/src/mozilla-central/layout/style/nsStyleTransformMatrix.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | /* |
8 | | * A class used for intermediate representations of the -moz-transform property. |
9 | | */ |
10 | | |
11 | | #include "nsStyleTransformMatrix.h" |
12 | | #include "nsCSSValue.h" |
13 | | #include "nsLayoutUtils.h" |
14 | | #include "nsPresContext.h" |
15 | | #include "nsSVGUtils.h" |
16 | | #include "nsCSSKeywords.h" |
17 | | #include "mozilla/ServoBindings.h" |
18 | | #include "mozilla/StyleAnimationValue.h" |
19 | | #include "gfxMatrix.h" |
20 | | #include "gfxQuaternion.h" |
21 | | |
22 | | using namespace mozilla; |
23 | | using namespace mozilla::gfx; |
24 | | |
25 | | namespace nsStyleTransformMatrix { |
26 | | |
27 | | /* Note on floating point precision: The transform matrix is an array |
28 | | * of single precision 'float's, and so are most of the input values |
29 | | * we get from the style system, but intermediate calculations |
30 | | * involving angles need to be done in 'double'. |
31 | | */ |
32 | | |
33 | | |
34 | | // Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp |
35 | | // to have the transform property try |
36 | | // to transform content with continuations as one unified block instead of |
37 | | // several smaller ones. This is currently disabled because it doesn't work |
38 | | // correctly, since when the frames are initially being reflowed, their |
39 | | // continuations all compute their bounding rects independently of each other |
40 | | // and consequently get the wrong value. |
41 | | //#define UNIFIED_CONTINUATIONS |
42 | | |
43 | | void |
44 | | TransformReferenceBox::EnsureDimensionsAreCached() |
45 | 0 | { |
46 | 0 | if (mIsCached) { |
47 | 0 | return; |
48 | 0 | } |
49 | 0 | |
50 | 0 | MOZ_ASSERT(mFrame); |
51 | 0 |
|
52 | 0 | mIsCached = true; |
53 | 0 |
|
54 | 0 | if (mFrame->GetStateBits() & NS_FRAME_SVG_LAYOUT) { |
55 | 0 | if (!nsLayoutUtils::SVGTransformBoxEnabled()) { |
56 | 0 | mX = -mFrame->GetPosition().x; |
57 | 0 | mY = -mFrame->GetPosition().y; |
58 | 0 | Size contextSize = nsSVGUtils::GetContextSize(mFrame); |
59 | 0 | mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width); |
60 | 0 | mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height); |
61 | 0 | } else |
62 | 0 | if (mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::FillBox) { |
63 | 0 | // Percentages in transforms resolve against the SVG bbox, and the |
64 | 0 | // transform is relative to the top-left of the SVG bbox. |
65 | 0 | nsRect bboxInAppUnits = |
66 | 0 | nsLayoutUtils::ComputeGeometryBox(const_cast<nsIFrame*>(mFrame), |
67 | 0 | StyleGeometryBox::FillBox); |
68 | 0 | // The mRect of an SVG nsIFrame is its user space bounds *including* |
69 | 0 | // stroke and markers, whereas bboxInAppUnits is its user space bounds |
70 | 0 | // including fill only. We need to note the offset of the reference box |
71 | 0 | // from the frame's mRect in mX/mY. |
72 | 0 | mX = bboxInAppUnits.x - mFrame->GetPosition().x; |
73 | 0 | mY = bboxInAppUnits.y - mFrame->GetPosition().y; |
74 | 0 | mWidth = bboxInAppUnits.width; |
75 | 0 | mHeight = bboxInAppUnits.height; |
76 | 0 | } else { |
77 | 0 | // The value 'border-box' is treated as 'view-box' for SVG content. |
78 | 0 | MOZ_ASSERT(mFrame->StyleDisplay()->mTransformBox == |
79 | 0 | StyleGeometryBox::ViewBox || |
80 | 0 | mFrame->StyleDisplay()->mTransformBox == |
81 | 0 | StyleGeometryBox::BorderBox, |
82 | 0 | "Unexpected value for 'transform-box'"); |
83 | 0 | // Percentages in transforms resolve against the width/height of the |
84 | 0 | // nearest viewport (or its viewBox if one is applied), and the |
85 | 0 | // transform is relative to {0,0} in current user space. |
86 | 0 | mX = -mFrame->GetPosition().x; |
87 | 0 | mY = -mFrame->GetPosition().y; |
88 | 0 | Size contextSize = nsSVGUtils::GetContextSize(mFrame); |
89 | 0 | mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width); |
90 | 0 | mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height); |
91 | 0 | } |
92 | 0 | return; |
93 | 0 | } |
94 | 0 |
|
95 | 0 | // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's |
96 | 0 | // bounding rectangle, translated to the origin. Otherwise, it is the |
97 | 0 | // smallest rectangle containing a frame and all of its continuations. For |
98 | 0 | // example, if there is a <span> element with several continuations split |
99 | 0 | // over several lines, this function will return the rectangle containing all |
100 | 0 | // of those continuations. |
101 | 0 |
|
102 | 0 | nsRect rect; |
103 | 0 |
|
104 | 0 | #ifndef UNIFIED_CONTINUATIONS |
105 | 0 | rect = mFrame->GetRect(); |
106 | | #else |
107 | | // Iterate the continuation list, unioning together the bounding rects: |
108 | | for (const nsIFrame *currFrame = mFrame->FirstContinuation(); |
109 | | currFrame != nullptr; |
110 | | currFrame = currFrame->GetNextContinuation()) |
111 | | { |
112 | | // Get the frame rect in local coordinates, then translate back to the |
113 | | // original coordinates: |
114 | | rect.UnionRect(result, nsRect(currFrame->GetOffsetTo(mFrame), |
115 | | currFrame->GetSize())); |
116 | | } |
117 | | #endif |
118 | |
|
119 | 0 | mX = 0; |
120 | 0 | mY = 0; |
121 | 0 | mWidth = rect.Width(); |
122 | 0 | mHeight = rect.Height(); |
123 | 0 | } |
124 | | |
125 | | void |
126 | | TransformReferenceBox::Init(const nsSize& aDimensions) |
127 | 0 | { |
128 | 0 | MOZ_ASSERT(!mFrame && !mIsCached); |
129 | 0 |
|
130 | 0 | mX = 0; |
131 | 0 | mY = 0; |
132 | 0 | mWidth = aDimensions.width; |
133 | 0 | mHeight = aDimensions.height; |
134 | 0 | mIsCached = true; |
135 | 0 | } |
136 | | |
137 | | float |
138 | | ProcessTranslatePart(const nsCSSValue& aValue, |
139 | | TransformReferenceBox* aRefBox, |
140 | | TransformReferenceBox::DimensionGetter aDimensionGetter) |
141 | 0 | { |
142 | 0 | nscoord offset = 0; |
143 | 0 | float percent = 0.0f; |
144 | 0 |
|
145 | 0 | if (aValue.GetUnit() == eCSSUnit_Percent) { |
146 | 0 | percent = aValue.GetPercentValue(); |
147 | 0 | } else if (aValue.GetUnit() == eCSSUnit_Pixel || |
148 | 0 | aValue.GetUnit() == eCSSUnit_Number) { |
149 | 0 | // Raw numbers are treated as being pixels. |
150 | 0 | return aValue.GetFloatValue(); |
151 | 0 | } else if (aValue.IsCalcUnit()) { |
152 | 0 | // We can retrieve the Calc value directly because it has been computed |
153 | 0 | // from the Servo side and set by nsCSSValue::SetCalcValue(). |
154 | 0 | nsStyleCoord::CalcValue calc = aValue.GetCalcValue(); |
155 | 0 | percent = calc.mPercent; |
156 | 0 | offset = calc.mLength; |
157 | 0 | } else { |
158 | 0 | // Note: The unit of nsCSSValue passed from Servo side would be number, |
