowable bit?"); |
1271 | 0 | plan.mState = sz.mState; |
1272 | 0 | } |
1273 | 0 | } Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializePlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(nsTArray<nsGridContainerFrame::TrackSize>&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializePlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(nsTArray<nsGridContainerFrame::TrackSize>&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializePlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(nsTArray<nsGridContainerFrame::TrackSize>&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializePlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(nsTArray<nsGridContainerFrame::TrackSize>&) const Unexecuted instantiation: void nsGridContainerFrame::Tracks::InitializePlan<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(nsTArray<nsGridContainerFrame::TrackSize>&) const |
1274 | | |
1275 | | template<TrackSizingPhase phase> |
1276 | | void CopyPlanToSize(const nsTArray<TrackSize>& aPlan, |
1277 | | bool aNeedInfinitelyGrowableFlag = false) |
1278 | 0 | { |
1279 | 0 | for (size_t i = 0, len = mSizes.Length(); i < len; ++i) { |
1280 | 0 | const auto& plan = aPlan[i]; |
1281 | 0 | MOZ_ASSERT(plan.mBase >= 0); |
1282 | 0 | auto& sz = mSizes[i]; |
1283 | 0 | switch (phase) { |
1284 | 0 | case TrackSizingPhase::eIntrinsicMinimums: |
1285 | 0 | case TrackSizingPhase::eContentBasedMinimums: |
1286 | 0 | case TrackSizingPhase::eMaxContentMinimums: |
1287 | 0 | sz.mBase = plan.mBase; |
1288 | 0 | break; |
1289 | 0 | case TrackSizingPhase::eIntrinsicMaximums: |
1290 | 0 | if (plan.mState & TrackSize::eModified) { |
1291 | 0 | if (sz.mLimit == NS_UNCONSTRAINEDSIZE && |
1292 | 0 | aNeedInfinitelyGrowableFlag) { |
1293 | 0 | sz.mState |= TrackSize::eInfinitelyGrowable; |
1294 | 0 | } |
1295 | 0 | sz.mLimit = plan.mBase; |
1296 | 0 | } |
1297 | 0 | break; |
1298 | 0 | case TrackSizingPhase::eMaxContentMaximums: |
1299 | 0 | if (plan.mState & TrackSize::eModified) { |
1300 | 0 | sz.mLimit = plan.mBase; |
1301 | 0 | } |
1302 | 0 | sz.mState &= ~TrackSize::eInfinitelyGrowable; |
1303 | 0 | break; |
1304 | 0 | } |
1305 | 0 | } |
1306 | 0 | } Unexecuted instantiation: void nsGridContainerFrame::Tracks::CopyPlanToSize<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(nsTArray<nsGridContainerFrame::TrackSize> const&, bool) Unexecuted instantiation: void nsGridContainerFrame::Tracks::CopyPlanToSize<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(nsTArray<nsGridContainerFrame::TrackSize> const&, bool) Unexecuted instantiation: void nsGridContainerFrame::Tracks::CopyPlanToSize<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(nsTArray<nsGridContainerFrame::TrackSize> const&, bool) Unexecuted instantiation: void nsGridContainerFrame::Tracks::CopyPlanToSize<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(nsTArray<nsGridContainerFrame::TrackSize> const&, bool) Unexecuted instantiation: void nsGridContainerFrame::Tracks::CopyPlanToSize<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(nsTArray<nsGridContainerFrame::TrackSize> const&, bool) |
1307 | | |
1308 | | /** |
1309 | | * Grow the planned size for tracks in aGrowableTracks up to their limit |
1310 | | * and then freeze them (all aGrowableTracks must be unfrozen on entry). |
1311 | | * Subtract the space added from aAvailableSpace and return that. |
1312 | | */ |
1313 | | nscoord GrowTracksToLimit(nscoord aAvailableSpace, |
1314 | | nsTArray<TrackSize>& aPlan, |
1315 | | const nsTArray<uint32_t>& aGrowableTracks, |
1316 | | const FitContentClamper& aFitContentClamper) const |
1317 | 0 | { |
1318 | 0 | MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0); |
1319 | 0 | nscoord space = aAvailableSpace; |
1320 | 0 | uint32_t numGrowable = aGrowableTracks.Length(); |
1321 | 0 | while (true) { |
1322 | 0 | nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1); |
1323 | 0 | for (uint32_t track : aGrowableTracks) { |
1324 | 0 | TrackSize& sz = aPlan[track]; |
1325 | 0 | if (sz.IsFrozen()) { |
1326 | 0 | continue; |
1327 | 0 | } |
1328 | 0 | nscoord newBase = sz.mBase + spacePerTrack; |
1329 | 0 | nscoord limit = sz.mLimit; |
1330 | 0 | if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) && |
1331 | 0 | aFitContentClamper)) { |
1332 | 0 | // Clamp the limit to the fit-content() size, for §12.5.2 step 5/6. |
1333 | 0 | aFitContentClamper(track, sz.mBase, &limit); |
1334 | 0 | } |
1335 | 0 | if (newBase > limit) { |
1336 | 0 | nscoord consumed = limit - sz.mBase; |
1337 | 0 | if (consumed > 0) { |
1338 | 0 | space -= consumed; |
1339 | 0 | sz.mBase = limit; |
1340 | 0 | } |
1341 | 0 | sz.mState |= TrackSize::eFrozen; |
1342 | 0 | if (--numGrowable == 0) { |
1343 | 0 | return space; |
1344 | 0 | } |
1345 | 0 | } else { |
1346 | 0 | sz.mBase = newBase; |
1347 | 0 | space -= spacePerTrack; |
1348 | 0 | } |
1349 | 0 | MOZ_ASSERT(space >= 0); |
1350 | 0 | if (space == 0) { |
1351 | 0 | return 0; |
1352 | 0 | } |
1353 | 0 | } |
1354 | 0 | } |
1355 | 0 | MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return"); |
1356 | 0 | return 0; |
1357 | 0 | } |
1358 | | |
1359 | | /** |
1360 | | * Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that |
1361 | | * match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector |
1362 | | * then mark it with aSkipFlag. If all tracks in S were marked then unmark |
1363 | | * them. Return aNumGrowable minus the number of tracks marked. It is |
1364 | | * assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks |
1365 | | * on entry to this method. |
1366 | | */ |
1367 | | static uint32_t |
1368 | | MarkExcludedTracks(nsTArray<TrackSize>& aPlan, |
1369 | | uint32_t aNumGrowable, |
1370 | | const nsTArray<uint32_t>& aGrowableTracks, |
1371 | | TrackSize::StateBits aMinSizingSelector, |
1372 | | TrackSize::StateBits aMaxSizingSelector, |
1373 | | TrackSize::StateBits aSkipFlag) |
1374 | 0 | { |
1375 | 0 | bool foundOneSelected = false; |
1376 | 0 | bool foundOneGrowable = false; |
1377 | 0 | uint32_t numGrowable = aNumGrowable; |
1378 | 0 | for (uint32_t track : aGrowableTracks) { |
1379 | 0 | TrackSize& sz = aPlan[track]; |
1380 | 0 | const auto state = sz.mState; |
1381 | 0 | if (state & aMinSizingSelector) { |
1382 | 0 | foundOneSelected = true; |
1383 | 0 | if (state & aMaxSizingSelector) { |
1384 | 0 | foundOneGrowable = true; |
1385 | 0 | continue; |
1386 | 0 | } |
1387 | 0 | sz.mState |= aSkipFlag; |
1388 | 0 | MOZ_ASSERT(numGrowable != 0); |
1389 | 0 | --numGrowable; |
1390 | 0 | } |
1391 | 0 | } |
1392 | 0 | // 12.5 "if there are no such tracks, then all affected tracks" |
1393 | 0 | if (foundOneSelected && !foundOneGrowable) { |
1394 | 0 | for (uint32_t track : aGrowableTracks) { |
1395 | 0 | aPlan[track].mState &= ~aSkipFlag; |
1396 | 0 | } |
1397 | 0 | numGrowable = aNumGrowable; |
1398 | 0 | } |
1399 | 0 | return numGrowable; |
1400 | 0 | } |
1401 | | |
1402 | | /** |
1403 | | * Mark all tracks in aGrowableTracks with an eSkipGrowUnlimited bit if |
1404 | | * they *shouldn't* grow unlimited in §11.5.1.2.3 "Distribute space beyond |
1405 | | * growth limits" https://drafts.csswg.org/css-grid/#extra-space |
1406 | | * Return the number of tracks that are still growable. |
1407 | | */ |
1408 | | template<TrackSizingPhase phase> |
1409 | | static uint32_t |
1410 | | MarkExcludedTracks(nsTArray<TrackSize>& aPlan, |
1411 | | const nsTArray<uint32_t>& aGrowableTracks, |
1412 | | TrackSize::StateBits aSelector) |
1413 | 0 | { |
1414 | 0 | uint32_t numGrowable = aGrowableTracks.Length(); |
1415 | 0 | if (phase == TrackSizingPhase::eIntrinsicMaximums || |
1416 | 0 | phase == TrackSizingPhase::eMaxContentMaximums) { |
1417 | 0 | // "when handling any intrinsic growth limit: all affected tracks" |
1418 | 0 | return numGrowable; |
1419 | 0 | } |
1420 | 0 | MOZ_ASSERT(aSelector == (aSelector & TrackSize::eIntrinsicMinSizing) && |
1421 | 0 | (aSelector & TrackSize::eMaxContentMinSizing), |
1422 | 0 | "Should only get here for track sizing steps 2.1 to 2.3"); |
1423 | 0 | // Note that eMaxContentMinSizing is always included. We do those first: |
1424 | 0 | numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks, |
1425 | 0 | TrackSize::eMaxContentMinSizing, |
1426 | 0 | TrackSize::eMaxContentMaxSizing, |
1427 | 0 | TrackSize::eSkipGrowUnlimited1); |
1428 | 0 | // Now mark min-content/auto min-sizing tracks if requested. |
1429 | 0 | auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing; |
1430 | 0 | if (minOrAutoSelector) { |
1431 | 0 | numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks, |
1432 | 0 | minOrAutoSelector, |
1433 | 0 | TrackSize::eIntrinsicMaxSizing, |
1434 | 0 | TrackSize::eSkipGrowUnlimited2); |
1435 | 0 | } |
1436 | 0 | return numGrowable; |
1437 | 0 | } Unexecuted instantiation: unsigned int nsGridContainerFrame::Tracks::MarkExcludedTracks<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&, nsGridContainerFrame::TrackSize::StateBits) Unexecuted instantiation: unsigned int nsGridContainerFrame::Tracks::MarkExcludedTracks<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&, nsGridContainerFrame::TrackSize::StateBits) Unexecuted instantiation: unsigned int nsGridContainerFrame::Tracks::MarkExcludedTracks<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&, nsGridContainerFrame::TrackSize::StateBits) Unexecuted instantiation: unsigned int nsGridContainerFrame::Tracks::MarkExcludedTracks<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&, nsGridContainerFrame::TrackSize::StateBits) Unexecuted instantiation: unsigned int nsGridContainerFrame::Tracks::MarkExcludedTracks<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int> const&, nsGridContainerFrame::TrackSize::StateBits) |
1438 | | |
1439 | | /** |
1440 | | * Increase the planned size for tracks in aGrowableTracks that aren't |
1441 | | * marked with a eSkipGrowUnlimited flag beyond their limit. |
1442 | | * This implements the "Distribute space beyond growth limits" step in |
1443 | | * https://drafts.csswg.org/css-grid/#distribute-extra-space |
1444 | | */ |
1445 | | void GrowSelectedTracksUnlimited(nscoord aAvailableSpace, |
1446 | | nsTArray<TrackSize>& aPlan, |
1447 | | const nsTArray<uint32_t>& aGrowableTracks, |
1448 | | uint32_t aNumGrowable, |
1449 | | const FitContentClamper& aFitContentClamper) const |
1450 | 0 | { |
1451 | 0 | MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0 && |
1452 | 0 | aNumGrowable <= aGrowableTracks.Length()); |
1453 | 0 | nscoord space = aAvailableSpace; |
1454 | 0 | DebugOnly<bool> didClamp = false; |
1455 | 0 | while (aNumGrowable) { |
1456 | 0 | nscoord spacePerTrack = std::max<nscoord>(space / aNumGrowable, 1); |
1457 | 0 | for (uint32_t track : aGrowableTracks) { |
1458 | 0 | TrackSize& sz = aPlan[track]; |
1459 | 0 | if (sz.mState & TrackSize::eSkipGrowUnlimited) { |
1460 | 0 | continue; // an excluded track |
1461 | 0 | } |
1462 | 0 | nscoord delta = spacePerTrack; |
1463 | 0 | nscoord newBase = sz.mBase + delta; |
1464 | 0 | if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) && |
1465 | 0 | aFitContentClamper)) { |
1466 | 0 | // Clamp newBase to the fit-content() size, for §12.5.2 step 5/6. |
1467 | 0 | if (aFitContentClamper(track, sz.mBase, &newBase)) { |
1468 | 0 | didClamp = true; |
1469 | 0 | delta = newBase - sz.mBase; |
1470 | 0 | MOZ_ASSERT(delta >= 0, "track size shouldn't shrink"); |
1471 | 0 | sz.mState |= TrackSize::eSkipGrowUnlimited1; |
1472 | 0 | --aNumGrowable; |
1473 | 0 | } |
1474 | 0 | } |
1475 | 0 | sz.mBase = newBase; |
1476 | 0 | space -= delta; |
1477 | 0 | MOZ_ASSERT(space >= 0); |
1478 | 0 | if (space == 0) { |
1479 | 0 | return; |
1480 | 0 | } |
1481 | 0 | } |
1482 | 0 | } |
1483 | 0 | MOZ_ASSERT(didClamp, "we don't exit the loop above except by return, " |
1484 | 0 | "unless we clamped some track's size"); |
1485 | 0 | } |
1486 | | |
1487 | | /** |
1488 | | * Distribute aAvailableSpace to the planned base size for aGrowableTracks |
1489 | | * up to their limits, then distribute the remaining space beyond the limits. |
1490 | | */ |
1491 | | template<TrackSizingPhase phase> |
1492 | | void DistributeToTrackSizes(nscoord aAvailableSpace, |
1493 | | nsTArray<TrackSize>& aPlan, |
1494 | | nsTArray<TrackSize>& aItemPlan, |
1495 | | nsTArray<uint32_t>& aGrowableTracks, |
1496 | | TrackSize::StateBits aSelector, |
1497 | | const FitContentClamper& aFitContentClamper) |
1498 | 0 | { |
1499 | 0 | InitializeItemPlan<phase>(aItemPlan, aGrowableTracks); |
1500 | 0 | nscoord space = GrowTracksToLimit(aAvailableSpace, aItemPlan, aGrowableTracks, |
1501 | 0 | aFitContentClamper); |
1502 | 0 | if (space > 0) { |
1503 | 0 | uint32_t numGrowable = |
1504 | 0 | MarkExcludedTracks<phase>(aItemPlan, aGrowableTracks, aSelector); |
1505 | 0 | GrowSelectedTracksUnlimited(space, aItemPlan, aGrowableTracks, |
1506 | 0 | numGrowable, aFitContentClamper); |
1507 | 0 | } |
1508 | 0 | for (uint32_t track : aGrowableTracks) { |
1509 | 0 | nscoord& plannedSize = aPlan[track].mBase; |
1510 | 0 | nscoord itemIncurredSize = aItemPlan[track].mBase; |
1511 | 0 | if (plannedSize < itemIncurredSize) { |
1512 | 0 | plannedSize = itemIncurredSize; |
1513 | 0 | } |
1514 | 0 | } |
1515 | 0 | } Unexecuted instantiation: void nsGridContainerFrame::Tracks::DistributeToTrackSizes<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(int, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&) Unexecuted instantiation: void nsGridContainerFrame::Tracks::DistributeToTrackSizes<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(int, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&) Unexecuted instantiation: void nsGridContainerFrame::Tracks::DistributeToTrackSizes<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(int, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&) Unexecuted instantiation: void nsGridContainerFrame::Tracks::DistributeToTrackSizes<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(int, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&) Unexecuted instantiation: void nsGridContainerFrame::Tracks::DistributeToTrackSizes<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(int, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<unsigned int>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&) |
1516 | | |
1517 | | /** |
1518 | | * Distribute aAvailableSize to the tracks. This implements 12.6 at: |
1519 | | * http://dev.w3.org/csswg/css-grid/#algo-grow-tracks |
1520 | | */ |
1521 | | void DistributeFreeSpace(nscoord aAvailableSize) |
1522 | 0 | { |
1523 | 0 | const uint32_t numTracks = mSizes.Length(); |
1524 | 0 | if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) { |
1525 | 0 | return; |
1526 | 0 | } |
1527 | 0 | if (aAvailableSize == NS_UNCONSTRAINEDSIZE) { |
1528 | 0 | for (TrackSize& sz : mSizes) { |
1529 | 0 | sz.mBase = sz.mLimit; |
1530 | 0 | } |
1531 | 0 | } else { |
1532 | 0 | // Compute free space and count growable tracks. |
1533 | 0 | nscoord space = aAvailableSize; |
1534 | 0 | uint32_t numGrowable = numTracks; |
1535 | 0 | for (const TrackSize& sz : mSizes) { |
1536 | 0 | space -= sz.mBase; |
1537 | 0 | MOZ_ASSERT(sz.mBase <= sz.mLimit); |
1538 | 0 | if (sz.mBase == sz.mLimit) { |
1539 | 0 | --numGrowable; |
1540 | 0 | } |
1541 | 0 | } |
1542 | 0 | // Distribute the free space evenly to the growable tracks. If not exactly |
1543 | 0 | // divisable the remainder is added to the leading tracks. |
1544 | 0 | while (space > 0 && numGrowable) { |
1545 | 0 | nscoord spacePerTrack = |
1546 | 0 | std::max<nscoord>(space / numGrowable, 1); |
1547 | 0 | for (uint32_t i = 0; i < numTracks && space > 0; ++i) { |
1548 | 0 | TrackSize& sz = mSizes[i]; |
1549 | 0 | if (sz.mBase == sz.mLimit) { |
1550 | 0 | continue; |
1551 | 0 | } |
1552 | 0 | nscoord newBase = sz.mBase + spacePerTrack; |
1553 | 0 | if (newBase >= sz.mLimit) { |
1554 | 0 | space -= sz.mLimit - sz.mBase; |
1555 | 0 | sz.mBase = sz.mLimit; |
1556 | 0 | --numGrowable; |
1557 | 0 | } else { |
1558 | 0 | space -= spacePerTrack; |
1559 | 0 | sz.mBase = newBase; |
1560 | 0 | } |
1561 | 0 | } |
1562 | 0 | } |
1563 | 0 | } |
1564 | 0 | } |
1565 | | |
1566 | | /** |
1567 | | * Implements "12.7.1. Find the Size of an 'fr'". |
1568 | | * http://dev.w3.org/csswg/css-grid/#algo-find-fr-size |
1569 | | * (The returned value is a 'nscoord' divided by a factor - a floating type |
1570 | | * is used to avoid intermediary rounding errors.) |
1571 | | */ |
1572 | | float FindFrUnitSize(const LineRange& aRange, |
1573 | | const nsTArray<uint32_t>& aFlexTracks, |
1574 | | const TrackSizingFunctions& aFunctions, |
1575 | | nscoord aSpaceToFill) const; |
1576 | | |
1577 | | /** |
1578 | | * Implements the "find the used flex fraction" part of StretchFlexibleTracks. |
1579 | | * (The returned value is a 'nscoord' divided by a factor - a floating type |
1580 | | * is used to avoid intermediary rounding errors.) |
1581 | | */ |
1582 | | float FindUsedFlexFraction(GridReflowInput& aState, |
1583 | | nsTArray<GridItemInfo>& aGridItems, |
1584 | | const nsTArray<uint32_t>& aFlexTracks, |
1585 | | const TrackSizingFunctions& aFunctions, |
1586 | | nscoord aAvailableSize) const; |
1587 | | |
1588 | | /** |
1589 | | * Implements "12.7. Stretch Flexible Tracks" |
1590 | | * http://dev.w3.org/csswg/css-grid/#algo-flex-tracks |
1591 | | */ |
1592 | | void StretchFlexibleTracks(GridReflowInput& aState, |
1593 | | nsTArray<GridItemInfo>& aGridItems, |
1594 | | const TrackSizingFunctions& aFunctions, |
1595 | | nscoord aAvailableSize); |
1596 | | |
1597 | | /** |
1598 | | * Implements "12.3. Track Sizing Algorithm" |
1599 | | * http://dev.w3.org/csswg/css-grid/#algo-track-sizing |
1600 | | */ |
1601 | | void CalculateSizes(GridReflowInput& aState, |
1602 | | nsTArray<GridItemInfo>& aGridItems, |
1603 | | const TrackSizingFunctions& aFunctions, |
1604 | | nscoord aContentSize, |
1605 | | LineRange GridArea::* aRange, |
1606 | | SizingConstraint aConstraint); |
1607 | | |
1608 | | /** |
1609 | | * Apply 'align/justify-content', whichever is relevant for this axis. |
1610 | | * https://drafts.csswg.org/css-align-3/#propdef-align-content |
1611 | | */ |
1612 | | void AlignJustifyContent(const nsStylePosition* aStyle, |
1613 | | WritingMode aWM, |
1614 | | nscoord aContentSize); |
1615 | | |
1616 | | nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const |
1617 | 0 | { |
1618 | 0 | if (MOZ_UNLIKELY(mSizes.IsEmpty())) { |
1619 | 0 | // https://drafts.csswg.org/css-grid/#grid-definition |
1620 | 0 | // "... the explicit grid still contains one grid line in each axis." |
1621 | 0 | MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid"); |
1622 | 0 | return nscoord(0); |
1623 | 0 | } |
1624 | 0 | MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small"); |
1625 | 0 | if (aSide == GridLineSide::eBeforeGridGap) { |
1626 | 0 | if (aLine == 0) { |
1627 | 0 | return nscoord(0); |
1628 | 0 | } |
1629 | 0 | const TrackSize& sz = mSizes[aLine - 1]; |
1630 | 0 | return sz.mPosition + sz.mBase; |
1631 | 0 | } |
1632 | 0 | if (aLine == mSizes.Length()) { |
1633 | 0 | return mContentBoxSize; |
1634 | 0 | } |
1635 | 0 | return mSizes[aLine].mPosition; |
1636 | 0 | } |
1637 | | |
1638 | | nscoord SumOfGridGaps() const |
1639 | 0 | { |
1640 | 0 | auto len = mSizes.Length(); |
1641 | 0 | return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0; |
1642 | 0 | } |
1643 | | |
1644 | | /** |
1645 | | * Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid |
1646 | | * gap before aRow to zero (and shift all rows after it by the removed gap). |
1647 | | */ |
1648 | | void BreakBeforeRow(uint32_t aRow) |
1649 | 0 | { |
1650 | 0 | MOZ_ASSERT(mAxis == eLogicalAxisBlock, |
1651 | 0 | "Should only be fragmenting in the block axis (between rows)"); |
1652 | 0 | nscoord prevRowEndPos = 0; |
1653 | 0 | if (aRow != 0) { |
1654 | 0 | auto& prevSz = mSizes[aRow - 1]; |
1655 | 0 | prevRowEndPos = prevSz.mPosition + prevSz.mBase; |
1656 | 0 | } |
1657 | 0 | auto& sz = mSizes[aRow]; |
1658 | 0 | const nscoord gap = sz.mPosition - prevRowEndPos; |
1659 | 0 | sz.mState |= TrackSize::eBreakBefore; |
1660 | 0 | if (gap != 0) { |
1661 | 0 | for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) { |
1662 | 0 | mSizes[i].mPosition -= gap; |
1663 | 0 | } |
1664 | 0 | } |
1665 | 0 | } |
1666 | | |
1667 | | /** |
1668 | | * Set the size of aRow to aSize and adjust the position of all rows after it. |
1669 | | */ |
1670 | | void ResizeRow(uint32_t aRow, nscoord aNewSize) |
1671 | 0 | { |
1672 | 0 | MOZ_ASSERT(mAxis == eLogicalAxisBlock, |
1673 | 0 | "Should only be fragmenting in the block axis (between rows)"); |
1674 | 0 | MOZ_ASSERT(aNewSize >= 0); |
1675 | 0 | auto& sz = mSizes[aRow]; |
1676 | 0 | nscoord delta = aNewSize - sz.mBase; |
1677 | 0 | NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow"); |
1678 | 0 | sz.mBase = aNewSize; |
1679 | 0 | const uint32_t numRows = mSizes.Length(); |
1680 | 0 | for (uint32_t r = aRow + 1; r < numRows; ++r) { |
1681 | 0 | mSizes[r].mPosition += delta; |
1682 | 0 | } |
1683 | 0 | } |
1684 | | |
1685 | | nscoord ResolveSize(const LineRange& aRange) const |
1686 | 0 | { |
1687 | 0 | MOZ_ASSERT(mCanResolveLineRangeSize); |
1688 | 0 | MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track"); |
1689 | 0 | nscoord pos, size; |
1690 | 0 | aRange.ToPositionAndLength(mSizes, &pos, &size); |
1691 | 0 | return size; |
1692 | 0 | } |
1693 | | |
1694 | | nsTArray<nsString> GetExplicitLineNamesAtIndex( |
1695 | | const nsStyleGridTemplate& aGridTemplate, |
1696 | | const TrackSizingFunctions& aFunctions, |
1697 | | uint32_t aIndex) |
1698 | 0 | { |
1699 | 0 | nsTArray<nsString> lineNames; |
1700 | 0 |
|
1701 | 0 | bool hasRepeatAuto = aGridTemplate.HasRepeatAuto(); |
1702 | 0 | const nsTArray<nsTArray<nsString>>& lineNameLists( |
1703 | 0 | aGridTemplate.mLineNameLists); |
1704 | 0 |
|
1705 | 0 | if (!hasRepeatAuto) { |
1706 | 0 | if (aIndex < lineNameLists.Length()) { |
1707 | 0 | lineNames.AppendElements(lineNameLists[aIndex]); |
1708 | 0 | } |
1709 | 0 | } else { |
1710 | 0 | const uint32_t repeatTrackCount = aFunctions.NumRepeatTracks(); |
1711 | 0 | const uint32_t repeatAutoStart = aGridTemplate.mRepeatAutoIndex; |
1712 | 0 | const uint32_t repeatAutoEnd = (repeatAutoStart + repeatTrackCount); |
1713 | 0 | const int32_t repeatEndDelta = int32_t(repeatTrackCount - 1); |
1714 | 0 |
|
1715 | 0 | if (aIndex <= repeatAutoStart) { |
1716 | 0 | if (aIndex < lineNameLists.Length()) { |
1717 | 0 | lineNames.AppendElements(lineNameLists[aIndex]); |
1718 | 0 | } |
1719 | 0 | } |
1720 | 0 | if (aIndex <= repeatAutoEnd && aIndex > repeatAutoStart) { |
1721 | 0 | lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListAfter); |
1722 | 0 | } |
1723 | 0 | if (aIndex < repeatAutoEnd && aIndex >= repeatAutoStart) { |
1724 | 0 | lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListBefore); |
1725 | 0 | } |
1726 | 0 | if (aIndex > repeatAutoEnd && aIndex > repeatAutoStart) { |
1727 | 0 | uint32_t i = aIndex - repeatEndDelta; |
1728 | 0 | if (i < lineNameLists.Length()) { |
1729 | 0 | lineNames.AppendElements(lineNameLists[i]); |
1730 | 0 | } |
1731 | 0 | } |
1732 | 0 | } |
1733 | 0 |
|
1734 | 0 | return lineNames; |
1735 | 0 | } |
1736 | | |
1737 | | #ifdef DEBUG |
1738 | | void Dump() const |
1739 | | { |
1740 | | for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) { |
1741 | | printf(" %d: ", i); |
1742 | | mSizes[i].Dump(); |
1743 | | printf("\n"); |
1744 | | } |
1745 | | } |
1746 | | #endif |
1747 | | |
1748 | | AutoTArray<TrackSize, 32> mSizes; |
1749 | | nscoord mContentBoxSize; |
1750 | | nscoord mGridGap; |
1751 | | // The first(last)-baseline for the first(last) track in this axis. |
1752 | | nscoord mBaseline[2]; // index by BaselineSharingGroup |
1753 | | // The union of the track min/max-sizing state bits in this axis. |
1754 | | TrackSize::StateBits mStateUnion; |
1755 | | LogicalAxis mAxis; |
1756 | | // Used for aligning a baseline-aligned subtree of items. The only possible |
1757 | | // values are NS_STYLE_ALIGN_{START,END,CENTER,AUTO}. AUTO means there are |
1758 | | // no baseline-aligned items in any track in that axis. |
1759 | | // There is one alignment value for each BaselineSharingGroup. |
1760 | | uint8_t mBaselineSubtreeAlign[2]; |
1761 | | // True if track positions and sizes are final in this axis. |
1762 | | bool mCanResolveLineRangeSize; |
1763 | | }; |
1764 | | |
1765 | | /** |
1766 | | * Grid data shared by all continuations, owned by the first-in-flow. |
1767 | | * The data is initialized from the first-in-flow's GridReflowInput at |
1768 | | * the end of its reflow. Fragmentation will modify mRows.mSizes - |
1769 | | * the mPosition to remove the row gap at the break boundary, the mState |
1770 | | * by setting the eBreakBefore flag, and mBase is modified when we decide |
1771 | | * to grow a row. mOriginalRowData is setup by the first-in-flow and |
1772 | | * not modified after that. It's used for undoing the changes to mRows. |
1773 | | * mCols, mGridItems, mAbsPosItems are used for initializing the grid |
1774 | | * reflow state for continuations, see GridReflowInput::Initialize below. |
1775 | | */ |
1776 | | struct nsGridContainerFrame::SharedGridData |
1777 | | { |
1778 | | SharedGridData() : |
1779 | | mCols(eLogicalAxisInline), |
1780 | | mRows(eLogicalAxisBlock), |
1781 | 0 | mGenerateComputedGridInfo(false) {} |
1782 | | Tracks mCols; |
1783 | | Tracks mRows; |
1784 | | struct RowData { |
1785 | | nscoord mBase; // the original track size |
1786 | | nscoord mGap; // the original gap before a track |
1787 | | }; |
1788 | | nsTArray<RowData> mOriginalRowData; |
1789 | | nsTArray<GridItemInfo> mGridItems; |
1790 | | nsTArray<GridItemInfo> mAbsPosItems; |
1791 | | bool mGenerateComputedGridInfo; |
1792 | | |
1793 | | /** |
1794 | | * Only set on the first-in-flow. Continuations will Initialize() their |
1795 | | * GridReflowInput from it. |
1796 | | */ |
1797 | | NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData) |
1798 | | }; |
1799 | | |
1800 | | struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput |
1801 | | { |
1802 | | GridReflowInput(nsGridContainerFrame* aFrame, |
1803 | | const ReflowInput& aRI) |
1804 | | : GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI, aRI.mStylePosition, |
1805 | | aRI.GetWritingMode()) |
1806 | 0 | {} |
1807 | | GridReflowInput(nsGridContainerFrame* aFrame, |
1808 | | gfxContext& aRC) |
1809 | | : GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(), |
1810 | | aFrame->GetWritingMode()) |
1811 | 0 | {} |
1812 | | |
1813 | | /** |
1814 | | * Initialize our track sizes and grid item info using the shared |
1815 | | * state from aGridContainerFrame first-in-flow. |
1816 | | */ |
1817 | | void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame, |
1818 | | nscoord aConsumedBSize) |
1819 | 0 | { |
1820 | 0 | MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(), |
1821 | 0 | "don't call this on the first-in-flow"); |
1822 | 0 | MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(), |
1823 | 0 | "shouldn't have any item data yet"); |
1824 | 0 |
|
1825 | 0 | // Get the SharedGridData from the first-in-flow. Also calculate the number |
1826 | 0 | // of fragments before this so that we can figure out our start row below. |
1827 | 0 | uint32_t fragment = 0; |
1828 | 0 | nsIFrame* firstInFlow = aGridContainerFrame; |
1829 | 0 | for (auto pif = aGridContainerFrame->GetPrevInFlow(); |
1830 | 0 | pif; pif = pif->GetPrevInFlow()) { |
1831 | 0 | ++fragment; |
1832 | 0 | firstInFlow = pif; |
1833 | 0 | } |
1834 | 0 | mSharedGridData = firstInFlow->GetProperty(SharedGridData::Prop()); |
1835 | 0 | MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData"); |
1836 | 0 |
|
1837 | 0 | // Find the start row for this fragment and undo breaks after that row |
1838 | 0 | // since the breaks might be different from the last reflow. |
1839 | 0 | auto& rowSizes = mSharedGridData->mRows.mSizes; |
1840 | 0 | const uint32_t numRows = rowSizes.Length(); |
1841 | 0 | mStartRow = numRows; |
1842 | 0 | for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) { |
1843 | 0 | if (rowSizes[row].mState & TrackSize::eBreakBefore) { |
1844 | 0 | if (fragment == ++breakCount) { |
1845 | 0 | mStartRow = row; |
1846 | 0 | mFragBStart = rowSizes[row].mPosition; |
1847 | 0 | // Restore the original size for |row| and grid gaps / state after it. |
1848 | 0 | const auto& origRowData = mSharedGridData->mOriginalRowData; |
1849 | 0 | rowSizes[row].mBase = origRowData[row].mBase; |
1850 | 0 | nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase; |
1851 | 0 | while (++row < numRows) { |
1852 | 0 | auto& sz = rowSizes[row]; |
1853 | 0 | const auto& orig = origRowData[row]; |
1854 | 0 | sz.mPosition = prevEndPos + orig.mGap; |
1855 | 0 | sz.mBase = orig.mBase; |
1856 | 0 | sz.mState &= ~TrackSize::eBreakBefore; |
1857 | 0 | prevEndPos = sz.mPosition + sz.mBase; |
1858 | 0 | } |
1859 | 0 | break; |
1860 | 0 | } |
1861 | 0 | } |
1862 | 0 | } |
1863 | 0 | if (mStartRow == numRows) { |
1864 | 0 | // All of the grid's rows fit inside of previous grid-container fragments. |
1865 | 0 | mFragBStart = aConsumedBSize; |
1866 | 0 | } |
1867 | 0 |
|
1868 | 0 | // Copy the shared track state. |
1869 | 0 | // XXX consider temporarily swapping the array elements instead and swapping |
1870 | 0 | // XXX them back after we're done reflowing, for better performance. |
1871 | 0 | // XXX (bug 1252002) |
1872 | 0 | mCols = mSharedGridData->mCols; |
1873 | 0 | mRows = mSharedGridData->mRows; |
1874 | 0 |
|
1875 | 0 | // Copy item data from each child's first-in-flow data in mSharedGridData. |
1876 | 0 | // XXX NOTE: This is O(n^2) in the number of items. (bug 1252186) |
1877 | 0 | mIter.Reset(); |
1878 | 0 | for (; !mIter.AtEnd(); mIter.Next()) { |
1879 | 0 | nsIFrame* child = *mIter; |
1880 | 0 | nsIFrame* childFirstInFlow = child->FirstInFlow(); |
1881 | 0 | DebugOnly<size_t> len = mGridItems.Length(); |
1882 | 0 | for (auto& itemInfo : mSharedGridData->mGridItems) { |
1883 | 0 | if (itemInfo.mFrame == childFirstInFlow) { |
1884 | 0 | auto item = mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea)); |
1885 | 0 | // Copy the item's baseline data so that the item's last fragment can do |
1886 | 0 | // 'last baseline' alignment if necessary. |
1887 | 0 | item->mState[0] |= itemInfo.mState[0] & ItemState::eAllBaselineBits; |
1888 | 0 | item->mState[1] |= itemInfo.mState[1] & ItemState::eAllBaselineBits; |
1889 | 0 | item->mBaselineOffset[0] = itemInfo.mBaselineOffset[0]; |
1890 | 0 | item->mBaselineOffset[1] = itemInfo.mBaselineOffset[1]; |
1891 | 0 | break; |
1892 | 0 | } |
1893 | 0 | } |
1894 | 0 | MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo"); |
1895 | 0 | } |
1896 | 0 |
|
1897 | 0 | // XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186) |
1898 | 0 | nsFrameList absPosChildren(aGridContainerFrame->GetChildList( |
1899 | 0 | aGridContainerFrame->GetAbsoluteListID())); |
1900 | 0 | for (auto f : absPosChildren) { |
1901 | 0 | nsIFrame* childFirstInFlow = f->FirstInFlow(); |
1902 | 0 | DebugOnly<size_t> len = mAbsPosItems.Length(); |
1903 | 0 | for (auto& itemInfo : mSharedGridData->mAbsPosItems) { |
1904 | 0 | if (itemInfo.mFrame == childFirstInFlow) { |
1905 | 0 | mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea)); |
1906 | 0 | break; |
1907 | 0 | } |
1908 | 0 | } |
1909 | 0 | MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo"); |
1910 | 0 | } |
1911 | 0 |
|
1912 | 0 | // Copy in the computed grid info state bit |
1913 | 0 | if (mSharedGridData->mGenerateComputedGridInfo) { |
1914 | 0 | aGridContainerFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES); |
1915 | 0 | } |
1916 | 0 | } |
1917 | | |
1918 | | /** |
1919 | | * Calculate our track sizes. |
1920 | | */ |
1921 | | void CalculateTrackSizes(const Grid& aGrid, |
1922 | | const LogicalSize& aContentBox, |
1923 | | SizingConstraint aConstraint); |
1924 | | |
1925 | | /** |
1926 | | * Return the percentage basis for a grid item in its writing-mode. |
1927 | | * If aAxis is eLogicalAxisInline then we return NS_UNCONSTRAINEDSIZE in |
1928 | | * both axes since we know all track sizes are indefinite at this point |
1929 | | * (we calculate column sizes before row sizes). Otherwise, assert that |
1930 | | * column sizes are known and calculate the size for aGridItem.mArea.mCols |
1931 | | * and use NS_UNCONSTRAINEDSIZE in the other axis. |
1932 | | * @param aAxis the axis we're currently calculating track sizes for |
1933 | | */ |
1934 | | LogicalSize PercentageBasisFor(LogicalAxis aAxis, |
1935 | | const GridItemInfo& aGridItem) const; |
1936 | | |
1937 | | /** |
1938 | | * Return the containing block for a grid item occupying aArea. |
1939 | | */ |
1940 | | LogicalRect ContainingBlockFor(const GridArea& aArea) const; |
1941 | | |
1942 | | /** |
1943 | | * Return the containing block for an abs.pos. grid item occupying aArea. |
1944 | | * Any 'auto' lines in the grid area will be aligned with grid container |
1945 | | * containing block on that side. |
1946 | | * @param aGridOrigin the origin of the grid |
1947 | | * @param aGridCB the grid container containing block (its padding area) |
1948 | | */ |
1949 | | LogicalRect ContainingBlockForAbsPos(const GridArea& aArea, |
1950 | | const LogicalPoint& aGridOrigin, |
1951 | | const LogicalRect& aGridCB) const; |
1952 | | |
1953 | | CSSOrderAwareFrameIterator mIter; |
1954 | | const nsStylePosition* const mGridStyle; |
1955 | | Tracks mCols; |
1956 | | Tracks mRows; |
1957 | | TrackSizingFunctions mColFunctions; |
1958 | | TrackSizingFunctions mRowFunctions; |
1959 | | /** |
1960 | | * Info about each (normal flow) grid item. |
1961 | | */ |
1962 | | nsTArray<GridItemInfo> mGridItems; |
1963 | | /** |
1964 | | * Info about each grid-aligned abs.pos. child. |
1965 | | */ |
1966 | | nsTArray<GridItemInfo> mAbsPosItems; |
1967 | | |
1968 | | /** |
1969 | | * @note mReflowInput may be null when using the 2nd ctor above. In this case |
1970 | | * we'll construct a dummy parent reflow state if we need it to calculate |
1971 | | * min/max-content contributions when sizing tracks. |
1972 | | */ |
1973 | | const ReflowInput* const mReflowInput; |
1974 | | gfxContext& mRenderingContext; |
1975 | | nsGridContainerFrame* const mFrame; |
1976 | | SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow. |
1977 | | /** Computed border+padding with mSkipSides applied. */ |
1978 | | LogicalMargin mBorderPadding; |
1979 | | /** |
1980 | | * BStart of this fragment in "grid space" (i.e. the concatenation of content |
1981 | | * areas of all fragments). Equal to mRows.mSizes[mStartRow].mPosition, |
1982 | | * or, if this fragment starts after the last row, the ConsumedBSize(). |
1983 | | */ |
1984 | | nscoord mFragBStart; |
1985 | | /** The start row for this fragment. */ |
1986 | | uint32_t mStartRow; |
1987 | | /** |
1988 | | * The start row for the next fragment, if any. If mNextFragmentStartRow == |
1989 | | * mStartRow then there are no rows in this fragment. |
1990 | | */ |
1991 | | uint32_t mNextFragmentStartRow; |
1992 | | /** Our tentative ApplySkipSides bits. */ |
1993 | | LogicalSides mSkipSides; |
1994 | | const WritingMode mWM; |
1995 | | /** Initialized lazily, when we find the fragmentainer. */ |
1996 | | bool mInFragmentainer; |
1997 | | |
1998 | | private: |
1999 | | GridReflowInput(nsGridContainerFrame* aFrame, |
2000 | | gfxContext& aRenderingContext, |
2001 | | const ReflowInput* aReflowInput, |
2002 | | const nsStylePosition* aGridStyle, |
2003 | | const WritingMode& aWM) |
2004 | | : mIter(aFrame, kPrincipalList) |
2005 | | , mGridStyle(aGridStyle) |
2006 | | , mCols(eLogicalAxisInline) |
2007 | | , mRows(eLogicalAxisBlock) |
2008 | | , mColFunctions(mGridStyle->GridTemplateColumns(), |
2009 | | mGridStyle->mGridAutoColumnsMin, |
2010 | | mGridStyle->mGridAutoColumnsMax) |
2011 | | , mRowFunctions(mGridStyle->GridTemplateRows(), |
2012 | | mGridStyle->mGridAutoRowsMin, |
2013 | | mGridStyle->mGridAutoRowsMax) |
2014 | | , mReflowInput(aReflowInput) |
2015 | | , mRenderingContext(aRenderingContext) |
2016 | | , mFrame(aFrame) |
2017 | | , mSharedGridData(nullptr) |
2018 | | , mBorderPadding(aWM) |
2019 | | , mFragBStart(0) |
2020 | | , mStartRow(0) |
2021 | | , mNextFragmentStartRow(0) |
2022 | | , mWM(aWM) |
2023 | | , mInFragmentainer(false) |
2024 | 0 | { |
2025 | 0 | MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame); |
2026 | 0 | if (aReflowInput) { |
2027 | 0 | mBorderPadding = aReflowInput->ComputedLogicalBorderPadding(); |
2028 | 0 | mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides(); |
2029 | 0 | mBorderPadding.ApplySkipSides(mSkipSides); |
2030 | 0 | } |
2031 | 0 | } |
2032 | | }; |
2033 | | |
2034 | | using GridReflowInput = nsGridContainerFrame::GridReflowInput; |
2035 | | |
2036 | | /** |
2037 | | * The Grid implements grid item placement and the state of the grid - |
2038 | | * the size of the explicit/implicit grid, which cells are occupied etc. |
2039 | | */ |
2040 | | struct MOZ_STACK_CLASS nsGridContainerFrame::Grid |
2041 | | { |
2042 | | /** |
2043 | | * Place all child frames into the grid and expand the (implicit) grid as |
2044 | | * needed. The allocated GridAreas are stored in the GridAreaProperty |
2045 | | * frame property on the child frame. |
2046 | | * @param aComputedMinSize the container's min-size - used to determine |
2047 | | * the number of repeat(auto-fill/fit) tracks. |
2048 | | * @param aComputedSize the container's size - used to determine |
2049 | | * the number of repeat(auto-fill/fit) tracks. |
2050 | | * @param aComputedMaxSize the container's max-size - used to determine |
2051 | | * the number of repeat(auto-fill/fit) tracks. |
2052 | | */ |
2053 | | void PlaceGridItems(GridReflowInput& aState, |
2054 | | const LogicalSize& aComputedMinSize, |
2055 | | const LogicalSize& aComputedSize, |
2056 | | const LogicalSize& aComputedMaxSize); |
2057 | | |
2058 | | /** |
2059 | | * As above but for an abs.pos. child. Any 'auto' lines will be represented |
2060 | | * by kAutoLine in the LineRange result. |
2061 | | * @param aGridStart the first line in the final, but untranslated grid |
2062 | | * @param aGridEnd the last line in the final, but untranslated grid |
2063 | | */ |
2064 | | LineRange ResolveAbsPosLineRange(const nsStyleGridLine& aStart, |
2065 | | const nsStyleGridLine& aEnd, |
2066 | | const LineNameMap& aNameMap, |
2067 | | LogicalAxis aAxis, |
2068 | | uint32_t aExplicitGridEnd, |
2069 | | int32_t aGridStart, |
2070 | | int32_t aGridEnd, |
2071 | | const nsStylePosition* aStyle); |
2072 | | |
2073 | | /** |
2074 | | * Return a GridArea for abs.pos. item with non-auto lines placed at |
2075 | | * a definite line (1-based) with placement errors resolved. One or both |
2076 | | * positions may still be 'auto'. |
2077 | | * @param aChild the abs.pos. grid item to place |
2078 | | * @param aStyle the StylePosition() for the grid container |
2079 | | */ |
2080 | | GridArea PlaceAbsPos(nsIFrame* aChild, |
2081 | | const LineNameMap& aColLineNameMap, |
2082 | | const LineNameMap& aRowLineNameMap, |
2083 | | const nsStylePosition* aStyle); |
2084 | | |
2085 | | /** |
2086 | | * Find the first column in row aLockedRow starting at aStartCol where aArea |
2087 | | * could be placed without overlapping other items. The returned column may |
2088 | | * cause aArea to overflow the current implicit grid bounds if placed there. |
2089 | | */ |
2090 | | uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow, |
2091 | | const GridArea* aArea) const; |
2092 | | |
2093 | | /** |
2094 | | * Place aArea in the first column (in row aArea->mRows.mStart) starting at |
2095 | | * aStartCol without overlapping other items. The resulting aArea may |
2096 | | * overflow the current implicit grid bounds. |
2097 | | * @param aClampMaxColLine the maximum allowed column line number (zero-based) |
2098 | | * Pre-condition: aArea->mRows.IsDefinite() is true. |
2099 | | * Post-condition: aArea->IsDefinite() is true. |
2100 | | */ |
2101 | | void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea, |
2102 | | uint32_t aClampMaxColLine) const; |
2103 | | |
2104 | | /** |
2105 | | * Find the first row in column aLockedCol starting at aStartRow where aArea |
2106 | | * could be placed without overlapping other items. The returned row may |
2107 | | * cause aArea to overflow the current implicit grid bounds if placed there. |
2108 | | */ |
2109 | | uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow, |
2110 | | const GridArea* aArea) const; |
2111 | | |
2112 | | /** |
2113 | | * Place aArea in the first row (in column aArea->mCols.mStart) starting at |
2114 | | * aStartRow without overlapping other items. The resulting aArea may |
2115 | | * overflow the current implicit grid bounds. |
2116 | | * @param aClampMaxRowLine the maximum allowed row line number (zero-based) |
2117 | | * Pre-condition: aArea->mCols.IsDefinite() is true. |
2118 | | * Post-condition: aArea->IsDefinite() is true. |
2119 | | */ |
2120 | | void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea, |
2121 | | uint32_t aClampMaxRowLine) const; |
2122 | | |
2123 | | /** |
2124 | | * Place aArea in the first column starting at aStartCol,aStartRow without |
2125 | | * causing it to overlap other items or overflow mGridColEnd. |
2126 | | * If there's no such column in aStartRow, continue in position 1,aStartRow+1. |
2127 | | * @param aClampMaxColLine the maximum allowed column line number (zero-based) |
2128 | | * @param aClampMaxRowLine the maximum allowed row line number (zero-based) |
2129 | | * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true. |
2130 | | * Post-condition: aArea->IsDefinite() is true. |
2131 | | */ |
2132 | | void PlaceAutoAutoInRowOrder(uint32_t aStartCol, |
2133 | | uint32_t aStartRow, |
2134 | | GridArea* aArea, |
2135 | | uint32_t aClampMaxColLine, |
2136 | | uint32_t aClampMaxRowLine) const; |
2137 | | |
2138 | | /** |
2139 | | * Place aArea in the first row starting at aStartCol,aStartRow without |
2140 | | * causing it to overlap other items or overflow mGridRowEnd. |
2141 | | * If there's no such row in aStartCol, continue in position aStartCol+1,1. |
2142 | | * @param aClampMaxColLine the maximum allowed column line number (zero-based) |
2143 | | * @param aClampMaxRowLine the maximum allowed row line number (zero-based) |
2144 | | * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true. |
2145 | | * Post-condition: aArea->IsDefinite() is true. |
2146 | | */ |
2147 | | void PlaceAutoAutoInColOrder(uint32_t aStartCol, |
2148 | | uint32_t aStartRow, |
2149 | | GridArea* aArea, |
2150 | | uint32_t aClampMaxColLine, |
2151 | | uint32_t aClampMaxRowLine) const; |
2152 | | |
2153 | | /** |
2154 | | * Return aLine if it's inside the aMin..aMax range (inclusive), |
2155 | | * otherwise return kAutoLine. |
2156 | | */ |
2157 | | static int32_t |
2158 | | AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax) |
2159 | 0 | { |
2160 | 0 | MOZ_ASSERT(aMin <= aMax); |
2161 | 0 | if (aLine < aMin || aLine > aMax) { |
2162 | 0 | return kAutoLine; |
2163 | 0 | } |
2164 | 0 | return aLine; |
2165 | 0 | } |
2166 | | |
2167 | | /** |
2168 | | * Inflate the implicit grid to include aArea. |
2169 | | * @param aArea may be definite or auto |
2170 | | */ |
2171 | | void InflateGridFor(const GridArea& aArea) |
2172 | 0 | { |
2173 | 0 | mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd()); |
2174 | 0 | mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd()); |
2175 | 0 | MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine && |
2176 | 0 | mGridRowEnd <= kTranslatedMaxLine); |
2177 | 0 | } |
2178 | | |
2179 | | /** |
2180 | | * Return a line number for (non-auto) aLine, per: |
2181 | | * http://dev.w3.org/csswg/css-grid/#line-placement |
2182 | | * @param aLine style data for the line (must be non-auto) |
2183 | | * @param aNth a number of lines to find from aFromIndex, negative if the |
2184 | | * search should be in reverse order. In the case aLine has |
2185 | | * a specified line name, it's permitted to pass in zero which |
2186 | | * will be treated as one. |
2187 | | * @param aFromIndex the zero-based index to start counting from |
2188 | | * @param aLineNameList the explicit named lines |
2189 | | * @param aSide the axis+edge we're resolving names for (e.g. if we're |
2190 | | resolving a grid-row-start line, pass eLogicalSideBStart) |
2191 | | * @param aExplicitGridEnd the last line in the explicit grid |
2192 | | * @param aStyle the StylePosition() for the grid container |
2193 | | * @return a definite line (1-based), clamped to the kMinLine..kMaxLine range |
2194 | | */ |
2195 | | int32_t ResolveLine(const nsStyleGridLine& aLine, |
2196 | | int32_t aNth, |
2197 | | uint32_t aFromIndex, |
2198 | | const LineNameMap& aNameMap, |
2199 | | LogicalSide aSide, |
2200 | | uint32_t aExplicitGridEnd, |
2201 | | const nsStylePosition* aStyle); |
2202 | | |
2203 | | /** |
2204 | | * Helper method for ResolveLineRange. |
2205 | | * @see ResolveLineRange |
2206 | | * @return a pair (start,end) of lines |
2207 | | */ |
2208 | | typedef std::pair<int32_t, int32_t> LinePair; |
2209 | | LinePair ResolveLineRangeHelper(const nsStyleGridLine& aStart, |
2210 | | const nsStyleGridLine& aEnd, |
2211 | | const LineNameMap& aNameMap, |
2212 | | LogicalAxis aAxis, |
2213 | | uint32_t aExplicitGridEnd, |
2214 | | const nsStylePosition* aStyle); |
2215 | | |
2216 | | /** |
2217 | | * Return a LineRange based on the given style data. Non-auto lines |
2218 | | * are resolved to a definite line number (1-based) per: |
2219 | | * http://dev.w3.org/csswg/css-grid/#line-placement |
2220 | | * with placement errors corrected per: |
2221 | | * http://dev.w3.org/csswg/css-grid/#grid-placement-errors |
2222 | | * @param aStyle the StylePosition() for the grid container |
2223 | | * @param aStart style data for the start line |
2224 | | * @param aEnd style data for the end line |
2225 | | * @param aLineNameList the explicit named lines |
2226 | | * @param aAxis the axis we're resolving names in |
2227 | | * @param aExplicitGridEnd the last line in the explicit grid |
2228 | | * @param aStyle the StylePosition() for the grid container |
2229 | | */ |
2230 | | LineRange ResolveLineRange(const nsStyleGridLine& aStart, |
2231 | | const nsStyleGridLine& aEnd, |
2232 | | const LineNameMap& aNameMap, |
2233 | | LogicalAxis aAxis, |
2234 | | uint32_t aExplicitGridEnd, |
2235 | | const nsStylePosition* aStyle); |
2236 | | |
2237 | | /** |
2238 | | * Return a GridArea with non-auto lines placed at a definite line (1-based) |
2239 | | * with placement errors resolved. One or both positions may still |
2240 | | * be 'auto'. |
2241 | | * @param aChild the grid item |
2242 | | * @param aStyle the StylePosition() for the grid container |
2243 | | */ |
2244 | | GridArea PlaceDefinite(nsIFrame* aChild, |
2245 | | const LineNameMap& aColLineNameMap, |
2246 | | const LineNameMap& aRowLineNameMap, |
2247 | | const nsStylePosition* aStyle); |
2248 | | |
2249 | | bool HasImplicitNamedArea(const nsString& aName) const |
2250 | 0 | { |
2251 | 0 | return mAreas && mAreas->Contains(aName); |
2252 | 0 | } |
2253 | | |
2254 | | /** |
2255 | | * A convenience method to lookup a name in 'grid-template-areas'. |
2256 | | * @param aStyle the StylePosition() for the grid container |
2257 | | * @return null if not found |
2258 | | */ |
2259 | | static const css::GridNamedArea* |
2260 | | FindNamedArea(const nsAString& aName, const nsStylePosition* aStyle) |
2261 | 0 | { |
2262 | 0 | if (!aStyle->mGridTemplateAreas) { |
2263 | 0 | return nullptr; |
2264 | 0 | } |
2265 | 0 | const nsTArray<css::GridNamedArea>& areas = |
2266 | 0 | aStyle->mGridTemplateAreas->mNamedAreas; |
2267 | 0 | size_t len = areas.Length(); |
2268 | 0 | for (size_t i = 0; i < len; ++i) { |
2269 | 0 | const css::GridNamedArea& area = areas[i]; |
2270 | 0 | if (area.mName == aName) { |
2271 | 0 | return &area; |
2272 | 0 | } |
2273 | 0 | } |
2274 | 0 | return nullptr; |
2275 | 0 | } |
2276 | | |
2277 | | // Return true if aString ends in aSuffix and has at least one character before |
2278 | | // the suffix. Assign aIndex to where the suffix starts. |
2279 | | static bool |
2280 | | IsNameWithSuffix(const nsString& aString, const nsString& aSuffix, |
2281 | | uint32_t* aIndex) |
2282 | 0 | { |
2283 | 0 | if (StringEndsWith(aString, aSuffix)) { |
2284 | 0 | *aIndex = aString.Length() - aSuffix.Length(); |
2285 | 0 | return *aIndex != 0; |
2286 | 0 | } |
2287 | 0 | return false; |
2288 | 0 | } |
2289 | | |
2290 | | static bool |
2291 | | IsNameWithEndSuffix(const nsString& aString, uint32_t* aIndex) |
2292 | 0 | { |
2293 | 0 | return IsNameWithSuffix(aString, NS_LITERAL_STRING("-end"), aIndex); |
2294 | 0 | } |
2295 | | |
2296 | | static bool |
2297 | | IsNameWithStartSuffix(const nsString& aString, uint32_t* aIndex) |
2298 | 0 | { |
2299 | 0 | return IsNameWithSuffix(aString, NS_LITERAL_STRING("-start"), aIndex); |
2300 | 0 | } |
2301 | | |
2302 | | /** |
2303 | | * A CellMap holds state for each cell in the grid. |
2304 | | * It's row major. It's sparse in the sense that it only has enough rows to |
2305 | | * cover the last row that has a grid item. Each row only has enough entries |
2306 | | * to cover columns that are occupied *on that row*, i.e. it's not a full |
2307 | | * matrix covering the entire implicit grid. An absent Cell means that it's |
2308 | | * unoccupied by any grid item. |
2309 | | */ |
2310 | | struct CellMap { |
2311 | | struct Cell { |
2312 | 0 | Cell() : mIsOccupied(false) {} |
2313 | | bool mIsOccupied : 1; |
2314 | | }; |
2315 | | |
2316 | | void Fill(const GridArea& aGridArea) |
2317 | 0 | { |
2318 | 0 | MOZ_ASSERT(aGridArea.IsDefinite()); |
2319 | 0 | MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd); |
2320 | 0 | MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd); |
2321 | 0 | const auto numRows = aGridArea.mRows.mEnd; |
2322 | 0 | const auto numCols = aGridArea.mCols.mEnd; |
2323 | 0 | mCells.EnsureLengthAtLeast(numRows); |
2324 | 0 | for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) { |
2325 | 0 | nsTArray<Cell>& cellsInRow = mCells[i]; |
2326 | 0 | cellsInRow.EnsureLengthAtLeast(numCols); |
2327 | 0 | for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) { |
2328 | 0 | cellsInRow[j].mIsOccupied = true; |
2329 | 0 | } |
2330 | 0 | } |
2331 | 0 | } |
2332 | | |
2333 | | uint32_t IsEmptyCol(uint32_t aCol) const |
2334 | 0 | { |
2335 | 0 | for (auto& row : mCells) { |
2336 | 0 | if (aCol < row.Length() && row[aCol].mIsOccupied) { |
2337 | 0 | return false; |
2338 | 0 | } |
2339 | 0 | } |
2340 | 0 | return true; |
2341 | 0 | } |
2342 | | uint32_t IsEmptyRow(uint32_t aRow) const |
2343 | 0 | { |
2344 | 0 | if (aRow >= mCells.Length()) { |
2345 | 0 | return true; |
2346 | 0 | } |
2347 | 0 | for (const Cell& cell : mCells[aRow]) { |
2348 | 0 | if (cell.mIsOccupied) { |
2349 | 0 | return false; |
2350 | 0 | } |
2351 | 0 | } |
2352 | 0 | return true; |
2353 | 0 | } |
2354 | | #ifdef DEBUG |
2355 | | void Dump() const |
2356 | | { |
2357 | | const size_t numRows = mCells.Length(); |
2358 | | for (size_t i = 0; i < numRows; ++i) { |
2359 | | const nsTArray<Cell>& cellsInRow = mCells[i]; |
2360 | | const size_t numCols = cellsInRow.Length(); |
2361 | | printf("%lu:\t", (unsigned long)i + 1); |
2362 | | for (size_t j = 0; j < numCols; ++j) { |
2363 | | printf(cellsInRow[j].mIsOccupied ? "X " : ". "); |
2364 | | } |
2365 | | printf("\n"); |
2366 | | } |
2367 | | } |
2368 | | #endif |
2369 | | |
2370 | | nsTArray<nsTArray<Cell>> mCells; |
2371 | | }; |
2372 | | |
2373 | | /** |
2374 | | * State for each cell in the grid. |
2375 | | */ |
2376 | | CellMap mCellMap; |
2377 | | /** |
2378 | | * @see HasImplicitNamedArea. |
2379 | | */ |
2380 | | ImplicitNamedAreas* mAreas; |
2381 | | /** |
2382 | | * The last column grid line (1-based) in the explicit grid. |
2383 | | * (i.e. the number of explicit columns + 1) |
2384 | | */ |
2385 | | uint32_t mExplicitGridColEnd; |
2386 | | /** |
2387 | | * The last row grid line (1-based) in the explicit grid. |
2388 | | * (i.e. the number of explicit rows + 1) |
2389 | | */ |
2390 | | uint32_t mExplicitGridRowEnd; |
2391 | | // Same for the implicit grid, except these become zero-based after |
2392 | | // resolving definite lines. |
2393 | | uint32_t mGridColEnd; |
2394 | | uint32_t mGridRowEnd; |
2395 | | |
2396 | | /** |
2397 | | * Offsets from the start of the implicit grid to the start of the translated |
2398 | | * explicit grid. They are zero if there are no implicit lines before 1,1. |
2399 | | * e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the |
2400 | | * corresponding GridArea::mCols will be 0 / 3 in the zero-based translated |
2401 | | * grid. |
2402 | | */ |
2403 | | uint32_t mExplicitGridOffsetCol; |
2404 | | uint32_t mExplicitGridOffsetRow; |
2405 | | }; |
2406 | | |
2407 | | void |
2408 | | nsGridContainerFrame::GridReflowInput::CalculateTrackSizes( |
2409 | | const Grid& aGrid, |
2410 | | const LogicalSize& aContentBox, |
2411 | | SizingConstraint aConstraint) |
2412 | 0 | { |
2413 | 0 | mCols.Initialize(mColFunctions, mGridStyle->mColumnGap, |
2414 | 0 | aGrid.mGridColEnd, aContentBox.ISize(mWM)); |
2415 | 0 | mRows.Initialize(mRowFunctions, mGridStyle->mRowGap, |
2416 | 0 | aGrid.mGridRowEnd, aContentBox.BSize(mWM)); |
2417 | 0 |
|
2418 | 0 | mCols.CalculateSizes(*this, mGridItems, mColFunctions, |
2419 | 0 | aContentBox.ISize(mWM), &GridArea::mCols, |
2420 | 0 | aConstraint); |
2421 | 0 | mCols.AlignJustifyContent(mGridStyle, mWM, aContentBox.ISize(mWM)); |
2422 | 0 | // Column positions and sizes are now final. |
2423 | 0 | mCols.mCanResolveLineRangeSize = true; |
2424 | 0 |
|
2425 | 0 | mRows.CalculateSizes(*this, mGridItems, mRowFunctions, |
2426 | 0 | aContentBox.BSize(mWM), &GridArea::mRows, |
2427 | 0 | aConstraint); |
2428 | 0 | } |
2429 | | |
2430 | | /** |
2431 | | * (XXX share this utility function with nsFlexContainerFrame at some point) |
2432 | | * |
2433 | | * Helper for BuildDisplayList, to implement this special-case for grid |
2434 | | * items from the spec: |
2435 | | * The painting order of grid items is exactly the same as inline blocks, |
2436 | | * except that [...] 'z-index' values other than 'auto' create a stacking |
2437 | | * context even if 'position' is 'static'. |
2438 | | * http://dev.w3.org/csswg/css-grid/#z-order |
2439 | | */ |
2440 | | static uint32_t |
2441 | | GetDisplayFlagsForGridItem(nsIFrame* aFrame) |
2442 | 0 | { |
2443 | 0 | const nsStylePosition* pos = aFrame->StylePosition(); |
2444 | 0 | if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) { |
2445 | 0 | return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT; |
2446 | 0 | } |
2447 | 0 | return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT; |
2448 | 0 | } |
2449 | | |
2450 | | // Align an item's margin box in its aAxis inside aCBSize. |
2451 | | static void |
2452 | | AlignJustifySelf(uint8_t aAlignment, LogicalAxis aAxis, |
2453 | | AlignJustifyFlags aFlags, |
2454 | | nscoord aBaselineAdjust, nscoord aCBSize, |
2455 | | const ReflowInput& aRI, const LogicalSize& aChildSize, |
2456 | | LogicalPoint* aPos) |
2457 | 0 | { |
2458 | 0 | MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_AUTO, "unexpected 'auto' " |
2459 | 0 | "computed value for normal flow grid item"); |
2460 | 0 |
|
2461 | 0 | // NOTE: this is the resulting frame offset (border box). |
2462 | 0 | nscoord offset = |
2463 | 0 | CSSAlignUtils::AlignJustifySelf(aAlignment, aAxis, aFlags, |
2464 | 0 | aBaselineAdjust, aCBSize, |
2465 | 0 | aRI, aChildSize); |
2466 | 0 |
|
2467 | 0 | // Set the position (aPos) for the requested alignment. |
2468 | 0 | if (offset != 0) { |
2469 | 0 | WritingMode wm = aRI.GetWritingMode(); |
2470 | 0 | nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm); |
2471 | 0 | pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::eSameSide) ? offset : -offset; |
2472 | 0 | } |
2473 | 0 | } |
2474 | | |
2475 | | static void |
2476 | | AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem, |
2477 | | uint8_t aAlignSelf, nscoord aCBSize, const WritingMode aCBWM, |
2478 | | const ReflowInput& aRI, const LogicalSize& aSize, |
2479 | | LogicalPoint* aPos) |
2480 | 0 | { |
2481 | 0 | auto alignSelf = aAlignSelf; |
2482 | 0 |
|
2483 | 0 | AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags; |
2484 | 0 | if (alignSelf & NS_STYLE_ALIGN_SAFE) { |
2485 | 0 | flags |= AlignJustifyFlags::eOverflowSafe; |
2486 | 0 | } |
2487 | 0 | alignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS; |
2488 | 0 |
|
2489 | 0 | WritingMode childWM = aRI.GetWritingMode(); |
2490 | 0 | if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, childWM)) { |
2491 | 0 | flags |= AlignJustifyFlags::eSameSide; |
2492 | 0 | } |
2493 | 0 |
|
2494 | 0 | // Grid's 'align-self' axis is never parallel to the container's inline axis. |
2495 | 0 | if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) { |
2496 | 0 | alignSelf = NS_STYLE_ALIGN_START; |
2497 | 0 | } |
2498 | 0 | if (MOZ_LIKELY(alignSelf == NS_STYLE_ALIGN_NORMAL)) { |
2499 | 0 | alignSelf = NS_STYLE_ALIGN_STRETCH; |
2500 | 0 | } |
2501 | 0 |
|
2502 | 0 | nscoord baselineAdjust = 0; |
2503 | 0 | if (alignSelf == NS_STYLE_ALIGN_BASELINE || |
2504 | 0 | alignSelf == NS_STYLE_ALIGN_LAST_BASELINE) { |
2505 | 0 | alignSelf = aGridItem.GetSelfBaseline(alignSelf, eLogicalAxisBlock, |
2506 | 0 | &baselineAdjust); |
2507 | 0 | } |
2508 | 0 |
|
2509 | 0 | bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM); |
2510 | 0 | LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock; |
2511 | 0 | AlignJustifySelf(alignSelf, axis, flags, baselineAdjust, |
2512 | 0 | aCBSize, aRI, aSize, aPos); |
2513 | 0 | } |
2514 | | |
2515 | | static void |
2516 | | JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem, |
2517 | | uint8_t aJustifySelf, nscoord aCBSize, const WritingMode aCBWM, |
2518 | | const ReflowInput& aRI, const LogicalSize& aSize, |
2519 | | LogicalPoint* aPos) |
2520 | 0 | { |
2521 | 0 | auto justifySelf = aJustifySelf; |
2522 | 0 |
|
2523 | 0 | AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags; |
2524 | 0 | if (justifySelf & NS_STYLE_JUSTIFY_SAFE) { |
2525 | 0 | flags |= AlignJustifyFlags::eOverflowSafe; |
2526 | 0 | } |
2527 | 0 | justifySelf &= ~NS_STYLE_JUSTIFY_FLAG_BITS; |
2528 | 0 |
|
2529 | 0 | WritingMode childWM = aRI.GetWritingMode(); |
2530 | 0 | if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, childWM)) { |
2531 | 0 | flags |= AlignJustifyFlags::eSameSide; |
2532 | 0 | } |
2533 | 0 |
|
2534 | 0 | if (MOZ_LIKELY(justifySelf == NS_STYLE_ALIGN_NORMAL)) { |
2535 | 0 | justifySelf = NS_STYLE_ALIGN_STRETCH; |
2536 | 0 | } |
2537 | 0 |
|
2538 | 0 | nscoord baselineAdjust = 0; |
2539 | 0 | // Grid's 'justify-self' axis is always parallel to the container's inline |
2540 | 0 | // axis, so justify-self:left|right always applies. |
2541 | 0 | switch (justifySelf) { |
2542 | 0 | case NS_STYLE_JUSTIFY_LEFT: |
2543 | 0 | justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_START |
2544 | 0 | : NS_STYLE_JUSTIFY_END; |
2545 | 0 | break; |
2546 | 0 | case NS_STYLE_JUSTIFY_RIGHT: |
2547 | 0 | justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_END |
2548 | 0 | : NS_STYLE_JUSTIFY_START; |
2549 | 0 | break; |
2550 | 0 | case NS_STYLE_JUSTIFY_BASELINE: |
2551 | 0 | case NS_STYLE_JUSTIFY_LAST_BASELINE: |
2552 | 0 | justifySelf = aGridItem.GetSelfBaseline(justifySelf, eLogicalAxisInline, |
2553 | 0 | &baselineAdjust); |
2554 | 0 | break; |
2555 | 0 | } |
2556 | 0 |
|
2557 | 0 | bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM); |
2558 | 0 | LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline; |
2559 | 0 | AlignJustifySelf(justifySelf, axis, flags, baselineAdjust, |
2560 | 0 | aCBSize, aRI, aSize, aPos); |
2561 | 0 | } |
2562 | | |
2563 | | static uint16_t |
2564 | | GetAlignJustifyValue(uint16_t aAlignment, const WritingMode aWM, |
2565 | | const bool aIsAlign, bool* aOverflowSafe) |
2566 | 0 | { |
2567 | 0 | *aOverflowSafe = aAlignment & NS_STYLE_ALIGN_SAFE; |
2568 | 0 | aAlignment &= (NS_STYLE_ALIGN_ALL_BITS & ~NS_STYLE_ALIGN_FLAG_BITS); |
2569 | 0 |
|
2570 | 0 | // Map some alignment values to 'start' / 'end'. |
2571 | 0 | switch (aAlignment) { |
2572 | 0 | case NS_STYLE_ALIGN_LEFT: |
2573 | 0 | case NS_STYLE_ALIGN_RIGHT: { |
2574 | 0 | if (aIsAlign) { |
2575 | 0 | // Grid's 'align-content' axis is never parallel to the inline axis. |
2576 | 0 | return NS_STYLE_ALIGN_START; |
2577 | 0 | } |
2578 | 0 | bool isStart = aWM.IsBidiLTR() == (aAlignment == NS_STYLE_ALIGN_LEFT); |
2579 | 0 | return isStart ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END; |
2580 | 0 | } |
2581 | 0 | case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid |
2582 | 0 | return NS_STYLE_ALIGN_START; |
2583 | 0 | case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid |
2584 | 0 | return NS_STYLE_ALIGN_END; |
2585 | 0 | } |
2586 | 0 | return aAlignment; |
2587 | 0 | } |
2588 | | |
2589 | | static uint16_t |
2590 | | GetAlignJustifyFallbackIfAny(uint16_t aAlignment, const WritingMode aWM, |
2591 | | const bool aIsAlign, bool* aOverflowSafe) |
2592 | 0 | { |
2593 | 0 | uint16_t fallback = aAlignment >> NS_STYLE_ALIGN_ALL_SHIFT; |
2594 | 0 | if (fallback) { |
2595 | 0 | return GetAlignJustifyValue(fallback, aWM, aIsAlign, aOverflowSafe); |
2596 | 0 | } |
2597 | 0 | // https://drafts.csswg.org/css-align-3/#fallback-alignment |
2598 | 0 | switch (aAlignment) { |
2599 | 0 | case NS_STYLE_ALIGN_STRETCH: |
2600 | 0 | case NS_STYLE_ALIGN_SPACE_BETWEEN: |
2601 | 0 | return NS_STYLE_ALIGN_START; |
2602 | 0 | case NS_STYLE_ALIGN_SPACE_AROUND: |
2603 | 0 | case NS_STYLE_ALIGN_SPACE_EVENLY: |
2604 | 0 | return NS_STYLE_ALIGN_CENTER; |
2605 | 0 | } |
2606 | 0 | return 0; |
2607 | 0 | } |
2608 | | |
2609 | | //---------------------------------------------------------------------- |
2610 | | |
2611 | | // Frame class boilerplate |
2612 | | // ======================= |
2613 | | |
2614 | 0 | NS_QUERYFRAME_HEAD(nsGridContainerFrame) |
2615 | 0 | NS_QUERYFRAME_ENTRY(nsGridContainerFrame) |
2616 | 0 | NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame) |
2617 | | |
2618 | | NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame) |
2619 | | |
2620 | | nsContainerFrame* |
2621 | | NS_NewGridContainerFrame(nsIPresShell* aPresShell, |
2622 | | ComputedStyle* aStyle) |
2623 | 0 | { |
2624 | 0 | return new (aPresShell) nsGridContainerFrame(aStyle); |
2625 | 0 | } |
2626 | | |
2627 | | |
2628 | | //---------------------------------------------------------------------- |
2629 | | |
2630 | | // nsGridContainerFrame Method Implementations |
2631 | | // =========================================== |
2632 | | |
2633 | | /*static*/ const nsRect& |
2634 | | nsGridContainerFrame::GridItemCB(nsIFrame* aChild) |
2635 | 0 | { |
2636 | 0 | MOZ_ASSERT((aChild->GetStateBits() & NS_FRAME_OUT_OF_FLOW) && |
2637 | 0 | aChild->IsAbsolutelyPositioned()); |
2638 | 0 | nsRect* cb = aChild->GetProperty(GridItemContainingBlockRect()); |
2639 | 0 | MOZ_ASSERT(cb, "this method must only be called on grid items, and the grid " |
2640 | 0 | "container should've reflowed this item by now and set up cb"); |
2641 | 0 | return *cb; |
2642 | 0 | } |
2643 | | |
2644 | | void |
2645 | | nsGridContainerFrame::AddImplicitNamedAreas( |
2646 | | const nsTArray<nsTArray<nsString>>& aLineNameLists) |
2647 | 0 | { |
2648 | 0 | // http://dev.w3.org/csswg/css-grid/#implicit-named-areas |
2649 | 0 | // Note: recording these names for fast lookup later is just an optimization. |
2650 | 0 | const uint32_t len = |
2651 | 0 | std::min(aLineNameLists.Length(), size_t(nsStyleGridLine::kMaxLine)); |
2652 | 0 | nsTHashtable<nsStringHashKey> currentStarts; |
2653 | 0 | ImplicitNamedAreas* areas = GetImplicitNamedAreas(); |
2654 | 0 | for (uint32_t i = 0; i < len; ++i) { |
2655 | 0 | for (const nsString& name : aLineNameLists[i]) { |
2656 | 0 | uint32_t indexOfSuffix; |
2657 | 0 | if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) || |
2658 | 0 | Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) { |
2659 | 0 | // Extract the name that was found earlier. |
2660 | 0 | nsDependentSubstring areaName(name, 0, indexOfSuffix); |
2661 | 0 |
|
2662 | 0 | // Lazily create the ImplicitNamedAreas. |
2663 | 0 | if (!areas) { |
2664 | 0 | areas = new ImplicitNamedAreas; |
2665 | 0 | SetProperty(ImplicitNamedAreasProperty(), areas); |
2666 | 0 | } |
2667 | 0 |
|
2668 | 0 | mozilla::css::GridNamedArea area; |
2669 | 0 | if (!areas->Get(areaName, &area)) { |
2670 | 0 | // Not found, so prep the newly-seen area with a name and empty |
2671 | 0 | // boundary information, which will get filled in later. |
2672 | 0 | area.mName = areaName; |
2673 | 0 | area.mRowStart = 0; |
2674 | 0 | area.mRowEnd = 0; |
2675 | 0 | area.mColumnStart = 0; |
2676 | 0 | area.mColumnEnd = 0; |
2677 | 0 |
|
2678 | 0 | areas->Put(areaName, area); |
2679 | 0 | } |
2680 | 0 | } |
2681 | 0 | } |
2682 | 0 | } |
2683 | 0 | } |
2684 | | |
2685 | | void |
2686 | | nsGridContainerFrame::InitImplicitNamedAreas(const nsStylePosition* aStyle) |
2687 | 0 | { |
2688 | 0 | ImplicitNamedAreas* areas = GetImplicitNamedAreas(); |
2689 | 0 | if (areas) { |
2690 | 0 | // Clear it, but reuse the hashtable itself for now. We'll remove it |
2691 | 0 | // below if it isn't needed anymore. |
2692 | 0 | areas->Clear(); |
2693 | 0 | } |
2694 | 0 | AddImplicitNamedAreas(aStyle->GridTemplateColumns().mLineNameLists); |
2695 | 0 | AddImplicitNamedAreas(aStyle->GridTemplateRows().mLineNameLists); |
2696 | 0 | if (areas && areas->Count() == 0) { |
2697 | 0 | DeleteProperty(ImplicitNamedAreasProperty()); |
2698 | 0 | } |
2699 | 0 | } |
2700 | | |
2701 | | int32_t |
2702 | | nsGridContainerFrame::Grid::ResolveLine(const nsStyleGridLine& aLine, |
2703 | | int32_t aNth, |
2704 | | uint32_t aFromIndex, |
2705 | | const LineNameMap& aNameMap, |
2706 | | LogicalSide aSide, |
2707 | | uint32_t aExplicitGridEnd, |
2708 | | const nsStylePosition* aStyle) |
2709 | 0 | { |
2710 | 0 | MOZ_ASSERT(!aLine.IsAuto()); |
2711 | 0 | int32_t line = 0; |
2712 | 0 | if (aLine.mLineName.IsEmpty()) { |
2713 | 0 | MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero."); |
2714 | 0 | line = int32_t(aFromIndex) + aNth; |
2715 | 0 | } else { |
2716 | 0 | if (aNth == 0) { |
2717 | 0 | // <integer> was omitted; treat it as 1. |
2718 | 0 | aNth = 1; |
2719 | 0 | } |
2720 | 0 | bool isNameOnly = !aLine.mHasSpan && aLine.mInteger == 0; |
2721 | 0 | if (isNameOnly) { |
2722 | 0 | const GridNamedArea* area = FindNamedArea(aLine.mLineName, aStyle); |
2723 | 0 | if (area || HasImplicitNamedArea(aLine.mLineName)) { |
2724 | 0 | // The given name is a named area - look for explicit lines named |
2725 | 0 | // <name>-start/-end depending on which side we're resolving. |
2726 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-placement-slot |
2727 | 0 | uint32_t implicitLine = 0; |
2728 | 0 | nsAutoString lineName(aLine.mLineName); |
2729 | 0 | if (IsStart(aSide)) { |
2730 | 0 | lineName.AppendLiteral("-start"); |
2731 | 0 | if (area) { |
2732 | 0 | implicitLine = |
2733 | 0 | IsBlock(aSide) ? area->mRowStart : area->mColumnStart; |
2734 | 0 | } |
2735 | 0 | } else { |
2736 | 0 | lineName.AppendLiteral("-end"); |
2737 | 0 | if (area) { |
2738 | 0 | implicitLine = |
2739 | 0 | IsBlock(aSide) ? area->mRowEnd : area->mColumnEnd; |
2740 | 0 | } |
2741 | 0 | } |
2742 | 0 | line = aNameMap.FindNamedLine(lineName, &aNth, aFromIndex, |
2743 | 0 | implicitLine); |
2744 | 0 | } |
2745 | 0 | } |
2746 | 0 |
|
2747 | 0 | if (line == 0) { |
2748 | 0 | // If mLineName ends in -start/-end, try the prefix as a named area. |
2749 | 0 | uint32_t implicitLine = 0; |
2750 | 0 | uint32_t index; |
2751 | 0 | bool useStart = IsNameWithStartSuffix(aLine.mLineName, &index); |
2752 | 0 | if (useStart || IsNameWithEndSuffix(aLine.mLineName, &index)) { |
2753 | 0 | const GridNamedArea* area = |
2754 | 0 | FindNamedArea(nsDependentSubstring(aLine.mLineName, 0, index), |
2755 | 0 | aStyle); |
2756 | 0 | if (area) { |
2757 | 0 | if (useStart) { |
2758 | 0 | implicitLine = IsBlock(aSide) ? area->mRowStart |
2759 | 0 | : area->mColumnStart; |
2760 | 0 | } else { |
2761 | 0 | implicitLine = IsBlock(aSide) ? area->mRowEnd |
2762 | 0 | : area->mColumnEnd; |
2763 | 0 | } |
2764 | 0 | } |
2765 | 0 | } |
2766 | 0 | line = aNameMap.FindNamedLine(aLine.mLineName, &aNth, aFromIndex, |
2767 | 0 | implicitLine); |
2768 | 0 | } |
2769 | 0 |
|
2770 | 0 | if (line == 0) { |
2771 | 0 | MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!"); |
2772 | 0 | int32_t edgeLine; |
2773 | 0 | if (aLine.mHasSpan) { |
2774 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-placement-span-int |