159 | 0 | // pixel, percent, or eCSSUnit_Calc, so it is impossible to go into |
160 | 0 | // this branch. |
161 | 0 | MOZ_CRASH("unexpected unit in ProcessTranslatePart"); |
162 | 0 | } |
163 | 0 |
|
164 | 0 | float translation = |
165 | 0 | NSAppUnitsToFloatPixels(offset, AppUnitsPerCSSPixel()); |
166 | 0 | // We want to avoid calling aDimensionGetter if there's no percentage to be |
167 | 0 | // resolved (for performance reasons - see TransformReferenceBox). |
168 | 0 | if (percent != 0.0f && aRefBox && !aRefBox->IsEmpty()) { |
169 | 0 | translation += |
170 | 0 | percent * NSAppUnitsToFloatPixels((aRefBox->*aDimensionGetter)(), |
171 | 0 | AppUnitsPerCSSPixel()); |
172 | 0 | } |
173 | 0 | return translation; |
174 | 0 | } |
175 | | |
176 | | /** |
177 | | * Helper functions to process all the transformation function types. |
178 | | * |
179 | | * These take a matrix parameter to accumulate the current matrix. |
180 | | */ |
181 | | |
182 | | /* Helper function to process a matrix entry. */ |
183 | | static void |
184 | | ProcessMatrix(Matrix4x4& aMatrix, |
185 | | const nsCSSValue::Array* aData, |
186 | | TransformReferenceBox& aRefBox) |
187 | 0 | { |
188 | 0 | MOZ_ASSERT(aData->Count() == 7, "Invalid array!"); |
189 | 0 |
|
190 | 0 | gfxMatrix result; |
191 | 0 |
|
192 | 0 | /* Take the first four elements out of the array as floats and store |
193 | 0 | * them. |
194 | 0 | */ |
195 | 0 | result._11 = aData->Item(1).GetFloatValue(); |
196 | 0 | result._12 = aData->Item(2).GetFloatValue(); |
197 | 0 | result._21 = aData->Item(3).GetFloatValue(); |
198 | 0 | result._22 = aData->Item(4).GetFloatValue(); |
199 | 0 |
|
200 | 0 | /* The last two elements have their length parts stored in aDelta |
201 | 0 | * and their percent parts stored in aX[0] and aY[1]. |
202 | 0 | */ |
203 | 0 | result._31 = ProcessTranslatePart(aData->Item(5), |
204 | 0 | &aRefBox, &TransformReferenceBox::Width); |
205 | 0 | result._32 = ProcessTranslatePart(aData->Item(6), |
206 | 0 | &aRefBox, &TransformReferenceBox::Height); |
207 | 0 |
|
208 | 0 | aMatrix = result * aMatrix; |
209 | 0 | } |
210 | | |
211 | | static void |
212 | | ProcessMatrix3D(Matrix4x4& aMatrix, |
213 | | const nsCSSValue::Array* aData, |
214 | | TransformReferenceBox& aRefBox) |
215 | 0 | { |
216 | 0 | MOZ_ASSERT(aData->Count() == 17, "Invalid array!"); |
217 | 0 |
|
218 | 0 | Matrix4x4 temp; |
219 | 0 |
|
220 | 0 | temp._11 = aData->Item(1).GetFloatValue(); |
221 | 0 | temp._12 = aData->Item(2).GetFloatValue(); |
222 | 0 | temp._13 = aData->Item(3).GetFloatValue(); |
223 | 0 | temp._14 = aData->Item(4).GetFloatValue(); |
224 | 0 | temp._21 = aData->Item(5).GetFloatValue(); |
225 | 0 | temp._22 = aData->Item(6).GetFloatValue(); |
226 | 0 | temp._23 = aData->Item(7).GetFloatValue(); |
227 | 0 | temp._24 = aData->Item(8).GetFloatValue(); |
228 | 0 | temp._31 = aData->Item(9).GetFloatValue(); |
229 | 0 | temp._32 = aData->Item(10).GetFloatValue(); |
230 | 0 | temp._33 = aData->Item(11).GetFloatValue(); |
231 | 0 | temp._34 = aData->Item(12).GetFloatValue(); |
232 | 0 | temp._44 = aData->Item(16).GetFloatValue(); |
233 | 0 |
|
234 | 0 | temp._41 = ProcessTranslatePart(aData->Item(13), |
235 | 0 | &aRefBox, &TransformReferenceBox::Width); |
236 | 0 | temp._42 = ProcessTranslatePart(aData->Item(14), |
237 | 0 | &aRefBox, &TransformReferenceBox::Height); |
238 | 0 | temp._43 = ProcessTranslatePart(aData->Item(15), nullptr); |
239 | 0 |
|
240 | 0 | aMatrix = temp * aMatrix; |
241 | 0 | } |
242 | | |
243 | | // For accumulation for transform functions, |aOne| corresponds to |aB| and |
244 | | // |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate(). |
245 | | class Accumulate { |
246 | | public: |
247 | | template<typename T> |
248 | | static T operate(const T& aOne, const T& aTwo, double aCoeff) |
249 | 0 | { |
250 | 0 | return aOne + aTwo * aCoeff; |
251 | 0 | } Unexecuted instantiation: mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> nsStyleTransformMatrix::Accumulate::operate<mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> >(mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> const&, mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> const&, double) Unexecuted instantiation: float nsStyleTransformMatrix::Accumulate::operate<float>(float const&, float const&, double) |
252 | | |
253 | | static Point4D operateForPerspective(const Point4D& aOne, |
254 | | const Point4D& aTwo, |
255 | | double aCoeff) |
256 | 0 | { |
257 | 0 | return (aOne - Point4D(0, 0, 0, 1)) + |
258 | 0 | (aTwo - Point4D(0, 0, 0, 1)) * aCoeff + |
259 | 0 | Point4D(0, 0, 0, 1); |
260 | 0 | } |
261 | | static Point3D operateForScale(const Point3D& aOne, |
262 | | const Point3D& aTwo, |
263 | | double aCoeff) |
264 | 0 | { |
265 | 0 | // For scale, the identify element is 1, see AddTransformScale in |
266 | 0 | // StyleAnimationValue.cpp. |
267 | 0 | return (aOne - Point3D(1, 1, 1)) + |
268 | 0 | (aTwo - Point3D(1, 1, 1)) * aCoeff + |
269 | 0 | Point3D(1, 1, 1); |
270 | 0 | } |
271 | | |
272 | | static Matrix4x4 operateForRotate(const gfxQuaternion& aOne, |
273 | | const gfxQuaternion& aTwo, |
274 | | double aCoeff) |
275 | 0 | { |
276 | 0 | if (aCoeff == 0.0) { |
277 | 0 | return aOne.ToMatrix(); |
278 | 0 | } |
279 | 0 | |
280 | 0 | double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0)); |
281 | 0 | double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0; |
282 | 0 | theta *= aCoeff; |
283 | 0 | scale *= sin(theta); |
284 | 0 |
|
285 | 0 | gfxQuaternion result = gfxQuaternion(scale * aTwo.x, |
286 | 0 | scale * aTwo.y, |
287 | 0 | scale * aTwo.z, |
288 | 0 | cos(theta)) * aOne; |
289 | 0 | return result.ToMatrix(); |
290 | 0 | } |
291 | | |
292 | | static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1, |
293 | | const Matrix4x4& aMatrix2, |
294 | | double aProgress) |
295 | 0 | { |
296 | 0 | return aMatrix1; |
297 | 0 | } |
298 | | |
299 | | static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1, |
300 | | const Matrix4x4& aMatrix2, |
301 | | double aCount) |
302 | 0 | { |
303 | 0 | Matrix4x4 result; |
304 | 0 | Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate, |
305 | 0 | &aMatrix1.components, |
306 | 0 | &aMatrix2.components, |
307 | 0 | aCount, |
308 | 0 | &result.components); |
309 | 0 | return result; |
310 | 0 | } |
311 | | }; |
312 | | |
313 | | class Interpolate { |
314 | | public: |
315 | | template<typename T> |
316 | | static T operate(const T& aOne, const T& aTwo, double aCoeff) |
317 | 0 | { |
318 | 0 | return aOne + (aTwo - aOne) * aCoeff; |