2775 | 0 | // 'span <custom-ident> N' |
2776 | 0 | edgeLine = IsStart(aSide) ? 1 : aExplicitGridEnd; |
2777 | 0 | } else { |
2778 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-placement-int |
2779 | 0 | // '<custom-ident> N' |
2780 | 0 | edgeLine = aNth < 0 ? 1 : aExplicitGridEnd; |
2781 | 0 | } |
2782 | 0 | // "If not enough lines with that name exist, all lines in the implicit |
2783 | 0 | // grid are assumed to have that name..." |
2784 | 0 | line = edgeLine + aNth; |
2785 | 0 | } |
2786 | 0 | } |
2787 | 0 | return clamped(line, nsStyleGridLine::kMinLine, nsStyleGridLine::kMaxLine); |
2788 | 0 | } |
2789 | | |
2790 | | nsGridContainerFrame::Grid::LinePair |
2791 | | nsGridContainerFrame::Grid::ResolveLineRangeHelper( |
2792 | | const nsStyleGridLine& aStart, |
2793 | | const nsStyleGridLine& aEnd, |
2794 | | const LineNameMap& aNameMap, |
2795 | | LogicalAxis aAxis, |
2796 | | uint32_t aExplicitGridEnd, |
2797 | | const nsStylePosition* aStyle) |
2798 | 0 | { |
2799 | 0 | MOZ_ASSERT(int32_t(nsGridContainerFrame::kAutoLine) > nsStyleGridLine::kMaxLine); |
2800 | 0 |
|
2801 | 0 | if (aStart.mHasSpan) { |
2802 | 0 | if (aEnd.mHasSpan || aEnd.IsAuto()) { |
2803 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-placement-errors |
2804 | 0 | if (aStart.mLineName.IsEmpty()) { |
2805 | 0 | // span <integer> / span * |
2806 | 0 | // span <integer> / auto |
2807 | 0 | return LinePair(kAutoLine, aStart.mInteger); |
2808 | 0 | } |
2809 | 0 | // span <custom-ident> / span * |
2810 | 0 | // span <custom-ident> / auto |
2811 | 0 | return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1? |
2812 | 0 | } |
2813 | 0 | |
2814 | 0 | uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0; |
2815 | 0 | auto end = ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, |
2816 | 0 | MakeLogicalSide(aAxis, eLogicalEdgeEnd), |
2817 | 0 | aExplicitGridEnd, aStyle); |
2818 | 0 | int32_t span = aStart.mInteger == 0 ? 1 : aStart.mInteger; |
2819 | 0 | if (end <= 1) { |
2820 | 0 | // The end is at or before the first explicit line, thus all lines before |
2821 | 0 | // it match <custom-ident> since they're implicit. |
2822 | 0 | int32_t start = std::max(end - span, nsStyleGridLine::kMinLine); |
2823 | 0 | return LinePair(start, end); |
2824 | 0 | } |
2825 | 0 | auto start = ResolveLine(aStart, -span, end, aNameMap, |
2826 | 0 | MakeLogicalSide(aAxis, eLogicalEdgeStart), |
2827 | 0 | aExplicitGridEnd, aStyle); |
2828 | 0 | return LinePair(start, end); |
2829 | 0 | } |
2830 | 0 | |
2831 | 0 | int32_t start = kAutoLine; |
2832 | 0 | if (aStart.IsAuto()) { |
2833 | 0 | if (aEnd.IsAuto()) { |
2834 | 0 | // auto / auto |
2835 | 0 | return LinePair(start, 1); // XXX subgrid explicit size instead of 1? |
2836 | 0 | } |
2837 | 0 | if (aEnd.mHasSpan) { |
2838 | 0 | if (aEnd.mLineName.IsEmpty()) { |
2839 | 0 | // auto / span <integer> |
2840 | 0 | MOZ_ASSERT(aEnd.mInteger != 0); |
2841 | 0 | return LinePair(start, aEnd.mInteger); |
2842 | 0 | } |
2843 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-placement-errors |
2844 | 0 | // auto / span <custom-ident> |
2845 | 0 | return LinePair(start, 1); // XXX subgrid explicit size instead of 1? |
2846 | 0 | } |
2847 | 0 | } else { |
2848 | 0 | uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0; |
2849 | 0 | start = ResolveLine(aStart, aStart.mInteger, from, aNameMap, |
2850 | 0 | MakeLogicalSide(aAxis, eLogicalEdgeStart), |
2851 | 0 | aExplicitGridEnd, aStyle); |
2852 | 0 | if (aEnd.IsAuto()) { |
2853 | 0 | // A "definite line / auto" should resolve the auto to 'span 1'. |
2854 | 0 | // The error handling in ResolveLineRange will make that happen and also |
2855 | 0 | // clamp the end line correctly if we return "start / start". |
2856 | 0 | return LinePair(start, start); |
2857 | 0 | } |
2858 | 0 | } |
2859 | 0 | |
2860 | 0 | uint32_t from; |
2861 | 0 | int32_t nth = aEnd.mInteger == 0 ? 1 : aEnd.mInteger; |
2862 | 0 | if (aEnd.mHasSpan) { |
2863 | 0 | if (MOZ_UNLIKELY(start < 0)) { |
2864 | 0 | if (aEnd.mLineName.IsEmpty()) { |
2865 | 0 | return LinePair(start, start + nth); |
2866 | 0 | } |
2867 | 0 | from = 0; |
2868 | 0 | } else { |
2869 | 0 | if (start >= int32_t(aExplicitGridEnd)) { |
2870 | 0 | // The start is at or after the last explicit line, thus all lines |
2871 | 0 | // after it match <custom-ident> since they're implicit. |
2872 | 0 | return LinePair(start, std::min(start + nth, nsStyleGridLine::kMaxLine)); |
2873 | 0 | } |
2874 | 0 | from = start; |
2875 | 0 | } |
2876 | 0 | } else { |
2877 | 0 | from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0; |
2878 | 0 | } |
2879 | 0 | auto end = ResolveLine(aEnd, nth, from, aNameMap, |
2880 | 0 | MakeLogicalSide(aAxis, eLogicalEdgeEnd), |
2881 | 0 | aExplicitGridEnd, aStyle); |
2882 | 0 | if (start == int32_t(kAutoLine)) { |
2883 | 0 | // auto / definite line |
2884 | 0 | start = std::max(nsStyleGridLine::kMinLine, end - 1); |
2885 | 0 | } |
2886 | 0 | return LinePair(start, end); |
2887 | 0 | } |
2888 | | |
2889 | | nsGridContainerFrame::LineRange |
2890 | | nsGridContainerFrame::Grid::ResolveLineRange( |
2891 | | const nsStyleGridLine& aStart, |
2892 | | const nsStyleGridLine& aEnd, |
2893 | | const LineNameMap& aNameMap, |
2894 | | LogicalAxis aAxis, |
2895 | | uint32_t aExplicitGridEnd, |
2896 | | const nsStylePosition* aStyle) |
2897 | 0 | { |
2898 | 0 | LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAxis, |
2899 | 0 | aExplicitGridEnd, aStyle); |
2900 | 0 | MOZ_ASSERT(r.second != int32_t(kAutoLine)); |
2901 | 0 |
|
2902 | 0 | if (r.first == int32_t(kAutoLine)) { |
2903 | 0 | // r.second is a span, clamp it to kMaxLine - 1 so that the returned |
2904 | 0 | // range has a HypotheticalEnd <= kMaxLine. |
2905 | 0 | // http://dev.w3.org/csswg/css-grid/#overlarge-grids |
2906 | 0 | r.second = std::min(r.second, nsStyleGridLine::kMaxLine - 1); |
2907 | 0 | } else { |
2908 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-placement-errors |
2909 | 0 | if (r.first > r.second) { |
2910 | 0 | Swap(r.first, r.second); |
2911 | 0 | } else if (r.first == r.second) { |
2912 | 0 | if (MOZ_UNLIKELY(r.first == nsStyleGridLine::kMaxLine)) { |
2913 | 0 | r.first = nsStyleGridLine::kMaxLine - 1; |
2914 | 0 | } |
2915 | 0 | r.second = r.first + 1; // XXX subgrid explicit size instead of 1? |
2916 | 0 | } |
2917 | 0 | } |
2918 | 0 | return LineRange(r.first, r.second); |
2919 | 0 | } |
2920 | | |
2921 | | nsGridContainerFrame::GridArea |
2922 | | nsGridContainerFrame::Grid::PlaceDefinite(nsIFrame* aChild, |
2923 | | const LineNameMap& aColLineNameMap, |
2924 | | const LineNameMap& aRowLineNameMap, |
2925 | | const nsStylePosition* aStyle) |
2926 | 0 | { |
2927 | 0 | const nsStylePosition* itemStyle = aChild->StylePosition(); |
2928 | 0 | return GridArea( |
2929 | 0 | ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd, |
2930 | 0 | aColLineNameMap, eLogicalAxisInline, |
2931 | 0 | mExplicitGridColEnd, aStyle), |
2932 | 0 | ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd, |
2933 | 0 | aRowLineNameMap, eLogicalAxisBlock, |
2934 | 0 | mExplicitGridRowEnd, aStyle)); |
2935 | 0 | } |
2936 | | |
2937 | | nsGridContainerFrame::LineRange |
2938 | | nsGridContainerFrame::Grid::ResolveAbsPosLineRange( |
2939 | | const nsStyleGridLine& aStart, |
2940 | | const nsStyleGridLine& aEnd, |
2941 | | const LineNameMap& aNameMap, |
2942 | | LogicalAxis aAxis, |
2943 | | uint32_t aExplicitGridEnd, |
2944 | | int32_t aGridStart, |
2945 | | int32_t aGridEnd, |
2946 | | const nsStylePosition* aStyle) |
2947 | 0 | { |
2948 | 0 | if (aStart.IsAuto()) { |
2949 | 0 | if (aEnd.IsAuto()) { |
2950 | 0 | return LineRange(kAutoLine, kAutoLine); |
2951 | 0 | } |
2952 | 0 | uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0; |
2953 | 0 | int32_t end = |
2954 | 0 | ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, |
2955 | 0 | MakeLogicalSide(aAxis, eLogicalEdgeEnd), |
2956 | 0 | aExplicitGridEnd, aStyle); |
2957 | 0 | if (aEnd.mHasSpan) { |
2958 | 0 | ++end; |
2959 | 0 | } |
2960 | 0 | // A line outside the existing grid is treated as 'auto' for abs.pos (10.1). |
2961 | 0 | end = AutoIfOutside(end, aGridStart, aGridEnd); |
2962 | 0 | return LineRange(kAutoLine, end); |
2963 | 0 | } |
2964 | 0 |
|
2965 | 0 | if (aEnd.IsAuto()) { |
2966 | 0 | uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0; |
2967 | 0 | int32_t start = |
2968 | 0 | ResolveLine(aStart, aStart.mInteger, from, aNameMap, |
2969 | 0 | MakeLogicalSide(aAxis, eLogicalEdgeStart), |
2970 | 0 | aExplicitGridEnd, aStyle); |
2971 | 0 | if (aStart.mHasSpan) { |
2972 | 0 | start = std::max(aGridEnd - start, aGridStart); |
2973 | 0 | } |
2974 | 0 | start = AutoIfOutside(start, aGridStart, aGridEnd); |
2975 | 0 | return LineRange(start, kAutoLine); |
2976 | 0 | } |
2977 | 0 |
|
2978 | 0 | LineRange r = ResolveLineRange(aStart, aEnd, aNameMap, aAxis, |
2979 | 0 | aExplicitGridEnd, aStyle); |
2980 | 0 | if (r.IsAuto()) { |
2981 | 0 | MOZ_ASSERT(aStart.mHasSpan && aEnd.mHasSpan, "span / span is the only case " |
2982 | 0 | "leading to IsAuto here -- we dealt with the other cases above"); |
2983 | 0 | // The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this |
2984 | 0 | // case should result in "auto / auto" unlike normal flow grid items. |
2985 | 0 | return LineRange(kAutoLine, kAutoLine); |
2986 | 0 | } |
2987 | 0 |
|
2988 | 0 | return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd), |
2989 | 0 | AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd)); |
2990 | 0 | } |
2991 | | |
2992 | | nsGridContainerFrame::GridArea |
2993 | | nsGridContainerFrame::Grid::PlaceAbsPos(nsIFrame* aChild, |
2994 | | const LineNameMap& aColLineNameMap, |
2995 | | const LineNameMap& aRowLineNameMap, |
2996 | | const nsStylePosition* aStyle) |
2997 | 0 | { |
2998 | 0 | const nsStylePosition* itemStyle = aChild->StylePosition(); |
2999 | 0 | int32_t gridColStart = 1 - mExplicitGridOffsetCol; |
3000 | 0 | int32_t gridRowStart = 1 - mExplicitGridOffsetRow; |
3001 | 0 | return GridArea( |
3002 | 0 | ResolveAbsPosLineRange(itemStyle->mGridColumnStart, |
3003 | 0 | itemStyle->mGridColumnEnd, |
3004 | 0 | aColLineNameMap, eLogicalAxisInline, |
3005 | 0 | mExplicitGridColEnd, gridColStart, mGridColEnd, |
3006 | 0 | aStyle), |
3007 | 0 | ResolveAbsPosLineRange(itemStyle->mGridRowStart, |
3008 | 0 | itemStyle->mGridRowEnd, |
3009 | 0 | aRowLineNameMap, eLogicalAxisBlock, |
3010 | 0 | mExplicitGridRowEnd, gridRowStart, mGridRowEnd, |
3011 | 0 | aStyle)); |
3012 | 0 | } |
3013 | | |
3014 | | uint32_t |
3015 | | nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow, |
3016 | | const GridArea* aArea) const |
3017 | 0 | { |
3018 | 0 | const uint32_t extent = aArea->mCols.Extent(); |
3019 | 0 | const uint32_t iStart = aLockedRow; |
3020 | 0 | const uint32_t iEnd = iStart + aArea->mRows.Extent(); |
3021 | 0 | uint32_t candidate = aStartCol; |
3022 | 0 | for (uint32_t i = iStart; i < iEnd; ) { |
3023 | 0 | if (i >= mCellMap.mCells.Length()) { |
3024 | 0 | break; |
3025 | 0 | } |
3026 | 0 | const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i]; |
3027 | 0 | const uint32_t len = cellsInRow.Length(); |
3028 | 0 | const uint32_t lastCandidate = candidate; |
3029 | 0 | // Find the first gap in the current row that's at least 'extent' wide. |
3030 | 0 | // ('gap' tracks how wide the current column gap is.) |
3031 | 0 | for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) { |
3032 | 0 | if (!cellsInRow[j].mIsOccupied) { |
3033 | 0 | ++gap; |
3034 | 0 | continue; |
3035 | 0 | } |
3036 | 0 | candidate = j + 1; |
3037 | 0 | gap = 0; |
3038 | 0 | } |
3039 | 0 | if (lastCandidate < candidate && i != iStart) { |
3040 | 0 | // Couldn't fit 'extent' tracks at 'lastCandidate' here so we must |
3041 | 0 | // restart from the beginning with the new 'candidate'. |
3042 | 0 | i = iStart; |
3043 | 0 | } else { |
3044 | 0 | ++i; |
3045 | 0 | } |
3046 | 0 | } |
3047 | 0 | return candidate; |
3048 | 0 | } |
3049 | | |
3050 | | void |
3051 | | nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol, |
3052 | | GridArea* aArea, |
3053 | | uint32_t aClampMaxColLine) const |
3054 | 0 | { |
3055 | 0 | MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto()); |
3056 | 0 | uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea); |
3057 | 0 | aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine); |
3058 | 0 | MOZ_ASSERT(aArea->IsDefinite()); |
3059 | 0 | } |
3060 | | |
3061 | | uint32_t |
3062 | | nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow, |
3063 | | const GridArea* aArea) const |
3064 | 0 | { |
3065 | 0 | const uint32_t extent = aArea->mRows.Extent(); |
3066 | 0 | const uint32_t jStart = aLockedCol; |
3067 | 0 | const uint32_t jEnd = jStart + aArea->mCols.Extent(); |
3068 | 0 | const uint32_t iEnd = mCellMap.mCells.Length(); |
3069 | 0 | uint32_t candidate = aStartRow; |
3070 | 0 | // Find the first gap in the rows that's at least 'extent' tall. |
3071 | 0 | // ('gap' tracks how tall the current row gap is.) |
3072 | 0 | for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) { |
3073 | 0 | ++gap; // tentative, but we may reset it below if a column is occupied |
3074 | 0 | const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i]; |
3075 | 0 | const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length()); |
3076 | 0 | // Check if the current row is unoccupied from jStart to jEnd. |
3077 | 0 | for (uint32_t j = jStart; j < clampedJEnd; ++j) { |
3078 | 0 | if (cellsInRow[j].mIsOccupied) { |
3079 | 0 | // Couldn't fit 'extent' rows at 'candidate' here; we hit something |
3080 | 0 | // at row 'i'. So, try the row after 'i' as our next candidate. |
3081 | 0 | candidate = i + 1; |
3082 | 0 | gap = 0; |
3083 | 0 | break; |
3084 | 0 | } |
3085 | 0 | } |
3086 | 0 | } |
3087 | 0 | return candidate; |
3088 | 0 | } |
3089 | | |
3090 | | void |
3091 | | nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow, |
3092 | | GridArea* aArea, |
3093 | | uint32_t aClampMaxRowLine) const |
3094 | 0 | { |
3095 | 0 | MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto()); |
3096 | 0 | uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea); |
3097 | 0 | aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine); |
3098 | 0 | MOZ_ASSERT(aArea->IsDefinite()); |
3099 | 0 | } |
3100 | | |
3101 | | void |
3102 | | nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder( |
3103 | | uint32_t aStartCol, |
3104 | | uint32_t aStartRow, |
3105 | | GridArea* aArea, |
3106 | | uint32_t aClampMaxColLine, |
3107 | | uint32_t aClampMaxRowLine) const |
3108 | 0 | { |
3109 | 0 | MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto()); |
3110 | 0 | const uint32_t colExtent = aArea->mCols.Extent(); |
3111 | 0 | const uint32_t gridRowEnd = mGridRowEnd; |
3112 | 0 | const uint32_t gridColEnd = mGridColEnd; |
3113 | 0 | uint32_t col = aStartCol; |
3114 | 0 | uint32_t row = aStartRow; |
3115 | 0 | for (; row < gridRowEnd; ++row) { |
3116 | 0 | col = FindAutoCol(col, row, aArea); |
3117 | 0 | if (col + colExtent <= gridColEnd) { |
3118 | 0 | break; |
3119 | 0 | } |
3120 | 0 | col = 0; |
3121 | 0 | } |
3122 | 0 | MOZ_ASSERT(row < gridRowEnd || col == 0, |
3123 | 0 | "expected column 0 for placing in a new row"); |
3124 | 0 | aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine); |
3125 | 0 | aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine); |
3126 | 0 | MOZ_ASSERT(aArea->IsDefinite()); |
3127 | 0 | } |
3128 | | |
3129 | | void |
3130 | | nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder( |
3131 | | uint32_t aStartCol, |
3132 | | uint32_t aStartRow, |
3133 | | GridArea* aArea, |
3134 | | uint32_t aClampMaxColLine, |
3135 | | uint32_t aClampMaxRowLine) const |
3136 | 0 | { |
3137 | 0 | MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto()); |
3138 | 0 | const uint32_t rowExtent = aArea->mRows.Extent(); |
3139 | 0 | const uint32_t gridRowEnd = mGridRowEnd; |
3140 | 0 | const uint32_t gridColEnd = mGridColEnd; |
3141 | 0 | uint32_t col = aStartCol; |
3142 | 0 | uint32_t row = aStartRow; |
3143 | 0 | for (; col < gridColEnd; ++col) { |
3144 | 0 | row = FindAutoRow(col, row, aArea); |
3145 | 0 | if (row + rowExtent <= gridRowEnd) { |
3146 | 0 | break; |
3147 | 0 | } |
3148 | 0 | row = 0; |
3149 | 0 | } |
3150 | 0 | MOZ_ASSERT(col < gridColEnd || row == 0, |
3151 | 0 | "expected row 0 for placing in a new column"); |
3152 | 0 | aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine); |
3153 | 0 | aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine); |
3154 | 0 | MOZ_ASSERT(aArea->IsDefinite()); |
3155 | 0 | } |
3156 | | |
3157 | | void |
3158 | | nsGridContainerFrame::Grid::PlaceGridItems(GridReflowInput& aState, |
3159 | | const LogicalSize& aComputedMinSize, |
3160 | | const LogicalSize& aComputedSize, |
3161 | | const LogicalSize& aComputedMaxSize) |
3162 | 0 | { |
3163 | 0 | mAreas = aState.mFrame->GetImplicitNamedAreas(); |
3164 | 0 | const nsStylePosition* const gridStyle = aState.mGridStyle; |
3165 | 0 | MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map"); |
3166 | 0 |
|
3167 | 0 | // SubgridPlaceGridItems will set these if we find any subgrid items. |
3168 | 0 | aState.mFrame->RemoveStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM | |
3169 | 0 | NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM); |
3170 | 0 |
|
3171 | 0 | // http://dev.w3.org/csswg/css-grid/#grid-definition |
3172 | 0 | // Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End). |
3173 | 0 | // This is determined by the larger of the number of rows/columns defined |
3174 | 0 | // by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one. |
3175 | 0 | // Also initialize the Implicit Grid (mGridCol[Row]End) to the same values. |
3176 | 0 | // Note that this is for a grid with a 1,1 origin. We'll change that |
3177 | 0 | // to a 0,0 based grid after placing definite lines. |
3178 | 0 | auto areas = gridStyle->mGridTemplateAreas.get(); |
3179 | 0 | int32_t clampMaxColLine = nsStyleGridLine::kMaxLine; |
3180 | 0 | uint32_t numRepeatCols = aState.mColFunctions.InitRepeatTracks( |
3181 | 0 | gridStyle->mColumnGap, |
3182 | 0 | aComputedMinSize.ISize(aState.mWM), |
3183 | 0 | aComputedSize.ISize(aState.mWM), |
3184 | 0 | aComputedMaxSize.ISize(aState.mWM)); |
3185 | 0 | mGridColEnd = mExplicitGridColEnd = |
3186 | 0 | aState.mColFunctions.ComputeExplicitGridEnd(areas ? areas->mNColumns + 1 : 1); |
3187 | 0 | LineNameMap colLineNameMap(gridStyle->GridTemplateColumns(), numRepeatCols); |
3188 | 0 |
|
3189 | 0 | int32_t clampMaxRowLine = nsStyleGridLine::kMaxLine; |
3190 | 0 | uint32_t numRepeatRows = aState.mRowFunctions.InitRepeatTracks( |
3191 | 0 | gridStyle->mRowGap, |
3192 | 0 | aComputedMinSize.BSize(aState.mWM), |
3193 | 0 | aComputedSize.BSize(aState.mWM), |
3194 | 0 | aComputedMaxSize.BSize(aState.mWM)); |
3195 | 0 | mGridRowEnd = mExplicitGridRowEnd = |
3196 | 0 | aState.mRowFunctions.ComputeExplicitGridEnd(areas ? areas->NRows() + 1 : 1); |
3197 | 0 | LineNameMap rowLineNameMap(gridStyle->GridTemplateRows(), numRepeatRows); |
3198 | 0 |
|
3199 | 0 | // http://dev.w3.org/csswg/css-grid/#line-placement |
3200 | 0 | // Resolve definite positions per spec chap 9.2. |
3201 | 0 | int32_t minCol = 1; |
3202 | 0 | int32_t minRow = 1; |
3203 | 0 | aState.mGridItems.ClearAndRetainStorage(); |
3204 | 0 | aState.mIter.Reset(); |
3205 | 0 | for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { |
3206 | 0 | nsIFrame* child = *aState.mIter; |
3207 | 0 | GridItemInfo* info = |
3208 | 0 | aState.mGridItems.AppendElement(GridItemInfo(child, |
3209 | 0 | PlaceDefinite(child, |
3210 | 0 | colLineNameMap, |
3211 | 0 | rowLineNameMap, |
3212 | 0 | gridStyle))); |
3213 | 0 | MOZ_ASSERT(aState.mIter.ItemIndex() == aState.mGridItems.Length() - 1, |
3214 | 0 | "ItemIndex() is broken"); |
3215 | 0 | GridArea& area = info->mArea; |
3216 | 0 | if (area.mCols.IsDefinite()) { |
3217 | 0 | minCol = std::min(minCol, area.mCols.mUntranslatedStart); |
3218 | 0 | } |
3219 | 0 | if (area.mRows.IsDefinite()) { |
3220 | 0 | minRow = std::min(minRow, area.mRows.mUntranslatedStart); |
3221 | 0 | } |
3222 | 0 | } |
3223 | 0 |
|
3224 | 0 | // Translate the whole grid so that the top-/left-most area is at 0,0. |
3225 | 0 | mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above |
3226 | 0 | mExplicitGridOffsetRow = 1 - minRow; |
3227 | 0 | aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol; |
3228 | 0 | aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow; |
3229 | 0 | const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1; |
3230 | 0 | const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1; |
3231 | 0 | mGridColEnd += offsetToColZero; |
3232 | 0 | mGridRowEnd += offsetToRowZero; |
3233 | 0 | clampMaxColLine += offsetToColZero; |
3234 | 0 | clampMaxRowLine += offsetToRowZero; |
3235 | 0 | aState.mIter.Reset(); |
3236 | 0 | for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { |
3237 | 0 | GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea; |
3238 | 0 | if (area.mCols.IsDefinite()) { |
3239 | 0 | area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero; |
3240 | 0 | area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero; |
3241 | 0 | } |
3242 | 0 | if (area.mRows.IsDefinite()) { |
3243 | 0 | area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero; |
3244 | 0 | area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero; |
3245 | 0 | } |
3246 | 0 | if (area.IsDefinite()) { |
3247 | 0 | mCellMap.Fill(area); |
3248 | 0 | InflateGridFor(area); |
3249 | 0 | } |
3250 | 0 | } |
3251 | 0 |
|
3252 | 0 | // http://dev.w3.org/csswg/css-grid/#auto-placement-algo |
3253 | 0 | // Step 1, place 'auto' items that have one definite position - |
3254 | 0 | // definite row (column) for grid-auto-flow:row (column). |
3255 | 0 | auto flowStyle = gridStyle->mGridAutoFlow; |
3256 | 0 | const bool isRowOrder = (flowStyle & NS_STYLE_GRID_AUTO_FLOW_ROW); |
3257 | 0 | const bool isSparse = !(flowStyle & NS_STYLE_GRID_AUTO_FLOW_DENSE); |
3258 | 0 | // We need 1 cursor per row (or column) if placement is sparse. |
3259 | 0 | { |
3260 | 0 | Maybe<nsDataHashtable<nsUint32HashKey, uint32_t>> cursors; |
3261 | 0 | if (isSparse) { |
3262 | 0 | cursors.emplace(); |
3263 | 0 | } |
3264 | 0 | auto placeAutoMinorFunc = isRowOrder ? &Grid::PlaceAutoCol |
3265 | 0 | : &Grid::PlaceAutoRow; |
3266 | 0 | uint32_t clampMaxLine = isRowOrder ? clampMaxColLine : clampMaxRowLine; |
3267 | 0 | aState.mIter.Reset(); |
3268 | 0 | for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { |
3269 | 0 | GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea; |
3270 | 0 | LineRange& major = isRowOrder ? area.mRows : area.mCols; |
3271 | 0 | LineRange& minor = isRowOrder ? area.mCols : area.mRows; |
3272 | 0 | if (major.IsDefinite() && minor.IsAuto()) { |
3273 | 0 | // Items with 'auto' in the minor dimension only. |
3274 | 0 | uint32_t cursor = 0; |
3275 | 0 | if (isSparse) { |
3276 | 0 | cursors->Get(major.mStart, &cursor); |
3277 | 0 | } |
3278 | 0 | (this->*placeAutoMinorFunc)(cursor, &area, clampMaxLine); |
3279 | 0 | mCellMap.Fill(area); |
3280 | 0 | if (isSparse) { |
3281 | 0 | cursors->Put(major.mStart, minor.mEnd); |
3282 | 0 | } |
3283 | 0 | } |
3284 | 0 | InflateGridFor(area); // Step 2, inflating for auto items too |
3285 | 0 | } |
3286 | 0 | } |
3287 | 0 |
|
3288 | 0 | // XXX NOTE possible spec issue. |
3289 | 0 | // XXX It's unclear if the remaining major-dimension auto and |
3290 | 0 | // XXX auto in both dimensions should use the same cursor or not, |
3291 | 0 | // XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044 |
3292 | 0 | // XXX seems to indicate it shouldn't. |
3293 | 0 | // XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor |
3294 | 0 | // XXX now says it should (but didn't in earlier versions) |
3295 | 0 |
|
3296 | 0 | // Step 3, place the remaining grid items |
3297 | 0 | uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0 |
3298 | 0 | uint32_t cursorMinor = 0; |
3299 | 0 | auto placeAutoMajorFunc = isRowOrder ? &Grid::PlaceAutoRow |
3300 | 0 | : &Grid::PlaceAutoCol; |
3301 | 0 | uint32_t clampMaxMajorLine = isRowOrder ? clampMaxRowLine : clampMaxColLine; |
3302 | 0 | aState.mIter.Reset(); |
3303 | 0 | for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { |
3304 | 0 | GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea; |
3305 | 0 | MOZ_ASSERT(*aState.mIter == aState.mGridItems[aState.mIter.ItemIndex()].mFrame, |
3306 | 0 | "iterator out of sync with aState.mGridItems"); |
3307 | 0 | LineRange& major = isRowOrder ? area.mRows : area.mCols; |
3308 | 0 | LineRange& minor = isRowOrder ? area.mCols : area.mRows; |
3309 | 0 | if (major.IsAuto()) { |
3310 | 0 | if (minor.IsDefinite()) { |
3311 | 0 | // Items with 'auto' in the major dimension only. |
3312 | 0 | if (isSparse) { |
3313 | 0 | if (minor.mStart < cursorMinor) { |
3314 | 0 | ++cursorMajor; |
3315 | 0 | } |
3316 | 0 | cursorMinor = minor.mStart; |
3317 | 0 | } |
3318 | 0 | (this->*placeAutoMajorFunc)(cursorMajor, &area, clampMaxMajorLine); |
3319 | 0 | if (isSparse) { |
3320 | 0 | cursorMajor = major.mStart; |
3321 | 0 | } |
3322 | 0 | } else { |
3323 | 0 | // Items with 'auto' in both dimensions. |
3324 | 0 | if (isRowOrder) { |
3325 | 0 | PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area, |
3326 | 0 | clampMaxColLine, clampMaxRowLine); |
3327 | 0 | } else { |
3328 | 0 | PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area, |
3329 | 0 | clampMaxColLine, clampMaxRowLine); |
3330 | 0 | } |
3331 | 0 | if (isSparse) { |
3332 | 0 | cursorMajor = major.mStart; |
3333 | 0 | cursorMinor = minor.mEnd; |
3334 | | #ifdef DEBUG |
3335 | | uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd; |
3336 | | uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd; |
3337 | | MOZ_ASSERT(cursorMajor <= gridMajorEnd, |
3338 | | "we shouldn't need to place items further than 1 track " |
3339 | | "past the current end of the grid, in major dimension"); |
3340 | | MOZ_ASSERT(cursorMinor <= gridMinorEnd, |
3341 | | "we shouldn't add implicit minor tracks for auto/auto"); |
3342 | | #endif |
3343 | | } |
3344 | 0 | } |
3345 | 0 | mCellMap.Fill(area); |
3346 | 0 | InflateGridFor(area); |
3347 | 0 | } |
3348 | 0 | } |
3349 | 0 |
|
3350 | 0 | if (aState.mFrame->IsAbsoluteContainer()) { |
3351 | 0 | // 9.4 Absolutely-positioned Grid Items |
3352 | 0 | // http://dev.w3.org/csswg/css-grid/#abspos-items |
3353 | 0 | // We only resolve definite lines here; we'll align auto positions to the |
3354 | 0 | // grid container later during reflow. |
3355 | 0 | nsFrameList children(aState.mFrame->GetChildList( |
3356 | 0 | aState.mFrame->GetAbsoluteListID())); |
3357 | 0 | const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1; |
3358 | 0 | const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1; |
3359 | 0 | // Untranslate the grid again temporarily while resolving abs.pos. lines. |
3360 | 0 | AutoRestore<uint32_t> save1(mGridColEnd); |
3361 | 0 | AutoRestore<uint32_t> save2(mGridRowEnd); |
3362 | 0 | mGridColEnd -= offsetToColZero; |
3363 | 0 | mGridRowEnd -= offsetToRowZero; |
3364 | 0 | aState.mAbsPosItems.ClearAndRetainStorage(); |
3365 | 0 | size_t i = 0; |
3366 | 0 | for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) { |
3367 | 0 | nsIFrame* child = e.get(); |
3368 | 0 | GridItemInfo* info = |
3369 | 0 | aState.mAbsPosItems.AppendElement(GridItemInfo(child, |
3370 | 0 | PlaceAbsPos(child, |
3371 | 0 | colLineNameMap, |
3372 | 0 | rowLineNameMap, |
3373 | 0 | gridStyle))); |
3374 | 0 | GridArea& area = info->mArea; |
3375 | 0 | if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) { |
3376 | 0 | area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero; |
3377 | 0 | } |
3378 | 0 | if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) { |
3379 | 0 | area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero; |
3380 | 0 | } |
3381 | 0 | if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) { |
3382 | 0 | area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero; |
3383 | 0 | } |
3384 | 0 | if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) { |
3385 | 0 | area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero; |
3386 | 0 | } |
3387 | 0 | } |
3388 | 0 | } |
3389 | 0 |
|
3390 | 0 | // Count empty 'auto-fit' tracks in the repeat() range. |
3391 | 0 | // |colAdjust| will have a count for each line in the grid of how many |
3392 | 0 | // tracks were empty between the start of the grid and that line. |
3393 | 0 |
|
3394 | 0 | // Since this loop is concerned with just the repeat tracks, we |
3395 | 0 | // iterate from 0..NumRepeatTracks() which is the natural range of |
3396 | 0 | // mRemoveRepeatTracks. This means we have to add |
3397 | 0 | // (mExplicitGridOffset + mRepeatAutoStart) to get a zero-based |
3398 | 0 | // index for arrays like mCellMap and colAdjust. We'll then fill out |
3399 | 0 | // the colAdjust array for all the remaining lines. |
3400 | 0 | Maybe<nsTArray<uint32_t>> colAdjust; |
3401 | 0 | uint32_t numEmptyCols = 0; |
3402 | 0 | if (aState.mColFunctions.mHasRepeatAuto && |
3403 | 0 | !gridStyle->GridTemplateColumns().mIsAutoFill && |
3404 | 0 | aState.mColFunctions.NumRepeatTracks() > 0) { |
3405 | 0 | const uint32_t repeatStart = (aState.mColFunctions.mExplicitGridOffset + |
3406 | 0 | aState.mColFunctions.mRepeatAutoStart); |
3407 | 0 | const uint32_t numRepeats = aState.mColFunctions.NumRepeatTracks(); |
3408 | 0 | const uint32_t numColLines = mGridColEnd + 1; |
3409 | 0 | for (uint32_t i = 0; i < numRepeats; ++i) { |
3410 | 0 | if (numEmptyCols) { |
3411 | 0 | (*colAdjust)[repeatStart + i] = numEmptyCols; |
3412 | 0 | } |
3413 | 0 | if (mCellMap.IsEmptyCol(repeatStart + i)) { |
3414 | 0 | ++numEmptyCols; |
3415 | 0 | if (colAdjust.isNothing()) { |
3416 | 0 | colAdjust.emplace(numColLines); |
3417 | 0 | colAdjust->SetLength(numColLines); |
3418 | 0 | PodZero(colAdjust->Elements(), colAdjust->Length()); |
3419 | 0 | } |
3420 | 0 |
|
3421 | 0 | aState.mColFunctions.mRemovedRepeatTracks[i] = true; |
3422 | 0 | } |
3423 | 0 | } |
3424 | 0 | // Fill out the colAdjust array for all the columns after the |
3425 | 0 | // repeats. |
3426 | 0 | if (numEmptyCols) { |
3427 | 0 | for (uint32_t col = repeatStart + numRepeats; |
3428 | 0 | col < numColLines; ++col) { |
3429 | 0 | (*colAdjust)[col] = numEmptyCols; |
3430 | 0 | } |
3431 | 0 | } |
3432 | 0 | } |
3433 | 0 |
|
3434 | 0 | // Do similar work for the row tracks, with the same logic. |
3435 | 0 | Maybe<nsTArray<uint32_t>> rowAdjust; |
3436 | 0 | uint32_t numEmptyRows = 0; |
3437 | 0 | if (aState.mRowFunctions.mHasRepeatAuto && |
3438 | 0 | !gridStyle->GridTemplateRows().mIsAutoFill && |
3439 | 0 | aState.mRowFunctions.NumRepeatTracks() > 0) { |
3440 | 0 | const uint32_t repeatStart = (aState.mRowFunctions.mExplicitGridOffset + |
3441 | 0 | aState.mRowFunctions.mRepeatAutoStart); |
3442 | 0 | const uint32_t numRepeats = aState.mRowFunctions.NumRepeatTracks(); |
3443 | 0 | const uint32_t numRowLines = mGridRowEnd + 1; |
3444 | 0 | for (uint32_t i = 0; i < numRepeats; ++i) { |
3445 | 0 | if (numEmptyRows) { |
3446 | 0 | (*rowAdjust)[repeatStart + i] = numEmptyRows; |
3447 | 0 | } |
3448 | 0 | if (mCellMap.IsEmptyRow(repeatStart + i)) { |
3449 | 0 | ++numEmptyRows; |
3450 | 0 | if (rowAdjust.isNothing()) { |
3451 | 0 | rowAdjust.emplace(numRowLines); |
3452 | 0 | rowAdjust->SetLength(numRowLines); |
3453 | 0 | PodZero(rowAdjust->Elements(), rowAdjust->Length()); |
3454 | 0 | } |
3455 | 0 |
|
3456 | 0 | aState.mRowFunctions.mRemovedRepeatTracks[i] = true; |
3457 | 0 | } |
3458 | 0 | } |
3459 | 0 | if (numEmptyRows) { |
3460 | 0 | for (uint32_t row = repeatStart + numRepeats; |
3461 | 0 | row < numRowLines; ++row) { |
3462 | 0 | (*rowAdjust)[row] = numEmptyRows; |
3463 | 0 | } |
3464 | 0 | } |
3465 | 0 | } |
3466 | 0 | // Remove the empty 'auto-fit' tracks we found above, if any. |
3467 | 0 | if (numEmptyCols || numEmptyRows) { |
3468 | 0 | // Adjust the line numbers in the grid areas. |
3469 | 0 | for (auto& item : aState.mGridItems) { |
3470 | 0 | GridArea& area = item.mArea; |
3471 | 0 | if (numEmptyCols) { |
3472 | 0 | area.mCols.AdjustForRemovedTracks(*colAdjust); |
3473 | 0 | } |
3474 | 0 | if (numEmptyRows) { |
3475 | 0 | area.mRows.AdjustForRemovedTracks(*rowAdjust); |
3476 | 0 | } |
3477 | 0 | } |
3478 | 0 | for (auto& item : aState.mAbsPosItems) { |
3479 | 0 | GridArea& area = item.mArea; |
3480 | 0 | if (numEmptyCols) { |
3481 | 0 | area.mCols.AdjustAbsPosForRemovedTracks(*colAdjust); |
3482 | 0 | } |
3483 | 0 | if (numEmptyRows) { |
3484 | 0 | area.mRows.AdjustAbsPosForRemovedTracks(*rowAdjust); |
3485 | 0 | } |
3486 | 0 | } |
3487 | 0 | // Adjust the grid size. |
3488 | 0 | mGridColEnd -= numEmptyCols; |
3489 | 0 | mExplicitGridColEnd -= numEmptyCols; |
3490 | 0 | mGridRowEnd -= numEmptyRows; |
3491 | 0 | mExplicitGridRowEnd -= numEmptyRows; |
3492 | 0 | // Adjust the track mapping to unmap the removed tracks. |
3493 | 0 | auto colRepeatCount = aState.mColFunctions.NumRepeatTracks(); |
3494 | 0 | aState.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols); |
3495 | 0 | auto rowRepeatCount = aState.mRowFunctions.NumRepeatTracks(); |
3496 | 0 | aState.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows); |
3497 | 0 | } |
3498 | 0 |
|
3499 | 0 | // Update the line boundaries of the implicit grid areas, if needed. |
3500 | 0 | if (mAreas && |
3501 | 0 | aState.mFrame->HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) { |
3502 | 0 | for (auto iter = mAreas->Iter(); !iter.Done(); iter.Next()) { |
3503 | 0 | auto& areaInfo = iter.Data(); |
3504 | 0 |
|
3505 | 0 | // Resolve the lines for the area. We use the name of the area as the |
3506 | 0 | // name of the lines, knowing that the line placement algorithm will |
3507 | 0 | // add the -start and -end suffixes as appropriate for layout. |
3508 | 0 | nsStyleGridLine lineStartAndEnd; |
3509 | 0 | lineStartAndEnd.mLineName = areaInfo.mName; |
3510 | 0 |
|
3511 | 0 | LineRange columnLines = ResolveLineRange( |
3512 | 0 | lineStartAndEnd, lineStartAndEnd, |
3513 | 0 | colLineNameMap, eLogicalAxisInline, |
3514 | 0 | mExplicitGridColEnd, gridStyle); |
3515 | 0 |
|
3516 | 0 | LineRange rowLines = ResolveLineRange( |
3517 | 0 | lineStartAndEnd, lineStartAndEnd, |
3518 | 0 | rowLineNameMap, eLogicalAxisBlock, |
3519 | 0 | mExplicitGridRowEnd, gridStyle); |
3520 | 0 |
|
3521 | 0 | // Put the resolved line indices back into the area structure. |