319 | 0 | } Unexecuted instantiation: mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> nsStyleTransformMatrix::Interpolate::operate<mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> >(mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> const&, mozilla::gfx::Point3DTyped<mozilla::gfx::UnknownUnits, float> const&, double) Unexecuted instantiation: float nsStyleTransformMatrix::Interpolate::operate<float>(float const&, float const&, double) |
320 | | |
321 | | static Point4D operateForPerspective(const Point4D& aOne, |
322 | | const Point4D& aTwo, |
323 | | double aCoeff) |
324 | 0 | { |
325 | 0 | return aOne + (aTwo - aOne) * aCoeff; |
326 | 0 | } |
327 | | |
328 | | static Point3D operateForScale(const Point3D& aOne, |
329 | | const Point3D& aTwo, |
330 | | double aCoeff) |
331 | 0 | { |
332 | 0 | return aOne + (aTwo - aOne) * aCoeff; |
333 | 0 | } |
334 | | |
335 | | static Matrix4x4 operateForRotate(const gfxQuaternion& aOne, |
336 | | const gfxQuaternion& aTwo, |
337 | | double aCoeff) |
338 | 0 | { |
339 | 0 | return aOne.Slerp(aTwo, aCoeff).ToMatrix(); |
340 | 0 | } |
341 | | |
342 | | static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1, |
343 | | const Matrix4x4& aMatrix2, |
344 | | double aProgress) |
345 | 0 | { |
346 | 0 | return aProgress < 0.5 ? aMatrix1 : aMatrix2; |
347 | 0 | } |
348 | | |
349 | | static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1, |
350 | | const Matrix4x4& aMatrix2, |
351 | | double aProgress) |
352 | 0 | { |
353 | 0 | Matrix4x4 result; |
354 | 0 | Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate, |
355 | 0 | &aMatrix1.components, |
356 | 0 | &aMatrix2.components, |
357 | 0 | aProgress, |
358 | 0 | &result.components); |
359 | 0 | return result; |
360 | 0 | } |
361 | | }; |
362 | | |
363 | | /** |
364 | | * Calculate 2 matrices by decomposing them with Operator. |
365 | | * |
366 | | * @param aMatrix1 First matrix, using CSS pixel units. |
367 | | * @param aMatrix2 Second matrix, using CSS pixel units. |
368 | | * @param aProgress Coefficient for the Operator. |
369 | | */ |
370 | | template <typename Operator> |
371 | | static Matrix4x4 |
372 | | OperateTransformMatrix(const Matrix4x4 &aMatrix1, |
373 | | const Matrix4x4 &aMatrix2, |
374 | | double aProgress) |
375 | 0 | { |
376 | 0 | // Decompose both matrices |
377 | 0 |
|
378 | 0 | Point3D scale1(1, 1, 1), translate1; |
379 | 0 | Point4D perspective1(0, 0, 0, 1); |
380 | 0 | gfxQuaternion rotate1; |
381 | 0 | nsStyleTransformMatrix::ShearArray shear1{0.0f, 0.0f, 0.0f}; |
382 | 0 |
|
383 | 0 | Point3D scale2(1, 1, 1), translate2; |
384 | 0 | Point4D perspective2(0, 0, 0, 1); |
385 | 0 | gfxQuaternion rotate2; |
386 | 0 | nsStyleTransformMatrix::ShearArray shear2{0.0f, 0.0f, 0.0f}; |
387 | 0 |
|
388 | 0 | // Check if both matrices are decomposable. |
389 | 0 | bool wasDecomposed; |
390 | 0 | Matrix matrix2d1, matrix2d2; |
391 | 0 | if (aMatrix1.Is2D(&matrix2d1) && aMatrix2.Is2D(&matrix2d2)) { |
392 | 0 | wasDecomposed = |
393 | 0 | Decompose2DMatrix(matrix2d1, scale1, shear1, rotate1, translate1) && |
394 | 0 | Decompose2DMatrix(matrix2d2, scale2, shear2, rotate2, translate2); |
395 | 0 | } else { |
396 | 0 | wasDecomposed = |
397 | 0 | Decompose3DMatrix(aMatrix1, scale1, shear1, |
398 | 0 | rotate1, translate1, perspective1) && |
399 | 0 | Decompose3DMatrix(aMatrix2, scale2, shear2, |
400 | 0 | rotate2, translate2, perspective2); |
401 | 0 | } |
402 | 0 |
|
403 | 0 | // Fallback to discrete operation if one of the matrices is not decomposable. |
404 | 0 | if (!wasDecomposed) { |
405 | 0 | return Operator::operateForFallback(aMatrix1, aMatrix2, aProgress); |
406 | 0 | } |
407 | 0 | |
408 | 0 | Matrix4x4 result; |
409 | 0 |
|
410 | 0 | // Operate each of the pieces in response to |Operator|. |
411 | 0 | Point4D perspective = |
412 | 0 | Operator::operateForPerspective(perspective1, perspective2, aProgress); |
413 | 0 | result.SetTransposedVector(3, perspective); |
414 | 0 |
|
415 | 0 | Point3D translate = |
416 | 0 | Operator::operate(translate1, translate2, aProgress); |
417 | 0 | result.PreTranslate(translate.x, translate.y, translate.z); |
418 | 0 |
|
419 | 0 | Matrix4x4 rotate = Operator::operateForRotate(rotate1, rotate2, aProgress); |
420 | 0 | if (!rotate.IsIdentity()) { |
421 | 0 | result = rotate * result; |
422 | 0 | } |
423 | 0 |
|
424 | 0 | // TODO: Would it be better to operate these as angles? |
425 | 0 | // How do we convert back to angles? |
426 | 0 | float yzshear = |
427 | 0 | Operator::operate(shear1[ShearType::YZSHEAR], |
428 | 0 | shear2[ShearType::YZSHEAR], |
429 | 0 | aProgress); |
430 | 0 | if (yzshear != 0.0) { |
431 | 0 | result.SkewYZ(yzshear); |
432 | 0 | } |
433 | 0 |
|
434 | 0 | float xzshear = |
435 | 0 | Operator::operate(shear1[ShearType::XZSHEAR], |
436 | 0 | shear2[ShearType::XZSHEAR], |
437 | 0 | aProgress); |
438 | 0 | if (xzshear != 0.0) { |
439 | 0 | result.SkewXZ(xzshear); |
440 | 0 | } |
441 | 0 |
|
442 | 0 | float xyshear = |
443 | 0 | Operator::operate(shear1[ShearType::XYSHEAR], |
444 | 0 | shear2[ShearType::XYSHEAR], |
445 | 0 | aProgress); |
446 | 0 | if (xyshear != 0.0) { |
447 | 0 | result.SkewXY(xyshear); |
448 | 0 | } |
449 | 0 |
|
450 | 0 | Point3D scale = |
451 | 0 | Operator::operateForScale(scale1, scale2, aProgress); |
452 | 0 | if (scale != Point3D(1.0, 1.0, 1.0)) { |
453 | 0 | result.PreScale(scale.x, scale.y, scale.z); |
454 | 0 | } |
455 | 0 |
|
456 | 0 | return result; |
457 | 0 | } Unexecuted instantiation: Unified_cpp_layout_style4.cpp:mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> nsStyleTransformMatrix::OperateTransformMatrix<nsStyleTransformMatrix::Interpolate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, double) Unexecuted instantiation: Unified_cpp_layout_style4.cpp:mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> nsStyleTransformMatrix::OperateTransformMatrix<nsStyleTransformMatrix::Accumulate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, double) |
458 | | |
459 | | template <typename Operator> |
460 | | static Matrix4x4 |
461 | | OperateTransformMatrixByServo(const Matrix4x4 &aMatrix1, |
462 | | const Matrix4x4 &aMatrix2, |
463 | | double aProgress) |
464 | 0 | { |
465 | 0 | return Operator::operateByServo(aMatrix1, aMatrix2, aProgress); |
466 | 0 | } Unexecuted instantiation: Unified_cpp_layout_style4.cpp:mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> nsStyleTransformMatrix::OperateTransformMatrixByServo<nsStyleTransformMatrix::Interpolate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, double) Unexecuted instantiation: Unified_cpp_layout_style4.cpp:mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> nsStyleTransformMatrix::OperateTransformMatrixByServo<nsStyleTransformMatrix::Accumulate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits> const&, double) |
467 | | |
468 | | template <typename Operator> |
469 | | static void |
470 | | ProcessMatrixOperator(Matrix4x4& aMatrix, |
471 | | const nsCSSValue::Array* aData, |
472 | | TransformReferenceBox& aRefBox, |
473 | | bool* aContains3dTransform) |
474 | 0 | { |
475 | 0 | MOZ_ASSERT(aData->Count() == 4, "Invalid array!"); |
476 | 0 |
|
477 | 0 | auto readTransform = [&](const nsCSSValue& aValue) -> Matrix4x4 { |
478 | 0 | const nsCSSValueList* list = nullptr; |
479 | 0 | switch (aValue.GetUnit()) { |
480 | 0 | case eCSSUnit_List: |
481 | 0 | // For Gecko style backend. |
482 | 0 | list = aValue.GetListValue(); |
483 | 0 | break; |
484 | 0 | case eCSSUnit_SharedList: |
485 | 0 | // For Servo style backend. The transform lists of interpolatematrix |
486 | 0 | // are not created on the main thread (i.e. during parallel traversal), |
487 | 0 | // and nsCSSValueList_heap is not thread safe. Therefore, we use |
488 | 0 | // nsCSSValueSharedList as a workaround. |
489 | 0 | list = aValue.GetSharedListValue()->mHead; |
490 | 0 | break; |
491 | 0 | default: |
492 | 0 | list = nullptr; |
493 | 0 | } |
494 | 0 |
|
495 | 0 | Matrix4x4 matrix; |
496 | 0 | if (!list) { |
497 | 0 | return matrix; |
498 | 0 | } |
499 | 0 | |
500 | 0 | float appUnitPerCSSPixel = AppUnitsPerCSSPixel(); |
501 | 0 | matrix = nsStyleTransformMatrix::ReadTransforms(list, |
502 | 0 | aRefBox, |
503 | 0 | appUnitPerCSSPixel, |
504 | 0 | aContains3dTransform); |
505 | 0 | return matrix; |
506 | 0 | }; Unexecuted instantiation: Unified_cpp_layout_style4.cpp:void nsStyleTransformMatrix::ProcessMatrixOperator<nsStyleTransformMatrix::Interpolate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits>&, nsCSSValue::Array const*, nsStyleTransformMatrix::TransformReferenceBox&, bool*)::{lambda(nsCSSValue const&)#1}::operator()(nsCSSValue const&) const Unexecuted instantiation: Unified_cpp_layout_style4.cpp:void nsStyleTransformMatrix::ProcessMatrixOperator<nsStyleTransformMatrix::Accumulate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits>&, nsCSSValue::Array const*, nsStyleTransformMatrix::TransformReferenceBox&, bool*)::{lambda(nsCSSValue const&)#1}::operator()(nsCSSValue const&) const |
507 | 0 |
|
508 | 0 | Matrix4x4 matrix1 = readTransform(aData->Item(1)); |
509 | 0 | Matrix4x4 matrix2 = readTransform(aData->Item(2)); |
510 | 0 | double progress = aData->Item(3).GetPercentValue(); |
511 | 0 |
|
512 | 0 | // We cannot use GeckoComputedStyle to check if we use Servo backend because |
513 | 0 | // it could be null in Gecko. Instead, use the unit of the nsCSSValue because |
514 | 0 | // we use eCSSUnit_SharedList for Servo backend. |
515 | 0 | if (aData->Item(1).GetUnit() == eCSSUnit_SharedList) { |
516 | 0 | aMatrix = |
517 | 0 | OperateTransformMatrixByServo<Operator>(matrix1, matrix2, progress) |
518 | 0 | * aMatrix; |
519 | 0 | return; |
520 | 0 | } |
521 | 0 | |
522 | 0 | aMatrix = |
523 | 0 | OperateTransformMatrix<Operator>(matrix1, matrix2, progress) * aMatrix; |
524 | 0 | } Unexecuted instantiation: Unified_cpp_layout_style4.cpp:void nsStyleTransformMatrix::ProcessMatrixOperator<nsStyleTransformMatrix::Interpolate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits>&, nsCSSValue::Array const*, nsStyleTransformMatrix::TransformReferenceBox&, bool*) Unexecuted instantiation: Unified_cpp_layout_style4.cpp:void nsStyleTransformMatrix::ProcessMatrixOperator<nsStyleTransformMatrix::Accumulate>(mozilla::gfx::Matrix4x4Typed<mozilla::gfx::UnknownUnits, mozilla::gfx::UnknownUnits>&, nsCSSValue::Array const*, nsStyleTransformMatrix::TransformReferenceBox&, bool*) |
525 | | |
526 | | /* Helper function to process two matrices that we need to interpolate between */ |
527 | | void |
528 | | ProcessInterpolateMatrix(Matrix4x4& aMatrix, |
529 | | const nsCSSValue::Array* aData, |
530 | | TransformReferenceBox& aRefBox, |
531 | | bool* aContains3dTransform) |
532 | 0 | { |
533 | 0 | ProcessMatrixOperator<Interpolate>(aMatrix, aData, |
534 | 0 | aRefBox, |
535 | 0 | aContains3dTransform); |
536 | 0 | } |
537 | | |
538 | | void |
539 | | ProcessAccumulateMatrix(Matrix4x4& aMatrix, |
540 | | const nsCSSValue::Array* aData, |
541 | | TransformReferenceBox& aRefBox, |
542 | | bool* aContains3dTransform) |
543 | 0 | { |
544 | 0 | ProcessMatrixOperator<Accumulate>(aMatrix, aData, aRefBox, |
545 | 0 | aContains3dTransform); |
546 | 0 | } |
547 | | |
548 | | /* Helper function to process a translatex function. */ |
549 | | static void |
550 | | ProcessTranslateX(Matrix4x4& aMatrix, |
551 | | const nsCSSValue::Array* aData, |
552 | | TransformReferenceBox& aRefBox) |
553 | 0 | { |
554 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
555 | 0 |
|
556 | 0 | Point3D temp; |
557 | 0 |
|
558 | 0 | temp.x = ProcessTranslatePart(aData->Item(1), |
559 | 0 | &aRefBox, &TransformReferenceBox::Width); |
560 | 0 | aMatrix.PreTranslate(temp); |
561 | 0 | } |
562 | | |
563 | | /* Helper function to process a translatey function. */ |
564 | | static void |
565 | | ProcessTranslateY(Matrix4x4& aMatrix, |
566 | | const nsCSSValue::Array* aData, |
567 | | TransformReferenceBox& aRefBox) |
568 | 0 | { |
569 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
570 | 0 |
|
571 | 0 | Point3D temp; |
572 | 0 |
|
573 | 0 | temp.y = ProcessTranslatePart(aData->Item(1), |
574 | 0 | &aRefBox, &TransformReferenceBox::Height); |
575 | 0 | aMatrix.PreTranslate(temp); |
576 | 0 | } |
577 | | |
578 | | static void |
579 | | ProcessTranslateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
580 | 0 | { |
581 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
582 | 0 |
|
583 | 0 | Point3D temp; |
584 | 0 |
|
585 | 0 | temp.z = ProcessTranslatePart(aData->Item(1), nullptr); |
586 | 0 | aMatrix.PreTranslate(temp); |
587 | 0 | } |
588 | | |
589 | | /* Helper function to process a translate function. */ |
590 | | static void |
591 | | ProcessTranslate(Matrix4x4& aMatrix, |
592 | | const nsCSSValue::Array* aData, |
593 | | TransformReferenceBox& aRefBox) |
594 | 0 | { |
595 | 0 | MOZ_ASSERT(aData->Count() == 2 || aData->Count() == 3, "Invalid array!"); |
596 | 0 |
|
597 | 0 | Point3D temp; |
598 | 0 |
|
599 | 0 | temp.x = ProcessTranslatePart(aData->Item(1), |
600 | 0 | &aRefBox, &TransformReferenceBox::Width); |
601 | 0 |
|
602 | 0 | /* If we read in a Y component, set it appropriately */ |
603 | 0 | if (aData->Count() == 3) { |
604 | 0 | temp.y = ProcessTranslatePart(aData->Item(2), |
605 | 0 | &aRefBox, &TransformReferenceBox::Height); |
606 | 0 | } |
607 | 0 | aMatrix.PreTranslate(temp); |
608 | 0 | } |
609 | | |
610 | | static void |
611 | | ProcessTranslate3D(Matrix4x4& aMatrix, |
612 | | const nsCSSValue::Array* aData, |