3522 | 0 | areaInfo.mColumnStart = columnLines.mStart + mExplicitGridOffsetCol; |
3523 | 0 | areaInfo.mColumnEnd = columnLines.mEnd + mExplicitGridOffsetCol; |
3524 | 0 | areaInfo.mRowStart = rowLines.mStart + mExplicitGridOffsetRow; |
3525 | 0 | areaInfo.mRowEnd = rowLines.mEnd + mExplicitGridOffsetRow; |
3526 | 0 | } |
3527 | 0 | } |
3528 | 0 | } |
3529 | | |
3530 | | void |
3531 | | nsGridContainerFrame::Tracks::Initialize( |
3532 | | const TrackSizingFunctions& aFunctions, |
3533 | | const nsStyleCoord& aGridGap, |
3534 | | uint32_t aNumTracks, |
3535 | | nscoord aContentBoxSize) |
3536 | 0 | { |
3537 | 0 | MOZ_ASSERT(aNumTracks >= aFunctions.mExplicitGridOffset + |
3538 | 0 | aFunctions.NumExplicitTracks()); |
3539 | 0 | mSizes.SetLength(aNumTracks); |
3540 | 0 | PodZero(mSizes.Elements(), mSizes.Length()); |
3541 | 0 | for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) { |
3542 | 0 | mStateUnion |= mSizes[i].Initialize(aContentBoxSize, |
3543 | 0 | aFunctions.MinSizingFor(i), |
3544 | 0 | aFunctions.MaxSizingFor(i)); |
3545 | 0 | } |
3546 | 0 | mGridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aContentBoxSize); |
3547 | 0 | mContentBoxSize = aContentBoxSize; |
3548 | 0 | } |
3549 | | |
3550 | | /** |
3551 | | * Reflow aChild in the given aAvailableSize. |
3552 | | */ |
3553 | | static nscoord |
3554 | | MeasuringReflow(nsIFrame* aChild, |
3555 | | const ReflowInput* aReflowInput, |
3556 | | gfxContext* aRC, |
3557 | | const LogicalSize& aAvailableSize, |
3558 | | const LogicalSize& aCBSize, |
3559 | | nscoord aIMinSizeClamp = NS_MAXSIZE, |
3560 | | nscoord aBMinSizeClamp = NS_MAXSIZE) |
3561 | 0 | { |
3562 | 0 | nsContainerFrame* parent = aChild->GetParent(); |
3563 | 0 | nsPresContext* pc = aChild->PresContext(); |
3564 | 0 | Maybe<ReflowInput> dummyParentState; |
3565 | 0 | const ReflowInput* rs = aReflowInput; |
3566 | 0 | if (!aReflowInput) { |
3567 | 0 | MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW)); |
3568 | 0 | dummyParentState.emplace(pc, parent, aRC, |
3569 | 0 | LogicalSize(parent->GetWritingMode(), 0, |
3570 | 0 | NS_UNCONSTRAINEDSIZE), |
3571 | 0 | ReflowInput::DUMMY_PARENT_REFLOW_STATE); |
3572 | 0 | rs = dummyParentState.ptr(); |
3573 | 0 | } |
3574 | | #ifdef DEBUG |
3575 | | // This will suppress various CRAZY_SIZE warnings for this reflow. |
3576 | | parent->SetProperty( |
3577 | | nsContainerFrame::DebugReflowingWithInfiniteISize(), true); |
3578 | | #endif |
3579 | | auto wm = aChild->GetWritingMode(); |
3580 | 0 | uint32_t riFlags = ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE; |
3581 | 0 | if (aAvailableSize.ISize(wm) == INFINITE_ISIZE_COORD) { |
3582 | 0 | riFlags |= ReflowInput::COMPUTE_SIZE_SHRINK_WRAP; |
3583 | 0 | } |
3584 | 0 | if (aIMinSizeClamp != NS_MAXSIZE) { |
3585 | 0 | riFlags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE; |
3586 | 0 | } |
3587 | 0 | if (aBMinSizeClamp != NS_MAXSIZE) { |
3588 | 0 | riFlags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE; |
3589 | 0 | aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(), |
3590 | 0 | aBMinSizeClamp); |
3591 | 0 | } else { |
3592 | 0 | aChild->DeleteProperty(nsIFrame::BClampMarginBoxMinSizeProperty()); |
3593 | 0 | } |
3594 | 0 | ReflowInput childRI(pc, *rs, aChild, aAvailableSize, &aCBSize, riFlags); |
3595 | 0 |
|
3596 | 0 | // Because we pass ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE, and the |
3597 | 0 | // previous reflow of the child might not have, set the child's |
3598 | 0 | // block-resize flag to true. |
3599 | 0 | // FIXME (perf): It would be faster to do this only if the previous |
3600 | 0 | // reflow of the child was not a measuring reflow, and only if the |
3601 | 0 | // child does some of the things that are affected by |
3602 | 0 | // ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE. |
3603 | 0 | childRI.SetBResize(true); |
3604 | 0 |
|
3605 | 0 | ReflowOutput childSize(childRI); |
3606 | 0 | nsReflowStatus childStatus; |
3607 | 0 | const uint32_t flags = NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW | |
3608 | 0 | NS_FRAME_NO_DELETE_NEXT_IN_FLOW_CHILD; |
3609 | 0 | parent->ReflowChild(aChild, pc, childSize, childRI, wm, |
3610 | 0 | LogicalPoint(wm), nsSize(), flags, childStatus); |
3611 | 0 | nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm, |
3612 | 0 | LogicalPoint(wm), nsSize(), flags); |
3613 | | #ifdef DEBUG |
3614 | | parent->DeleteProperty(nsContainerFrame::DebugReflowingWithInfiniteISize()); |
3615 | | #endif |
3616 | | return childSize.BSize(wm); |
3617 | 0 | } |
3618 | | |
3619 | | /** |
3620 | | * Return the [min|max]-content contribution of aChild to its parent (i.e. |
3621 | | * the child's margin-box) in aAxis. |
3622 | | */ |
3623 | | static nscoord |
3624 | | ContentContribution(const GridItemInfo& aGridItem, |
3625 | | const GridReflowInput& aState, |
3626 | | gfxContext* aRC, |
3627 | | WritingMode aCBWM, |
3628 | | LogicalAxis aAxis, |
3629 | | const Maybe<LogicalSize>& aPercentageBasis, |
3630 | | IntrinsicISizeType aConstraint, |
3631 | | nscoord aMinSizeClamp = NS_MAXSIZE, |
3632 | | uint32_t aFlags = 0) |
3633 | 0 | { |
3634 | 0 | nsIFrame* child = aGridItem.mFrame; |
3635 | 0 | PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis)); |
3636 | 0 | nscoord size = nsLayoutUtils::IntrinsicForAxis(axis, aRC, child, aConstraint, |
3637 | 0 | aPercentageBasis, |
3638 | 0 | aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED, |
3639 | 0 | aMinSizeClamp); |
3640 | 0 | if (size == NS_INTRINSIC_WIDTH_UNKNOWN) { |
3641 | 0 | // We need to reflow the child to find its BSize contribution. |
3642 | 0 | // XXX this will give mostly correct results for now (until bug 1174569). |
3643 | 0 | nscoord availISize = INFINITE_ISIZE_COORD; |
3644 | 0 | nscoord availBSize = NS_UNCONSTRAINEDSIZE; |
3645 | 0 | auto childWM = child->GetWritingMode(); |
3646 | 0 | const bool isOrthogonal = childWM.IsOrthogonalTo(aCBWM); |
3647 | 0 | // The next two variables are MinSizeClamp values in the child's axes. |
3648 | 0 | nscoord iMinSizeClamp = NS_MAXSIZE; |
3649 | 0 | nscoord bMinSizeClamp = NS_MAXSIZE; |
3650 | 0 | LogicalSize cbSize(childWM, 0, 0); |
3651 | 0 | if (aState.mCols.mCanResolveLineRangeSize) { |
3652 | 0 | nscoord sz = aState.mCols.ResolveSize(aGridItem.mArea.mCols); |
3653 | 0 | if (isOrthogonal) { |
3654 | 0 | availBSize = sz; |
3655 | 0 | cbSize.BSize(childWM) = sz; |
3656 | 0 | if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) { |
3657 | 0 | bMinSizeClamp = sz; |
3658 | 0 | } |
3659 | 0 | } else { |
3660 | 0 | availISize = sz; |
3661 | 0 | cbSize.ISize(childWM) = sz; |
3662 | 0 | if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) { |
3663 | 0 | iMinSizeClamp = sz; |
3664 | 0 | } |
3665 | 0 | } |
3666 | 0 | } |
3667 | 0 | if (isOrthogonal == (aAxis == eLogicalAxisInline)) { |
3668 | 0 | bMinSizeClamp = aMinSizeClamp; |
3669 | 0 | } else { |
3670 | 0 | iMinSizeClamp = aMinSizeClamp; |
3671 | 0 | } |
3672 | 0 | LogicalSize availableSize(childWM, availISize, availBSize); |
3673 | 0 | size = ::MeasuringReflow(child, aState.mReflowInput, aRC, availableSize, |
3674 | 0 | cbSize, iMinSizeClamp, bMinSizeClamp); |
3675 | 0 | size += child->GetLogicalUsedMargin(childWM).BStartEnd(childWM); |
3676 | 0 | nscoord overflow = size - aMinSizeClamp; |
3677 | 0 | if (MOZ_UNLIKELY(overflow > 0)) { |
3678 | 0 | nscoord contentSize = child->ContentBSize(childWM); |
3679 | 0 | nscoord newContentSize = std::max(nscoord(0), contentSize - overflow); |
3680 | 0 | // XXXmats deal with percentages better, see bug 1300369 comment 27. |
3681 | 0 | size -= contentSize - newContentSize; |
3682 | 0 | } |
3683 | 0 | } |
3684 | 0 | MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0, |
3685 | 0 | "baseline offset should be non-negative at this point"); |
3686 | 0 | MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) || |
3687 | 0 | aGridItem.mBaselineOffset[aAxis] == nscoord(0), |
3688 | 0 | "baseline offset should be zero when not baseline-aligned"); |
3689 | 0 | size += aGridItem.mBaselineOffset[aAxis]; |
3690 | 0 | return std::max(size, 0); |
3691 | 0 | } |
3692 | | |
3693 | | struct CachedIntrinsicSizes |
3694 | | { |
3695 | | Maybe<nscoord> mMinSize; |
3696 | | Maybe<nscoord> mMinContentContribution; |
3697 | | Maybe<nscoord> mMaxContentContribution; |
3698 | | |
3699 | | // The item's percentage basis for intrinsic sizing purposes. |
3700 | | Maybe<LogicalSize> mPercentageBasis; |
3701 | | |
3702 | | // "if the grid item spans only grid tracks that have a fixed max track |
3703 | | // sizing function, its automatic minimum size in that dimension is |
3704 | | // further clamped to less than or equal to the size necessary to fit its |
3705 | | // margin box within the resulting grid area (flooring at zero)" |
3706 | | // https://drafts.csswg.org/css-grid/#min-size-auto |
3707 | | // This is the clamp value to use for that: |
3708 | | nscoord mMinSizeClamp = NS_MAXSIZE; |
3709 | | }; |
3710 | | |
3711 | | static nscoord |
3712 | | MinContentContribution(const GridItemInfo& aGridItem, |
3713 | | const GridReflowInput& aState, |
3714 | | gfxContext* aRC, |
3715 | | WritingMode aCBWM, |
3716 | | LogicalAxis aAxis, |
3717 | | CachedIntrinsicSizes* aCache) |
3718 | 0 | { |
3719 | 0 | if (aCache->mMinContentContribution.isSome()) { |
3720 | 0 | return aCache->mMinContentContribution.value(); |
3721 | 0 | } |
3722 | 0 | if (aCache->mPercentageBasis.isNothing()) { |
3723 | 0 | aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem)); |
3724 | 0 | } |
3725 | 0 | nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, |
3726 | 0 | aCache->mPercentageBasis, |
3727 | 0 | nsLayoutUtils::MIN_ISIZE, |
3728 | 0 | aCache->mMinSizeClamp); |
3729 | 0 | aCache->mMinContentContribution.emplace(s); |
3730 | 0 | return s; |
3731 | 0 | } |
3732 | | |
3733 | | static nscoord |
3734 | | MaxContentContribution(const GridItemInfo& aGridItem, |
3735 | | const GridReflowInput& aState, |
3736 | | gfxContext* aRC, |
3737 | | WritingMode aCBWM, |
3738 | | LogicalAxis aAxis, |
3739 | | CachedIntrinsicSizes* aCache) |
3740 | 0 | { |
3741 | 0 | if (aCache->mMaxContentContribution.isSome()) { |
3742 | 0 | return aCache->mMaxContentContribution.value(); |
3743 | 0 | } |
3744 | 0 | if (aCache->mPercentageBasis.isNothing()) { |
3745 | 0 | aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem)); |
3746 | 0 | } |
3747 | 0 | nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, |
3748 | 0 | aCache->mPercentageBasis, |
3749 | 0 | nsLayoutUtils::PREF_ISIZE, |
3750 | 0 | aCache->mMinSizeClamp); |
3751 | 0 | aCache->mMaxContentContribution.emplace(s); |
3752 | 0 | return s; |
3753 | 0 | } |
3754 | | |
3755 | | // Computes the min-size contribution for a grid item, as defined at |
3756 | | // https://drafts.csswg.org/css-grid/#min-size-contribution |
3757 | | static nscoord |
3758 | | MinSize(const GridItemInfo& aGridItem, |
3759 | | const GridReflowInput& aState, |
3760 | | gfxContext* aRC, |
3761 | | WritingMode aCBWM, |
3762 | | LogicalAxis aAxis, |
3763 | | CachedIntrinsicSizes* aCache) |
3764 | 0 | { |
3765 | 0 | if (aCache->mMinSize.isSome()) { |
3766 | 0 | return aCache->mMinSize.value(); |
3767 | 0 | } |
3768 | 0 | nsIFrame* child = aGridItem.mFrame; |
3769 | 0 | PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis)); |
3770 | 0 | const nsStylePosition* stylePos = child->StylePosition(); |
3771 | 0 | const nsStyleCoord& sizeStyle = |
3772 | 0 | axis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight; |
3773 | 0 | if (sizeStyle.GetUnit() != eStyleUnit_Auto && !sizeStyle.HasPercent()) { |
3774 | 0 | nscoord s = |
3775 | 0 | MinContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, aCache); |
3776 | 0 | aCache->mMinSize.emplace(s); |
3777 | 0 | return s; |
3778 | 0 | } |
3779 | 0 | |
3780 | 0 | if (aCache->mPercentageBasis.isNothing()) { |
3781 | 0 | aCache->mPercentageBasis.emplace(aState.PercentageBasisFor(aAxis, aGridItem)); |
3782 | 0 | } |
3783 | 0 |
|
3784 | 0 | // https://drafts.csswg.org/css-grid/#min-size-auto |
3785 | 0 | // This calculates the min-content contribution from either a definite |
3786 | 0 | // min-width (or min-height depending on aAxis), or the "specified / |
3787 | 0 | // transferred size" for min-width:auto if overflow == visible (as min-width:0 |
3788 | 0 | // otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values |
3789 | 0 | // (which results in always taking the "content size" part below). |
3790 | 0 | MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0, |
3791 | 0 | "baseline offset should be non-negative at this point"); |
3792 | 0 | MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) || |
3793 | 0 | aGridItem.mBaselineOffset[aAxis] == nscoord(0), |
3794 | 0 | "baseline offset should be zero when not baseline-aligned"); |
3795 | 0 | nscoord sz = aGridItem.mBaselineOffset[aAxis] + |
3796 | 0 | nsLayoutUtils::MinSizeContributionForAxis(axis, aRC, child, |
3797 | 0 | nsLayoutUtils::MIN_ISIZE, |
3798 | 0 | *aCache->mPercentageBasis); |
3799 | 0 | const nsStyleCoord& style = axis == eAxisHorizontal ? stylePos->mMinWidth |
3800 | 0 | : stylePos->mMinHeight; |
3801 | 0 | auto unit = style.GetUnit(); |
3802 | 0 | if (unit == eStyleUnit_Enumerated || |
3803 | 0 | (unit == eStyleUnit_Auto && |
3804 | 0 | child->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE)) { |
3805 | 0 | // Now calculate the "content size" part and return whichever is smaller. |
3806 | 0 | MOZ_ASSERT(unit != eStyleUnit_Enumerated || sz == NS_UNCONSTRAINEDSIZE); |
3807 | 0 | sz = std::min(sz, ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, |
3808 | 0 | aCache->mPercentageBasis, |
3809 | 0 | nsLayoutUtils::MIN_ISIZE, |
3810 | 0 | aCache->mMinSizeClamp, |
3811 | 0 | nsLayoutUtils::MIN_INTRINSIC_ISIZE)); |
3812 | 0 | } |
3813 | 0 | aCache->mMinSize.emplace(sz); |
3814 | 0 | return sz; |
3815 | 0 | } |
3816 | | |
3817 | | void |
3818 | | nsGridContainerFrame::Tracks::CalculateSizes( |
3819 | | GridReflowInput& aState, |
3820 | | nsTArray<GridItemInfo>& aGridItems, |
3821 | | const TrackSizingFunctions& aFunctions, |
3822 | | nscoord aContentBoxSize, |
3823 | | LineRange GridArea::* aRange, |
3824 | | SizingConstraint aConstraint) |
3825 | 0 | { |
3826 | 0 | nscoord percentageBasis = aContentBoxSize; |
3827 | 0 | if (percentageBasis == NS_UNCONSTRAINEDSIZE) { |
3828 | 0 | percentageBasis = 0; |
3829 | 0 | } |
3830 | 0 | InitializeItemBaselines(aState, aGridItems); |
3831 | 0 | ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis, |
3832 | 0 | aConstraint); |
3833 | 0 | if (aConstraint != SizingConstraint::eMinContent) { |
3834 | 0 | nscoord freeSpace = aContentBoxSize; |
3835 | 0 | if (freeSpace != NS_UNCONSTRAINEDSIZE) { |
3836 | 0 | freeSpace -= SumOfGridGaps(); |
3837 | 0 | } |
3838 | 0 | DistributeFreeSpace(freeSpace); |
3839 | 0 | StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace); |
3840 | 0 | } |
3841 | 0 | } |
3842 | | |
3843 | | TrackSize::StateBits |
3844 | | nsGridContainerFrame::Tracks::StateBitsForRange(const LineRange& aRange) const |
3845 | 0 | { |
3846 | 0 | MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range"); |
3847 | 0 | TrackSize::StateBits state = TrackSize::StateBits(0); |
3848 | 0 | for (auto i : aRange.Range()) { |
3849 | 0 | state |= mSizes[i].mState; |
3850 | 0 | } |
3851 | 0 | return state; |
3852 | 0 | } |
3853 | | |
3854 | | bool |
3855 | | nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1( |
3856 | | GridReflowInput& aState, |
3857 | | const TrackSizingFunctions& aFunctions, |
3858 | | nscoord aPercentageBasis, |
3859 | | SizingConstraint aConstraint, |
3860 | | const LineRange& aRange, |
3861 | | const GridItemInfo& aGridItem) |
3862 | 0 | { |
3863 | 0 | CachedIntrinsicSizes cache; |
3864 | 0 | TrackSize& sz = mSizes[aRange.mStart]; |
3865 | 0 | WritingMode wm = aState.mWM; |
3866 | 0 |
|
3867 | 0 | // min sizing |
3868 | 0 | gfxContext* rc = &aState.mRenderingContext; |
3869 | 0 | if (sz.mState & TrackSize::eAutoMinSizing) { |
3870 | 0 | nscoord s; |
3871 | 0 | // Check if we need to apply "Automatic Minimum Size" and cache it. |
3872 | 0 | if (aGridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) { |
3873 | 0 | aGridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize; |
3874 | 0 | // Clamp it if it's spanning a definite track max-sizing function. |
3875 | 0 | if (TrackSize::IsDefiniteMaxSizing(sz.mState)) { |
3876 | 0 | auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart); |
3877 | 0 | cache.mMinSizeClamp = maxCoord.ComputeCoordPercentCalc(aPercentageBasis); |
3878 | 0 | aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize; |
3879 | 0 | } |
3880 | 0 | if (aConstraint != SizingConstraint::eMaxContent) { |
3881 | 0 | s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache); |
3882 | 0 | } else { |
3883 | 0 | s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache); |
3884 | 0 | } |
3885 | 0 | } else { |
3886 | 0 | s = MinSize(aGridItem, aState, rc, wm, mAxis, &cache); |
3887 | 0 | } |
3888 | 0 | sz.mBase = std::max(sz.mBase, s); |
3889 | 0 | } else if (sz.mState & TrackSize::eMinContentMinSizing) { |
3890 | 0 | auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache); |
3891 | 0 | sz.mBase = std::max(sz.mBase, s); |
3892 | 0 | } else if (sz.mState & TrackSize::eMaxContentMinSizing) { |
3893 | 0 | auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache); |
3894 | 0 | sz.mBase = std::max(sz.mBase, s); |
3895 | 0 | } |
3896 | 0 | // max sizing |
3897 | 0 | if (sz.mState & TrackSize::eMinContentMaxSizing) { |
3898 | 0 | auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache); |
3899 | 0 | if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { |
3900 | 0 | sz.mLimit = s; |
3901 | 0 | } else { |
3902 | 0 | sz.mLimit = std::max(sz.mLimit, s); |
3903 | 0 | } |
3904 | 0 | } else if (sz.mState & (TrackSize::eAutoMaxSizing | |
3905 | 0 | TrackSize::eMaxContentMaxSizing)) { |
3906 | 0 | auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache); |
3907 | 0 | if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { |
3908 | 0 | sz.mLimit = s; |
3909 | 0 | } else { |
3910 | 0 | sz.mLimit = std::max(sz.mLimit, s); |
3911 | 0 | } |
3912 | 0 | if (MOZ_UNLIKELY(sz.mState & TrackSize::eFitContent)) { |
3913 | 0 | // Clamp mLimit to the fit-content() size, for §12.5.1. |
3914 | 0 | auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart); |
3915 | 0 | nscoord fitContentClamp = |
3916 | 0 | maxCoord.ComputeCoordPercentCalc(aPercentageBasis); |
3917 | 0 | sz.mLimit = std::min(sz.mLimit, fitContentClamp); |
3918 | 0 | } |
3919 | 0 | } |
3920 | 0 | if (sz.mLimit < sz.mBase) { |
3921 | 0 | sz.mLimit = sz.mBase; |
3922 | 0 | } |
3923 | 0 | return sz.mState & TrackSize::eFlexMaxSizing; |
3924 | 0 | } |
3925 | | |
3926 | | void |
3927 | | nsGridContainerFrame::Tracks::CalculateItemBaselines( |
3928 | | nsTArray<ItemBaselineData>& aBaselineItems, |
3929 | | BaselineSharingGroup aBaselineGroup) |
3930 | 0 | { |
3931 | 0 | if (aBaselineItems.IsEmpty()) { |
3932 | 0 | return; |
3933 | 0 | } |
3934 | 0 | |
3935 | 0 | // Sort the collected items on their baseline track. |
3936 | 0 | std::sort(aBaselineItems.begin(), aBaselineItems.end(), |
3937 | 0 | ItemBaselineData::IsBaselineTrackLessThan); |
3938 | 0 |
|
3939 | 0 | MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track"); |
3940 | 0 | const uint32_t lastTrack = mSizes.Length() - 1; |
3941 | 0 | nscoord maxBaseline = 0; |
3942 | 0 | nscoord maxDescent = 0; |
3943 | 0 | uint32_t currentTrack = kAutoLine; // guaranteed to not match any item |
3944 | 0 | uint32_t trackStartIndex = 0; |
3945 | 0 | for (uint32_t i = 0, len = aBaselineItems.Length(); true ; ++i) { |
3946 | 0 | // Find the maximum baseline and descent in the current track. |
3947 | 0 | if (i != len) { |
3948 | 0 | const ItemBaselineData& item = aBaselineItems[i]; |
3949 | 0 | if (currentTrack == item.mBaselineTrack) { |
3950 | 0 | maxBaseline = std::max(maxBaseline, item.mBaseline); |
3951 | 0 | maxDescent = std::max(maxDescent, item.mSize - item.mBaseline); |
3952 | 0 | continue; |
3953 | 0 | } |
3954 | 0 | } |
3955 | 0 | // Iterate the current track again and update the baseline offsets making |
3956 | 0 | // all items baseline-aligned within this group in this track. |
3957 | 0 | for (uint32_t j = trackStartIndex; j < i; ++j) { |
3958 | 0 | const ItemBaselineData& item = aBaselineItems[j]; |
3959 | 0 | item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline; |
3960 | 0 | MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0); |
3961 | 0 | } |
3962 | 0 | if (i != 0) { |
3963 | 0 | // Store the size of this baseline-aligned subtree. |
3964 | 0 | mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] = |
3965 | 0 | maxBaseline + maxDescent; |
3966 | 0 | // Record the first(last) baseline for the first(last) track. |
3967 | 0 | if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::eFirst) { |
3968 | 0 | mBaseline[aBaselineGroup] = maxBaseline; |
3969 | 0 | } |
3970 | 0 | if (currentTrack == lastTrack && |
3971 | 0 | aBaselineGroup == BaselineSharingGroup::eLast) { |
3972 | 0 | mBaseline[aBaselineGroup] = maxBaseline; |
3973 | 0 | } |
3974 | 0 | } |
3975 | 0 | if (i == len) { |
3976 | 0 | break; |
3977 | 0 | } |
3978 | 0 | // Initialize data for the next track with baseline-aligned items. |
3979 | 0 | const ItemBaselineData& item = aBaselineItems[i]; |
3980 | 0 | currentTrack = item.mBaselineTrack; |
3981 | 0 | trackStartIndex = i; |
3982 | 0 | maxBaseline = item.mBaseline; |
3983 | 0 | maxDescent = item.mSize - item.mBaseline; |
3984 | 0 | } |
3985 | 0 | } |
3986 | | |
3987 | | void |
3988 | | nsGridContainerFrame::Tracks::InitializeItemBaselines( |
3989 | | GridReflowInput& aState, |
3990 | | nsTArray<GridItemInfo>& aGridItems) |
3991 | 0 | { |
3992 | 0 |
|
3993 | 0 | nsTArray<ItemBaselineData> firstBaselineItems; |
3994 | 0 | nsTArray<ItemBaselineData> lastBaselineItems; |
3995 | 0 | WritingMode wm = aState.mWM; |
3996 | 0 | ComputedStyle* containerSC = aState.mFrame->Style(); |
3997 | 0 | for (GridItemInfo& gridItem : aGridItems) { |
3998 | 0 | nsIFrame* child = gridItem.mFrame; |
3999 | 0 | uint32_t baselineTrack = kAutoLine; |
4000 | 0 | auto state = ItemState(0); |
4001 | 0 | auto childWM = child->GetWritingMode(); |
4002 | 0 | const bool isOrthogonal = wm.IsOrthogonalTo(childWM); |
4003 | 0 | const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns |
4004 | 0 | // XXX update the line below to include orthogonal grid/table boxes |
4005 | 0 | // XXX since they have baselines in both dimensions. And flexbox with |
4006 | 0 | // XXX reversed main/cross axis? |
4007 | 0 | const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal; |
4008 | 0 | if (itemHasBaselineParallelToTrack) { |
4009 | 0 | // [align|justify]-self:[last ]baseline. |
4010 | 0 | auto selfAlignment = isOrthogonal ? |
4011 | 0 | child->StylePosition()->UsedJustifySelf(containerSC) : |
4012 | 0 | child->StylePosition()->UsedAlignSelf(containerSC); |
4013 | 0 | selfAlignment &= ~NS_STYLE_ALIGN_FLAG_BITS; |
4014 | 0 | if (selfAlignment == NS_STYLE_ALIGN_BASELINE) { |
4015 | 0 | state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline; |
4016 | 0 | const GridArea& area = gridItem.mArea; |
4017 | 0 | baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart; |
4018 | 0 | } else if (selfAlignment == NS_STYLE_ALIGN_LAST_BASELINE) { |
4019 | 0 | state |= ItemState::eLastBaseline | ItemState::eSelfBaseline; |
4020 | 0 | const GridArea& area = gridItem.mArea; |
4021 | 0 | baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1; |
4022 | 0 | } |
4023 | 0 |
|
4024 | 0 | // [align|justify]-content:[last ]baseline. |
4025 | 0 | // https://drafts.csswg.org/css-align-3/#baseline-align-content |
4026 | 0 | // "[...] and its computed 'align-self' or 'justify-self' (whichever |
4027 | 0 | // affects its block axis) is 'stretch' or 'self-start' ('self-end'). |
4028 | 0 | // For this purpose, the 'start', 'end', 'flex-start', and 'flex-end' |
4029 | 0 | // values of 'align-self' are treated as either 'self-start' or |
4030 | 0 | // 'self-end', whichever they end up equivalent to. |
4031 | 0 | auto alignContent = child->StylePosition()->mAlignContent; |
4032 | 0 | alignContent &= ~NS_STYLE_ALIGN_FLAG_BITS; |
4033 | 0 | if (alignContent == NS_STYLE_ALIGN_BASELINE || |
4034 | 0 | alignContent == NS_STYLE_ALIGN_LAST_BASELINE) { |
4035 | 0 | const auto selfAlignEdge = alignContent == NS_STYLE_ALIGN_BASELINE ? |
4036 | 0 | NS_STYLE_ALIGN_SELF_START : NS_STYLE_ALIGN_SELF_END; |
4037 | 0 | bool validCombo = selfAlignment == NS_STYLE_ALIGN_NORMAL || |
4038 | 0 | selfAlignment == NS_STYLE_ALIGN_STRETCH || |
4039 | 0 | selfAlignment == selfAlignEdge; |
4040 | 0 | if (!validCombo) { |
4041 | 0 | // We're doing alignment in the axis that's orthogonal to mAxis here. |
4042 | 0 | LogicalAxis alignAxis = GetOrthogonalAxis(mAxis); |
4043 | 0 | // |sameSide| is true if the container's start side in this axis is |
4044 | 0 | // the same as the child's start side, in the child's parallel axis. |
4045 | 0 | bool sameSide = wm.ParallelAxisStartsOnSameSide(alignAxis, childWM); |
4046 | 0 | switch (selfAlignment) { |
4047 | 0 | case NS_STYLE_ALIGN_LEFT: |
4048 | 0 | selfAlignment = !isInlineAxis || wm.IsBidiLTR() ? NS_STYLE_ALIGN_START |
4049 | 0 | : NS_STYLE_ALIGN_END; |
4050 | 0 | break; |
4051 | 0 | case NS_STYLE_ALIGN_RIGHT: |
4052 | 0 | selfAlignment = isInlineAxis && wm.IsBidiLTR() ? NS_STYLE_ALIGN_END |
4053 | 0 | : NS_STYLE_ALIGN_START; |
4054 | 0 | break; |
4055 | 0 | } |
4056 | 0 | switch (selfAlignment) { |
4057 | 0 | case NS_STYLE_ALIGN_START: |
4058 | 0 | case NS_STYLE_ALIGN_FLEX_START: |
4059 | 0 | validCombo = sameSide == |
4060 | 0 | (alignContent == NS_STYLE_ALIGN_BASELINE); |
4061 | 0 | break; |
4062 | 0 | case NS_STYLE_ALIGN_END: |
4063 | 0 | case NS_STYLE_ALIGN_FLEX_END: |
4064 | 0 | validCombo = sameSide == |
4065 | 0 | (alignContent == NS_STYLE_ALIGN_LAST_BASELINE); |
4066 | 0 | break; |
4067 | 0 | } |
4068 | 0 | } |
4069 | 0 | if (validCombo) { |
4070 | 0 | const GridArea& area = gridItem.mArea; |
4071 | 0 | if (alignContent == NS_STYLE_ALIGN_BASELINE) { |
4072 | 0 | state |= ItemState::eFirstBaseline | ItemState::eContentBaseline; |
4073 | 0 | baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart; |
4074 | 0 | } else if (alignContent == NS_STYLE_ALIGN_LAST_BASELINE) { |
4075 | 0 | state |= ItemState::eLastBaseline | ItemState::eContentBaseline; |
4076 | 0 | baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1; |
4077 | 0 | } |
4078 | 0 | } |
4079 | 0 | } |
4080 | 0 | } |
4081 | 0 |
|
4082 | 0 | if (state & ItemState::eIsBaselineAligned) { |
4083 | 0 | // XXX available size issue |
4084 | 0 | LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE); |
4085 | 0 | auto* rc = &aState.mRenderingContext; |
4086 | 0 | // XXX figure out if we can avoid/merge this reflow with the main reflow. |
4087 | 0 | // XXX (after bug 1174569 is sorted out) |
4088 | 0 | // |
4089 | 0 | // XXX How should we handle percentage padding here? (bug 1330866) |
4090 | 0 | // XXX (see ::ContentContribution and how it deals with percentages) |
4091 | 0 | // XXX What if the true baseline after line-breaking differs from this |
4092 | 0 | // XXX hypothetical baseline based on an infinite inline size? |
4093 | 0 | // XXX Maybe we should just call ::ContentContribution here instead? |
4094 | 0 | // XXX For now we just pass a zero-sized CB: |
4095 | 0 | LogicalSize cbSize(childWM, 0, 0); |
4096 | 0 | ::MeasuringReflow(child, aState.mReflowInput, rc, avail, cbSize); |
4097 | 0 | nscoord baseline; |
4098 | 0 | nsGridContainerFrame* grid = do_QueryFrame(child); |
4099 | 0 | if (state & ItemState::eFirstBaseline) { |
4100 | 0 | if (grid) { |
4101 | 0 | if (isOrthogonal == isInlineAxis) { |
4102 | 0 | grid->GetBBaseline(BaselineSharingGroup::eFirst, &baseline); |
4103 | 0 | } else { |
4104 | 0 | grid->GetIBaseline(BaselineSharingGroup::eFirst, &baseline); |
4105 | 0 | } |
4106 | 0 | } |
4107 | 0 | if (grid || |
4108 | 0 | nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) { |
4109 | 0 | NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN, |
4110 | 0 | "about to use an unknown baseline"); |
4111 | 0 | auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm); |
4112 | 0 | auto m = child->GetLogicalUsedMargin(wm); |
4113 | 0 | baseline += isInlineAxis ? m.IStart(wm) : m.BStart(wm); |
4114 | 0 | auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm) |
4115 | 0 | : m.BStartEnd(wm)); |
4116 | 0 | firstBaselineItems.AppendElement(ItemBaselineData( |
4117 | 0 | { baselineTrack, baseline, alignSize, &gridItem })); |
4118 | 0 | } else { |
4119 | 0 | state &= ~ItemState::eAllBaselineBits; |
4120 | 0 | } |
4121 | 0 | } else { |
4122 | 0 | if (grid) { |
4123 | 0 | if (isOrthogonal == isInlineAxis) { |
4124 | 0 | grid->GetBBaseline(BaselineSharingGroup::eLast, &baseline); |
4125 | 0 | } else { |
4126 | 0 | grid->GetIBaseline(BaselineSharingGroup::eLast, &baseline); |
4127 | 0 | } |
4128 | 0 | } |
4129 | 0 | if (grid || |
4130 | 0 | nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) { |
4131 | 0 | NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN, |
4132 | 0 | "about to use an unknown baseline"); |
4133 | 0 | auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm); |
4134 | 0 | auto m = child->GetLogicalUsedMargin(wm); |
4135 | 0 | if (!grid) { |
4136 | 0 | // Convert to distance from border-box end. |
4137 | 0 | baseline = frameSize - baseline; |
4138 | 0 | } |
4139 | 0 | auto descent = baseline + (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm)); |
4140 | 0 | auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm) |
4141 | 0 | : m.BStartEnd(wm)); |
4142 | 0 | lastBaselineItems.AppendElement(ItemBaselineData( |
4143 | 0 | { baselineTrack, descent, alignSize, &gridItem })); |
4144 | 0 | } else { |
4145 | 0 | state &= ~ItemState::eAllBaselineBits; |
4146 | 0 | } |
4147 | 0 | } |
4148 | 0 | } |
4149 | 0 | MOZ_ASSERT((state & |
4150 | 0 | (ItemState::eFirstBaseline | ItemState::eLastBaseline)) != |
4151 | 0 | (ItemState::eFirstBaseline | ItemState::eLastBaseline), |
4152 | 0 | "first/last baseline bits are mutually exclusive"); |
4153 | 0 | MOZ_ASSERT((state & |
4154 | 0 | (ItemState::eSelfBaseline | ItemState::eContentBaseline)) != |
4155 | 0 | (ItemState::eSelfBaseline | ItemState::eContentBaseline), |
4156 | 0 | "*-self and *-content baseline bits are mutually exclusive"); |
4157 | 0 | MOZ_ASSERT(!(state & |
4158 | 0 | (ItemState::eFirstBaseline | ItemState::eLastBaseline)) == |
4159 | 0 | !(state & |
4160 | 0 | (ItemState::eSelfBaseline | ItemState::eContentBaseline)), |
4161 | 0 | "first/last bit requires self/content bit and vice versa"); |
4162 | 0 | gridItem.mState[mAxis] |= state; |
4163 | 0 | gridItem.mBaselineOffset[mAxis] = nscoord(0); |
4164 | 0 | } |
4165 | 0 |
|
4166 | 0 | if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) { |
4167 | 0 | return; |
4168 | 0 | } |
4169 | 0 | |
4170 | 0 | // TODO: CSS Align spec issue - how to align a baseline subtree in a track? |
4171 | 0 | // https://lists.w3.org/Archives/Public/www-style/2016May/0141.html |
4172 | 0 | mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_START; |
4173 | 0 | mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_END; |
4174 | 0 |
|
4175 | 0 | CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::eFirst); |
4176 | 0 | CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::eLast); |
4177 | 0 | } |
4178 | | |
4179 | | void |
4180 | | nsGridContainerFrame::Tracks::AlignBaselineSubtree( |
4181 | | const GridItemInfo& aGridItem) const |
4182 | 0 | { |
4183 | 0 | auto state = aGridItem.mState[mAxis]; |
4184 | 0 | if (!(state & ItemState::eIsBaselineAligned)) { |
4185 | 0 | return; |
4186 | 0 | } |
4187 | 0 | const GridArea& area = aGridItem.mArea; |
4188 | 0 | int32_t baselineTrack; |
4189 | 0 | const bool isFirstBaseline = state & ItemState::eFirstBaseline; |
4190 | 0 | if (isFirstBaseline) { |
4191 | 0 | baselineTrack = mAxis == eLogicalAxisBlock ? area.mRows.mStart |
4192 | 0 | : area.mCols.mStart; |
4193 | 0 | } else { |
4194 | 0 | baselineTrack = (mAxis == eLogicalAxisBlock ? area.mRows.mEnd |
4195 | 0 | : area.mCols.mEnd) - 1; |
4196 | 0 | } |
4197 | 0 | const TrackSize& sz = mSizes[baselineTrack]; |
4198 | 0 | auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::eFirst |
4199 | 0 | : BaselineSharingGroup::eLast; |
4200 | 0 | nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup]; |
4201 | 0 | const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup]; |
4202 | 0 | switch (subtreeAlign) { |
4203 | 0 | case NS_STYLE_ALIGN_START: |
4204 | 0 | if (state & ItemState::eLastBaseline) { |
4205 | 0 | aGridItem.mBaselineOffset[mAxis] += delta; |
4206 | 0 | } |
4207 | 0 | break; |
4208 | 0 | case NS_STYLE_ALIGN_END: |
4209 | 0 | if (isFirstBaseline) { |
4210 | 0 | aGridItem.mBaselineOffset[mAxis] += delta; |
4211 | 0 | } |
4212 | 0 | break; |
4213 | 0 | case NS_STYLE_ALIGN_CENTER: |
4214 | 0 | aGridItem.mBaselineOffset[mAxis] += delta / 2; |
4215 | 0 | break; |
4216 | 0 | default: |
4217 | 0 | MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment"); |
4218 | 0 | } |
4219 | 0 | } |
4220 | | |
4221 | | template<nsGridContainerFrame::Tracks::TrackSizingPhase phase> |
4222 | | bool |
4223 | | nsGridContainerFrame::Tracks::GrowSizeForSpanningItems( |
4224 | | nsTArray<Step2ItemData>::iterator aIter, |
4225 | | const nsTArray<Step2ItemData>::iterator aIterEnd, |
4226 | | nsTArray<uint32_t>& aTracks, |
4227 | | nsTArray<TrackSize>& aPlan, |
4228 | | nsTArray<TrackSize>& aItemPlan, |
4229 | | TrackSize::StateBits aSelector, |
4230 | | const FitContentClamper& aFitContentClamper, |
4231 | | bool aNeedInfinitelyGrowableFlag) |
4232 | 0 | { |
4233 | 0 | constexpr bool isMaxSizingPhase = |
4234 | 0 | phase == TrackSizingPhase::eIntrinsicMaximums || |
4235 | 0 | phase == TrackSizingPhase::eMaxContentMaximums; |
4236 | 0 | bool needToUpdateSizes = false; |
4237 | 0 | InitializePlan<phase>(aPlan); |
4238 | 0 | for (; aIter != aIterEnd; ++aIter) { |
4239 | 0 | const Step2ItemData& item = *aIter; |
4240 | 0 | if (!(item.mState & aSelector)) { |
4241 | 0 | continue; |
4242 | 0 | } |
4243 | 0 | if (isMaxSizingPhase) { |
4244 | 0 | for (auto i : item.mLineRange.Range()) { |
4245 | 0 | aPlan[i].mState |= TrackSize::eModified; |
4246 | 0 | } |
4247 | 0 | } |
4248 | 0 | nscoord space = item.SizeContributionForPhase<phase>(); |