613 | | TransformReferenceBox& aRefBox) |
614 | 0 | { |
615 | 0 | MOZ_ASSERT(aData->Count() == 4, "Invalid array!"); |
616 | 0 |
|
617 | 0 | Point3D temp; |
618 | 0 |
|
619 | 0 | temp.x = ProcessTranslatePart(aData->Item(1), |
620 | 0 | &aRefBox, &TransformReferenceBox::Width); |
621 | 0 |
|
622 | 0 | temp.y = ProcessTranslatePart(aData->Item(2), |
623 | 0 | &aRefBox, &TransformReferenceBox::Height); |
624 | 0 |
|
625 | 0 | temp.z = ProcessTranslatePart(aData->Item(3), |
626 | 0 | nullptr); |
627 | 0 |
|
628 | 0 | aMatrix.PreTranslate(temp); |
629 | 0 | } |
630 | | |
631 | | /* Helper function to set up a scale matrix. */ |
632 | | static void |
633 | | ProcessScaleHelper(Matrix4x4& aMatrix, |
634 | | float aXScale, |
635 | | float aYScale, |
636 | | float aZScale) |
637 | 0 | { |
638 | 0 | aMatrix.PreScale(aXScale, aYScale, aZScale); |
639 | 0 | } |
640 | | |
641 | | /* Process a scalex function. */ |
642 | | static void |
643 | | ProcessScaleX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
644 | 0 | { |
645 | 0 | MOZ_ASSERT(aData->Count() == 2, "Bad array!"); |
646 | 0 | ProcessScaleHelper(aMatrix, aData->Item(1).GetFloatValue(), 1.0f, 1.0f); |
647 | 0 | } |
648 | | |
649 | | /* Process a scaley function. */ |
650 | | static void |
651 | | ProcessScaleY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
652 | 0 | { |
653 | 0 | MOZ_ASSERT(aData->Count() == 2, "Bad array!"); |
654 | 0 | ProcessScaleHelper(aMatrix, 1.0f, aData->Item(1).GetFloatValue(), 1.0f); |
655 | 0 | } |
656 | | |
657 | | static void |
658 | | ProcessScaleZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
659 | 0 | { |
660 | 0 | MOZ_ASSERT(aData->Count() == 2, "Bad array!"); |
661 | 0 | ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aData->Item(1).GetFloatValue()); |
662 | 0 | } |
663 | | |
664 | | static void |
665 | | ProcessScale3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
666 | 0 | { |
667 | 0 | MOZ_ASSERT(aData->Count() == 4, "Bad array!"); |
668 | 0 | ProcessScaleHelper(aMatrix, |
669 | 0 | aData->Item(1).GetFloatValue(), |
670 | 0 | aData->Item(2).GetFloatValue(), |
671 | 0 | aData->Item(3).GetFloatValue()); |
672 | 0 | } |
673 | | |
674 | | /* Process a scale function. */ |
675 | | static void |
676 | | ProcessScale(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
677 | 0 | { |
678 | 0 | MOZ_ASSERT(aData->Count() == 2 || aData->Count() == 3, "Bad array!"); |
679 | 0 | /* We either have one element or two. If we have one, it's for both X and Y. |
680 | 0 | * Otherwise it's one for each. |
681 | 0 | */ |
682 | 0 | const nsCSSValue& scaleX = aData->Item(1); |
683 | 0 | const nsCSSValue& scaleY = (aData->Count() == 2 ? scaleX : |
684 | 0 | aData->Item(2)); |
685 | 0 |
|
686 | 0 | ProcessScaleHelper(aMatrix, |
687 | 0 | scaleX.GetFloatValue(), |
688 | 0 | scaleY.GetFloatValue(), |
689 | 0 | 1.0f); |
690 | 0 | } |
691 | | |
692 | | /* Helper function that, given a set of angles, constructs the appropriate |
693 | | * skew matrix. |
694 | | */ |
695 | | static void |
696 | | ProcessSkewHelper(Matrix4x4& aMatrix, double aXAngle, double aYAngle) |
697 | 0 | { |
698 | 0 | aMatrix.SkewXY(aXAngle, aYAngle); |
699 | 0 | } |
700 | | |
701 | | /* Function that converts a skewx transform into a matrix. */ |
702 | | static void |
703 | | ProcessSkewX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
704 | 0 | { |
705 | 0 | NS_ASSERTION(aData->Count() == 2, "Bad array!"); |
706 | 0 | ProcessSkewHelper(aMatrix, aData->Item(1).GetAngleValueInRadians(), 0.0); |
707 | 0 | } |
708 | | |
709 | | /* Function that converts a skewy transform into a matrix. */ |
710 | | static void |
711 | | ProcessSkewY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
712 | 0 | { |
713 | 0 | NS_ASSERTION(aData->Count() == 2, "Bad array!"); |
714 | 0 | ProcessSkewHelper(aMatrix, 0.0, aData->Item(1).GetAngleValueInRadians()); |
715 | 0 | } |
716 | | |
717 | | /* Function that converts a skew transform into a matrix. */ |
718 | | static void |
719 | | ProcessSkew(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
720 | 0 | { |
721 | 0 | NS_ASSERTION(aData->Count() == 2 || aData->Count() == 3, "Bad array!"); |
722 | 0 |
|
723 | 0 | double xSkew = aData->Item(1).GetAngleValueInRadians(); |
724 | 0 | double ySkew = (aData->Count() == 2 |
725 | 0 | ? 0.0 : aData->Item(2).GetAngleValueInRadians()); |
726 | 0 |
|
727 | 0 | ProcessSkewHelper(aMatrix, xSkew, ySkew); |
728 | 0 | } |
729 | | |
730 | | /* Function that converts a rotate transform into a matrix. */ |
731 | | static void |
732 | | ProcessRotateZ(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
733 | 0 | { |
734 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
735 | 0 | double theta = aData->Item(1).GetAngleValueInRadians(); |
736 | 0 | aMatrix.RotateZ(theta); |
737 | 0 | } |
738 | | |
739 | | static void |
740 | | ProcessRotateX(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
741 | 0 | { |
742 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
743 | 0 | double theta = aData->Item(1).GetAngleValueInRadians(); |
744 | 0 | aMatrix.RotateX(theta); |
745 | 0 | } |
746 | | |
747 | | static void |
748 | | ProcessRotateY(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
749 | 0 | { |
750 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
751 | 0 | double theta = aData->Item(1).GetAngleValueInRadians(); |
752 | 0 | aMatrix.RotateY(theta); |
753 | 0 | } |
754 | | |
755 | | static void |
756 | | ProcessRotate3D(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
757 | 0 | { |
758 | 0 | MOZ_ASSERT(aData->Count() == 5, "Invalid array!"); |
759 | 0 |
|
760 | 0 | double theta = aData->Item(4).GetAngleValueInRadians(); |
761 | 0 | float x = aData->Item(1).GetFloatValue(); |
762 | 0 | float y = aData->Item(2).GetFloatValue(); |
763 | 0 | float z = aData->Item(3).GetFloatValue(); |
764 | 0 |
|
765 | 0 | Matrix4x4 temp; |
766 | 0 | temp.SetRotateAxisAngle(x, y, z, theta); |
767 | 0 |
|
768 | 0 | aMatrix = temp * aMatrix; |
769 | 0 | } |
770 | | |
771 | | static void |
772 | | ProcessPerspective(Matrix4x4& aMatrix, const nsCSSValue::Array* aData) |
773 | 0 | { |
774 | 0 | MOZ_ASSERT(aData->Count() == 2, "Invalid array!"); |
775 | 0 |
|
776 | 0 | float depth = ProcessTranslatePart(aData->Item(1), nullptr); |
777 | 0 | ApplyPerspectiveToMatrix(aMatrix, depth); |
778 | 0 | } |
779 | | |
780 | | |
781 | | /** |
782 | | * SetToTransformFunction is essentially a giant switch statement that fans |
783 | | * out to many smaller helper functions. |
784 | | */ |
785 | | static void |
786 | | MatrixForTransformFunction(Matrix4x4& aMatrix, |
787 | | const nsCSSValue::Array * aData, |
788 | | TransformReferenceBox& aRefBox, |
789 | | bool* aContains3dTransform) |
790 | 0 | { |
791 | 0 | MOZ_ASSERT(aContains3dTransform); |
792 | 0 | MOZ_ASSERT(aData, "Why did you want to get data from a null array?"); |
793 | 0 |
|
794 | 0 | /* Get the keyword for the transform. */ |
795 | 0 | switch (TransformFunctionOf(aData)) { |
796 | 0 | case eCSSKeyword_translatex: |
797 | 0 | ProcessTranslateX(aMatrix, aData, aRefBox); |
798 | 0 | break; |
799 | 0 | case eCSSKeyword_translatey: |
800 | 0 | ProcessTranslateY(aMatrix, aData, aRefBox); |
801 | 0 | break; |
802 | 0 | case eCSSKeyword_translatez: |
803 | 0 | *aContains3dTransform = true; |
804 | 0 | ProcessTranslateZ(aMatrix, aData); |
805 | 0 | break; |
806 | 0 | case eCSSKeyword_translate: |
807 | 0 | ProcessTranslate(aMatrix, aData, aRefBox); |
808 | 0 | break; |
809 | 0 | case eCSSKeyword_translate3d: |
810 | 0 | *aContains3dTransform = true; |
811 | 0 | ProcessTranslate3D(aMatrix, aData, aRefBox); |
812 | 0 | break; |
813 | 0 | case eCSSKeyword_scalex: |
814 | 0 | ProcessScaleX(aMatrix, aData); |
815 | 0 | break; |
816 | 0 | case eCSSKeyword_scaley: |
817 | 0 | ProcessScaleY(aMatrix, aData); |
818 | 0 | break; |
819 | 0 | case eCSSKeyword_scalez: |
820 | 0 | *aContains3dTransform = true; |
821 | 0 | ProcessScaleZ(aMatrix, aData); |
822 | 0 | break; |
823 | 0 | case eCSSKeyword_scale: |
824 | 0 | ProcessScale(aMatrix, aData); |
825 | 0 | break; |
826 | 0 | case eCSSKeyword_scale3d: |
827 | 0 | *aContains3dTransform = true; |
828 | 0 | ProcessScale3D(aMatrix, aData); |
829 | 0 | break; |
830 | 0 | case eCSSKeyword_skewx: |
831 | 0 | ProcessSkewX(aMatrix, aData); |
832 | 0 | break; |
833 | 0 | case eCSSKeyword_skewy: |
834 | 0 | ProcessSkewY(aMatrix, aData); |
835 | 0 | break; |
836 | 0 | case eCSSKeyword_skew: |
837 | 0 | ProcessSkew(aMatrix, aData); |
838 | 0 | break; |
839 | 0 | case eCSSKeyword_rotatex: |
840 | 0 | *aContains3dTransform = true; |
841 | 0 | ProcessRotateX(aMatrix, aData); |
842 | 0 | break; |
843 | 0 | case eCSSKeyword_rotatey: |
844 | 0 | *aContains3dTransform = true; |
845 | 0 | ProcessRotateY(aMatrix, aData); |
846 | 0 | break; |
847 | 0 | case eCSSKeyword_rotatez: |
848 | 0 | *aContains3dTransform = true; |
849 | 0 | MOZ_FALLTHROUGH; |
850 | 0 | case eCSSKeyword_rotate: |
851 | 0 | ProcessRotateZ(aMatrix, aData); |
852 | 0 | break; |
853 | 0 | case eCSSKeyword_rotate3d: |
854 | 0 | *aContains3dTransform = true; |
855 | 0 | ProcessRotate3D(aMatrix, aData); |
856 | 0 | break; |
857 | 0 | case eCSSKeyword_matrix: |
858 | 0 | ProcessMatrix(aMatrix, aData, aRefBox); |
859 | 0 | break; |
860 | 0 | case eCSSKeyword_matrix3d: |
861 | 0 | *aContains3dTransform = true; |
862 | 0 | ProcessMatrix3D(aMatrix, aData, aRefBox); |
863 | 0 | break; |
864 | 0 | case eCSSKeyword_interpolatematrix: |
865 | 0 | ProcessMatrixOperator<Interpolate>(aMatrix, aData, aRefBox, |
866 | 0 | aContains3dTransform); |
867 | 0 | break; |
868 | 0 | case eCSSKeyword_accumulatematrix: |
869 | 0 | ProcessMatrixOperator<Accumulate>(aMatrix, aData, aRefBox, |
870 | 0 | aContains3dTransform); |
871 | 0 | break; |
872 | 0 | case eCSSKeyword_perspective: |
873 | 0 | *aContains3dTransform = true; |
874 | 0 | ProcessPerspective(aMatrix, aData); |
875 | 0 | break; |
876 | 0 | default: |
877 | 0 | MOZ_ASSERT_UNREACHABLE("Unknown transform function!"); |
878 | 0 | } |
879 | 0 | } |
880 | | |
881 | | /** |
882 | | * Return the transform function, as an nsCSSKeyword, for the given |
883 | | * nsCSSValue::Array from a transform list. |
884 | | */ |
885 | | nsCSSKeyword |
886 | | TransformFunctionOf(const nsCSSValue::Array* aData) |
887 | 0 | { |
888 | 0 | MOZ_ASSERT(aData->Item(0).GetUnit() == eCSSUnit_Enumerated); |
889 | 0 | return aData->Item(0).GetKeywordValue(); |
890 | 0 | } |
891 | | |
892 | | void |
893 | | SetIdentityMatrix(nsCSSValue::Array* aMatrix) |
894 | 0 | { |
895 | 0 | MOZ_ASSERT(aMatrix, "aMatrix should be non-null"); |
896 | 0 |
|
897 | 0 | nsCSSKeyword tfunc = TransformFunctionOf(aMatrix); |
898 | 0 | MOZ_ASSERT(tfunc == eCSSKeyword_matrix || |
899 | 0 | tfunc == eCSSKeyword_matrix3d, |
900 | 0 | "Only accept matrix and matrix3d"); |
901 | 0 |
|
902 | 0 | if (tfunc == eCSSKeyword_matrix) { |
903 | 0 | MOZ_ASSERT(aMatrix->Count() == 7, "Invalid matrix"); |
904 | 0 | Matrix m; |
905 | 0 | for (size_t i = 0; i < 6; ++i) { |
906 | 0 | aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number); |
907 | 0 | } |
908 | 0 | return; |
909 | 0 | } |
910 | 0 |
|
911 | 0 | MOZ_ASSERT(aMatrix->Count() == 17, "Invalid matrix3d"); |
912 | 0 | Matrix4x4 m; |
913 | 0 | for (size_t i = 0; i < 16; ++i) { |
914 | 0 | aMatrix->Item(i + 1).SetFloatValue(m.components[i], eCSSUnit_Number); |
915 | 0 | } |
916 | 0 | } |
917 | | |
918 | | static void |
919 | | ReadTransformsImpl(Matrix4x4& aMatrix, |
920 | | const nsCSSValueList* aList, |
921 | | TransformReferenceBox& aRefBox, |
922 | | bool* aContains3dTransform) |
923 | 0 | { |
924 | 0 | for (const nsCSSValueList* curr = aList; curr != nullptr; curr = curr->mNext) { |
925 | 0 | const nsCSSValue &currElem = curr->mValue; |
926 | 0 | if (currElem.GetUnit() != eCSSUnit_Function) { |
927 | 0 | NS_ASSERTION(currElem.GetUnit() == eCSSUnit_None && |
928 | 0 | !aList->mNext, |
929 | 0 | "stream should either be a list of functions or a " |
930 | 0 | "lone None"); |
931 | 0 | continue; |
932 | 0 | } |
933 | 0 | NS_ASSERTION(currElem.GetArrayValue()->Count() >= 1, |
934 | 0 | "Incoming function is too short!"); |
935 | 0 |
|
936 | 0 | /* Read in a single transform matrix. */ |
937 | 0 | MatrixForTransformFunction(aMatrix, currElem.GetArrayValue(), aRefBox, |
938 | 0 | aContains3dTransform); |
939 | 0 | } |
940 | 0 | } |
941 | | |
942 | | Matrix4x4 |
943 | | ReadTransforms(const nsCSSValueList* aList, |
944 | | TransformReferenceBox& aRefBox, |
945 | | float aAppUnitsPerMatrixUnit, |
946 | | bool* aContains3dTransform) |
947 | 0 | { |
948 | 0 | Matrix4x4 result; |
949 | 0 | ReadTransformsImpl(result, aList, aRefBox, aContains3dTransform); |
950 | 0 |
|
951 | 0 | float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit; |
952 | 0 | result.PreScale(1/scale, 1/scale, 1/scale); |
953 | 0 | result.PostScale(scale, scale, scale); |
954 | 0 |
|
955 | 0 | return result; |
956 | 0 | } |
957 | | |
958 | | Matrix4x4 |
959 | | ReadTransforms(const nsCSSValueList* aIndividualTransforms, |
960 | | const Maybe<MotionPathData>& aMotion, |
961 | | const nsCSSValueList* aTransform, |
962 | | TransformReferenceBox& aRefBox, |
963 | | float aAppUnitsPerMatrixUnit, |
964 | | bool* aContains3dTransform) |
965 | 0 | { |
966 | 0 | Matrix4x4 result; |
967 | 0 |
|
968 | 0 | if (aIndividualTransforms) { |
969 | 0 | ReadTransformsImpl(result, aIndividualTransforms, aRefBox, |