4249 | 0 | if (space <= 0) { |
4250 | 0 | continue; |
4251 | 0 | } |
4252 | 0 | aTracks.ClearAndRetainStorage(); |
4253 | 0 | space = CollectGrowable<phase>(space, item.mLineRange, aSelector, |
4254 | 0 | aTracks); |
4255 | 0 | if (space > 0) { |
4256 | 0 | DistributeToTrackSizes<phase>(space, aPlan, aItemPlan, aTracks, aSelector, |
4257 | 0 | aFitContentClamper); |
4258 | 0 | needToUpdateSizes = true; |
4259 | 0 | } |
4260 | 0 | } |
4261 | 0 | if (isMaxSizingPhase) { |
4262 | 0 | needToUpdateSizes = true; |
4263 | 0 | } |
4264 | 0 | if (needToUpdateSizes) { |
4265 | 0 | CopyPlanToSize<phase>(aPlan, aNeedInfinitelyGrowableFlag); |
4266 | 0 | } |
4267 | 0 | return needToUpdateSizes; |
4268 | 0 | } Unexecuted instantiation: bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems<(nsGridContainerFrame::Tracks::TrackSizingPhase)0>(mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, nsTArray<unsigned int>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&, bool) Unexecuted instantiation: bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems<(nsGridContainerFrame::Tracks::TrackSizingPhase)1>(mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, nsTArray<unsigned int>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&, bool) Unexecuted instantiation: bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems<(nsGridContainerFrame::Tracks::TrackSizingPhase)2>(mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, nsTArray<unsigned int>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&, bool) Unexecuted instantiation: bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems<(nsGridContainerFrame::Tracks::TrackSizingPhase)3>(mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, nsTArray<unsigned int>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&, bool) Unexecuted instantiation: bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems<(nsGridContainerFrame::Tracks::TrackSizingPhase)4>(mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, mozilla::ArrayIterator<nsGridContainerFrame::Tracks::Step2ItemData&, nsTArray<nsGridContainerFrame::Tracks::Step2ItemData> >, nsTArray<unsigned int>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsTArray<nsGridContainerFrame::TrackSize>&, nsGridContainerFrame::TrackSize::StateBits, std::__1::function<bool (unsigned int, int, int*)> const&, bool) |
4269 | | |
4270 | | void |
4271 | | nsGridContainerFrame::Tracks::ResolveIntrinsicSize( |
4272 | | GridReflowInput& aState, |
4273 | | nsTArray<GridItemInfo>& aGridItems, |
4274 | | const TrackSizingFunctions& aFunctions, |
4275 | | LineRange GridArea::* aRange, |
4276 | | nscoord aPercentageBasis, |
4277 | | SizingConstraint aConstraint) |
4278 | 0 | { |
4279 | 0 | // Resolve Intrinsic Track Sizes |
4280 | 0 | // http://dev.w3.org/csswg/css-grid/#algo-content |
4281 | 0 | // We're also setting eIsFlexing on the item state here to speed up |
4282 | 0 | // FindUsedFlexFraction later. |
4283 | 0 | struct PerSpanData { |
4284 | 0 | PerSpanData() : mItemCountWithSameSpan(0) |
4285 | 0 | , mStateBits(TrackSize::StateBits(0)) {} |
4286 | 0 | uint32_t mItemCountWithSameSpan; |
4287 | 0 | TrackSize::StateBits mStateBits; |
4288 | 0 | }; |
4289 | 0 | AutoTArray<PerSpanData, 16> perSpanData; |
4290 | 0 | nsTArray<Step2ItemData> step2Items; |
4291 | 0 | gfxContext* rc = &aState.mRenderingContext; |
4292 | 0 | WritingMode wm = aState.mWM; |
4293 | 0 | uint32_t maxSpan = 0; // max span of the step2Items items |
4294 | 0 | // Setup track selector for step 2.2: |
4295 | 0 | const auto contentBasedMinSelector = |
4296 | 0 | aConstraint == SizingConstraint::eMinContent ? |
4297 | 0 | TrackSize::eIntrinsicMinSizing : TrackSize::eMinOrMaxContentMinSizing; |
4298 | 0 | // Setup track selector for step 2.3: |
4299 | 0 | const auto maxContentMinSelector = |
4300 | 0 | aConstraint == SizingConstraint::eMaxContent ? |
4301 | 0 | (TrackSize::eMaxContentMinSizing | TrackSize::eAutoMinSizing) : |
4302 | 0 | TrackSize::eMaxContentMinSizing; |
4303 | 0 | for (auto& gridItem : aGridItems) { |
4304 | 0 | MOZ_ASSERT(!(gridItem.mState[mAxis] & |
4305 | 0 | (ItemState::eApplyAutoMinSize | ItemState::eIsFlexing | |
4306 | 0 | ItemState::eClampMarginBoxMinSize)), |
4307 | 0 | "Why are any of these bits set already?"); |
4308 | 0 | const GridArea& area = gridItem.mArea; |
4309 | 0 | const LineRange& lineRange = area.*aRange; |
4310 | 0 | uint32_t span = lineRange.Extent(); |
4311 | 0 | if (span == 1) { |
4312 | 0 | // Step 1. Size tracks to fit non-spanning items. |
4313 | 0 | if (ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis, |
4314 | 0 | aConstraint, lineRange, gridItem)) { |
4315 | 0 | gridItem.mState[mAxis] |= ItemState::eIsFlexing; |
4316 | 0 | } |
4317 | 0 | } else { |
4318 | 0 | TrackSize::StateBits state = StateBitsForRange(lineRange); |
4319 | 0 |
|
4320 | 0 | // Check if we need to apply "Automatic Minimum Size" and cache it. |
4321 | 0 | if ((state & TrackSize::eAutoMinSizing) && |
4322 | 0 | gridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) { |
4323 | 0 | gridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize; |
4324 | 0 | } |
4325 | 0 |
|
4326 | 0 | if (state & TrackSize::eFlexMaxSizing) { |
4327 | 0 | gridItem.mState[mAxis] |= ItemState::eIsFlexing; |
4328 | 0 | } else if (state & (TrackSize::eIntrinsicMinSizing | |
4329 | 0 | TrackSize::eIntrinsicMaxSizing)) { |
4330 | 0 | // Collect data for Step 2. |
4331 | 0 | maxSpan = std::max(maxSpan, span); |
4332 | 0 | if (span >= perSpanData.Length()) { |
4333 | 0 | perSpanData.SetLength(2 * span); |
4334 | 0 | } |
4335 | 0 | perSpanData[span].mItemCountWithSameSpan++; |
4336 | 0 | perSpanData[span].mStateBits |= state; |
4337 | 0 | CachedIntrinsicSizes cache; |
4338 | 0 | // Calculate data for "Automatic Minimum Size" clamping, if needed. |
4339 | 0 | if (TrackSize::IsDefiniteMaxSizing(state) && |
4340 | 0 | (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize)) { |
4341 | 0 | nscoord minSizeClamp = 0; |
4342 | 0 | for (auto i : lineRange.Range()) { |
4343 | 0 | auto maxCoord = aFunctions.MaxSizingFor(i); |
4344 | 0 | minSizeClamp += maxCoord.ComputeCoordPercentCalc(aPercentageBasis); |
4345 | 0 | } |
4346 | 0 | minSizeClamp += mGridGap * (span - 1); |
4347 | 0 | cache.mMinSizeClamp = minSizeClamp; |
4348 | 0 | gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize; |
4349 | 0 | } |
4350 | 0 | // Collect the various grid item size contributions we need. |
4351 | 0 | nscoord minSize = 0; |
4352 | 0 | if (state & (TrackSize::eIntrinsicMinSizing | // for 2.1 |
4353 | 0 | TrackSize::eIntrinsicMaxSizing)) { // for 2.5 |
4354 | 0 | minSize = MinSize(gridItem, aState, rc, wm, mAxis, &cache); |
4355 | 0 | } |
4356 | 0 | nscoord minContent = 0; |
4357 | 0 | if (state & contentBasedMinSelector) { // for 2.2 |
4358 | 0 | minContent = MinContentContribution(gridItem, aState, |
4359 | 0 | rc, wm, mAxis, &cache); |
4360 | 0 | } |
4361 | 0 | nscoord maxContent = 0; |
4362 | 0 | if (state & (maxContentMinSelector | // for 2.3 |
4363 | 0 | TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6 |
4364 | 0 | maxContent = MaxContentContribution(gridItem, aState, |
4365 | 0 | rc, wm, mAxis, &cache); |
4366 | 0 | } |
4367 | 0 | step2Items.AppendElement( |
4368 | 0 | Step2ItemData({span, state, lineRange, minSize, |
4369 | 0 | minContent, maxContent, gridItem.mFrame})); |
4370 | 0 | } |
4371 | 0 | } |
4372 | 0 | MOZ_ASSERT(!(gridItem.mState[mAxis] & ItemState::eClampMarginBoxMinSize) || |
4373 | 0 | (gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize), |
4374 | 0 | "clamping only applies to Automatic Minimum Size"); |
4375 | 0 | } |
4376 | 0 |
|
4377 | 0 | // Step 2. |
4378 | 0 | if (maxSpan) { |
4379 | 0 | auto fitContentClamper = [&aFunctions, aPercentageBasis] (uint32_t aTrack, |
4380 | 0 | nscoord aMinSize, |
4381 | 0 | nscoord* aSize) |
4382 | 0 | { |
4383 | 0 | nscoord fitContentLimit = |
4384 | 0 | ::ResolveToDefiniteSize(aFunctions.MaxSizingFor(aTrack), aPercentageBasis); |
4385 | 0 | if (*aSize > fitContentLimit) { |
4386 | 0 | *aSize = std::max(aMinSize, fitContentLimit); |
4387 | 0 | return true; |
4388 | 0 | } |
4389 | 0 | return false; |
4390 | 0 | }; |
4391 | 0 |
|
4392 | 0 | // Sort the collected items on span length, shortest first. There's no need |
4393 | 0 | // for a stable sort here since the sizing isn't order dependent within |
4394 | 0 | // a group of items with the same span length. |
4395 | 0 | std::sort(step2Items.begin(), step2Items.end(), |
4396 | 0 | Step2ItemData::IsSpanLessThan); |
4397 | 0 |
|
4398 | 0 | nsTArray<uint32_t> tracks(maxSpan); |
4399 | 0 | nsTArray<TrackSize> plan(mSizes.Length()); |
4400 | 0 | plan.SetLength(mSizes.Length()); |
4401 | 0 | nsTArray<TrackSize> itemPlan(mSizes.Length()); |
4402 | 0 | itemPlan.SetLength(mSizes.Length()); |
4403 | 0 | // Start / end iterator for items of the same span length: |
4404 | 0 | auto spanGroupStart = step2Items.begin(); |
4405 | 0 | auto spanGroupEnd = spanGroupStart; |
4406 | 0 | const auto end = step2Items.end(); |
4407 | 0 | for (; spanGroupStart != end; spanGroupStart = spanGroupEnd) { |
4408 | 0 | const uint32_t span = spanGroupStart->mSpan; |
4409 | 0 | spanGroupEnd = spanGroupStart + perSpanData[span].mItemCountWithSameSpan; |
4410 | 0 | TrackSize::StateBits stateBitsForSpan = perSpanData[span].mStateBits; |
4411 | 0 | bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3? |
4412 | 0 | TrackSize::StateBits selector(TrackSize::eIntrinsicMinSizing); |
4413 | 0 | if (stateBitsForSpan & selector) { |
4414 | 0 | // Step 2.1 MinSize to intrinsic min-sizing. |
4415 | 0 | updatedBase = |
4416 | 0 | GrowSizeForSpanningItems<TrackSizingPhase::eIntrinsicMinimums>( |
4417 | 0 | spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector); |
4418 | 0 | } |
4419 | 0 |
|
4420 | 0 | selector = contentBasedMinSelector; |
4421 | 0 | if (stateBitsForSpan & selector) { |
4422 | 0 | // Step 2.2 MinContentContribution to min-/max-content (and 'auto' when |
4423 | 0 | // sizing under a min-content constraint) min-sizing. |
4424 | 0 | updatedBase |= |
4425 | 0 | GrowSizeForSpanningItems<TrackSizingPhase::eContentBasedMinimums>( |
4426 | 0 | spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector); |
4427 | 0 | } |
4428 | 0 |
|
4429 | 0 | selector = maxContentMinSelector; |
4430 | 0 | if (stateBitsForSpan & selector) { |
4431 | 0 | // Step 2.3 MaxContentContribution to max-content (and 'auto' when |
4432 | 0 | // sizing under a max-content constraint) min-sizing. |
4433 | 0 | updatedBase |= |
4434 | 0 | GrowSizeForSpanningItems<TrackSizingPhase::eMaxContentMinimums>( |
4435 | 0 | spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector); |
4436 | 0 | } |
4437 | 0 |
|
4438 | 0 | if (updatedBase) { |
4439 | 0 | // Step 2.4 |
4440 | 0 | for (TrackSize& sz : mSizes) { |
4441 | 0 | if (sz.mBase > sz.mLimit) { |
4442 | 0 | sz.mLimit = sz.mBase; |
4443 | 0 | } |
4444 | 0 | } |
4445 | 0 | } |
4446 | 0 |
|
4447 | 0 | selector = TrackSize::eIntrinsicMaxSizing; |
4448 | 0 | if (stateBitsForSpan & selector) { |
4449 | 0 | const bool willRunStep2_6 = |
4450 | 0 | stateBitsForSpan & TrackSize::eAutoOrMaxContentMaxSizing; |
4451 | 0 | // Step 2.5 MinSize to intrinsic max-sizing. |
4452 | 0 | GrowSizeForSpanningItems<TrackSizingPhase::eIntrinsicMaximums>( |
4453 | 0 | spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector, |
4454 | 0 | fitContentClamper, willRunStep2_6); |
4455 | 0 |
|
4456 | 0 | if (willRunStep2_6) { |
4457 | 0 | // Step 2.6 MaxContentContribution to max-content max-sizing. |
4458 | 0 | selector = TrackSize::eAutoOrMaxContentMaxSizing; |
4459 | 0 | GrowSizeForSpanningItems<TrackSizingPhase::eMaxContentMaximums>( |
4460 | 0 | spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector, |
4461 | 0 | fitContentClamper); |
4462 | 0 | } |
4463 | 0 | } |
4464 | 0 | } |
4465 | 0 | } |
4466 | 0 |
|
4467 | 0 | // Step 3. |
4468 | 0 | for (TrackSize& sz : mSizes) { |
4469 | 0 | if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { |
4470 | 0 | sz.mLimit = sz.mBase; |
4471 | 0 | } |
4472 | 0 | } |
4473 | 0 | } |
4474 | | |
4475 | | float |
4476 | | nsGridContainerFrame::Tracks::FindFrUnitSize( |
4477 | | const LineRange& aRange, |
4478 | | const nsTArray<uint32_t>& aFlexTracks, |
4479 | | const TrackSizingFunctions& aFunctions, |
4480 | | nscoord aSpaceToFill) const |
4481 | 0 | { |
4482 | 0 | MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty()); |
4483 | 0 | float flexFactorSum = 0.0f; |
4484 | 0 | nscoord leftOverSpace = aSpaceToFill; |
4485 | 0 | for (auto i : aRange.Range()) { |
4486 | 0 | const TrackSize& sz = mSizes[i]; |
4487 | 0 | if (sz.mState & TrackSize::eFlexMaxSizing) { |
4488 | 0 | flexFactorSum += aFunctions.MaxSizingFor(i).GetFlexFractionValue(); |
4489 | 0 | } else { |
4490 | 0 | leftOverSpace -= sz.mBase; |
4491 | 0 | if (leftOverSpace <= 0) { |
4492 | 0 | return 0.0f; |
4493 | 0 | } |
4494 | 0 | } |
4495 | 0 | } |
4496 | 0 | bool restart; |
4497 | 0 | float hypotheticalFrSize; |
4498 | 0 | nsTArray<uint32_t> flexTracks(aFlexTracks); |
4499 | 0 | uint32_t numFlexTracks = flexTracks.Length(); |
4500 | 0 | do { |
4501 | 0 | restart = false; |
4502 | 0 | hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f); |
4503 | 0 | for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) { |
4504 | 0 | uint32_t track = flexTracks[i]; |
4505 | 0 | if (track == kAutoLine) { |
4506 | 0 | continue; // Track marked as inflexible in a prev. iter of this loop. |
4507 | 0 | } |
4508 | 0 | float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue(); |
4509 | 0 | const nscoord base = mSizes[track].mBase; |
4510 | 0 | if (flexFactor * hypotheticalFrSize < base) { |
4511 | 0 | // 12.7.1.4: Treat this track as inflexible. |
4512 | 0 | flexTracks[i] = kAutoLine; |
4513 | 0 | flexFactorSum -= flexFactor; |
4514 | 0 | leftOverSpace -= base; |
4515 | 0 | --numFlexTracks; |
4516 | 0 | if (numFlexTracks == 0 || leftOverSpace <= 0) { |
4517 | 0 | return 0.0f; |
4518 | 0 | } |
4519 | 0 | restart = true; |
4520 | 0 | // break; XXX (bug 1176621 comment 16) measure which is more common |
4521 | 0 | } |
4522 | 0 | } |
4523 | 0 | } while (restart); |
4524 | 0 | return hypotheticalFrSize; |
4525 | 0 | } |
4526 | | |
4527 | | float |
4528 | | nsGridContainerFrame::Tracks::FindUsedFlexFraction( |
4529 | | GridReflowInput& aState, |
4530 | | nsTArray<GridItemInfo>& aGridItems, |
4531 | | const nsTArray<uint32_t>& aFlexTracks, |
4532 | | const TrackSizingFunctions& aFunctions, |
4533 | | nscoord aAvailableSize) const |
4534 | 0 | { |
4535 | 0 | if (aAvailableSize != NS_UNCONSTRAINEDSIZE) { |
4536 | 0 | // Use all of the grid tracks and a 'space to fill' of the available space. |
4537 | 0 | const TranslatedLineRange range(0, mSizes.Length()); |
4538 | 0 | return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize); |
4539 | 0 | } |
4540 | 0 | |
4541 | 0 | // The used flex fraction is the maximum of: |
4542 | 0 | // ... each flexible track's base size divided by its flex factor (which is |
4543 | 0 | // floored at 1). |
4544 | 0 | float fr = 0.0f; |
4545 | 0 | for (uint32_t track : aFlexTracks) { |
4546 | 0 | float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue(); |
4547 | 0 | float possiblyDividedBaseSize = (flexFactor > 1.0f) |
4548 | 0 | ? mSizes[track].mBase / flexFactor |
4549 | 0 | : mSizes[track].mBase; |
4550 | 0 | fr = std::max(fr, possiblyDividedBaseSize); |
4551 | 0 | } |
4552 | 0 | WritingMode wm = aState.mWM; |
4553 | 0 | gfxContext* rc = &aState.mRenderingContext; |
4554 | 0 | // ... the result of 'finding the size of an fr' for each item that spans |
4555 | 0 | // a flex track with its max-content contribution as 'space to fill' |
4556 | 0 | for (const GridItemInfo& item : aGridItems) { |
4557 | 0 | if (item.mState[mAxis] & ItemState::eIsFlexing) { |
4558 | 0 | // XXX optimize: bug 1194446 |
4559 | 0 | auto pb = Some(aState.PercentageBasisFor(mAxis, item)); |
4560 | 0 | nscoord spaceToFill = ContentContribution(item, aState, rc, wm, mAxis, pb, |
4561 | 0 | nsLayoutUtils::PREF_ISIZE); |
4562 | 0 | const LineRange& range = |
4563 | 0 | mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows; |
4564 | 0 | MOZ_ASSERT(range.Extent() >= 1); |
4565 | 0 | const auto spannedGaps = range.Extent() - 1; |
4566 | 0 | if (spannedGaps > 0) { |
4567 | 0 | spaceToFill -= mGridGap * spannedGaps; |
4568 | 0 | } |
4569 | 0 | if (spaceToFill <= 0) { |
4570 | 0 | continue; |
4571 | 0 | } |
4572 | 0 | // ... and all its spanned tracks as input. |
4573 | 0 | nsTArray<uint32_t> itemFlexTracks; |
4574 | 0 | for (auto i : range.Range()) { |
4575 | 0 | if (mSizes[i].mState & TrackSize::eFlexMaxSizing) { |
4576 | 0 | itemFlexTracks.AppendElement(i); |
4577 | 0 | } |
4578 | 0 | } |
4579 | 0 | float itemFr = |
4580 | 0 | FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill); |
4581 | 0 | fr = std::max(fr, itemFr); |
4582 | 0 | } |
4583 | 0 | } |
4584 | 0 | return fr; |
4585 | 0 | } |
4586 | | |
4587 | | void |
4588 | | nsGridContainerFrame::Tracks::StretchFlexibleTracks( |
4589 | | GridReflowInput& aState, |
4590 | | nsTArray<GridItemInfo>& aGridItems, |
4591 | | const TrackSizingFunctions& aFunctions, |
4592 | | nscoord aAvailableSize) |
4593 | 0 | { |
4594 | 0 | if (aAvailableSize <= 0) { |
4595 | 0 | return; |
4596 | 0 | } |
4597 | 0 | nsTArray<uint32_t> flexTracks(mSizes.Length()); |
4598 | 0 | for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) { |
4599 | 0 | if (mSizes[i].mState & TrackSize::eFlexMaxSizing) { |
4600 | 0 | flexTracks.AppendElement(i); |
4601 | 0 | } |
4602 | 0 | } |
4603 | 0 | if (flexTracks.IsEmpty()) { |
4604 | 0 | return; |
4605 | 0 | } |
4606 | 0 | nscoord minSize = 0; |
4607 | 0 | nscoord maxSize = NS_UNCONSTRAINEDSIZE; |
4608 | 0 | if (aState.mReflowInput) { |
4609 | 0 | auto* ri = aState.mReflowInput; |
4610 | 0 | minSize = mAxis == eLogicalAxisBlock ? ri->ComputedMinBSize() |
4611 | 0 | : ri->ComputedMinISize(); |
4612 | 0 | maxSize = mAxis == eLogicalAxisBlock ? ri->ComputedMaxBSize() |
4613 | 0 | : ri->ComputedMaxISize(); |
4614 | 0 | } |
4615 | 0 | Maybe<nsTArray<TrackSize>> origSizes; |
4616 | 0 | bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) && |
4617 | 0 | aAvailableSize == NS_UNCONSTRAINEDSIZE; |
4618 | 0 | // We iterate twice at most. The 2nd time if the grid size changed after |
4619 | 0 | // applying a min/max-size (can only occur if aAvailableSize is indefinite). |
4620 | 0 | while (true) { |
4621 | 0 | float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks, |
4622 | 0 | aFunctions, aAvailableSize); |
4623 | 0 | if (fr != 0.0f) { |
4624 | 0 | for (uint32_t i : flexTracks) { |
4625 | 0 | float flexFactor = aFunctions.MaxSizingFor(i).GetFlexFractionValue(); |
4626 | 0 | nscoord flexLength = NSToCoordRound(flexFactor * fr); |
4627 | 0 | nscoord& base = mSizes[i].mBase; |
4628 | 0 | if (flexLength > base) { |
4629 | 0 | if (applyMinMax && origSizes.isNothing()) { |
4630 | 0 | origSizes.emplace(mSizes); |
4631 | 0 | } |
4632 | 0 | base = flexLength; |
4633 | 0 | } |
4634 | 0 | } |
4635 | 0 | } |
4636 | 0 | if (applyMinMax) { |
4637 | 0 | applyMinMax = false; |
4638 | 0 | // https://drafts.csswg.org/css-grid/#algo-flex-tracks |
4639 | 0 | // "If using this flex fraction would cause the grid to be smaller than |
4640 | 0 | // the grid container’s min-width/height (or larger than the grid |
4641 | 0 | // container’s max-width/height), then redo this step, treating the free |
4642 | 0 | // space as definite [...]" |
4643 | 0 | nscoord newSize = 0; |
4644 | 0 | for (auto& sz : mSizes) { |
4645 | 0 | newSize += sz.mBase; |
4646 | 0 | } |
4647 | 0 | const auto sumOfGridGaps = SumOfGridGaps(); |
4648 | 0 | newSize += sumOfGridGaps; |
4649 | 0 | if (newSize > maxSize) { |
4650 | 0 | aAvailableSize = maxSize; |
4651 | 0 | } else if (newSize < minSize) { |
4652 | 0 | aAvailableSize = minSize; |
4653 | 0 | } |
4654 | 0 | if (aAvailableSize != NS_UNCONSTRAINEDSIZE) { |
4655 | 0 | aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps); |
4656 | 0 | // Restart with the original track sizes and definite aAvailableSize. |
4657 | 0 | if (origSizes.isSome()) { |
4658 | 0 | mSizes = std::move(*origSizes); |
4659 | 0 | origSizes.reset(); |
4660 | 0 | } // else, no mSizes[].mBase were changed above so it's still correct |
4661 | 0 | if (aAvailableSize == 0) { |
4662 | 0 | break; // zero available size wouldn't change any sizes though... |
4663 | 0 | } |
4664 | 0 | continue; |
4665 | 0 | } |
4666 | 0 | } |
4667 | 0 | break; |
4668 | 0 | } |
4669 | 0 | } |
4670 | | |
4671 | | void |
4672 | | nsGridContainerFrame::Tracks::AlignJustifyContent( |
4673 | | const nsStylePosition* aStyle, |
4674 | | WritingMode aWM, |
4675 | | nscoord aContentSize) |
4676 | 0 | { |
4677 | 0 | if (mSizes.IsEmpty()) { |
4678 | 0 | return; |
4679 | 0 | } |
4680 | 0 | |
4681 | 0 | const bool isAlign = mAxis == eLogicalAxisBlock; |
4682 | 0 | auto valueAndFallback = isAlign ? aStyle->mAlignContent : |
4683 | 0 | aStyle->mJustifyContent; |
4684 | 0 | bool overflowSafe; |
4685 | 0 | auto alignment = ::GetAlignJustifyValue(valueAndFallback, aWM, isAlign, |
4686 | 0 | &overflowSafe); |
4687 | 0 | if (alignment == NS_STYLE_ALIGN_NORMAL) { |
4688 | 0 | MOZ_ASSERT(valueAndFallback == NS_STYLE_ALIGN_NORMAL, |
4689 | 0 | "*-content:normal cannot be specified with explicit fallback"); |
4690 | 0 | alignment = NS_STYLE_ALIGN_STRETCH; |
4691 | 0 | valueAndFallback = alignment; // we may need a fallback for 'stretch' below |
4692 | 0 | } |
4693 | 0 |
|
4694 | 0 | // Compute the free space and count auto-sized tracks. |
4695 | 0 | size_t numAutoTracks = 0; |
4696 | 0 | nscoord space; |
4697 | 0 | if (alignment != NS_STYLE_ALIGN_START) { |
4698 | 0 | nscoord trackSizeSum = 0; |
4699 | 0 | for (const TrackSize& sz : mSizes) { |
4700 | 0 | trackSizeSum += sz.mBase; |
4701 | 0 | if (sz.mState & TrackSize::eAutoMaxSizing) { |
4702 | 0 | ++numAutoTracks; |
4703 | 0 | } |
4704 | 0 | } |
4705 | 0 | space = aContentSize - trackSizeSum - SumOfGridGaps(); |
4706 | 0 | // Use the fallback value instead when applicable. |
4707 | 0 | if (space < 0 || |
4708 | 0 | (alignment == NS_STYLE_ALIGN_SPACE_BETWEEN && mSizes.Length() == 1)) { |
4709 | 0 | auto fallback = ::GetAlignJustifyFallbackIfAny(valueAndFallback, aWM, |
4710 | 0 | isAlign, &overflowSafe); |
4711 | 0 | if (fallback) { |
4712 | 0 | alignment = fallback; |
4713 | 0 | } |
4714 | 0 | } |
4715 | 0 | if (space == 0 || (space < 0 && overflowSafe)) { |
4716 | 0 | // XXX check that this makes sense also for [last ]baseline (bug 1151204). |
4717 | 0 | alignment = NS_STYLE_ALIGN_START; |
4718 | 0 | } |
4719 | 0 | } |
4720 | 0 |
|
4721 | 0 | // Optimize the cases where we just need to set each track's position. |
4722 | 0 | nscoord pos = 0; |
4723 | 0 | bool distribute = true; |
4724 | 0 | switch (alignment) { |
4725 | 0 | case NS_STYLE_ALIGN_BASELINE: |
4726 | 0 | case NS_STYLE_ALIGN_LAST_BASELINE: |
4727 | 0 | NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX |
4728 | 0 | MOZ_FALLTHROUGH; |
4729 | 0 | case NS_STYLE_ALIGN_START: |
4730 | 0 | distribute = false; |
4731 | 0 | break; |
4732 | 0 | case NS_STYLE_ALIGN_END: |
4733 | 0 | pos = space; |
4734 | 0 | distribute = false; |
4735 | 0 | break; |
4736 | 0 | case NS_STYLE_ALIGN_CENTER: |
4737 | 0 | pos = space / 2; |
4738 | 0 | distribute = false; |
4739 | 0 | break; |
4740 | 0 | case NS_STYLE_ALIGN_STRETCH: |
4741 | 0 | distribute = numAutoTracks != 0; |
4742 | 0 | break; |
4743 | 0 | } |
4744 | 0 | if (!distribute) { |
4745 | 0 | for (TrackSize& sz : mSizes) { |
4746 | 0 | sz.mPosition = pos; |
4747 | 0 | pos += sz.mBase + mGridGap; |
4748 | 0 | } |
4749 | 0 | return; |
4750 | 0 | } |
4751 | 0 |
|
4752 | 0 | // Distribute free space to/between tracks and set their position. |
4753 | 0 | MOZ_ASSERT(space > 0, "should've handled that on the fallback path above"); |
4754 | 0 | nscoord between, roundingError; |
4755 | 0 | switch (alignment) { |
4756 | 0 | case NS_STYLE_ALIGN_STRETCH: { |
4757 | 0 | MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above"); |
4758 | 0 | nscoord spacePerTrack; |
4759 | 0 | roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack); |
4760 | 0 | for (TrackSize& sz : mSizes) { |
4761 | 0 | sz.mPosition = pos; |
4762 | 0 | if (!(sz.mState & TrackSize::eAutoMaxSizing)) { |
4763 | 0 | pos += sz.mBase + mGridGap; |
4764 | 0 | continue; |
4765 | 0 | } |
4766 | 0 | nscoord stretch = spacePerTrack; |
4767 | 0 | if (roundingError) { |
4768 | 0 | roundingError -= 1; |
4769 | 0 | stretch += 1; |
4770 | 0 | } |
4771 | 0 | nscoord newBase = sz.mBase + stretch; |
4772 | 0 | sz.mBase = newBase; |
4773 | 0 | pos += newBase + mGridGap; |
4774 | 0 | } |
4775 | 0 | MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?"); |
4776 | 0 | return; |
4777 | 0 | } |
4778 | 0 | case NS_STYLE_ALIGN_SPACE_BETWEEN: |
4779 | 0 | MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above"); |
4780 | 0 | roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between); |
4781 | 0 | break; |
4782 | 0 | case NS_STYLE_ALIGN_SPACE_AROUND: |
4783 | 0 | roundingError = NSCoordDivRem(space, mSizes.Length(), &between); |
4784 | 0 | pos = between / 2; |
4785 | 0 | break; |
4786 | 0 | case NS_STYLE_ALIGN_SPACE_EVENLY: |
4787 | 0 | roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between); |
4788 | 0 | pos = between; |
4789 | 0 | break; |
4790 | 0 | default: |
4791 | 0 | MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value"); |
4792 | 0 | between = 0; // just to avoid a compiler warning |
4793 | 0 | roundingError = 0; // just to avoid a compiler warning |
4794 | 0 | } |
4795 | 0 | between += mGridGap; |
4796 | 0 | for (TrackSize& sz : mSizes) { |
4797 | 0 | sz.mPosition = pos; |
4798 | 0 | nscoord spacing = between; |
4799 | 0 | if (roundingError) { |
4800 | 0 | roundingError -= 1; |
4801 | 0 | spacing += 1; |
4802 | 0 | } |
4803 | 0 | pos += sz.mBase + spacing; |
4804 | 0 | } |
4805 | 0 | MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?"); |
4806 | 0 | } |
4807 | | |
4808 | | void |
4809 | | nsGridContainerFrame::LineRange::ToPositionAndLength( |
4810 | | const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos, nscoord* aLength) const |
4811 | 0 | { |
4812 | 0 | MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine, |
4813 | 0 | "expected a definite LineRange"); |
4814 | 0 | MOZ_ASSERT(mStart < mEnd); |
4815 | 0 | nscoord startPos = aTrackSizes[mStart].mPosition; |
4816 | 0 | const TrackSize& sz = aTrackSizes[mEnd - 1]; |
4817 | 0 | *aPos = startPos; |
4818 | 0 | *aLength = (sz.mPosition + sz.mBase) - startPos; |
4819 | 0 | } |
4820 | | |
4821 | | nscoord |
4822 | | nsGridContainerFrame::LineRange::ToLength( |
4823 | | const nsTArray<TrackSize>& aTrackSizes) const |
4824 | 0 | { |
4825 | 0 | MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine, |
4826 | 0 | "expected a definite LineRange"); |
4827 | 0 | MOZ_ASSERT(mStart < mEnd); |
4828 | 0 | nscoord startPos = aTrackSizes[mStart].mPosition; |
4829 | 0 | const TrackSize& sz = aTrackSizes[mEnd - 1]; |
4830 | 0 | return (sz.mPosition + sz.mBase) - startPos; |
4831 | 0 | } |
4832 | | |
4833 | | void |
4834 | | nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos( |
4835 | | const Tracks& aTracks, nscoord aGridOrigin, |
4836 | | nscoord* aPos, nscoord* aLength) const |
4837 | 0 | { |
4838 | 0 | // kAutoLine for abspos children contributes the corresponding edge |
4839 | 0 | // of the grid container's padding-box. |
4840 | 0 | if (mEnd == kAutoLine) { |
4841 | 0 | if (mStart == kAutoLine) { |
4842 | 0 | // done |
4843 | 0 | } else { |
4844 | 0 | const nscoord endPos = *aPos + *aLength; |
4845 | 0 | auto side = mStart == aTracks.mSizes.Length() ? GridLineSide::eBeforeGridGap |
4846 | 0 | : GridLineSide::eAfterGridGap; |
4847 | 0 | nscoord startPos = aTracks.GridLineEdge(mStart, side); |
4848 | 0 | *aPos = aGridOrigin + startPos; |
4849 | 0 | *aLength = std::max(endPos - *aPos, 0); |
4850 | 0 | } |
4851 | 0 | } else { |
4852 | 0 | if (mStart == kAutoLine) { |
4853 | 0 | auto side = mEnd == 0 ? GridLineSide::eAfterGridGap |
4854 | 0 | : GridLineSide::eBeforeGridGap; |
4855 | 0 | nscoord endPos = aTracks.GridLineEdge(mEnd, side); |
4856 | 0 | *aLength = std::max(aGridOrigin + endPos, 0); |
4857 | 0 | } else if (MOZ_LIKELY(mStart != mEnd)) { |
4858 | 0 | nscoord pos; |
4859 | 0 | ToPositionAndLength(aTracks.mSizes, &pos, aLength); |
4860 | 0 | *aPos = aGridOrigin + pos; |
4861 | 0 | } else { |
4862 | 0 | // The grid area only covers removed 'auto-fit' tracks. |
4863 | 0 | nscoord pos = aTracks.GridLineEdge(mStart, GridLineSide::eBeforeGridGap); |
4864 | 0 | *aPos = aGridOrigin + pos; |
4865 | 0 | *aLength = nscoord(0); |
4866 | 0 | } |
4867 | 0 | } |
4868 | 0 | } |
4869 | | |
4870 | | LogicalSize |
4871 | | nsGridContainerFrame::GridReflowInput::PercentageBasisFor( |
4872 | | LogicalAxis aAxis, |
4873 | | const GridItemInfo& aGridItem) const |
4874 | 0 | { |
4875 | 0 | auto wm = aGridItem.mFrame->GetWritingMode(); |
4876 | 0 | if (aAxis == eLogicalAxisInline) { |
4877 | 0 | return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); |
4878 | 0 | } |
4879 | 0 | // Note: for now, we only resolve transferred percentages to row sizing. |
4880 | 0 | // We may need to adjust these assertions once we implement bug 1300366. |
4881 | 0 | MOZ_ASSERT(mCols.mCanResolveLineRangeSize); |
4882 | 0 | MOZ_ASSERT(!mRows.mCanResolveLineRangeSize); |
4883 | 0 | nscoord colSize = aGridItem.mArea.mCols.ToLength(mCols.mSizes); |
4884 | 0 | nscoord rowSize = NS_UNCONSTRAINEDSIZE; |
4885 | 0 | return !wm.IsOrthogonalTo(mWM) ? |
4886 | 0 | LogicalSize(wm, colSize, rowSize) : LogicalSize(wm, rowSize, colSize); |
4887 | 0 | } |
4888 | | |
4889 | | LogicalRect |
4890 | | nsGridContainerFrame::GridReflowInput::ContainingBlockFor(const GridArea& aArea) const |
4891 | 0 | { |
4892 | 0 | nscoord i, b, iSize, bSize; |
4893 | 0 | MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track"); |
4894 | 0 | MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track"); |
4895 | 0 | aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize); |
4896 | 0 | aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize); |
4897 | 0 | return LogicalRect(mWM, i, b, iSize, bSize); |
4898 | 0 | } |
4899 | | |
4900 | | LogicalRect |
4901 | | nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos( |
4902 | | const GridArea& aArea, |
4903 | | const LogicalPoint& aGridOrigin, |
4904 | | const LogicalRect& aGridCB) const |
4905 | 0 | { |
4906 | 0 | nscoord i = aGridCB.IStart(mWM); |
4907 | 0 | nscoord b = aGridCB.BStart(mWM); |
4908 | 0 | nscoord iSize = aGridCB.ISize(mWM); |
4909 | 0 | nscoord bSize = aGridCB.BSize(mWM); |
4910 | 0 | aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM), |
4911 | 0 | &i, &iSize); |
4912 | 0 | aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM), |
4913 | 0 | &b, &bSize); |
4914 | 0 | return LogicalRect(mWM, i, b, iSize, bSize); |
4915 | 0 | } |
4916 | | |
4917 | | /** |
4918 | | * Return a Fragmentainer object if we have a fragmentainer frame in our |
4919 | | * ancestor chain of containing block (CB) reflow states. We'll only |
4920 | | * continue traversing the ancestor chain as long as the CBs have |
4921 | | * the same writing-mode and have overflow:visible. |
4922 | | */ |
4923 | | Maybe<nsGridContainerFrame::Fragmentainer> |
4924 | | nsGridContainerFrame::GetNearestFragmentainer(const GridReflowInput& aState) const |
4925 | 0 | { |
4926 | 0 | Maybe<nsGridContainerFrame::Fragmentainer> data; |
4927 | 0 | const ReflowInput* gridRI = aState.mReflowInput; |
4928 | 0 | if (gridRI->AvailableBSize() == NS_UNCONSTRAINEDSIZE) { |
4929 | 0 | return data; |
4930 | 0 | } |
4931 | 0 | WritingMode wm = aState.mWM; |
4932 | 0 | const ReflowInput* cbRI = gridRI->mCBReflowInput; |
4933 | 0 | for ( ; cbRI; cbRI = cbRI->mCBReflowInput) { |
4934 | 0 | nsIScrollableFrame* sf = do_QueryFrame(cbRI->mFrame); |
4935 | 0 | if (sf) { |
4936 | 0 | break; |
4937 | 0 | } |
4938 | 0 | if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) { |
4939 | 0 | break; |
4940 | 0 | } |
4941 | 0 | LayoutFrameType frameType = cbRI->mFrame->Type(); |
4942 | 0 | if ((frameType == LayoutFrameType::Canvas && |
4943 | 0 | PresContext()->IsPaginated()) || |
4944 | 0 | frameType == LayoutFrameType::ColumnSet) { |
4945 | 0 | data.emplace(); |
4946 | 0 | data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage; |
4947 | 0 | data->mToFragmentainerEnd = aState.mFragBStart + |
4948 | 0 | gridRI->AvailableBSize() - aState.mBorderPadding.BStart(wm); |
4949 | 0 | const auto numRows = aState.mRows.mSizes.Length(); |
4950 | 0 | data->mCanBreakAtStart = |
4951 | 0 | numRows > 0 && aState.mRows.mSizes[0].mPosition > 0; |
4952 | 0 | nscoord bSize = gridRI->ComputedBSize(); |
4953 | 0 | data->mIsAutoBSize = bSize == NS_AUTOHEIGHT; |
4954 | 0 | if (data->mIsAutoBSize) { |
4955 | 0 | bSize = gridRI->ComputedMinBSize(); |
4956 | 0 | } else { |
4957 | 0 | bSize = NS_CSS_MINMAX(bSize, |
4958 | 0 | gridRI->ComputedMinBSize(), |
4959 | 0 | gridRI->ComputedMaxBSize()); |
4960 | 0 | } |
4961 | 0 | nscoord gridEnd = |
4962 | 0 | aState.mRows.GridLineEdge(numRows, GridLineSide::eBeforeGridGap); |
4963 | 0 | data->mCanBreakAtEnd = bSize > gridEnd && |
4964 | 0 | bSize > aState.mFragBStart; |
4965 | 0 | break; |
4966 | 0 | } |
4967 | 0 | } |
4968 | 0 | return data; |
4969 | 0 | } |
4970 | | |
4971 | | void |
4972 | | nsGridContainerFrame::ReflowInFlowChild(nsIFrame* aChild, |
4973 | | const GridItemInfo* aGridItemInfo, |
4974 | | nsSize aContainerSize, |
4975 | | const Maybe<nscoord>& aStretchBSize, |
4976 | | const Fragmentainer* aFragmentainer, |
4977 | | const GridReflowInput& aState, |
4978 | | const LogicalRect& aContentArea, |
4979 | | ReflowOutput& aDesiredSize, |
4980 | | nsReflowStatus& aStatus) |
4981 | 0 | { |
4982 | 0 | nsPresContext* pc = PresContext(); |
4983 | 0 | ComputedStyle* containerSC = Style(); |
4984 | 0 | WritingMode wm = aState.mReflowInput->GetWritingMode(); |
4985 | 0 | const bool isGridItem = !!aGridItemInfo; |
4986 | 0 | MOZ_ASSERT(isGridItem == !aChild->IsPlaceholderFrame()); |
4987 | 0 | LogicalRect cb(wm); |
4988 | 0 | WritingMode childWM = aChild->GetWritingMode(); |
4989 | 0 | bool isConstrainedBSize = false; |
4990 | 0 | nscoord toFragmentainerEnd; |
4991 | 0 | // The part of the child's grid area that's in previous container fragments. |
4992 | 0 | nscoord consumedGridAreaBSize = 0; |