970 | 0 | aContains3dTransform); |
971 | 0 | } |
972 | 0 |
|
973 | 0 | if (aMotion.isSome()) { |
974 | 0 | // Create the equivalent translate and rotate function, according to the |
975 | 0 | // order in spec. We combine the translate and then the rotate. |
976 | 0 | // https://drafts.fxtf.org/motion-1/#calculating-path-transform |
977 | 0 | result.PreTranslate(aMotion->mTranslate.x, aMotion->mTranslate.y, 0.0); |
978 | 0 | if (aMotion->mRotate != 0.0) { |
979 | 0 | result.RotateZ(aMotion->mRotate); |
980 | 0 | } |
981 | 0 | } |
982 | 0 |
|
983 | 0 | if (aTransform) { |
984 | 0 | ReadTransformsImpl(result, aTransform, aRefBox, aContains3dTransform); |
985 | 0 | } |
986 | 0 |
|
987 | 0 | float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit; |
988 | 0 | result.PreScale(1/scale, 1/scale, 1/scale); |
989 | 0 | result.PostScale(scale, scale, scale); |
990 | 0 |
|
991 | 0 | return result; |
992 | 0 | } |
993 | | |
994 | | Point |
995 | | Convert2DPosition(nsStyleCoord const (&aValue)[2], |
996 | | TransformReferenceBox& aRefBox, |
997 | | int32_t aAppUnitsPerDevPixel) |
998 | 0 | { |
999 | 0 | float position[2]; |
1000 | 0 | nsStyleTransformMatrix::TransformReferenceBox::DimensionGetter dimensionGetter[] = |
1001 | 0 | { &nsStyleTransformMatrix::TransformReferenceBox::Width, |
1002 | 0 | &nsStyleTransformMatrix::TransformReferenceBox::Height }; |
1003 | 0 | for (uint8_t index = 0; index < 2; ++index) { |
1004 | 0 | const nsStyleCoord& value = aValue[index]; |
1005 | 0 | if (value.GetUnit() == eStyleUnit_Calc) { |
1006 | 0 | const nsStyleCoord::Calc *calc = value.GetCalcValue(); |
1007 | 0 | position[index] = |
1008 | 0 | NSAppUnitsToFloatPixels((aRefBox.*dimensionGetter[index])(), aAppUnitsPerDevPixel) * |
1009 | 0 | calc->mPercent + |
1010 | 0 | NSAppUnitsToFloatPixels(calc->mLength, aAppUnitsPerDevPixel); |
1011 | 0 | } else if (value.GetUnit() == eStyleUnit_Percent) { |
1012 | 0 | position[index] = |
1013 | 0 | NSAppUnitsToFloatPixels((aRefBox.*dimensionGetter[index])(), aAppUnitsPerDevPixel) * |
1014 | 0 | value.GetPercentValue(); |
1015 | 0 | } else { |
1016 | 0 | MOZ_ASSERT(value.GetUnit() == eStyleUnit_Coord, |
1017 | 0 | "unexpected unit"); |
1018 | 0 | position[index] = |
1019 | 0 | NSAppUnitsToFloatPixels(value.GetCoordValue(), |
1020 | 0 | aAppUnitsPerDevPixel); |
1021 | 0 | } |
1022 | 0 | } |
1023 | 0 |
|
1024 | 0 | return Point(position[0], position[1]); |
1025 | 0 | } |
1026 | | |
1027 | | /* |
1028 | | * The relevant section of the transitions specification: |
1029 | | * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types- |
1030 | | * defers all of the details to the 2-D and 3-D transforms specifications. |
1031 | | * For the 2-D transforms specification (all that's relevant for us, right |
1032 | | * now), the relevant section is: |
1033 | | * http://dev.w3.org/csswg/css3-2d-transforms/#animation |
1034 | | * This, in turn, refers to the unmatrix program in Graphics Gems, |
1035 | | * available from http://tog.acm.org/resources/GraphicsGems/ , and in |
1036 | | * particular as the file GraphicsGems/gemsii/unmatrix.c |
1037 | | * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz |
1038 | | * |
1039 | | * The unmatrix reference is for general 3-D transform matrices (any of the |
1040 | | * 16 components can have any value). |
1041 | | * |
1042 | | * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant: |
1043 | | * |
1044 | | * [ A C E ] |
1045 | | * [ B D F ] |
1046 | | * [ 0 0 1 ] |
1047 | | * |
1048 | | * For that case, I believe the algorithm in unmatrix reduces to: |
1049 | | * |
1050 | | * (1) If A * D - B * C == 0, the matrix is singular. Fail. |
1051 | | * |
1052 | | * (2) Set translation components (Tx and Ty) to the translation parts of |
1053 | | * the matrix (E and F) and then ignore them for the rest of the time. |
1054 | | * (For us, E and F each actually consist of three constants: a |
1055 | | * length, a multiplier for the width, and a multiplier for the |
1056 | | * height. This actually requires its own decomposition, but I'll |
1057 | | * keep that separate.) |
1058 | | * |
1059 | | * (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B |
1060 | | * by it. |
1061 | | * |
1062 | | * (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times |
1063 | | * the XY shear. From D, subtract B times the XY shear. |
1064 | | * |
1065 | | * (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY |
1066 | | * shear (K) by it. |
1067 | | * |
1068 | | * (6) At this point, A * D - B * C is either 1 or -1. If it is -1, |
1069 | | * negate the XY shear (K), the X scale (Sx), and A, B, C, and D. |
1070 | | * (Alternatively, we could negate the XY shear (K) and the Y scale |
1071 | | * (Sy).) |
1072 | | * |
1073 | | * (7) Let the rotation be R = atan2(B, A). |
1074 | | * |
1075 | | * Then the resulting decomposed transformation is: |
1076 | | * |
1077 | | * translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy) |
1078 | | * |
1079 | | * An interesting result of this is that all of the simple transform |
1080 | | * functions (i.e., all functions other than matrix()), in isolation, |
1081 | | * decompose back to themselves except for: |
1082 | | * 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes |
1083 | | * to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the |
1084 | | * alternate sign possibilities that would get fixed in step 6): |
1085 | | * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ). |
1086 | | * Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ). |
1087 | | * In step 4, the XY shear is sin(φ). |
1088 | | * Thus, after step 4, C = -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). |
1089 | | * Thus, in step 5, the Y scale is sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). |
1090 | | * Thus, after step 5, C = -sin(φ), D = cos(φ), and the XY shear is tan(φ). |
1091 | | * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1. |
1092 | | * In step 7, the rotation is thus φ. |
1093 | | * |
1094 | | * skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes |
1095 | | * to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring |
1096 | | * the alternate sign possibilities that would get fixed in step 6): |
1097 | | * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) = sec(φ). |
1098 | | * Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) = sin(φ). |
1099 | | * In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). |
1100 | | * Thus, after step 4, |
1101 | | * C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ) |
1102 | | * D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ) |
1103 | | * Thus, in step 5, the Y scale is sqrt(C² + D²) = |