4993 | 0 | const bool isOrthogonal = wm.IsOrthogonalTo(childWM); |
4994 | 0 | if (MOZ_LIKELY(isGridItem)) { |
4995 | 0 | MOZ_ASSERT(aGridItemInfo->mFrame == aChild); |
4996 | 0 | const GridArea& area = aGridItemInfo->mArea; |
4997 | 0 | MOZ_ASSERT(area.IsDefinite()); |
4998 | 0 | cb = aState.ContainingBlockFor(area); |
4999 | 0 | isConstrainedBSize = aFragmentainer && !wm.IsOrthogonalTo(childWM); |
5000 | 0 | if (isConstrainedBSize) { |
5001 | 0 | // |gridAreaBOffset| is the offset of the child's grid area in this |
5002 | 0 | // container fragment (if negative, that distance is the child CB size |
5003 | 0 | // consumed in previous container fragments). Note that cb.BStart |
5004 | 0 | // (initially) and aState.mFragBStart are in "global" grid coordinates |
5005 | 0 | // (like all track positions). |
5006 | 0 | nscoord gridAreaBOffset = cb.BStart(wm) - aState.mFragBStart; |
5007 | 0 | consumedGridAreaBSize = std::max(0, -gridAreaBOffset); |
5008 | 0 | cb.BStart(wm) = std::max(0, gridAreaBOffset); |
5009 | 0 | toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd - |
5010 | 0 | aState.mFragBStart - cb.BStart(wm); |
5011 | 0 | toFragmentainerEnd = std::max(toFragmentainerEnd, 0); |
5012 | 0 | } |
5013 | 0 | cb += aContentArea.Origin(wm); |
5014 | 0 | aState.mRows.AlignBaselineSubtree(*aGridItemInfo); |
5015 | 0 | aState.mCols.AlignBaselineSubtree(*aGridItemInfo); |
5016 | 0 | // Setup [align|justify]-content:[last ]baseline related frame properties. |
5017 | 0 | // These are added to the padding in SizeComputationInput::InitOffsets. |
5018 | 0 | // (a negative value signals the value is for 'last baseline' and should be |
5019 | 0 | // added to the (logical) end padding) |
5020 | 0 | typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop; |
5021 | 0 | auto SetProp = [aGridItemInfo, aChild] (LogicalAxis aGridAxis, |
5022 | 0 | Prop aProp) { |
5023 | 0 | auto state = aGridItemInfo->mState[aGridAxis]; |
5024 | 0 | auto baselineAdjust = (state & ItemState::eContentBaseline) ? |
5025 | 0 | aGridItemInfo->mBaselineOffset[aGridAxis] : nscoord(0); |
5026 | 0 | if (baselineAdjust < nscoord(0)) { |
5027 | 0 | // This happens when the subtree overflows its track. |
5028 | 0 | // XXX spec issue? it's unclear how to handle this. |
5029 | 0 | baselineAdjust = nscoord(0); |
5030 | 0 | } else if (baselineAdjust > nscoord(0) && |
5031 | 0 | (state & ItemState::eLastBaseline)) { |
5032 | 0 | baselineAdjust = -baselineAdjust; |
5033 | 0 | } |
5034 | 0 | if (baselineAdjust != nscoord(0)) { |
5035 | 0 | aChild->SetProperty(aProp, baselineAdjust); |
5036 | 0 | } else { |
5037 | 0 | aChild->DeleteProperty(aProp); |
5038 | 0 | } |
5039 | 0 | }; |
5040 | 0 | SetProp(eLogicalAxisBlock, isOrthogonal ? IBaselinePadProperty() : |
5041 | 0 | BBaselinePadProperty()); |
5042 | 0 | SetProp(eLogicalAxisInline, isOrthogonal ? BBaselinePadProperty() : |
5043 | 0 | IBaselinePadProperty()); |
5044 | 0 | } else { |
5045 | 0 | // By convention, for frames that perform CSS Box Alignment, we position |
5046 | 0 | // placeholder children at the start corner of their alignment container, |
5047 | 0 | // and in this case that's usually the grid's content-box. |
5048 | 0 | // ("Usually" - the exception is when the grid *also* forms the |
5049 | 0 | // abs.pos. containing block. In that case, the alignment container isn't |
5050 | 0 | // the content-box -- it's some grid area instead. But that case doesn't |
5051 | 0 | // require any special handling here, because we handle it later using a |
5052 | 0 | // special flag (STATIC_POS_IS_CB_ORIGIN) which will make us ignore the |
5053 | 0 | // placeholder's position entirely.) |
5054 | 0 | cb = aContentArea; |
5055 | 0 | aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN); |
5056 | 0 | } |
5057 | 0 |
|
5058 | 0 | LogicalSize reflowSize(cb.Size(wm)); |
5059 | 0 | if (isConstrainedBSize) { |
5060 | 0 | reflowSize.BSize(wm) = toFragmentainerEnd; |
5061 | 0 | } |
5062 | 0 | LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm); |
5063 | 0 |
|
5064 | 0 | // Setup the ClampMarginBoxMinSize reflow flags and property, if needed. |
5065 | 0 | uint32_t flags = 0; |
5066 | 0 | if (aGridItemInfo) { |
5067 | 0 | // Clamp during reflow if we're stretching in that axis. |
5068 | 0 | auto* pos = aChild->StylePosition(); |
5069 | 0 | auto j = pos->UsedJustifySelf(Style()); |
5070 | 0 | auto a = pos->UsedAlignSelf(Style()); |
5071 | 0 | bool stretch[2]; |
5072 | 0 | stretch[eLogicalAxisInline] = j == NS_STYLE_JUSTIFY_NORMAL || |
5073 | 0 | j == NS_STYLE_JUSTIFY_STRETCH; |
5074 | 0 | stretch[eLogicalAxisBlock] = a == NS_STYLE_ALIGN_NORMAL || |
5075 | 0 | a == NS_STYLE_ALIGN_STRETCH; |
5076 | 0 | auto childIAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline; |
5077 | 0 | if (stretch[childIAxis] && |
5078 | 0 | aGridItemInfo->mState[childIAxis] & ItemState::eClampMarginBoxMinSize) { |
5079 | 0 | flags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE; |
5080 | 0 | } |
5081 | 0 |
|
5082 | 0 | auto childBAxis = GetOrthogonalAxis(childIAxis); |
5083 | 0 | if (stretch[childBAxis] && |
5084 | 0 | aGridItemInfo->mState[childBAxis] & ItemState::eClampMarginBoxMinSize) { |
5085 | 0 | flags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE; |
5086 | 0 | aChild->SetProperty(BClampMarginBoxMinSizeProperty(), |
5087 | 0 | childCBSize.BSize(childWM)); |
5088 | 0 | } else { |
5089 | 0 | aChild->DeleteProperty(BClampMarginBoxMinSizeProperty()); |
5090 | 0 | } |
5091 | 0 |
|
5092 | 0 | if ((aGridItemInfo->mState[childIAxis] & ItemState::eApplyAutoMinSize)) { |
5093 | 0 | flags |= ReflowInput::I_APPLY_AUTO_MIN_SIZE; |
5094 | 0 | } |
5095 | 0 | } |
5096 | 0 |
|
5097 | 0 | if (!isConstrainedBSize) { |
5098 | 0 | childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE; |
5099 | 0 | } |
5100 | 0 | LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm)); |
5101 | 0 | ReflowInput childRI(pc, *aState.mReflowInput, aChild, childCBSize, |
5102 | 0 | &percentBasis, flags); |
5103 | 0 | childRI.mFlags.mIsTopOfPage = aFragmentainer ? aFragmentainer->mIsTopOfPage : false; |
5104 | 0 |
|
5105 | 0 | // Because we pass ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE, and the |
5106 | 0 | // previous reflow of the child might not have, set the child's |
5107 | 0 | // block-resize flag to true. |
5108 | 0 | // FIXME (perf): It would be faster to do this only if the previous |
5109 | 0 | // reflow of the child was a measuring reflow, and only if the child |
5110 | 0 | // does some of the things that are affected by |
5111 | 0 | // ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE. |
5112 | 0 | childRI.SetBResize(true); |
5113 | 0 |
|
5114 | 0 | // A table-wrapper needs to propagate the CB size we give it to its |
5115 | 0 | // inner table frame later. @see nsTableWrapperFrame::InitChildReflowInput. |
5116 | 0 | if (aChild->IsTableWrapperFrame()) { |
5117 | 0 | LogicalSize* cb = |
5118 | 0 | aChild->GetProperty(nsTableWrapperFrame::GridItemCBSizeProperty()); |
5119 | 0 | if (!cb) { |
5120 | 0 | cb = new LogicalSize(childWM); |
5121 | 0 | aChild->SetProperty(nsTableWrapperFrame::GridItemCBSizeProperty(), cb); |
5122 | 0 | } |
5123 | 0 | *cb = percentBasis; |
5124 | 0 | } |
5125 | 0 |
|
5126 | 0 | // If the child is stretching in its block axis, and we might be fragmenting |
5127 | 0 | // it in that axis, then setup a frame property to tell |
5128 | 0 | // nsBlockFrame::ComputeFinalSize the size. |
5129 | 0 | if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) { |
5130 | 0 | bool stretch = false; |
5131 | 0 | if (!childRI.mStyleMargin->HasBlockAxisAuto(childWM) && |
5132 | 0 | childRI.mStylePosition->BSize(childWM).GetUnit() == eStyleUnit_Auto) { |
5133 | 0 | auto blockAxisAlignment = |
5134 | 0 | childRI.mStylePosition->UsedAlignSelf(Style()); |
5135 | 0 | if (blockAxisAlignment == NS_STYLE_ALIGN_NORMAL || |
5136 | 0 | blockAxisAlignment == NS_STYLE_ALIGN_STRETCH) { |
5137 | 0 | stretch = true; |
5138 | 0 | } |
5139 | 0 | } |
5140 | 0 | if (stretch) { |
5141 | 0 | aChild->SetProperty(FragStretchBSizeProperty(), *aStretchBSize); |
5142 | 0 | } else { |
5143 | 0 | aChild->DeleteProperty(FragStretchBSizeProperty()); |
5144 | 0 | } |
5145 | 0 | } |
5146 | 0 |
|
5147 | 0 | // We need the width of the child before we can correctly convert |
5148 | 0 | // the writing-mode of its origin, so we reflow at (0, 0) using a dummy |
5149 | 0 | // aContainerSize, and then pass the correct position to FinishReflowChild. |
5150 | 0 | ReflowOutput childSize(childRI); |
5151 | 0 | const nsSize dummyContainerSize; |
5152 | 0 | ReflowChild(aChild, pc, childSize, childRI, childWM, LogicalPoint(childWM), |
5153 | 0 | dummyContainerSize, 0, aStatus); |
5154 | 0 | LogicalPoint childPos = |
5155 | 0 | cb.Origin(wm).ConvertTo(childWM, wm, |
5156 | 0 | aContainerSize - childSize.PhysicalSize()); |
5157 | 0 | // Apply align/justify-self and reflow again if that affects the size. |
5158 | 0 | if (MOZ_LIKELY(isGridItem)) { |
5159 | 0 | LogicalSize size = childSize.Size(childWM); // from the ReflowChild() |
5160 | 0 | if (aStatus.IsComplete()) { |
5161 | 0 | auto align = childRI.mStylePosition->UsedAlignSelf(containerSC); |
5162 | 0 | auto state = aGridItemInfo->mState[eLogicalAxisBlock]; |
5163 | 0 | if (state & ItemState::eContentBaseline) { |
5164 | 0 | align = (state & ItemState::eFirstBaseline) ? NS_STYLE_ALIGN_SELF_START |
5165 | 0 | : NS_STYLE_ALIGN_SELF_END; |
5166 | 0 | } |
5167 | 0 | nscoord cbsz = cb.BSize(wm) - consumedGridAreaBSize; |
5168 | 0 | AlignSelf(*aGridItemInfo, align, cbsz, wm, childRI, size, &childPos); |
5169 | 0 | } |
5170 | 0 | auto justify = childRI.mStylePosition->UsedJustifySelf(containerSC); |
5171 | 0 | auto state = aGridItemInfo->mState[eLogicalAxisInline]; |
5172 | 0 | if (state & ItemState::eContentBaseline) { |
5173 | 0 | justify = (state & ItemState::eFirstBaseline) ? NS_STYLE_JUSTIFY_SELF_START |
5174 | 0 | : NS_STYLE_JUSTIFY_SELF_END; |
5175 | 0 | } |
5176 | 0 | nscoord cbsz = cb.ISize(wm); |
5177 | 0 | JustifySelf(*aGridItemInfo, justify, cbsz, wm, childRI, size, &childPos); |
5178 | 0 | } // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self. |
5179 | 0 |
|
5180 | 0 | childRI.ApplyRelativePositioning(&childPos, aContainerSize); |
5181 | 0 | FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos, |
5182 | 0 | aContainerSize, 0); |
5183 | 0 | ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild); |
5184 | 0 | } |
5185 | | |
5186 | | nscoord |
5187 | | nsGridContainerFrame::ReflowInFragmentainer(GridReflowInput& aState, |
5188 | | const LogicalRect& aContentArea, |
5189 | | ReflowOutput& aDesiredSize, |
5190 | | nsReflowStatus& aStatus, |
5191 | | Fragmentainer& aFragmentainer, |
5192 | | const nsSize& aContainerSize) |
5193 | 0 | { |
5194 | 0 | MOZ_ASSERT(aStatus.IsEmpty()); |
5195 | 0 | MOZ_ASSERT(aState.mReflowInput); |
5196 | 0 |
|
5197 | 0 | // Collect our grid items and sort them in row order. Collect placeholders |
5198 | 0 | // and put them in a separate array. |
5199 | 0 | nsTArray<const GridItemInfo*> sortedItems(aState.mGridItems.Length()); |
5200 | 0 | nsTArray<nsIFrame*> placeholders(aState.mAbsPosItems.Length()); |
5201 | 0 | aState.mIter.Reset(CSSOrderAwareFrameIterator::eIncludeAll); |
5202 | 0 | for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { |
5203 | 0 | nsIFrame* child = *aState.mIter; |
5204 | 0 | if (!child->IsPlaceholderFrame()) { |
5205 | 0 | const GridItemInfo* info = &aState.mGridItems[aState.mIter.ItemIndex()]; |
5206 | 0 | sortedItems.AppendElement(info); |
5207 | 0 | } else { |
5208 | 0 | placeholders.AppendElement(child); |
5209 | 0 | } |
5210 | 0 | } |
5211 | 0 | // NOTE: no need to use stable_sort here, there are no dependencies on |
5212 | 0 | // having content order between items on the same row in the code below. |
5213 | 0 | std::sort(sortedItems.begin(), sortedItems.end(), |
5214 | 0 | GridItemInfo::IsStartRowLessThan); |
5215 | 0 |
|
5216 | 0 | // Reflow our placeholder children; they must all be complete. |
5217 | 0 | for (auto child : placeholders) { |
5218 | 0 | nsReflowStatus childStatus; |
5219 | 0 | ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), &aFragmentainer, |
5220 | 0 | aState, aContentArea, aDesiredSize, childStatus); |
5221 | 0 | MOZ_ASSERT(childStatus.IsComplete(), |
5222 | 0 | "nsPlaceholderFrame should never need to be fragmented"); |
5223 | 0 | } |
5224 | 0 |
|
5225 | 0 | // The available size for children - we'll set this to the edge of the last |
5226 | 0 | // row in most cases below, but for now use the full size. |
5227 | 0 | nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd; |
5228 | 0 | const uint32_t startRow = aState.mStartRow; |
5229 | 0 | const uint32_t numRows = aState.mRows.mSizes.Length(); |
5230 | 0 | bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak == |
5231 | 0 | StyleBoxDecorationBreak::Clone; |
5232 | 0 | nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM); |
5233 | 0 |
|
5234 | 0 | // Set |endRow| to the first row that doesn't fit. |
5235 | 0 | uint32_t endRow = numRows; |
5236 | 0 | for (uint32_t row = startRow; row < numRows; ++row) { |
5237 | 0 | auto& sz = aState.mRows.mSizes[row]; |
5238 | 0 | const nscoord bEnd = sz.mPosition + sz.mBase; |
5239 | 0 | nscoord remainingAvailableSize = childAvailableSize - bEnd; |
5240 | 0 | if (remainingAvailableSize < 0 || |
5241 | 0 | (isBDBClone && remainingAvailableSize < bpBEnd)) { |
5242 | 0 | endRow = row; |
5243 | 0 | break; |
5244 | 0 | } |
5245 | 0 | } |
5246 | 0 |
|
5247 | 0 | // Check for forced breaks on the items. |
5248 | 0 | const bool isTopOfPage = aFragmentainer.mIsTopOfPage; |
5249 | 0 | bool isForcedBreak = false; |
5250 | 0 | const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowInput); |
5251 | 0 | for (const GridItemInfo* info : sortedItems) { |
5252 | 0 | uint32_t itemStartRow = info->mArea.mRows.mStart; |
5253 | 0 | if (itemStartRow == endRow) { |
5254 | 0 | break; |
5255 | 0 | } |
5256 | 0 | auto disp = info->mFrame->StyleDisplay(); |
5257 | 0 | if (disp->mBreakBefore) { |
5258 | 0 | // Propagate break-before on the first row to the container unless we're |
5259 | 0 | // already at top-of-page. |
5260 | 0 | if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) { |
5261 | 0 | aStatus.SetInlineLineBreakBeforeAndReset(); |
5262 | 0 | return aState.mFragBStart; |
5263 | 0 | } |
5264 | 0 | if ((itemStartRow > startRow || |
5265 | 0 | (itemStartRow == startRow && !isTopOfPage)) && |
5266 | 0 | itemStartRow < endRow) { |
5267 | 0 | endRow = itemStartRow; |
5268 | 0 | isForcedBreak = true; |
5269 | 0 | // reset any BREAK_AFTER we found on an earlier item |
5270 | 0 | aStatus.Reset(); |
5271 | 0 | break; // we're done since the items are sorted in row order |
5272 | 0 | } |
5273 | 0 | } |
5274 | 0 | uint32_t itemEndRow = info->mArea.mRows.mEnd; |
5275 | 0 | if (disp->mBreakAfter) { |
5276 | 0 | if (itemEndRow != numRows) { |
5277 | 0 | if (itemEndRow > startRow && itemEndRow < endRow) { |
5278 | 0 | endRow = itemEndRow; |
5279 | 0 | isForcedBreak = true; |
5280 | 0 | // No "break;" here since later items with break-after may have |
5281 | 0 | // a shorter span. |
5282 | 0 | } |
5283 | 0 | } else { |
5284 | 0 | // Propagate break-after on the last row to the container, we may still |
5285 | 0 | // find a break-before on this row though (and reset aStatus). |
5286 | 0 | aStatus.SetInlineLineBreakAfter(); // tentative |
5287 | 0 | } |
5288 | 0 | } |
5289 | 0 | } |
5290 | 0 |
|
5291 | 0 | // Consume at least one row in each fragment until we have consumed them all. |
5292 | 0 | // Except for the first row if there's a break opportunity before it. |
5293 | 0 | if (startRow == endRow && startRow != numRows && |
5294 | 0 | (startRow != 0 || !aFragmentainer.mCanBreakAtStart)) { |
5295 | 0 | ++endRow; |
5296 | 0 | } |
5297 | 0 |
|
5298 | 0 | // Honor break-inside:avoid if we can't fit all rows. |
5299 | 0 | if (avoidBreakInside && endRow < numRows) { |
5300 | 0 | aStatus.SetInlineLineBreakBeforeAndReset(); |
5301 | 0 | return aState.mFragBStart; |
5302 | 0 | } |
5303 | 0 | |
5304 | 0 | // Calculate the block-size including this fragment. |
5305 | 0 | nscoord bEndRow = |
5306 | 0 | aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap); |
5307 | 0 | nscoord bSize; |
5308 | 0 | if (aFragmentainer.mIsAutoBSize) { |
5309 | 0 | // We only apply min-bsize once all rows are complete (when bsize is auto). |
5310 | 0 | if (endRow < numRows) { |
5311 | 0 | bSize = bEndRow; |
5312 | 0 | auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput); |
5313 | 0 | if (MOZ_UNLIKELY(clampedBSize != bSize)) { |
5314 | 0 | // We apply max-bsize in all fragments though. |
5315 | 0 | bSize = clampedBSize; |
5316 | 0 | } else if (!isBDBClone) { |
5317 | 0 | // The max-bsize won't make this fragment COMPLETE, so the block-end |
5318 | 0 | // border will be in a later fragment. |
5319 | 0 | bpBEnd = 0; |
5320 | 0 | } |
5321 | 0 | } else { |
5322 | 0 | bSize = NS_CSS_MINMAX(bEndRow, |
5323 | 0 | aState.mReflowInput->ComputedMinBSize(), |
5324 | 0 | aState.mReflowInput->ComputedMaxBSize()); |
5325 | 0 | } |
5326 | 0 | } else { |
5327 | 0 | bSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(), |
5328 | 0 | aState.mReflowInput->ComputedMinBSize(), |
5329 | 0 | aState.mReflowInput->ComputedMaxBSize()); |
5330 | 0 | } |
5331 | 0 |
|
5332 | 0 | // Check for overflow and set aStatus INCOMPLETE if so. |
5333 | 0 | bool overflow = bSize + bpBEnd > childAvailableSize; |
5334 | 0 | if (overflow) { |
5335 | 0 | if (avoidBreakInside) { |
5336 | 0 | aStatus.SetInlineLineBreakBeforeAndReset(); |
5337 | 0 | return aState.mFragBStart; |
5338 | 0 | } |
5339 | 0 | bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd; |
5340 | 0 | if (breakAfterLastRow) { |
5341 | 0 | MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd"); |
5342 | 0 | nscoord availableSize = childAvailableSize; |
5343 | 0 | if (isBDBClone) { |
5344 | 0 | availableSize -= bpBEnd; |
5345 | 0 | } |
5346 | 0 | // Pretend we have at least 1px available size, otherwise we'll never make |
5347 | 0 | // progress in consuming our bSize. |
5348 | 0 | availableSize = std::max(availableSize, |
5349 | 0 | aState.mFragBStart + AppUnitsPerCSSPixel()); |
5350 | 0 | // Fill the fragmentainer, but not more than our desired block-size and |
5351 | 0 | // at least to the size of the last row (even if that overflows). |
5352 | 0 | nscoord newBSize = std::min(bSize, availableSize); |
5353 | 0 | newBSize = std::max(newBSize, bEndRow); |
5354 | 0 | // If it's just the border+padding that is overflowing and we have |
5355 | 0 | // box-decoration-break:clone then we are technically COMPLETE. There's |
5356 | 0 | // no point in creating another zero-bsize fragment in this case. |
5357 | 0 | if (newBSize < bSize || !isBDBClone) { |
5358 | 0 | aStatus.SetIncomplete(); |
5359 | 0 | } |
5360 | 0 | bSize = newBSize; |
5361 | 0 | } else if (bSize <= bEndRow && startRow + 1 < endRow) { |
5362 | 0 | if (endRow == numRows) { |
5363 | 0 | // We have more than one row in this fragment, so we can break before |
5364 | 0 | // the last row instead. |
5365 | 0 | --endRow; |
5366 | 0 | bEndRow = aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap); |
5367 | 0 | bSize = bEndRow; |
5368 | 0 | if (aFragmentainer.mIsAutoBSize) { |
5369 | 0 | bSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput); |
5370 | 0 | } |
5371 | 0 | } |
5372 | 0 | aStatus.SetIncomplete(); |
5373 | 0 | } else if (endRow < numRows) { |
5374 | 0 | bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus); |
5375 | 0 | } // else - no break opportunities. |
5376 | 0 | } else { |
5377 | 0 | // Even though our block-size fits we need to honor forced breaks, or if |
5378 | 0 | // a row doesn't fit in an auto-sized container (unless it's constrained |
5379 | 0 | // by a max-bsize which make us overflow-incomplete). |
5380 | 0 | if (endRow < numRows && (isForcedBreak || |
5381 | 0 | (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) { |
5382 | 0 | bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus); |
5383 | 0 | } |
5384 | 0 | } |
5385 | 0 |
|
5386 | 0 | // If we can't fit all rows then we're at least overflow-incomplete. |
5387 | 0 | if (endRow < numRows) { |
5388 | 0 | childAvailableSize = bEndRow; |
5389 | 0 | if (aStatus.IsComplete()) { |
5390 | 0 | aStatus.SetOverflowIncomplete(); |
5391 | 0 | aStatus.SetNextInFlowNeedsReflow(); |
5392 | 0 | } |
5393 | 0 | } else { |
5394 | 0 | // Children always have the full size of the rows in this fragment. |
5395 | 0 | childAvailableSize = std::max(childAvailableSize, bEndRow); |
5396 | 0 | } |
5397 | 0 |
|
5398 | 0 | return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus, |
5399 | 0 | aFragmentainer, aContainerSize, sortedItems, |
5400 | 0 | startRow, endRow, bSize, childAvailableSize); |
5401 | 0 | } |
5402 | | |
5403 | | nscoord |
5404 | | nsGridContainerFrame::ReflowRowsInFragmentainer( |
5405 | | GridReflowInput& aState, |
5406 | | const LogicalRect& aContentArea, |
5407 | | ReflowOutput& aDesiredSize, |
5408 | | nsReflowStatus& aStatus, |
5409 | | Fragmentainer& aFragmentainer, |
5410 | | const nsSize& aContainerSize, |
5411 | | const nsTArray<const GridItemInfo*>& aSortedItems, |
5412 | | uint32_t aStartRow, |
5413 | | uint32_t aEndRow, |
5414 | | nscoord aBSize, |
5415 | | nscoord aAvailableSize) |
5416 | 0 | { |
5417 | 0 | FrameHashtable pushedItems; |
5418 | 0 | FrameHashtable incompleteItems; |
5419 | 0 | FrameHashtable overflowIncompleteItems; |
5420 | 0 | bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak == |
5421 | 0 | StyleBoxDecorationBreak::Clone; |
5422 | 0 | bool didGrowRow = false; |
5423 | 0 | // As we walk across rows, we track whether the current row is at the top |
5424 | 0 | // of its grid-fragment, to help decide whether we can break before it. When |
5425 | 0 | // this function starts, our row is at the top of the current fragment if: |
5426 | 0 | // - we're starting with a nonzero row (i.e. we're a continuation) |
5427 | 0 | // OR: |
5428 | 0 | // - we're starting with the first row, & we're not allowed to break before |
5429 | 0 | // it (which makes it effectively at the top of its grid-fragment). |
5430 | 0 | bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart; |
5431 | 0 | const bool isStartRowTopOfPage = isRowTopOfPage; |
5432 | 0 | // Save our full available size for later. |
5433 | 0 | const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd; |
5434 | 0 | // Propagate the constrained size to our children. |
5435 | 0 | aFragmentainer.mToFragmentainerEnd = aAvailableSize; |
5436 | 0 | // Reflow the items in row order up to |aEndRow| and push items after that. |
5437 | 0 | uint32_t row = 0; |
5438 | 0 | // |i| is intentionally signed, so we can set it to -1 to restart the loop. |
5439 | 0 | for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) { |
5440 | 0 | const GridItemInfo* const info = aSortedItems[i]; |
5441 | 0 | nsIFrame* child = info->mFrame; |
5442 | 0 | row = info->mArea.mRows.mStart; |
5443 | 0 | MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow, |
5444 | 0 | "unexpected child start row"); |
5445 | 0 | if (row >= aEndRow) { |
5446 | 0 | pushedItems.PutEntry(child); |
5447 | 0 | continue; |
5448 | 0 | } |
5449 | 0 | |
5450 | 0 | bool rowCanGrow = false; |
5451 | 0 | nscoord maxRowSize = 0; |
5452 | 0 | if (row >= aStartRow) { |
5453 | 0 | if (row > aStartRow) { |
5454 | 0 | isRowTopOfPage = false; |
5455 | 0 | } |
5456 | 0 | // Can we grow this row? Only consider span=1 items per spec... |
5457 | 0 | rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1; |
5458 | 0 | if (rowCanGrow) { |
5459 | 0 | auto& sz = aState.mRows.mSizes[row]; |
5460 | 0 | // and only min-/max-content rows or flex rows in an auto-sized container |
5461 | 0 | rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) || |
5462 | 0 | ((sz.mState & TrackSize::eFlexMaxSizing) && |
5463 | 0 | aFragmentainer.mIsAutoBSize); |
5464 | 0 | if (rowCanGrow) { |
5465 | 0 | if (isBDBClone) { |
5466 | 0 | maxRowSize = gridAvailableSize - |
5467 | 0 | aState.mBorderPadding.BEnd(aState.mWM); |
5468 | 0 | } else { |
5469 | 0 | maxRowSize = gridAvailableSize; |
5470 | 0 | } |
5471 | 0 | maxRowSize -= sz.mPosition; |
5472 | 0 | // ...and only if there is space for it to grow. |
5473 | 0 | rowCanGrow = maxRowSize > sz.mBase; |
5474 | 0 | } |
5475 | 0 | } |
5476 | 0 | } |
5477 | 0 |
|
5478 | 0 | // aFragmentainer.mIsTopOfPage is propagated to the child reflow state. |
5479 | 0 | // When it's false the child may request InlineBreak::Before. We set it |
5480 | 0 | // to false when the row is growable (as determined in the CSS Grid |
5481 | 0 | // Fragmentation spec) and there is a non-zero space between it and the |
5482 | 0 | // fragmentainer end (that can be used to grow it). If the child reports |
5483 | 0 | // a forced break in this case, we grow this row to fill the fragment and |
5484 | 0 | // restart the loop. We also restart the loop with |aEndRow = row| |
5485 | 0 | // (but without growing any row) for a InlineBreak::Before child if it spans |
5486 | 0 | // beyond the last row in this fragment. This is to avoid fragmenting it. |
5487 | 0 | // We only restart the loop once. |
5488 | 0 | aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow; |
5489 | 0 | nsReflowStatus childStatus; |
5490 | 0 | // Pass along how much to stretch this fragment, in case it's needed. |
5491 | 0 | nscoord bSize = |
5492 | 0 | aState.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd), |
5493 | 0 | GridLineSide::eBeforeGridGap) - |
5494 | 0 | aState.mRows.GridLineEdge(std::max(aStartRow, row), |
5495 | 0 | GridLineSide::eAfterGridGap); |
5496 | 0 | ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer, |
5497 | 0 | aState, aContentArea, aDesiredSize, childStatus); |
5498 | 0 | MOZ_ASSERT(childStatus.IsInlineBreakBefore() || |
5499 | 0 | !childStatus.IsFullyComplete() || |
5500 | 0 | !child->GetNextInFlow(), |
5501 | 0 | "fully-complete reflow should destroy any NIFs"); |
5502 | 0 |
|
5503 | 0 | if (childStatus.IsInlineBreakBefore()) { |
5504 | 0 | MOZ_ASSERT(!child->GetPrevInFlow(), |
5505 | 0 | "continuations should never report InlineBreak::Before status"); |
5506 | 0 | MOZ_ASSERT(!aFragmentainer.mIsTopOfPage, |
5507 | 0 | "got IsInlineBreakBefore() at top of page"); |
5508 | 0 | if (!didGrowRow) { |
5509 | 0 | if (rowCanGrow) { |
5510 | 0 | // Grow this row and restart with the next row as |aEndRow|. |
5511 | 0 | aState.mRows.ResizeRow(row, maxRowSize); |
5512 | 0 | if (aState.mSharedGridData) { |
5513 | 0 | aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize); |
5514 | 0 | } |
5515 | 0 | didGrowRow = true; |
5516 | 0 | aEndRow = row + 1; // growing this row makes the next one not fit |
5517 | 0 | i = -1; // i == 0 after the next loop increment |
5518 | 0 | isRowTopOfPage = isStartRowTopOfPage; |
5519 | 0 | overflowIncompleteItems.Clear(); |
5520 | 0 | incompleteItems.Clear(); |
5521 | 0 | nscoord bEndRow = |
5522 | 0 | aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap); |
5523 | 0 | aFragmentainer.mToFragmentainerEnd = bEndRow; |
5524 | 0 | if (aFragmentainer.mIsAutoBSize) { |
5525 | 0 | aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus); |
5526 | 0 | } else if (aStatus.IsIncomplete()) { |
5527 | 0 | aBSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(), |
5528 | 0 | aState.mReflowInput->ComputedMinBSize(), |
5529 | 0 | aState.mReflowInput->ComputedMaxBSize()); |
5530 | 0 | aBSize = std::min(bEndRow, aBSize); |
5531 | 0 | } |
5532 | 0 | continue; |
5533 | 0 | } |
5534 | 0 |
|
5535 | 0 | if (!isRowTopOfPage) { |
5536 | 0 | // We can break before this row - restart with it as the new end row. |
5537 | 0 | aEndRow = row; |
5538 | 0 | aBSize = aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap); |
5539 | 0 | i = -1; // i == 0 after the next loop increment |
5540 | 0 | isRowTopOfPage = isStartRowTopOfPage; |
5541 | 0 | overflowIncompleteItems.Clear(); |
5542 | 0 | incompleteItems.Clear(); |
5543 | 0 | aStatus.SetIncomplete(); |
5544 | 0 | continue; |
5545 | 0 | } |
5546 | 0 | NS_ERROR("got InlineBreak::Before at top-of-page"); |
5547 | 0 | childStatus.Reset(); |
5548 | 0 | } else { |
5549 | 0 | // We got InlineBreak::Before again after growing the row - this can happen |
5550 | 0 | // if the child isn't splittable, e.g. some form controls. |
5551 | 0 | childStatus.Reset(); |
5552 | 0 | if (child->GetNextInFlow()) { |
5553 | 0 | // The child already has a fragment, so we know it's splittable. |
5554 | 0 | childStatus.SetIncomplete(); |
5555 | 0 | } // else, report that it's complete |
5556 | 0 | } |
5557 | 0 | } else if (childStatus.IsInlineBreakAfter()) { |
5558 | 0 | MOZ_ASSERT_UNREACHABLE("unexpected child reflow status"); |
5559 | 0 | } |
5560 | 0 |
|
5561 | 0 | MOZ_ASSERT(!childStatus.IsInlineBreakBefore(), |
5562 | 0 | "should've handled InlineBreak::Before above"); |
5563 | 0 | if (childStatus.IsIncomplete()) { |
5564 | 0 | incompleteItems.PutEntry(child); |
5565 | 0 | } else if (!childStatus.IsFullyComplete()) { |
5566 | 0 | overflowIncompleteItems.PutEntry(child); |
5567 | 0 | } |
5568 | 0 | } |
5569 | 0 |
|
5570 | 0 | // Record a break before |aEndRow|. |
5571 | 0 | aState.mNextFragmentStartRow = aEndRow; |
5572 | 0 | if (aEndRow < aState.mRows.mSizes.Length()) { |
5573 | 0 | aState.mRows.BreakBeforeRow(aEndRow); |
5574 | 0 | if (aState.mSharedGridData) { |
5575 | 0 | aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow); |
5576 | 0 | } |
5577 | 0 | } |
5578 | 0 |
|
5579 | 0 | if (!pushedItems.IsEmpty() || |
5580 | 0 | !incompleteItems.IsEmpty() || |
5581 | 0 | !overflowIncompleteItems.IsEmpty()) { |
5582 | 0 | if (aStatus.IsComplete()) { |
5583 | 0 | aStatus.SetOverflowIncomplete(); |
5584 | 0 | aStatus.SetNextInFlowNeedsReflow(); |
5585 | 0 | } |
5586 | 0 | // Iterate the children in normal document order and append them (or a NIF) |
5587 | 0 | // to one of the following frame lists according to their status. |
5588 | 0 | nsFrameList pushedList; |
5589 | 0 | nsFrameList incompleteList; |
5590 | 0 | nsFrameList overflowIncompleteList; |
5591 | 0 | auto* pc = PresContext(); |
5592 | 0 | auto* fc = pc->PresShell()->FrameConstructor(); |
5593 | 0 | for (nsIFrame* child = GetChildList(kPrincipalList).FirstChild(); child; ) { |
5594 | 0 | MOZ_ASSERT((pushedItems.Contains(child) ? 1 : 0) + |
5595 | 0 | (incompleteItems.Contains(child) ? 1 : 0) + |
5596 | 0 | (overflowIncompleteItems.Contains(child) ? 1 : 0) <= 1, |
5597 | 0 | "child should only be in one of these sets"); |
5598 | 0 | // Save the next-sibling so we can continue the loop if |child| is moved. |
5599 | 0 | nsIFrame* next = child->GetNextSibling(); |
5600 | 0 | if (pushedItems.Contains(child)) { |
5601 | 0 | MOZ_ASSERT(child->GetParent() == this); |
5602 | 0 | StealFrame(child); |
5603 | 0 | pushedList.AppendFrame(nullptr, child); |
5604 | 0 | } else if (incompleteItems.Contains(child)) { |
5605 | 0 | nsIFrame* childNIF = child->GetNextInFlow(); |
5606 | 0 | if (!childNIF) { |
5607 | 0 | childNIF = fc->CreateContinuingFrame(pc, child, this); |
5608 | 0 | incompleteList.AppendFrame(nullptr, childNIF); |
5609 | 0 | } else { |
5610 | 0 | auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent()); |
5611 | 0 | MOZ_ASSERT(parent != this || !mFrames.ContainsFrame(childNIF), |
5612 | 0 | "child's NIF shouldn't be in the same principal list"); |
5613 | 0 | // If child's existing NIF is an overflow container, convert it to an |
5614 | 0 | // actual NIF, since now |child| has non-overflow stuff to give it. |
5615 | 0 | // Or, if it's further away then our next-in-flow, then pull it up. |
5616 | 0 | if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) || |
5617 | 0 | (parent != this && parent != GetNextInFlow())) { |
5618 | 0 | parent->StealFrame(childNIF); |
5619 | 0 | childNIF->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER); |
5620 | 0 | if (parent == this) { |
5621 | 0 | incompleteList.AppendFrame(nullptr, childNIF); |
5622 | 0 | } else { |
5623 | 0 | // If childNIF already lives on the next grid fragment, then we |
5624 | 0 | // don't need to reparent it, since we know it's destined to end |
5625 | 0 | // up there anyway. Just move it to its parent's overflow list. |
5626 | 0 | if (parent == GetNextInFlow()) { |
5627 | 0 | nsFrameList toMove(childNIF, childNIF); |
5628 | 0 | parent->MergeSortedOverflow(toMove); |
5629 | 0 | } else { |
5630 | 0 | ReparentFrame(childNIF, parent, this); |
5631 | 0 | incompleteList.AppendFrame(nullptr, childNIF); |
5632 | 0 | } |
5633 | 0 | } |
5634 | 0 | } |
5635 | 0 | } |
5636 | 0 | } else if (overflowIncompleteItems.Contains(child)) { |
5637 | 0 | nsIFrame* childNIF = child->GetNextInFlow(); |
5638 | 0 | if (!childNIF) { |
5639 | 0 | childNIF = fc->CreateContinuingFrame(pc, child, this); |
5640 | 0 | childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER); |
5641 | 0 | overflowIncompleteList.AppendFrame(nullptr, childNIF); |
5642 | 0 | } else { |
5643 | 0 | DebugOnly<nsGridContainerFrame*> lastParent = this; |
5644 | 0 | auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow()); |
5645 | 0 | // If child has any non-overflow-container NIFs, convert them to |
5646 | 0 | // overflow containers, since that's all |child| needs now. |
5647 | 0 | while (childNIF && |
5648 | 0 | !childNIF->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) { |
5649 | 0 | auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent()); |
5650 | 0 | parent->StealFrame(childNIF); |
5651 | 0 | childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER); |
5652 | 0 | if (parent == this) { |
5653 | 0 | overflowIncompleteList.AppendFrame(nullptr, childNIF); |
5654 | 0 | } else { |
5655 | 0 | if (!nif || parent == nif) { |
5656 | 0 | nsFrameList toMove(childNIF, childNIF); |
5657 | 0 | parent->MergeSortedExcessOverflowContainers(toMove); |
5658 | 0 | } else { |
5659 | 0 | ReparentFrame(childNIF, parent, nif); |
5660 | 0 | nsFrameList toMove(childNIF, childNIF); |
5661 | 0 | nif->MergeSortedExcessOverflowContainers(toMove); |
5662 | 0 | } |
5663 | 0 | // We only need to reparent the first childNIF (or not at all if |
5664 | 0 | // its parent is our NIF). |
5665 | 0 | nif = nullptr; |
5666 | 0 | } |
5667 | 0 | lastParent = parent; |
5668 | 0 | childNIF = childNIF->GetNextInFlow(); |
5669 | 0 | } |
5670 | 0 | } |
5671 | 0 | } |
5672 | 0 | child = next; |
5673 | 0 | } |
5674 | 0 |
|
5675 | 0 | // Merge the results into our respective overflow child lists. |
5676 | 0 | if (!pushedList.IsEmpty()) { |
5677 | 0 | MergeSortedOverflow(pushedList); |
5678 | 0 | AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); |
5679 | 0 | // NOTE since we messed with our child list here, we intentionally |
5680 | 0 | // make aState.mIter invalid to avoid any use of it after this point. |
5681 | 0 | aState.mIter.Invalidate(); |
5682 | 0 | } |
5683 | 0 | if (!incompleteList.IsEmpty()) { |
5684 | 0 | MergeSortedOverflow(incompleteList); |
5685 | 0 | // NOTE since we messed with our child list here, we intentionally |
5686 | 0 | // make aState.mIter invalid to avoid any use of it after this point. |
5687 | 0 | aState.mIter.Invalidate(); |
5688 | 0 | } |
5689 | 0 | if (!overflowIncompleteList.IsEmpty()) { |
5690 | 0 | MergeSortedExcessOverflowContainers(overflowIncompleteList); |
5691 | 0 | } |
5692 | 0 | } |
5693 | 0 | return aBSize; |
5694 | 0 | } |
5695 | | |
5696 | | nscoord |
5697 | | nsGridContainerFrame::ReflowChildren(GridReflowInput& aState, |
5698 | | const LogicalRect& aContentArea, |
5699 | | ReflowOutput& aDesiredSize, |
5700 | | nsReflowStatus& aStatus) |
5701 | 0 | { |
5702 | 0 | MOZ_ASSERT(aState.mReflowInput); |
5703 | 0 | MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!"); |
5704 | 0 |
|
5705 | 0 | nsOverflowAreas ocBounds; |
5706 | 0 | nsReflowStatus ocStatus; |
5707 | 0 | if (GetPrevInFlow()) { |
5708 | 0 | ReflowOverflowContainerChildren(PresContext(), *aState.mReflowInput, |
5709 | 0 | ocBounds, 0, ocStatus, |
5710 | 0 | MergeSortedFrameListsFor); |
5711 | 0 | } |
5712 | 0 |
|
5713 | 0 | WritingMode wm = aState.mReflowInput->GetWritingMode(); |
5714 | 0 | const nsSize containerSize = |
5715 | 0 | (aContentArea.Size(wm) + aState.mBorderPadding.Size(wm)).GetPhysicalSize(wm); |
5716 | 0 |
|
5717 | 0 | nscoord bSize = aContentArea.BSize(wm); |
5718 | 0 | Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aState); |
5719 | 0 | if (MOZ_UNLIKELY(fragmentainer.isSome())) { |
5720 | 0 | aState.mInFragmentainer = true; |
5721 | 0 | bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus, |
5722 | 0 | *fragmentainer, containerSize); |
5723 | 0 | } else { |
5724 | 0 | aState.mIter.Reset(CSSOrderAwareFrameIterator::eIncludeAll); |
5725 | 0 | for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { |
5726 | 0 | nsIFrame* child = *aState.mIter; |
5727 | 0 | const GridItemInfo* info = nullptr; |
5728 | 0 | if (!child->IsPlaceholderFrame()) { |
5729 | 0 | info = &aState.mGridItems[aState.mIter.ItemIndex()]; |
5730 | 0 | } |
5731 | 0 | ReflowInFlowChild(*aState.mIter, info, containerSize, Nothing(), nullptr, |
5732 | 0 | aState, aContentArea, aDesiredSize, aStatus); |
5733 | 0 | MOZ_ASSERT(aStatus.IsComplete(), "child should be complete " |
5734 | 0 | "in unconstrained reflow"); |
5735 | 0 | } |
5736 | 0 | } |
5737 | 0 |
|
5738 | 0 | // Merge overflow container bounds and status. |
5739 | 0 | aDesiredSize.mOverflowAreas.UnionWith(ocBounds); |
5740 | 0 | aStatus.MergeCompletionStatusFrom(ocStatus); |
5741 | 0 |
|
5742 | 0 | if (IsAbsoluteContainer()) { |
5743 | 0 | nsFrameList children(GetChildList(GetAbsoluteListID())); |
5744 | 0 | if (!children.IsEmpty()) { |
5745 | 0 | // 'gridOrigin' is the origin of the grid (the start of the first track), |
5746 | 0 | // with respect to the grid container's padding-box (CB). |
5747 | 0 | LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding()); |
5748 | 0 | const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm)); |
5749 | 0 | const LogicalRect gridCB(wm, 0, 0, |
5750 | 0 | aContentArea.ISize(wm) + pad.IStartEnd(wm), |
5751 | 0 | bSize + pad.BStartEnd(wm)); |
5752 | 0 | const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm); |
5753 | 0 | size_t i = 0; |
5754 | 0 | for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) { |
5755 | 0 | nsIFrame* child = e.get(); |
5756 | 0 | MOZ_ASSERT(i < aState.mAbsPosItems.Length()); |
5757 | 0 | MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child); |
5758 | 0 | GridArea& area = aState.mAbsPosItems[i].mArea; |
5759 | 0 | LogicalRect itemCB = |
5760 | 0 | aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB); |
5761 | 0 | // nsAbsoluteContainingBlock::Reflow uses physical coordinates. |
5762 | 0 | nsRect* cb = child->GetProperty(GridItemContainingBlockRect()); |
5763 | 0 | if (!cb) { |
5764 | 0 | cb = new nsRect; |
5765 | 0 | child->SetProperty(GridItemContainingBlockRect(), cb); |
5766 | 0 | } |
5767 | 0 | *cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize); |
5768 | 0 | } |
5769 | 0 | // We pass a dummy rect as CB because each child has its own CB rect. |
5770 | 0 | // The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to |
5771 | 0 | // use those instead. |
5772 | 0 | nsRect dummyRect; |
5773 | 0 | AbsPosReflowFlags flags = |
5774 | 0 | AbsPosReflowFlags::eCBWidthAndHeightChanged; // XXX could be optimized |
5775 | 0 | flags |= AbsPosReflowFlags::eConstrainHeight; |
5776 | 0 | flags |= AbsPosReflowFlags::eIsGridContainerCB; |
5777 | 0 | GetAbsoluteContainingBlock()->Reflow(this, PresContext(), |
5778 | 0 | *aState.mReflowInput, |
5779 | 0 | aStatus, dummyRect, flags, |
5780 | 0 | &aDesiredSize.mOverflowAreas); |
5781 | 0 | } |
5782 | 0 | } |
5783 | 0 | return bSize; |
5784 | 0 | } |
5785 | | |
5786 | | void |
5787 | | nsGridContainerFrame::Reflow(nsPresContext* aPresContext, |
5788 | | ReflowOutput& aDesiredSize, |
5789 | | const ReflowInput& aReflowInput, |
5790 | | nsReflowStatus& aStatus) |
5791 | 0 | { |
5792 | 0 | MarkInReflow(); |
5793 | 0 | DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame"); |
5794 | 0 | DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus); |
5795 | 0 | MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!"); |
5796 | 0 |
|
5797 | 0 | if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) { |
5798 | 0 | return; |
5799 | 0 | } |
5800 | 0 | |
5801 | 0 | // First we gather child frames we should include in our reflow, |
5802 | 0 | // i.e. overflowed children from our prev-in-flow, and pushed first-in-flow |
5803 | 0 | // children (that might now fit). It's important to note that these children |
5804 | 0 | // can be in arbitrary order vis-a-vis the current children in our lists. |
5805 | 0 | // E.g. grid items in the document order: A, B, C may be placed in the rows |
5806 | 0 | // 3, 2, 1. Assume each row goes in a separate grid container fragment, |
5807 | 0 | // and we reflow the second fragment. Now if C (in fragment 1) overflows, |
5808 | 0 | // we can't just prepend it to our mFrames like we usually do because that |
5809 | 0 | // would violate the document order invariant that other code depends on. |
5810 | 0 | // Similarly if we pull up child A (from fragment 3) we can't just append |
5811 | 0 | // that for the same reason. Instead, we must sort these children into |
5812 | 0 | // our child lists. (The sorting is trivial given that both lists are |
5813 | 0 | // already fully sorted individually - it's just a merge.) |
5814 | 0 | // |
5815 | 0 | // The invariants that we maintain are that each grid container child list |
5816 | 0 | // is sorted in the normal document order at all times, but that children |
5817 | 0 | // in different grid container continuations may be in arbitrary order. |
5818 | 0 | |
5819 | 0 | auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow()); |
5820 | 0 | // Merge overflow frames from our prev-in-flow into our principal child list. |
5821 | 0 | if (prevInFlow) { |
5822 | 0 | AutoFrameListPtr overflow(aPresContext, |
5823 | 0 | prevInFlow->StealOverflowFrames()); |
5824 | 0 | if (overflow) { |
5825 | 0 | ReparentFrames(*overflow, prevInFlow, this); |
5826 | 0 | ::MergeSortedFrameLists(mFrames, *overflow, GetContent()); |
5827 | 0 |
|
5828 | 0 | // Move trailing next-in-flows into our overflow list. |
5829 | 0 | nsFrameList continuations; |
5830 | 0 | for (nsIFrame* f = mFrames.FirstChild(); f; ) { |
5831 | 0 | nsIFrame* next = f->GetNextSibling(); |
5832 | 0 | nsIFrame* pif = f->GetPrevInFlow(); |
5833 | 0 | if (pif && pif->GetParent() == this) { |
5834 | 0 | mFrames.RemoveFrame(f); |
5835 | 0 | continuations.AppendFrame(nullptr, f); |
5836 | 0 | } |
5837 | 0 | f = next; |
5838 | 0 | } |
5839 | 0 | MergeSortedOverflow(continuations); |
5840 | 0 |
|
5841 | 0 | // Move trailing OC next-in-flows into our excess overflow containers list. |
5842 | 0 | nsFrameList* overflowContainers = |
5843 | 0 | GetPropTableFrames(OverflowContainersProperty()); |
5844 | 0 | if (overflowContainers) { |
5845 | 0 | nsFrameList moveToEOC; |
5846 | 0 | for (nsIFrame* f = overflowContainers->FirstChild(); f; ) { |
5847 | 0 | nsIFrame* next = f->GetNextSibling(); |
5848 | 0 | nsIFrame* pif = f->GetPrevInFlow(); |
5849 | 0 | if (pif && pif->GetParent() == this) { |
5850 | 0 | overflowContainers->RemoveFrame(f); |
5851 | 0 | moveToEOC.AppendFrame(nullptr, f); |
5852 | 0 | } |
5853 | 0 | f = next; |
5854 | 0 | } |
5855 | 0 | if (overflowContainers->IsEmpty()) { |
5856 | 0 | DeleteProperty(OverflowContainersProperty()); |
5857 | 0 | } |
5858 | 0 | MergeSortedExcessOverflowContainers(moveToEOC); |
5859 | 0 | } |
5860 | 0 | } |
5861 | 0 | } |
5862 | 0 |
|
5863 | 0 | // Merge our own overflow frames into our principal child list, |
5864 | 0 | // except those that are a next-in-flow for one of our items. |
5865 | 0 | DebugOnly<bool> foundOwnPushedChild = false; |
5866 | 0 | { |
5867 | 0 | nsFrameList* ourOverflow = GetOverflowFrames(); |
5868 | 0 | if (ourOverflow) { |
5869 | 0 | nsFrameList items; |
5870 | 0 | for (nsIFrame* f = ourOverflow->FirstChild(); f; ) { |
5871 | 0 | nsIFrame* next = f->GetNextSibling(); |
5872 | 0 | nsIFrame* pif = f->GetPrevInFlow(); |
5873 | 0 | if (!pif || pif->GetParent() != this) { |
5874 | 0 | MOZ_ASSERT(f->GetParent() == this); |
5875 | 0 | ourOverflow->RemoveFrame(f); |
5876 | 0 | items.AppendFrame(nullptr, f); |
5877 | 0 | if (!pif) { |
5878 | 0 | foundOwnPushedChild = true; |
5879 | 0 | } |
5880 | 0 | } |
5881 | 0 | f = next; |
5882 | 0 | } |
5883 | 0 | ::MergeSortedFrameLists(mFrames, items, GetContent()); |
5884 | 0 | if (ourOverflow->IsEmpty()) { |
5885 | 0 | DestroyOverflowList(); |
5886 | 0 | } |
5887 | 0 | } |
5888 | 0 | } |
5889 | 0 |
|
5890 | 0 | // Push any child next-in-flows in our principal list to OverflowList. |
5891 | 0 | if (HasAnyStateBits(NS_STATE_GRID_HAS_CHILD_NIFS)) { |
5892 | 0 | nsFrameList framesToPush; |
5893 | 0 | nsIFrame* firstChild = mFrames.FirstChild(); |
5894 | 0 | // Note that we potentially modify our mFrames list as we go. |
5895 | 0 | for (auto child = firstChild; child; child = child->GetNextSibling()) { |
5896 | 0 | if (auto* childNIF = child->GetNextInFlow()) { |
5897 | 0 | if (childNIF->GetParent() == this) { |
5898 | 0 | for (auto c = child->GetNextSibling(); c; c = c->GetNextSibling()) { |
5899 | 0 | if (c == childNIF) { |
5900 | 0 | // child's next-in-flow is in our principal child list, push it. |
5901 | 0 | mFrames.RemoveFrame(childNIF); |
5902 | 0 | framesToPush.AppendFrame(nullptr, childNIF); |
5903 | 0 | break; |
5904 | 0 | } |
5905 | 0 | } |
5906 | 0 | } |
5907 | 0 | } |
5908 | 0 | } |
5909 | 0 | if (!framesToPush.IsEmpty()) { |
5910 | 0 | MergeSortedOverflow(framesToPush); |
5911 | 0 | } |
5912 | 0 | RemoveStateBits(NS_STATE_GRID_HAS_CHILD_NIFS); |
5913 | 0 | } |
5914 | 0 |
|
5915 | 0 | // Pull up any first-in-flow children we might have pushed. |
5916 | 0 | if (HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) { |
5917 | 0 | RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); |
5918 | 0 | nsFrameList items; |
5919 | 0 | auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow()); |
5920 | 0 | auto firstNIF = nif; |
5921 | 0 | DebugOnly<bool> nifNeedPushedItem = false; |
5922 | 0 | while (nif) { |
5923 | 0 | nsFrameList nifItems; |
5924 | 0 | for (nsIFrame* nifChild = nif->GetChildList(kPrincipalList).FirstChild(); |
5925 | 0 | nifChild; ) { |
5926 | 0 | nsIFrame* next = nifChild->GetNextSibling(); |
5927 | 0 | if (!nifChild->GetPrevInFlow()) { |
5928 | 0 | nif->StealFrame(nifChild); |
5929 | 0 | ReparentFrame(nifChild, nif, this); |
5930 | 0 | nifItems.AppendFrame(nullptr, nifChild); |
5931 | 0 | nifNeedPushedItem = false; |
5932 | 0 | } |
5933 | 0 | nifChild = next; |
5934 | 0 | } |
5935 | 0 | ::MergeSortedFrameLists(items, nifItems, GetContent()); |
5936 | 0 |
|
5937 | 0 | if (!nif->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) { |
5938 | 0 | MOZ_ASSERT(!nifNeedPushedItem || mDidPushItemsBitMayLie, |
5939 | 0 | "NS_STATE_GRID_DID_PUSH_ITEMS lied"); |
5940 | 0 | break; |
5941 | 0 | } |
5942 | 0 | nifNeedPushedItem = true; |
5943 | 0 |
|
5944 | 0 | for (nsIFrame* nifChild = nif->GetChildList(kOverflowList).FirstChild(); |
5945 | 0 | nifChild; ) { |
5946 | 0 | nsIFrame* next = nifChild->GetNextSibling(); |
5947 | 0 | if (!nifChild->GetPrevInFlow()) { |
5948 | 0 | nif->StealFrame(nifChild); |
5949 | 0 | ReparentFrame(nifChild, nif, this); |
5950 | 0 | nifItems.AppendFrame(nullptr, nifChild); |
5951 | 0 | nifNeedPushedItem = false; |
5952 | 0 | } |
5953 | 0 | nifChild = next; |
5954 | 0 | } |
5955 | 0 | ::MergeSortedFrameLists(items, nifItems, GetContent()); |
5956 | 0 |
|
5957 | 0 | nif->RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); |
5958 | 0 | nif = static_cast<nsGridContainerFrame*>(nif->GetNextInFlow()); |
5959 | 0 | MOZ_ASSERT(nif || !nifNeedPushedItem || mDidPushItemsBitMayLie, |
5960 | 0 | "NS_STATE_GRID_DID_PUSH_ITEMS lied"); |
5961 | 0 | } |
5962 | 0 |
|
5963 | 0 | if (!items.IsEmpty()) { |
5964 | 0 | // Pull up the first next-in-flow of the pulled up items too, unless its |
5965 | 0 | // parent is our nif (to avoid leaving a hole there). |
5966 | 0 | nsFrameList childNIFs; |
5967 | 0 | nsFrameList childOCNIFs; |
5968 | 0 | for (auto child : items) { |
5969 | 0 | auto childNIF = child->GetNextInFlow(); |
5970 | 0 | if (childNIF && childNIF->GetParent() != firstNIF) { |
5971 | 0 | auto parent = childNIF->GetParent(); |
5972 | 0 | parent->StealFrame(childNIF); |
5973 | 0 | ReparentFrame(childNIF, parent, firstNIF); |
5974 | 0 | if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER)) { |
5975 | 0 | childOCNIFs.AppendFrame(nullptr, childNIF); |
5976 | 0 | } else { |
5977 | 0 | childNIFs.AppendFrame(nullptr, childNIF); |
5978 | 0 | } |
5979 | 0 | } |
5980 | 0 | } |
5981 | 0 | // Merge items' NIFs into our NIF's respective overflow child lists. |
5982 | 0 | firstNIF->MergeSortedOverflow(childNIFs); |
5983 | 0 | firstNIF->MergeSortedExcessOverflowContainers(childOCNIFs); |
5984 | 0 | } |
5985 | 0 |
|
5986 | 0 | MOZ_ASSERT(foundOwnPushedChild || !items.IsEmpty() || mDidPushItemsBitMayLie, |
5987 | 0 | "NS_STATE_GRID_DID_PUSH_ITEMS lied"); |
5988 | 0 | ::MergeSortedFrameLists(mFrames, items, GetContent()); |
5989 | 0 | } |
5990 | 0 |
|
5991 | 0 | RenumberList(); |
5992 | 0 |
|
5993 | | #ifdef DEBUG |
5994 | | mDidPushItemsBitMayLie = false; |
5995 | | SanityCheckGridItemsBeforeReflow(); |
5996 | | #endif // DEBUG |
5997 | |
|
5998 | 0 | mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN; |
5999 | 0 | mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6000 | 0 | mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6001 | 0 | mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6002 | 0 |
|
6003 | 0 | const nsStylePosition* stylePos = aReflowInput.mStylePosition; |
6004 | 0 | if (!prevInFlow) { |
6005 | 0 | InitImplicitNamedAreas(stylePos); |
6006 | 0 | } |
6007 | 0 | GridReflowInput gridReflowInput(this, aReflowInput); |
6008 | 0 | if (gridReflowInput.mIter.ItemsAreAlreadyInOrder()) { |
6009 | 0 | AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER); |
6010 | 0 | } else { |
6011 | 0 | RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER); |
6012 | 0 | } |
6013 | 0 | if (gridReflowInput.mIter.AtEnd()) { |
6014 | 0 | // We have no grid items, our parent should synthesize a baseline if needed. |
6015 | 0 | AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE); |
6016 | 0 | } else { |
6017 | 0 | RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE); |
6018 | 0 | } |
6019 | 0 | const nscoord computedBSize = aReflowInput.ComputedBSize(); |
6020 | 0 | const nscoord computedISize = aReflowInput.ComputedISize(); |
6021 | 0 | const WritingMode& wm = gridReflowInput.mWM; |
6022 | 0 | const LogicalSize computedSize(wm, computedISize, computedBSize); |
6023 | 0 |
|
6024 | 0 | nscoord consumedBSize = 0; |
6025 | 0 | nscoord bSize = 0; |
6026 | 0 | if (!prevInFlow) { |
6027 | 0 | Grid grid; |
6028 | 0 | grid.PlaceGridItems(gridReflowInput, aReflowInput.ComputedMinSize(), |
6029 | 0 | computedSize, aReflowInput.ComputedMaxSize()); |
6030 | 0 |
|
6031 | 0 | gridReflowInput.CalculateTrackSizes(grid, computedSize, |
6032 | 0 | SizingConstraint::eNoConstraint); |
6033 | 0 | // XXX Technically incorrect: We're ignoring our row sizes, when really |
6034 | 0 | // we should use them but *they* should be computed as if we had no |
6035 | 0 | // children. To be fixed in bug 1488878. |
6036 | 0 | if (!aReflowInput.mStyleDisplay->IsContainSize()) { |
6037 | 0 | // Note: we can't use GridLineEdge here since we haven't calculated |
6038 | 0 | // the rows' mPosition yet (happens in AlignJustifyContent below). |
6039 | 0 | for (const auto& sz : gridReflowInput.mRows.mSizes) { |
6040 | 0 | bSize += sz.mBase; |
6041 | 0 | } |
6042 | 0 | bSize += gridReflowInput.mRows.SumOfGridGaps(); |
6043 | 0 | } |
6044 | 0 | } else { |
6045 | 0 | consumedBSize = ConsumedBSize(wm); |
6046 | 0 | gridReflowInput.InitializeForContinuation(this, consumedBSize); |
6047 | 0 | // XXX Technically incorrect: We're ignoring our row sizes, when really |
6048 | 0 | // we should use them but *they* should be computed as if we had no |
6049 | 0 | // children. To be fixed in bug 1488878. |
6050 | 0 | if (!aReflowInput.mStyleDisplay->IsContainSize()) { |
6051 | 0 | const uint32_t numRows = gridReflowInput.mRows.mSizes.Length(); |
6052 | 0 | bSize = gridReflowInput.mRows.GridLineEdge(numRows, |
6053 | 0 | GridLineSide::eAfterGridGap); |
6054 | 0 | } |
6055 | 0 | } |
6056 | 0 | if (computedBSize == NS_AUTOHEIGHT) { |
6057 | 0 | bSize = NS_CSS_MINMAX(bSize, |
6058 | 0 | aReflowInput.ComputedMinBSize(), |
6059 | 0 | aReflowInput.ComputedMaxBSize()); |
6060 | 0 | } else { |
6061 | 0 | bSize = computedBSize; |
6062 | 0 | } |
6063 | 0 | bSize = std::max(bSize - consumedBSize, 0); |
6064 | 0 | auto& bp = gridReflowInput.mBorderPadding; |
6065 | 0 | LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm), |
6066 | 0 | computedISize, bSize); |
6067 | 0 |
|
6068 | 0 | if (!prevInFlow) { |
6069 | 0 | if (computedBSize == NS_AUTOHEIGHT && stylePos->mRowGap.HasPercent()) { |
6070 | 0 | // Re-resolve the row-gap now that we know our intrinsic block-size. |
6071 | 0 | gridReflowInput.mRows.mGridGap = |
6072 | 0 | nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap, bSize); |
6073 | 0 | } |
6074 | 0 | // Apply 'align/justify-content' to the grid. |
6075 | 0 | // CalculateTrackSizes did the columns. |
6076 | 0 | gridReflowInput.mRows.AlignJustifyContent(stylePos, wm, bSize); |
6077 | 0 | } |
6078 | 0 |
|
6079 | 0 | bSize = ReflowChildren(gridReflowInput, contentArea, aDesiredSize, aStatus); |
6080 | 0 | bSize = std::max(bSize - consumedBSize, 0); |
6081 | 0 |
|
6082 | 0 | // Skip our block-end border if we're INCOMPLETE. |
6083 | 0 | if (!aStatus.IsComplete() && |
6084 | 0 | !gridReflowInput.mSkipSides.BEnd() && |
6085 | 0 | StyleBorder()->mBoxDecorationBreak != |
6086 | 0 | StyleBoxDecorationBreak::Clone) { |
6087 | 0 | bp.BEnd(wm) = nscoord(0); |
6088 | 0 | } |
6089 | 0 |
|
6090 | 0 | LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm), |
6091 | 0 | bSize + bp.BStartEnd(wm)); |
6092 | 0 | aDesiredSize.SetSize(wm, desiredSize); |
6093 | 0 | nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height()); |
6094 | 0 | aDesiredSize.mOverflowAreas.UnionAllWith(frameRect); |
6095 | 0 |
|
6096 | 0 | // Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC. |
6097 | 0 | if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) { |
6098 | 0 | if (!aStatus.IsComplete()) { |
6099 | 0 | aStatus.SetOverflowIncomplete(); |
6100 | 0 | aStatus.SetNextInFlowNeedsReflow(); |
6101 | 0 | } |
6102 | 0 | bSize = 0; |
6103 | 0 | desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm); |
6104 | 0 | aDesiredSize.SetSize(wm, desiredSize); |
6105 | 0 | } |
6106 | 0 |
|
6107 | 0 | if (!gridReflowInput.mInFragmentainer) { |
6108 | 0 | MOZ_ASSERT(gridReflowInput.mIter.IsValid()); |
6109 | 0 | auto sz = frameRect.Size(); |
6110 | 0 | CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter, |
6111 | 0 | &gridReflowInput.mGridItems, gridReflowInput.mCols, |
6112 | 0 | 0, gridReflowInput.mCols.mSizes.Length(), |
6113 | 0 | wm, sz, bp.IStart(wm), |
6114 | 0 | bp.IEnd(wm), desiredSize.ISize(wm)); |
6115 | 0 | CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter, |
6116 | 0 | &gridReflowInput.mGridItems, gridReflowInput.mRows, |
6117 | 0 | 0, gridReflowInput.mRows.mSizes.Length(), |
6118 | 0 | wm, sz, bp.BStart(wm), |
6119 | 0 | bp.BEnd(wm), desiredSize.BSize(wm)); |
6120 | 0 | } else { |
6121 | 0 | // Only compute 'first baseline' if this fragment contains the first track. |
6122 | 0 | // XXXmats maybe remove this condition? bug 1306499 |
6123 | 0 | BaselineSet baselines = BaselineSet::eNone; |
6124 | 0 | if (gridReflowInput.mStartRow == 0 && |
6125 | 0 | gridReflowInput.mStartRow != gridReflowInput.mNextFragmentStartRow) { |
6126 | 0 | baselines = BaselineSet::eFirst; |
6127 | 0 | } |
6128 | 0 | // Only compute 'last baseline' if this fragment contains the last track. |
6129 | 0 | // XXXmats maybe remove this condition? bug 1306499 |
6130 | 0 | uint32_t len = gridReflowInput.mRows.mSizes.Length(); |
6131 | 0 | if (gridReflowInput.mStartRow != len && |
6132 | 0 | gridReflowInput.mNextFragmentStartRow == len) { |
6133 | 0 | baselines = BaselineSet(baselines | BaselineSet::eLast); |
6134 | 0 | } |
6135 | 0 | Maybe<CSSOrderAwareFrameIterator> iter; |
6136 | 0 | Maybe<nsTArray<GridItemInfo>> gridItems; |
6137 | 0 | if (baselines != BaselineSet::eNone) { |
6138 | 0 | // We need to create a new iterator and GridItemInfo array because we |
6139 | 0 | // might have pushed some children at this point. |
6140 | 0 | // Even if the gridReflowInput iterator is invalid we can reuse its |
6141 | 0 | // state about order to optimize initialization of the new iterator. |
6142 | 0 | // An ordered child list can't become unordered by pushing frames. |
6143 | 0 | // An unordered list can become ordered in a number of cases, but we |
6144 | 0 | // ignore that here and guess that the child list is still unordered. |
6145 | 0 | // XXX this is O(n^2) in the number of items in this fragment: bug 1306705 |
6146 | 0 | using Filter = CSSOrderAwareFrameIterator::ChildFilter; |
6147 | 0 | using Order = CSSOrderAwareFrameIterator::OrderState; |
6148 | 0 | bool ordered = gridReflowInput.mIter.ItemsAreAlreadyInOrder(); |
6149 | 0 | auto orderState = ordered ? Order::eKnownOrdered : Order::eKnownUnordered; |
6150 | 0 | iter.emplace(this, kPrincipalList, Filter::eSkipPlaceholders, orderState); |
6151 | 0 | gridItems.emplace(); |
6152 | 0 | for (; !iter->AtEnd(); iter->Next()) { |
6153 | 0 | auto child = **iter; |
6154 | 0 | for (const auto& info : gridReflowInput.mGridItems) { |
6155 | 0 | if (info.mFrame == child) { |
6156 | 0 | gridItems->AppendElement(info); |
6157 | 0 | } |
6158 | 0 | } |
6159 | 0 | } |
6160 | 0 | } |
6161 | 0 | auto sz = frameRect.Size(); |
6162 | 0 | CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr), |
6163 | 0 | gridReflowInput.mCols, 0, |
6164 | 0 | gridReflowInput.mCols.mSizes.Length(), wm, sz, |
6165 | 0 | bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm)); |
6166 | 0 | CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr), |
6167 | 0 | gridReflowInput.mRows, gridReflowInput.mStartRow, |
6168 | 0 | gridReflowInput.mNextFragmentStartRow, wm, sz, |
6169 | 0 | bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm)); |
6170 | 0 | } |
6171 | 0 |
|
6172 | 0 | if (HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) { |
6173 | 0 | // This state bit will never be cleared, since reflow can be called |
6174 | 0 | // multiple times in fragmented grids, and it's challenging to scope |
6175 | 0 | // the bit to only that sequence of calls. This is relatively harmless |
6176 | 0 | // since this bit is only set by accessing a ChromeOnly property, and |
6177 | 0 | // therefore can't unduly slow down normal web browsing. |
6178 | 0 |
|
6179 | 0 | // Now that we know column and row sizes and positions, set |
6180 | 0 | // the ComputedGridTrackInfo and related properties |
6181 | 0 |
|
6182 | 0 | uint32_t colTrackCount = gridReflowInput.mCols.mSizes.Length(); |
6183 | 0 | nsTArray<nscoord> colTrackPositions(colTrackCount); |
6184 | 0 | nsTArray<nscoord> colTrackSizes(colTrackCount); |
6185 | 0 | nsTArray<uint32_t> colTrackStates(colTrackCount); |
6186 | 0 | nsTArray<bool> colRemovedRepeatTracks( |
6187 | 0 | gridReflowInput.mColFunctions.mRemovedRepeatTracks); |
6188 | 0 | uint32_t col = 0; |
6189 | 0 | for (const TrackSize& sz : gridReflowInput.mCols.mSizes) { |
6190 | 0 | colTrackPositions.AppendElement(sz.mPosition); |
6191 | 0 | colTrackSizes.AppendElement(sz.mBase); |
6192 | 0 | bool isRepeat = ((col >= gridReflowInput.mColFunctions.mRepeatAutoStart) && |
6193 | 0 | (col < gridReflowInput.mColFunctions.mRepeatAutoEnd)); |
6194 | 0 | colTrackStates.AppendElement( |
6195 | 0 | isRepeat ? |
6196 | 0 | (uint32_t)mozilla::dom::GridTrackState::Repeat : |
6197 | 0 | (uint32_t)mozilla::dom::GridTrackState::Static |
6198 | 0 | ); |
6199 | 0 |
|
6200 | 0 | col++; |
6201 | 0 | } |
6202 | 0 | ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo( |
6203 | 0 | gridReflowInput.mColFunctions.mExplicitGridOffset, |
6204 | 0 | gridReflowInput.mColFunctions.NumExplicitTracks(), |
6205 | 0 | 0, |
6206 | 0 | col, |
6207 | 0 | std::move(colTrackPositions), |
6208 | 0 | std::move(colTrackSizes), |
6209 | 0 | std::move(colTrackStates), |
6210 | 0 | std::move(colRemovedRepeatTracks), |
6211 | 0 | gridReflowInput.mColFunctions.mRepeatAutoStart); |
6212 | 0 | SetProperty(GridColTrackInfo(), colInfo); |
6213 | 0 |
|
6214 | 0 | uint32_t rowTrackCount = gridReflowInput.mRows.mSizes.Length(); |
6215 | 0 | nsTArray<nscoord> rowTrackPositions(rowTrackCount); |
6216 | 0 | nsTArray<nscoord> rowTrackSizes(rowTrackCount); |
6217 | 0 | nsTArray<uint32_t> rowTrackStates(rowTrackCount); |
6218 | 0 | nsTArray<bool> rowRemovedRepeatTracks( |
6219 | 0 | gridReflowInput.mRowFunctions.mRemovedRepeatTracks); |
6220 | 0 | uint32_t row = 0; |
6221 | 0 | for (const TrackSize& sz : gridReflowInput.mRows.mSizes) { |
6222 | 0 | rowTrackPositions.AppendElement(sz.mPosition); |
6223 | 0 | rowTrackSizes.AppendElement(sz.mBase); |
6224 | 0 | bool isRepeat = ((row >= gridReflowInput.mRowFunctions.mRepeatAutoStart) && |
6225 | 0 | (row < gridReflowInput.mRowFunctions.mRepeatAutoEnd)); |
6226 | 0 | rowTrackStates.AppendElement( |
6227 | 0 | isRepeat ? |
6228 | 0 | (uint32_t)mozilla::dom::GridTrackState::Repeat : |
6229 | 0 | (uint32_t)mozilla::dom::GridTrackState::Static |
6230 | 0 | ); |
6231 | 0 |
|
6232 | 0 | row++; |
6233 | 0 | } |
6234 | 0 | // Row info has to accomodate fragmentation of the grid, which may happen in |
6235 | 0 | // later calls to Reflow. For now, presume that no more fragmentation will |
6236 | 0 | // occur. |
6237 | 0 | ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo( |
6238 | 0 | gridReflowInput.mRowFunctions.mExplicitGridOffset, |
6239 | 0 | gridReflowInput.mRowFunctions.NumExplicitTracks(), |
6240 | 0 | gridReflowInput.mStartRow, |
6241 | 0 | row, |
6242 | 0 | std::move(rowTrackPositions), |
6243 | 0 | std::move(rowTrackSizes), |
6244 | 0 | std::move(rowTrackStates), |
6245 | 0 | std::move(rowRemovedRepeatTracks), |
6246 | 0 | gridReflowInput.mRowFunctions.mRepeatAutoStart); |
6247 | 0 | SetProperty(GridRowTrackInfo(), rowInfo); |
6248 | 0 |
|
6249 | 0 | if (prevInFlow) { |
6250 | 0 | // This frame is fragmenting rows from a previous frame, so patch up |
6251 | 0 | // the prior GridRowTrackInfo with a new end row. |
6252 | 0 |
|
6253 | 0 | // FIXME: This can be streamlined and/or removed when bug 1151204 lands. |
6254 | 0 |
|
6255 | 0 | ComputedGridTrackInfo* priorRowInfo = |
6256 | 0 | prevInFlow->GetProperty(GridRowTrackInfo()); |
6257 | 0 |
|
6258 | 0 | // Adjust track positions based on the first track in this fragment. |
6259 | 0 | if (priorRowInfo->mPositions.Length() > |
6260 | 0 | priorRowInfo->mStartFragmentTrack) { |
6261 | 0 | nscoord delta = |
6262 | 0 | priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack]; |
6263 | 0 | for (nscoord& pos : priorRowInfo->mPositions) { |
6264 | 0 | pos -= delta; |
6265 | 0 | } |
6266 | 0 | } |
6267 | 0 |
|
6268 | 0 | ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo( |
6269 | 0 | priorRowInfo->mNumLeadingImplicitTracks, |
6270 | 0 | priorRowInfo->mNumExplicitTracks, |
6271 | 0 | priorRowInfo->mStartFragmentTrack, |
6272 | 0 | gridReflowInput.mStartRow, |
6273 | 0 | std::move(priorRowInfo->mPositions), |
6274 | 0 | std::move(priorRowInfo->mSizes), |
6275 | 0 | std::move(priorRowInfo->mStates), |
6276 | 0 | std::move(priorRowInfo->mRemovedRepeatTracks), |
6277 | 0 | priorRowInfo->mRepeatFirstTrack); |
6278 | 0 | prevInFlow->SetProperty(GridRowTrackInfo(), revisedPriorRowInfo); |
6279 | 0 | } |
6280 | 0 |
|
6281 | 0 | // Generate the line info properties. We need to provide the number of |
6282 | 0 | // repeat tracks produced in the reflow. Only explicit names are assigned |
6283 | 0 | // to lines here; the mozilla::dom::GridLines class will later extract |
6284 | 0 | // implicit names from grid areas and assign them to the appropriate lines. |
6285 | 0 |
|
6286 | 0 | // Generate column lines first. |
6287 | 0 | uint32_t capacity = gridReflowInput.mCols.mSizes.Length(); |
6288 | 0 | const nsStyleGridTemplate& gridColTemplate = |
6289 | 0 | gridReflowInput.mGridStyle->GridTemplateColumns(); |
6290 | 0 | nsTArray<nsTArray<nsString>> columnLineNames(capacity); |
6291 | 0 | for (col = 0; col <= gridReflowInput.mCols.mSizes.Length(); col++) { |
6292 | 0 | // Offset col by the explicit grid offset, to get the original names. |
6293 | 0 | nsTArray<nsString> explicitNames = |
6294 | 0 | gridReflowInput.mCols.GetExplicitLineNamesAtIndex( |
6295 | 0 | gridColTemplate, |
6296 | 0 | gridReflowInput.mColFunctions, |
6297 | 0 | col - gridReflowInput.mColFunctions.mExplicitGridOffset); |
6298 | 0 |
|
6299 | 0 | columnLineNames.AppendElement(explicitNames); |
6300 | 0 | } |
6301 | 0 | // Get the explicit names that follow a repeat auto declaration. |
6302 | 0 | nsTArray<nsString> colNamesFollowingRepeat; |
6303 | 0 | if (gridColTemplate.HasRepeatAuto()) { |
6304 | 0 | // The line name list after the repeatAutoIndex holds the line names |
6305 | 0 | // for the first explicit line after the repeat auto declaration. |
6306 | 0 | uint32_t repeatAutoEnd = gridColTemplate.mRepeatAutoIndex + 1; |
6307 | 0 | MOZ_ASSERT(repeatAutoEnd < gridColTemplate.mLineNameLists.Length()); |
6308 | 0 | colNamesFollowingRepeat.AppendElements( |
6309 | 0 | gridColTemplate.mLineNameLists[repeatAutoEnd]); |
6310 | 0 | } |
6311 | 0 |
|
6312 | 0 | ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo( |
6313 | 0 | std::move(columnLineNames), |
6314 | 0 | gridColTemplate.mRepeatAutoLineNameListBefore, |
6315 | 0 | gridColTemplate.mRepeatAutoLineNameListAfter, |
6316 | 0 | std::move(colNamesFollowingRepeat)); |
6317 | 0 | SetProperty(GridColumnLineInfo(), columnLineInfo); |
6318 | 0 |
|
6319 | 0 | // Generate row lines next. |
6320 | 0 | capacity = gridReflowInput.mRows.mSizes.Length(); |
6321 | 0 | const nsStyleGridTemplate& gridRowTemplate = |
6322 | 0 | gridReflowInput.mGridStyle->GridTemplateRows(); |
6323 | 0 | nsTArray<nsTArray<nsString>> rowLineNames(capacity); |
6324 | 0 | for (row = 0; row <= gridReflowInput.mRows.mSizes.Length(); row++) { |
6325 | 0 | // Offset row by the explicit grid offset, to get the original names. |
6326 | 0 | nsTArray<nsString> explicitNames = |
6327 | 0 | gridReflowInput.mRows.GetExplicitLineNamesAtIndex( |
6328 | 0 | gridRowTemplate, |
6329 | 0 | gridReflowInput.mRowFunctions, |
6330 | 0 | row - gridReflowInput.mRowFunctions.mExplicitGridOffset); |
6331 | 0 |
|
6332 | 0 | rowLineNames.AppendElement(explicitNames); |
6333 | 0 | } |
6334 | 0 | // Get the explicit names that follow a repeat auto declaration. |
6335 | 0 | nsTArray<nsString> rowNamesFollowingRepeat; |
6336 | 0 | if (gridRowTemplate.HasRepeatAuto()) { |
6337 | 0 | // The line name list after the repeatAutoIndex holds the line names |
6338 | 0 | // for the first explicit line after the repeat auto declaration. |
6339 | 0 | uint32_t repeatAutoEnd = gridRowTemplate.mRepeatAutoIndex + 1; |
6340 | 0 | MOZ_ASSERT(repeatAutoEnd < gridRowTemplate.mLineNameLists.Length()); |
6341 | 0 | rowNamesFollowingRepeat.AppendElements( |
6342 | 0 | gridRowTemplate.mLineNameLists[repeatAutoEnd]); |
6343 | 0 | } |
6344 | 0 |
|
6345 | 0 | ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo( |
6346 | 0 | std::move(rowLineNames), |
6347 | 0 | gridRowTemplate.mRepeatAutoLineNameListBefore, |
6348 | 0 | gridRowTemplate.mRepeatAutoLineNameListAfter, |
6349 | 0 | std::move(rowNamesFollowingRepeat)); |
6350 | 0 | SetProperty(GridRowLineInfo(), rowLineInfo); |
6351 | 0 |
|
6352 | 0 | // Generate area info for explicit areas. Implicit areas are handled |
6353 | 0 | // elsewhere. |
6354 | 0 | if (gridReflowInput.mGridStyle->mGridTemplateAreas) { |
6355 | 0 | nsTArray<css::GridNamedArea>* areas = new nsTArray<css::GridNamedArea>( |
6356 | 0 | gridReflowInput.mGridStyle->mGridTemplateAreas->mNamedAreas); |
6357 | 0 | SetProperty(ExplicitNamedAreasProperty(), areas); |
6358 | 0 | } else { |
6359 | 0 | DeleteProperty(ExplicitNamedAreasProperty()); |
6360 | 0 | } |
6361 | 0 | } |
6362 | 0 |
|
6363 | 0 | if (!prevInFlow) { |
6364 | 0 | SharedGridData* sharedGridData = GetProperty(SharedGridData::Prop()); |
6365 | 0 | if (!aStatus.IsFullyComplete()) { |
6366 | 0 | if (!sharedGridData) { |
6367 | 0 | sharedGridData = new SharedGridData; |
6368 | 0 | SetProperty(SharedGridData::Prop(), sharedGridData); |
6369 | 0 | } |
6370 | 0 | sharedGridData->mCols.mSizes.Clear(); |
6371 | 0 | sharedGridData->mCols.mSizes.SwapElements(gridReflowInput.mCols.mSizes); |
6372 | 0 | sharedGridData->mCols.mContentBoxSize = gridReflowInput.mCols.mContentBoxSize; |
6373 | 0 | sharedGridData->mCols.mBaselineSubtreeAlign[0] = |
6374 | 0 | gridReflowInput.mCols.mBaselineSubtreeAlign[0]; |
6375 | 0 | sharedGridData->mCols.mBaselineSubtreeAlign[1] = |
6376 | 0 | gridReflowInput.mCols.mBaselineSubtreeAlign[1]; |
6377 | 0 | sharedGridData->mRows.mSizes.Clear(); |
6378 | 0 | sharedGridData->mRows.mSizes.SwapElements(gridReflowInput.mRows.mSizes); |
6379 | 0 | // Save the original row grid sizes and gaps so we can restore them later |
6380 | 0 | // in GridReflowInput::Initialize for the continuations. |
6381 | 0 | auto& origRowData = sharedGridData->mOriginalRowData; |
6382 | 0 | origRowData.ClearAndRetainStorage(); |
6383 | 0 | origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length()); |
6384 | 0 | nscoord prevTrackEnd = 0; |
6385 | 0 | for (auto& sz : sharedGridData->mRows.mSizes) { |
6386 | 0 | SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd}; |
6387 | 0 | origRowData.AppendElement(data); |
6388 | 0 | prevTrackEnd = sz.mPosition + sz.mBase; |
6389 | 0 | } |
6390 | 0 | sharedGridData->mRows.mContentBoxSize = gridReflowInput.mRows.mContentBoxSize; |
6391 | 0 | sharedGridData->mRows.mBaselineSubtreeAlign[0] = |
6392 | 0 | gridReflowInput.mRows.mBaselineSubtreeAlign[0]; |
6393 | 0 | sharedGridData->mRows.mBaselineSubtreeAlign[1] = |
6394 | 0 | gridReflowInput.mRows.mBaselineSubtreeAlign[1]; |
6395 | 0 | sharedGridData->mGridItems.Clear(); |
6396 | 0 | sharedGridData->mGridItems.SwapElements(gridReflowInput.mGridItems); |
6397 | 0 | sharedGridData->mAbsPosItems.Clear(); |
6398 | 0 | sharedGridData->mAbsPosItems.SwapElements(gridReflowInput.mAbsPosItems); |
6399 | 0 |
|
6400 | 0 | sharedGridData->mGenerateComputedGridInfo = |
6401 | 0 | HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES); |
6402 | 0 | } else if (sharedGridData && !GetNextInFlow()) { |
6403 | 0 | DeleteProperty(SharedGridData::Prop()); |
6404 | 0 | } |
6405 | 0 | } |
6406 | 0 |
|
6407 | 0 | FinishAndStoreOverflow(&aDesiredSize); |
6408 | 0 | NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize); |
6409 | 0 | } |
6410 | | |
6411 | | void |
6412 | | nsGridContainerFrame::Init(nsIContent* aContent, |
6413 | | nsContainerFrame* aParent, |
6414 | | nsIFrame* aPrevInFlow) |
6415 | 0 | { |
6416 | 0 | nsContainerFrame::Init(aContent, aParent, aPrevInFlow); |
6417 | 0 |
|
6418 | 0 | nsFrameState bits = nsFrameState(0); |
6419 | 0 | if (MOZ_LIKELY(!aPrevInFlow)) { |
6420 | 0 | // skip our scroll frame and such if we have it |
6421 | 0 | auto* parent = aParent; |
6422 | 0 | while (parent && parent->GetContent() == aContent) { |
6423 | 0 | parent = parent->GetParent(); |
6424 | 0 | } |
6425 | 0 | if (parent && parent->IsGridContainerFrame()) { |
6426 | 0 | const auto* pos = StylePosition(); |
6427 | 0 | if (pos->GridTemplateColumns().mIsSubgrid) { |
6428 | 0 | bits |= NS_STATE_GRID_IS_COL_SUBGRID; |
6429 | 0 | } |
6430 | 0 | if (pos->GridTemplateRows().mIsSubgrid) { |
6431 | 0 | bits |= NS_STATE_GRID_IS_ROW_SUBGRID; |
6432 | 0 | } |
6433 | 0 | } |
6434 | 0 | } else { |
6435 | 0 | bits = aPrevInFlow->GetStateBits() & (NS_STATE_GRID_IS_COL_SUBGRID | |
6436 | 0 | NS_STATE_GRID_IS_ROW_SUBGRID | |
6437 | 0 | NS_STATE_GRID_HAS_COL_SUBGRID_ITEM | |
6438 | 0 | NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM); |
6439 | 0 | } |
6440 | 0 | AddStateBits(bits); |
6441 | 0 | } |
6442 | | |
6443 | | nscoord |
6444 | | nsGridContainerFrame::IntrinsicISize(gfxContext* aRenderingContext, |
6445 | | IntrinsicISizeType aType) |
6446 | 0 | { |
6447 | 0 | RenumberList(); |
6448 | 0 |
|
6449 | 0 | // Calculate the sum of column sizes under intrinsic sizing. |
6450 | 0 | // http://dev.w3.org/csswg/css-grid/#intrinsic-sizes |
6451 | 0 | GridReflowInput state(this, *aRenderingContext); |
6452 | 0 | InitImplicitNamedAreas(state.mGridStyle); // XXX optimize |
6453 | 0 |
|
6454 | 0 | auto GetDefiniteSizes = [] (const nsStyleCoord& aMinCoord, |
6455 | 0 | const nsStyleCoord& aSizeCoord, |
6456 | 0 | const nsStyleCoord& aMaxCoord, |
6457 | 0 | nscoord* aMin, |
6458 | 0 | nscoord* aSize, |
6459 | 0 | nscoord* aMax) { |
6460 | 0 | if (aMinCoord.ConvertsToLength()) { |
6461 | 0 | *aMin = aMinCoord.ToLength(); |
6462 | 0 | } |
6463 | 0 | if (aMaxCoord.ConvertsToLength()) { |
6464 | 0 | *aMax = std::max(*aMin, aMaxCoord.ToLength()); |
6465 | 0 | } |
6466 | 0 | if (aSizeCoord.ConvertsToLength()) { |
6467 | 0 | *aSize = Clamp(aSizeCoord.ToLength(), *aMin, *aMax); |
6468 | 0 | } |
6469 | 0 | }; |
6470 | 0 | // The min/sz/max sizes are the input to the "repeat-to-fill" algorithm: |
6471 | 0 | // https://drafts.csswg.org/css-grid/#auto-repeat |
6472 | 0 | // They're only used for auto-repeat so we skip computing them otherwise. |
6473 | 0 | LogicalSize min(state.mWM, 0, 0); |
6474 | 0 | LogicalSize sz(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); |
6475 | 0 | LogicalSize max(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); |
6476 | 0 | if (state.mColFunctions.mHasRepeatAuto) { |
6477 | 0 | GetDefiniteSizes(state.mGridStyle->MinISize(state.mWM), |
6478 | 0 | state.mGridStyle->ISize(state.mWM), |
6479 | 0 | state.mGridStyle->MaxISize(state.mWM), |
6480 | 0 | &min.ISize(state.mWM), |
6481 | 0 | &sz.ISize(state.mWM), |
6482 | 0 | &max.ISize(state.mWM)); |
6483 | 0 | } |
6484 | 0 | if (state.mRowFunctions.mHasRepeatAuto && |
6485 | 0 | !(state.mGridStyle->mGridAutoFlow & NS_STYLE_GRID_AUTO_FLOW_ROW)) { |
6486 | 0 | // Only 'grid-auto-flow:column' can create new implicit columns, so that's |
6487 | 0 | // the only case where our block-size can affect the number of columns. |
6488 | 0 | GetDefiniteSizes(state.mGridStyle->MinBSize(state.mWM), |
6489 | 0 | state.mGridStyle->BSize(state.mWM), |
6490 | 0 | state.mGridStyle->MaxBSize(state.mWM), |
6491 | 0 | &min.BSize(state.mWM), |
6492 | 0 | &sz.BSize(state.mWM), |
6493 | 0 | &max.BSize(state.mWM)); |
6494 | 0 | } |
6495 | 0 |
|
6496 | 0 | Grid grid; |
6497 | 0 | grid.PlaceGridItems(state, min, sz, max); // XXX optimize |
6498 | 0 | if (grid.mGridColEnd == 0) { |
6499 | 0 | return 0; |
6500 | 0 | } |
6501 | 0 | state.mCols.Initialize(state.mColFunctions, state.mGridStyle->mColumnGap, |
6502 | 0 | grid.mGridColEnd, NS_UNCONSTRAINEDSIZE); |
6503 | 0 | auto constraint = aType == nsLayoutUtils::MIN_ISIZE ? |
6504 | 0 | SizingConstraint::eMinContent : SizingConstraint::eMaxContent; |
6505 | 0 | state.mCols.CalculateSizes(state, state.mGridItems, state.mColFunctions, |
6506 | 0 | NS_UNCONSTRAINEDSIZE, &GridArea::mCols, |
6507 | 0 | constraint); |
6508 | 0 | nscoord length = 0; |
6509 | 0 | for (const TrackSize& sz : state.mCols.mSizes) { |
6510 | 0 | length += sz.mBase; |
6511 | 0 | } |
6512 | 0 | return length + state.mCols.SumOfGridGaps(); |
6513 | 0 | } |
6514 | | |
6515 | | nscoord |
6516 | | nsGridContainerFrame::GetMinISize(gfxContext* aRC) |
6517 | 0 | { |
6518 | 0 | DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize); |
6519 | 0 | if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) { |
6520 | 0 | mCachedMinISize = StyleDisplay()->IsContainSize() |
6521 | 0 | ? 0 |
6522 | 0 | : IntrinsicISize(aRC, nsLayoutUtils::MIN_ISIZE); |
6523 | 0 | } |
6524 | 0 | return mCachedMinISize; |
6525 | 0 | } |
6526 | | |
6527 | | nscoord |
6528 | | nsGridContainerFrame::GetPrefISize(gfxContext* aRC) |
6529 | 0 | { |
6530 | 0 | DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize); |
6531 | 0 | if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) { |
6532 | 0 | mCachedPrefISize = StyleDisplay()->IsContainSize() |
6533 | 0 | ? 0 |
6534 | 0 | : IntrinsicISize(aRC, nsLayoutUtils::PREF_ISIZE); |
6535 | 0 | } |
6536 | 0 | return mCachedPrefISize; |
6537 | 0 | } |
6538 | | |
6539 | | void |
6540 | | nsGridContainerFrame::MarkIntrinsicISizesDirty() |
6541 | 0 | { |
6542 | 0 | mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN; |
6543 | 0 | mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN; |
6544 | 0 | mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6545 | 0 | mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6546 | 0 | mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6547 | 0 | mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN; |
6548 | 0 | nsContainerFrame::MarkIntrinsicISizesDirty(); |
6549 | 0 | } |
6550 | | |
6551 | | void |
6552 | | nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, |
6553 | | const nsDisplayListSet& aLists) |
6554 | 0 | { |
6555 | 0 | DisplayBorderBackgroundOutline(aBuilder, aLists); |
6556 | 0 | if (GetPrevInFlow()) { |
6557 | 0 | DisplayOverflowContainers(aBuilder, aLists); |
6558 | 0 | } |
6559 | 0 |
|
6560 | 0 | // Our children are all grid-level boxes, which behave the same as |
6561 | 0 | // inline-blocks in painting, so their borders/backgrounds all go on |
6562 | 0 | // the BlockBorderBackgrounds list. |
6563 | 0 | typedef CSSOrderAwareFrameIterator::OrderState OrderState; |
6564 | 0 | OrderState order = HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER) |
6565 | 0 | ? OrderState::eKnownOrdered |
6566 | 0 | : OrderState::eKnownUnordered; |
6567 | 0 | CSSOrderAwareFrameIterator iter(this, kPrincipalList, |
6568 | 0 | CSSOrderAwareFrameIterator::eIncludeAll, order); |
6569 | 0 | for (; !iter.AtEnd(); iter.Next()) { |
6570 | 0 | nsIFrame* child = *iter; |
6571 | 0 | BuildDisplayListForChild(aBuilder, child, aLists, ::GetDisplayFlagsForGridItem(child)); |
6572 | 0 | } |
6573 | 0 | } |
6574 | | |
6575 | | bool |
6576 | | nsGridContainerFrame::DrainSelfOverflowList() |
6577 | 0 | { |
6578 | 0 | // Unlike nsContainerFrame::DrainSelfOverflowList we need to merge these lists |
6579 | 0 | // so that the resulting mFrames is in document content order. |
6580 | 0 | // NOTE: nsContainerFrame::AppendFrames/InsertFrames calls this method and |
6581 | 0 | // there are also direct calls from the fctor (FindAppendPrevSibling). |
6582 | 0 | AutoFrameListPtr overflowFrames(PresContext(), StealOverflowFrames()); |
6583 | 0 | if (overflowFrames) { |
6584 | 0 | ::MergeSortedFrameLists(mFrames, *overflowFrames, GetContent()); |
6585 | 0 | // We set a frame bit to push them again in Reflow() to avoid creating |
6586 | 0 | // multiple grid items per grid container fragment for the same content. |
6587 | 0 | AddStateBits(NS_STATE_GRID_HAS_CHILD_NIFS); |
6588 | 0 | return true; |
6589 | 0 | } |
6590 | 0 | return false; |
6591 | 0 | } |
6592 | | |
6593 | | void |
6594 | | nsGridContainerFrame::AppendFrames(ChildListID aListID, nsFrameList& aFrameList) |
6595 | 0 | { |
6596 | 0 | NoteNewChildren(aListID, aFrameList); |
6597 | 0 | nsContainerFrame::AppendFrames(aListID, aFrameList); |
6598 | 0 | } |
6599 | | |
6600 | | void |
6601 | | nsGridContainerFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame, |
6602 | | nsFrameList& aFrameList) |
6603 | 0 | { |
6604 | 0 | NoteNewChildren(aListID, aFrameList); |
6605 | 0 | nsContainerFrame::InsertFrames(aListID, aPrevFrame, aFrameList); |
6606 | 0 | } |
6607 | | |
6608 | | void |
6609 | | nsGridContainerFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame) |
6610 | 0 | { |
6611 | | #ifdef DEBUG |
6612 | | ChildListIDs supportedLists = |
6613 | | kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList; |
6614 | | // We don't handle the kBackdropList frames in any way, but it only contains |
6615 | | // a placeholder for ::backdrop which is OK to not reflow (for now anyway). |
6616 | | supportedLists |= kBackdropList; |
6617 | | MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list"); |
6618 | | |
6619 | | // Note that kPrincipalList doesn't mean aOldFrame must be on that list. |
6620 | | // It can also be on kOverflowList, in which case it might be a pushed |
6621 | | // item, and if it's the only pushed item our DID_PUSH_ITEMS bit will lie. |
6622 | | if (aListID == kPrincipalList && !aOldFrame->GetPrevInFlow()) { |
6623 | | // Since the bit may lie, set the mDidPushItemsBitMayLie value to true for |
6624 | | // ourself and for all our contiguous previous-in-flow nsGridContainerFrames. |
6625 | | nsGridContainerFrame* frameThatMayLie = this; |
6626 | | do { |
6627 | | frameThatMayLie->mDidPushItemsBitMayLie = true; |
6628 | | frameThatMayLie = static_cast<nsGridContainerFrame*>( |
6629 | | frameThatMayLie->GetPrevInFlow()); |
6630 | | } while (frameThatMayLie); |
6631 | | } |
6632 | | #endif |
6633 | |
|
6634 | 0 | nsContainerFrame::RemoveFrame(aListID, aOldFrame); |
6635 | 0 | } |
6636 | | |
6637 | | uint16_t |
6638 | | nsGridContainerFrame::CSSAlignmentForAbsPosChild(const ReflowInput& aChildRI, |
6639 | | LogicalAxis aLogicalAxis) const |
6640 | 0 | { |
6641 | 0 | MOZ_ASSERT(aChildRI.mFrame->IsAbsolutelyPositioned(), |
6642 | 0 | "This method should only be called for abspos children"); |
6643 | 0 |
|
6644 | 0 | uint16_t alignment = (aLogicalAxis == eLogicalAxisInline) ? |
6645 | 0 | aChildRI.mStylePosition->UsedJustifySelf(Style()) : |
6646 | 0 | aChildRI.mStylePosition->UsedAlignSelf(Style()); |
6647 | 0 |
|
6648 | 0 | // Extract and strip the flag bits |
6649 | 0 | uint16_t alignmentFlags = alignment & NS_STYLE_ALIGN_FLAG_BITS; |
6650 | 0 | alignment &= ~NS_STYLE_ALIGN_FLAG_BITS; |
6651 | 0 |
|
6652 | 0 | if (alignment == NS_STYLE_ALIGN_NORMAL) { |
6653 | 0 | // "the 'normal' keyword behaves as 'start' on replaced |
6654 | 0 | // absolutely-positioned boxes, and behaves as 'stretch' on all other |
6655 | 0 | // absolutely-positioned boxes." |
6656 | 0 | // https://drafts.csswg.org/css-align/#align-abspos |
6657 | 0 | // https://drafts.csswg.org/css-align/#justify-abspos |
6658 | 0 | alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced) ? |
6659 | 0 | NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_STRETCH; |
6660 | 0 | } else if (alignment == NS_STYLE_ALIGN_FLEX_START) { |
6661 | 0 | alignment = NS_STYLE_ALIGN_START; |
6662 | 0 | } else if (alignment == NS_STYLE_ALIGN_FLEX_END) { |
6663 | 0 | alignment = NS_STYLE_ALIGN_END; |
6664 | 0 | } else if (alignment == NS_STYLE_ALIGN_LEFT || |
6665 | 0 | alignment == NS_STYLE_ALIGN_RIGHT) { |
6666 | 0 | if (aLogicalAxis == eLogicalAxisInline) { |
6667 | 0 | const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT); |
6668 | 0 | WritingMode wm = GetWritingMode(); |
6669 | 0 | alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START |
6670 | 0 | : NS_STYLE_ALIGN_END; |
6671 | 0 | } else { |
6672 | 0 | alignment = NS_STYLE_ALIGN_START; |
6673 | 0 | } |
6674 | 0 | } else if (alignment == NS_STYLE_ALIGN_BASELINE) { |
6675 | 0 | alignment = NS_STYLE_ALIGN_START; |
6676 | 0 | } else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) { |
6677 | 0 | alignment = NS_STYLE_ALIGN_END; |
6678 | 0 | } |
6679 | 0 |
|
6680 | 0 | return (alignment | alignmentFlags); |
6681 | 0 | } |
6682 | | |
6683 | | nscoord |
6684 | | nsGridContainerFrame::SynthesizeBaseline( |
6685 | | const FindItemInGridOrderResult& aGridOrderItem, |
6686 | | LogicalAxis aAxis, |
6687 | | BaselineSharingGroup aGroup, |
6688 | | const nsSize& aCBPhysicalSize, |
6689 | | nscoord aCBSize, |
6690 | | WritingMode aCBWM) |
6691 | 0 | { |
6692 | 0 | if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) { |
6693 | 0 | // No item in this fragment - synthesize a baseline from our border-box. |
6694 | 0 | return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aCBSize); |
6695 | 0 | } |
6696 | 0 | auto GetBBaseline = [] (BaselineSharingGroup aGroup, WritingMode aWM, |
6697 | 0 | const nsIFrame* aFrame, nscoord* aBaseline) { |
6698 | 0 | return aGroup == BaselineSharingGroup::eFirst ? |
6699 | 0 | nsLayoutUtils::GetFirstLineBaseline(aWM, aFrame, aBaseline) : |
6700 | 0 | nsLayoutUtils::GetLastLineBaseline(aWM, aFrame, aBaseline); |
6701 | 0 | }; |
6702 | 0 | nsIFrame* child = aGridOrderItem.mItem->mFrame; |
6703 | 0 | nsGridContainerFrame* grid = do_QueryFrame(child); |
6704 | 0 | auto childWM = child->GetWritingMode(); |
6705 | 0 | bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM); |
6706 | 0 | nscoord baseline; |
6707 | 0 | nscoord start; |
6708 | 0 | nscoord size; |
6709 | 0 | if (aAxis == eLogicalAxisBlock) { |
6710 | 0 | start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM); |
6711 | 0 | size = child->BSize(aCBWM); |
6712 | 0 | if (grid && aGridOrderItem.mIsInEdgeTrack) { |
6713 | 0 | isOrthogonal ? grid->GetIBaseline(aGroup, &baseline) : |
6714 | 0 | grid->GetBBaseline(aGroup, &baseline); |
6715 | 0 | } else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) { |
6716 | 0 | baseline = child->BaselineBOffset(childWM, aGroup, AlignmentContext::eGrid); |
6717 | 0 | } else { |
6718 | 0 | baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size); |
6719 | 0 | } |
6720 | 0 | } else { |
6721 | 0 | start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM); |
6722 | 0 | size = child->ISize(aCBWM); |
6723 | 0 | if (grid && aGridOrderItem.mIsInEdgeTrack) { |
6724 | 0 | isOrthogonal ? grid->GetBBaseline(aGroup, &baseline) : |
6725 | 0 | grid->GetIBaseline(aGroup, &baseline); |
6726 | 0 | } else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack && |
6727 | 0 | GetBBaseline(aGroup, childWM, child, &baseline)) { |
6728 | 0 | if (aGroup == BaselineSharingGroup::eLast) { |
6729 | 0 | baseline = size - baseline; // convert to distance from border-box end |
6730 | 0 | } |
6731 | 0 | } else { |
6732 | 0 | baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size); |
6733 | 0 | } |
6734 | 0 | } |
6735 | 0 | return aGroup == BaselineSharingGroup::eFirst ? start + baseline : |
6736 | 0 | aCBSize - start - size + baseline; |
6737 | 0 | } |
6738 | | |
6739 | | void |
6740 | | nsGridContainerFrame::CalculateBaselines( |
6741 | | BaselineSet aBaselineSet, |
6742 | | CSSOrderAwareFrameIterator* aIter, |
6743 | | const nsTArray<GridItemInfo>* aGridItems, |
6744 | | const Tracks& aTracks, |
6745 | | uint32_t aFragmentStartTrack, |
6746 | | uint32_t aFirstExcludedTrack, |
6747 | | WritingMode aWM, |
6748 | | const nsSize& aCBPhysicalSize, |
6749 | | nscoord aCBBorderPaddingStart, |
6750 | | nscoord aCBBorderPaddingEnd, |
6751 | | nscoord aCBSize) |
6752 | 0 | { |
6753 | 0 | const auto axis = aTracks.mAxis; |
6754 | 0 | auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::eFirst]; |
6755 | 0 | if (!(aBaselineSet & BaselineSet::eFirst)) { |
6756 | 0 | mBaseline[axis][BaselineSharingGroup::eFirst] = |
6757 | 0 | ::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eFirst, aWM, |
6758 | 0 | aCBSize); |
6759 | 0 | } else if (firstBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) { |
6760 | 0 | FindItemInGridOrderResult gridOrderFirstItem = |
6761 | 0 | FindFirstItemInGridOrder(*aIter, *aGridItems, |
6762 | 0 | axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols, |
6763 | 0 | axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows, |
6764 | 0 | aFragmentStartTrack); |
6765 | 0 | mBaseline[axis][BaselineSharingGroup::eFirst] = |
6766 | 0 | SynthesizeBaseline(gridOrderFirstItem, |
6767 | 0 | axis, |
6768 | 0 | BaselineSharingGroup::eFirst, |
6769 | 0 | aCBPhysicalSize, |
6770 | 0 | aCBSize, |
6771 | 0 | aWM); |
6772 | 0 | } else { |
6773 | 0 | // We have a 'first baseline' group in the start track in this fragment. |
6774 | 0 | // Convert it from track to grid container border-box coordinates. |
6775 | 0 | MOZ_ASSERT(!aGridItems->IsEmpty()); |
6776 | 0 | nscoord gapBeforeStartTrack = aFragmentStartTrack == 0 ? |
6777 | 0 | aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eAfterGridGap) : |
6778 | 0 | nscoord(0); // no content gap at start of fragment |
6779 | 0 | mBaseline[axis][BaselineSharingGroup::eFirst] = |
6780 | 0 | aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline; |
6781 | 0 | } |
6782 | 0 |
|
6783 | 0 | auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::eLast]; |
6784 | 0 | if (!(aBaselineSet & BaselineSet::eLast)) { |
6785 | 0 | mBaseline[axis][BaselineSharingGroup::eLast] = |
6786 | 0 | ::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eLast, aWM, |
6787 | 0 | aCBSize); |
6788 | 0 | } else if (lastBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) { |
6789 | 0 | // For finding items for the 'last baseline' we need to create a reverse |
6790 | 0 | // iterator ('aIter' is the forward iterator from the GridReflowInput). |
6791 | 0 | using Iter = ReverseCSSOrderAwareFrameIterator; |
6792 | 0 | auto orderState = aIter->ItemsAreAlreadyInOrder() ? |
6793 | 0 | Iter::OrderState::eKnownOrdered : Iter::OrderState::eKnownUnordered; |
6794 | 0 | Iter iter(this, kPrincipalList, Iter::ChildFilter::eSkipPlaceholders, |
6795 | 0 | orderState); |
6796 | 0 | iter.SetItemCount(aGridItems->Length()); |
6797 | 0 | FindItemInGridOrderResult gridOrderLastItem = |
6798 | 0 | FindLastItemInGridOrder(iter, *aGridItems, |
6799 | 0 | axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols, |
6800 | 0 | axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows, |
6801 | 0 | aFragmentStartTrack, aFirstExcludedTrack); |
6802 | 0 | mBaseline[axis][BaselineSharingGroup::eLast] = |
6803 | 0 | SynthesizeBaseline(gridOrderLastItem, |
6804 | 0 | axis, |
6805 | 0 | BaselineSharingGroup::eLast, |
6806 | 0 | aCBPhysicalSize, |
6807 | 0 | aCBSize, |
6808 | 0 | aWM); |
6809 | 0 | } else { |
6810 | 0 | // We have a 'last baseline' group in the end track in this fragment. |
6811 | 0 | // Convert it from track to grid container border-box coordinates. |
6812 | 0 | MOZ_ASSERT(!aGridItems->IsEmpty()); |
6813 | 0 | auto borderBoxStartToEndOfEndTrack = aCBBorderPaddingStart + |
6814 | 0 | aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::eBeforeGridGap) - |
6815 | 0 | aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eBeforeGridGap); |
6816 | 0 | mBaseline[axis][BaselineSharingGroup::eLast] = |
6817 | 0 | (aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline; |
6818 | 0 | } |
6819 | 0 | } |
6820 | | |
6821 | | #ifdef DEBUG_FRAME_DUMP |
6822 | | nsresult |
6823 | | nsGridContainerFrame::GetFrameName(nsAString& aResult) const |
6824 | | { |
6825 | | return MakeFrameName(NS_LITERAL_STRING("GridContainer"), aResult); |
6826 | | } |
6827 | | #endif |
6828 | | |
6829 | | void |
6830 | | nsGridContainerFrame::NoteNewChildren(ChildListID aListID, |
6831 | | const nsFrameList& aFrameList) |
6832 | 0 | { |
6833 | | #ifdef DEBUG |
6834 | | ChildListIDs supportedLists = |
6835 | | kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList; |
6836 | | // We don't handle the kBackdropList frames in any way, but it only contains |
6837 | | // a placeholder for ::backdrop which is OK to not reflow (for now anyway). |
6838 | | supportedLists |= kBackdropList; |
6839 | | MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list"); |
6840 | | #endif |
6841 | |
|
6842 | 0 | nsIPresShell* shell = PresShell(); |
6843 | 0 | for (auto pif = GetPrevInFlow(); pif; pif = pif->GetPrevInFlow()) { |
6844 | 0 | if (aListID == kPrincipalList) { |
6845 | 0 | pif->AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); |
6846 | 0 | } |
6847 | 0 | shell->FrameNeedsReflow(pif, nsIPresShell::eTreeChange, NS_FRAME_IS_DIRTY); |
6848 | 0 | } |
6849 | 0 | } |
6850 | | |
6851 | | void |
6852 | | nsGridContainerFrame::MergeSortedOverflow(nsFrameList& aList) |
6853 | 0 | { |
6854 | 0 | if (aList.IsEmpty()) { |
6855 | 0 | return; |
6856 | 0 | } |
6857 | 0 | MOZ_ASSERT(!aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER), |
6858 | 0 | "this is the wrong list to put this child frame"); |
6859 | 0 | MOZ_ASSERT(aList.FirstChild()->GetParent() == this); |
6860 | 0 | nsFrameList* overflow = GetOverflowFrames(); |
6861 | 0 | if (overflow) { |
6862 | 0 | ::MergeSortedFrameLists(*overflow, aList, GetContent()); |
6863 | 0 | } else { |
6864 | 0 | SetOverflowFrames(aList); |
6865 | 0 | } |
6866 | 0 | } |
6867 | | |
6868 | | void |
6869 | | nsGridContainerFrame::MergeSortedExcessOverflowContainers(nsFrameList& aList) |
6870 | 0 | { |
6871 | 0 | if (aList.IsEmpty()) { |
6872 | 0 | return; |
6873 | 0 | } |
6874 | 0 | MOZ_ASSERT(aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER), |
6875 | 0 | "this is the wrong list to put this child frame"); |
6876 | 0 | MOZ_ASSERT(aList.FirstChild()->GetParent() == this); |
6877 | 0 | nsFrameList* eoc = GetPropTableFrames(ExcessOverflowContainersProperty()); |
6878 | 0 | if (eoc) { |
6879 | 0 | ::MergeSortedFrameLists(*eoc, aList, GetContent()); |
6880 | 0 | } else { |
6881 | 0 | SetPropTableFrames(new (PresShell()) nsFrameList(aList), |
6882 | 0 | ExcessOverflowContainersProperty()); |
6883 | 0 | } |
6884 | 0 | } |
6885 | | |
6886 | | /* static */ nsGridContainerFrame::FindItemInGridOrderResult |
6887 | | nsGridContainerFrame::FindFirstItemInGridOrder( |
6888 | | CSSOrderAwareFrameIterator& aIter, |
6889 | | const nsTArray<GridItemInfo>& aGridItems, |
6890 | | LineRange GridArea::* aMajor, |
6891 | | LineRange GridArea::* aMinor, |
6892 | | uint32_t aFragmentStartTrack) |
6893 | 0 | { |
6894 | 0 | FindItemInGridOrderResult result = { nullptr, false }; |
6895 | 0 | uint32_t minMajor = kTranslatedMaxLine + 1; |
6896 | 0 | uint32_t minMinor = kTranslatedMaxLine + 1; |
6897 | 0 | aIter.Reset(); |
6898 | 0 | for (; !aIter.AtEnd(); aIter.Next()) { |
6899 | 0 | const GridItemInfo& item = aGridItems[aIter.ItemIndex()]; |
6900 | 0 | if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) { |
6901 | 0 | continue; // item doesn't span any track in this fragment |
6902 | 0 | } |
6903 | 0 | uint32_t major = (item.mArea.*aMajor).mStart; |
6904 | 0 | uint32_t minor = (item.mArea.*aMinor).mStart; |
6905 | 0 | if (major < minMajor || (major == minMajor && minor < minMinor)) { |
6906 | 0 | minMajor = major; |
6907 | 0 | minMinor = minor; |
6908 | 0 | result.mItem = &item; |
6909 | 0 | result.mIsInEdgeTrack = major == 0U; |
6910 | 0 | } |
6911 | 0 | } |
6912 | 0 | return result; |
6913 | 0 | } |
6914 | | |
6915 | | /* static */ nsGridContainerFrame::FindItemInGridOrderResult |
6916 | | nsGridContainerFrame::FindLastItemInGridOrder( |
6917 | | ReverseCSSOrderAwareFrameIterator& aIter, |
6918 | | const nsTArray<GridItemInfo>& aGridItems, |
6919 | | LineRange GridArea::* aMajor, |
6920 | | LineRange GridArea::* aMinor, |
6921 | | uint32_t aFragmentStartTrack, |
6922 | | uint32_t aFirstExcludedTrack) |
6923 | 0 | { |
6924 | 0 | FindItemInGridOrderResult result = { nullptr, false }; |
6925 | 0 | int32_t maxMajor = -1; |
6926 | 0 | int32_t maxMinor = -1; |
6927 | 0 | aIter.Reset(); |
6928 | 0 | int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1; |
6929 | 0 | for (; !aIter.AtEnd(); aIter.Next()) { |
6930 | 0 | const GridItemInfo& item = aGridItems[aIter.ItemIndex()]; |
6931 | 0 | // Subtract 1 from the end line to get the item's last track index. |
6932 | 0 | int32_t major = (item.mArea.*aMajor).mEnd - 1; |
6933 | 0 | // Currently, this method is only called with aFirstExcludedTrack == |
6934 | 0 | // the first track in the next fragment, so we take the opportunity |
6935 | 0 | // to assert this item really belongs to this fragment. |
6936 | 0 | MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack, |
6937 | 0 | "found an item that belongs to some later fragment"); |
6938 | 0 | if (major < int32_t(aFragmentStartTrack)) { |
6939 | 0 | continue; // item doesn't span any track in this fragment |
6940 | 0 | } |
6941 | 0 | int32_t minor = (item.mArea.*aMinor).mEnd - 1; |
6942 | 0 | MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1"); |
6943 | 0 | if (major > maxMajor || (major == maxMajor && minor > maxMinor)) { |
6944 | 0 | maxMajor = major; |
6945 | 0 | maxMinor = minor; |
6946 | 0 | result.mItem = &item; |
6947 | 0 | result.mIsInEdgeTrack = major == lastMajorTrack; |
6948 | 0 | } |
6949 | 0 | } |
6950 | 0 | return result; |
6951 | 0 | } |
6952 | | |
6953 | | #ifdef DEBUG |
6954 | | void |
6955 | | nsGridContainerFrame::SetInitialChildList(ChildListID aListID, |
6956 | | nsFrameList& aChildList) |
6957 | | { |
6958 | | #ifdef DEBUG |
6959 | | ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList; |
6960 | | // We don't handle the kBackdropList frames in any way, but it only contains |
6961 | | // a placeholder for ::backdrop which is OK to not reflow (for now anyway). |
6962 | | supportedLists |= kBackdropList; |
6963 | | MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list"); |
6964 | | #endif |
6965 | | |
6966 | | return nsContainerFrame::SetInitialChildList(aListID, aChildList); |
6967 | | } |
6968 | | |
6969 | | void |
6970 | | nsGridContainerFrame::SanityCheckGridItemsBeforeReflow() const |
6971 | | { |
6972 | | ChildListIDs absLists = kAbsoluteList | kFixedList | |
6973 | | kOverflowContainersList | kExcessOverflowContainersList; |
6974 | | ChildListIDs itemLists = kPrincipalList | kOverflowList; |
6975 | | for (const nsIFrame* f = this; f; f = f->GetNextInFlow()) { |
6976 | | MOZ_ASSERT(!f->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS), |
6977 | | "At start of reflow, we should've pulled items back from all " |
6978 | | "NIFs and cleared NS_STATE_GRID_DID_PUSH_ITEMS in the process"); |
6979 | | for (nsIFrame::ChildListIterator childLists(f); |
6980 | | !childLists.IsDone(); childLists.Next()) { |
6981 | | if (!itemLists.Contains(childLists.CurrentID())) { |
6982 | | MOZ_ASSERT(absLists.Contains(childLists.CurrentID()) || |
6983 | | childLists.CurrentID() == kBackdropList, |
6984 | | "unexpected non-empty child list"); |
6985 | | continue; |
6986 | | } |
6987 | | for (auto child : childLists.CurrentList()) { |
6988 | | MOZ_ASSERT(f == this || child->GetPrevInFlow(), |
6989 | | "all pushed items must be pulled up before reflow"); |
6990 | | } |
6991 | | } |
6992 | | } |
6993 | | // If we have a prev-in-flow, each of its children's next-in-flow |
6994 | | // should be one of our children or be null. |
6995 | | const auto pif = static_cast<nsGridContainerFrame*>(GetPrevInFlow()); |
6996 | | if (pif) { |
6997 | | const nsFrameList* oc = |
6998 | | GetPropTableFrames(OverflowContainersProperty()); |
6999 | | const nsFrameList* eoc = |
7000 | | GetPropTableFrames(ExcessOverflowContainersProperty()); |
7001 | | const nsFrameList* pifEOC = |
7002 | | pif->GetPropTableFrames(ExcessOverflowContainersProperty()); |
7003 | | for (const nsIFrame* child : pif->GetChildList(kPrincipalList)) { |
7004 | | const nsIFrame* childNIF = child->GetNextInFlow(); |
7005 | | MOZ_ASSERT(!childNIF || mFrames.ContainsFrame(childNIF) || |
7006 | | (pifEOC && pifEOC->ContainsFrame(childNIF)) || |
7007 | | (oc && oc->ContainsFrame(childNIF)) || |
7008 | | (eoc && eoc->ContainsFrame(childNIF))); |
7009 | | } |
7010 | | } |
7011 | | } |
7012 | | |
7013 | | void |
7014 | | nsGridContainerFrame::TrackSize::Dump() const |
7015 | | { |
7016 | | printf("mPosition=%d mBase=%d mLimit=%d", mPosition, mBase, mLimit); |
7017 | | |
7018 | | printf(" min:"); |
7019 | | if (mState & eAutoMinSizing) { |
7020 | | printf("auto "); |
7021 | | } else if (mState & eMinContentMinSizing) { |
7022 | | printf("min-content "); |
7023 | | } else if (mState & eMaxContentMinSizing) { |
7024 | | printf("max-content "); |
7025 | | } |
7026 | | |
7027 | | printf(" max:"); |
7028 | | if (mState & eAutoMaxSizing) { |
7029 | | printf("auto "); |
7030 | | } else if (mState & eMinContentMaxSizing) { |
7031 | | printf("min-content "); |
7032 | | } else if (mState & eMaxContentMaxSizing) { |
7033 | | printf("max-content "); |
7034 | | } else if (mState & eFlexMaxSizing) { |
7035 | | printf("flex "); |
7036 | | } |
7037 | | |
7038 | | if (mState & eFrozen) { |
7039 | | printf("frozen "); |
7040 | | } |
7041 | | if (mState & eModified) { |
7042 | | printf("modified "); |
7043 | | } |
7044 | | if (mState & eBreakBefore) { |
7045 | | printf("break-before "); |
7046 | | } |
7047 | | } |
7048 | | |
7049 | | #endif // DEBUG |
7050 | | |
7051 | | nsGridContainerFrame* |
7052 | | nsGridContainerFrame::GetGridContainerFrame(nsIFrame* aFrame) |
7053 | 0 | { |
7054 | 0 | nsGridContainerFrame* gridFrame = nullptr; |
7055 | 0 |
|
7056 | 0 | if (aFrame) { |
7057 | 0 | nsIFrame* inner = aFrame; |
7058 | 0 | if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) { |
7059 | 0 | inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner(); |
7060 | 0 | } |
7061 | 0 | inner = inner->GetContentInsertionFrame(); |
7062 | 0 | nsIFrame* possibleGridFrame = inner ? inner : aFrame; |
7063 | 0 | gridFrame = possibleGridFrame->IsGridContainerFrame() ? |
7064 | 0 | static_cast<nsGridContainerFrame*>(possibleGridFrame) : nullptr; |
7065 | 0 | } |
7066 | 0 | return gridFrame; |
7067 | 0 | } |
7068 | | |
7069 | | nsGridContainerFrame* |
7070 | | nsGridContainerFrame::GetGridFrameWithComputedInfo(nsIFrame* aFrame) |
7071 | 0 | { |
7072 | 0 | nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame); |
7073 | 0 | if (gridFrame) { |
7074 | 0 | // if any of our properties are missing, generate them |
7075 | 0 | bool reflowNeeded = (!gridFrame->HasProperty(GridColTrackInfo()) || |
7076 | 0 | !gridFrame->HasProperty(GridRowTrackInfo()) || |
7077 | 0 | !gridFrame->HasProperty(GridColumnLineInfo()) || |
7078 | 0 | !gridFrame->HasProperty(GridRowLineInfo())); |
7079 | 0 |
|
7080 | 0 | if (reflowNeeded) { |
7081 | 0 | // Trigger a reflow that generates additional grid property data. |
7082 | 0 | // Hold onto aFrame while we do this, in case reflow destroys it. |
7083 | 0 | AutoWeakFrame weakFrameRef(aFrame); |
7084 | 0 |
|
7085 | 0 | nsIPresShell* shell = gridFrame->PresShell(); |
7086 | 0 | gridFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES); |
7087 | 0 | shell->FrameNeedsReflow(gridFrame, |
7088 | 0 | nsIPresShell::eResize, |
7089 | 0 | NS_FRAME_IS_DIRTY); |
7090 | 0 | shell->FlushPendingNotifications(FlushType::Layout); |
7091 | 0 |
|
7092 | 0 | // Since the reflow may have side effects, get the grid frame |
7093 | 0 | // again. But if the weakFrameRef is no longer valid, then we |
7094 | 0 | // must bail out. |
7095 | 0 | if (!weakFrameRef.IsAlive()) { |
7096 | 0 | return nullptr; |
7097 | 0 | } |
7098 | 0 | |
7099 | 0 | gridFrame = GetGridContainerFrame(weakFrameRef.GetFrame()); |
7100 | 0 |
|
7101 | 0 | // Assert the grid properties are present |
7102 | 0 | MOZ_ASSERT(!gridFrame || |
7103 | 0 | gridFrame->HasProperty(GridColTrackInfo())); |
7104 | 0 | MOZ_ASSERT(!gridFrame || |
7105 | 0 | gridFrame->HasProperty(GridRowTrackInfo())); |
7106 | 0 | MOZ_ASSERT(!gridFrame || |
7107 | 0 | gridFrame->HasProperty(GridColumnLineInfo())); |
7108 | 0 | MOZ_ASSERT(!gridFrame || |
7109 | 0 | gridFrame->HasProperty(GridRowLineInfo())); |
7110 | 0 | } |
7111 | 0 | } |
7112 | 0 |
|
7113 | 0 | return gridFrame; |
7114 | 0 | } |