1104 | | * sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) - |
1105 | | * 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) + |
1106 | | * (sin²(φ)cos²(φ) + cos⁴(φ))) = |
1107 | | * sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) = |
1108 | | * cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so |
1109 | | * we avoid flipping in step 6). |
1110 | | * After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is |
1111 | | * (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) = |
1112 | | * (dividing both numerator and denominator by cos(φ)) |
1113 | | * (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ). |
1114 | | * (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .) |
1115 | | * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1. |
1116 | | * In step 7, the rotation is thus φ. |
1117 | | * |
1118 | | * To check this result, we can multiply things back together: |
1119 | | * |
1120 | | * [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ] |
1121 | | * [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ] |
1122 | | * |
1123 | | * [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ] |
1124 | | * [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ] |
1125 | | * |
1126 | | * but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)), |
1127 | | * cos(φ)tan(θ + φ) - sin(φ) |
1128 | | * = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ) |
1129 | | * = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ) |
1130 | | * = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ) |
1131 | | * = tan(θ) (cos(φ) + sin(φ)tan(φ)) |
1132 | | * = tan(θ) sec(φ) (cos²(φ) + sin²(φ)) |
1133 | | * = tan(θ) sec(φ) |
1134 | | * and |
1135 | | * sin(φ)tan(θ + φ) + cos(φ) |
1136 | | * = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ) |
1137 | | * = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ) |
1138 | | * = sec(φ) (sin²(φ) + cos²(φ)) |
1139 | | * = sec(φ) |
1140 | | * so the above is: |
1141 | | * [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ] |
1142 | | * [ sin(φ) sec(φ) ] [ 0 cos(φ) ] |
1143 | | * |
1144 | | * [ 1 tan(θ) ] |
1145 | | * [ tan(φ) 1 ] |
1146 | | */ |
1147 | | |
1148 | | /* |
1149 | | * Decompose2DMatrix implements the above decomposition algorithm. |
1150 | | */ |
1151 | | |
1152 | | bool |
1153 | | Decompose2DMatrix(const Matrix& aMatrix, |
1154 | | Point3D& aScale, |
1155 | | ShearArray& aShear, |
1156 | | gfxQuaternion& aRotate, |
1157 | | Point3D& aTranslate) |
1158 | 0 | { |
1159 | 0 | float A = aMatrix._11, |
1160 | 0 | B = aMatrix._12, |
1161 | 0 | C = aMatrix._21, |
1162 | 0 | D = aMatrix._22; |
1163 | 0 | if (A * D == B * C) { |
1164 | 0 | // singular matrix |
1165 | 0 | return false; |
1166 | 0 | } |
1167 | 0 | |
1168 | 0 | float scaleX = sqrt(A * A + B * B); |
1169 | 0 | A /= scaleX; |
1170 | 0 | B /= scaleX; |
1171 | 0 |
|
1172 | 0 | float XYshear = A * C + B * D; |
1173 | 0 | C -= A * XYshear; |
1174 | 0 | D -= B * XYshear; |
1175 | 0 |
|
1176 | 0 | float scaleY = sqrt(C * C + D * D); |
1177 | 0 | C /= scaleY; |
1178 | 0 | D /= scaleY; |
1179 | 0 | XYshear /= scaleY; |
1180 | 0 |
|
1181 | 0 | float determinant = A * D - B * C; |
1182 | 0 | // Determinant should now be 1 or -1. |
1183 | 0 | if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) { |
1184 | 0 | return false; |
1185 | 0 | } |
1186 | 0 | |
1187 | 0 | if (determinant < 0) { |
1188 | 0 | A = -A; |
1189 | 0 | B = -B; |
1190 | 0 | C = -C; |
1191 | 0 | D = -D; |
1192 | 0 | XYshear = -XYshear; |
1193 | 0 | scaleX = -scaleX; |
1194 | 0 | } |
1195 | 0 |
|
1196 | 0 | float rotate = atan2f(B, A); |
1197 | 0 | aRotate = gfxQuaternion(0, 0, sin(rotate/2), cos(rotate/2)); |
1198 | 0 | aShear[ShearType::XYSHEAR] = XYshear; |
1199 | 0 | aScale.x = scaleX; |
1200 | 0 | aScale.y = scaleY; |
1201 | 0 | aTranslate.x = aMatrix._31; |
1202 | 0 | aTranslate.y = aMatrix._32; |
1203 | 0 | return true; |
1204 | 0 | } |
1205 | | |
1206 | | /** |
1207 | | * Implementation of the unmatrix algorithm, specified by: |
1208 | | * |
1209 | | * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix |
1210 | | * |
1211 | | * This, in turn, refers to the unmatrix program in Graphics Gems, |
1212 | | * available from http://tog.acm.org/resources/GraphicsGems/ , and in |
1213 | | * particular as the file GraphicsGems/gemsii/unmatrix.c |
1214 | | * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz |
1215 | | */ |
1216 | | bool |
1217 | | Decompose3DMatrix(const Matrix4x4& aMatrix, |
1218 | | Point3D& aScale, |
1219 | | ShearArray& aShear, |
1220 | | gfxQuaternion& aRotate, |
1221 | | Point3D& aTranslate, |
1222 | | Point4D& aPerspective) |
1223 | 0 | { |
1224 | 0 | Matrix4x4 local = aMatrix; |
1225 | 0 |
|
1226 | 0 | if (local[3][3] == 0) { |
1227 | 0 | return false; |
1228 | 0 | } |
1229 | 0 | /* Normalize the matrix */ |
1230 | 0 | local.Normalize(); |
1231 | 0 |
|
1232 | 0 | /** |
1233 | 0 | * perspective is used to solve for perspective, but it also provides |
1234 | 0 | * an easy way to test for singularity of the upper 3x3 component. |
1235 | 0 | */ |
1236 | 0 | Matrix4x4 perspective = local; |
1237 | 0 | Point4D empty(0, 0, 0, 1); |
1238 | 0 | perspective.SetTransposedVector(3, empty); |
1239 | 0 |
|
1240 | 0 | if (perspective.Determinant() == 0.0) { |
1241 | 0 | return false; |
1242 | 0 | } |
1243 | 0 | |
1244 | 0 | /* First, isolate perspective. */ |
1245 | 0 | if (local[0][3] != 0 || local[1][3] != 0 || |
1246 | 0 | local[2][3] != 0) { |
1247 | 0 | /* aPerspective is the right hand side of the equation. */ |
1248 | 0 | aPerspective = local.TransposedVector(3); |
1249 | 0 |
|
1250 | 0 | /** |
1251 | 0 | * Solve the equation by inverting perspective and multiplying |
1252 | 0 | * aPerspective by the inverse. |
1253 | 0 | */ |
1254 | 0 | perspective.Invert(); |
1255 | 0 | aPerspective = perspective.TransposeTransform4D(aPerspective); |
1256 | 0 |
|
1257 | 0 | /* Clear the perspective partition */ |
1258 | 0 | local.SetTransposedVector(3, empty); |
1259 | 0 | } else { |
1260 | 0 | aPerspective = Point4D(0, 0, 0, 1); |
1261 | 0 | } |
1262 | 0 |
|
1263 | 0 | /* Next take care of translation */ |
1264 | 0 | for (int i = 0; i < 3; i++) { |
1265 | 0 | aTranslate[i] = local[3][i]; |
1266 | 0 | local[3][i] = 0; |
1267 | 0 | } |
1268 | 0 |
|
1269 | 0 | /* Now get scale and shear. */ |
1270 | 0 |
|
1271 | 0 | /* Compute X scale factor and normalize first row. */ |
1272 | 0 | aScale.x = local[0].Length(); |
1273 | 0 | local[0] /= aScale.x; |
1274 | 0 |
|
1275 | 0 | /* Compute XY shear factor and make 2nd local orthogonal to 1st. */ |
1276 | 0 | aShear[ShearType::XYSHEAR] = local[0].DotProduct(local[1]); |
1277 | 0 | local[1] -= local[0] * aShear[ShearType::XYSHEAR]; |
1278 | 0 |
|
1279 | 0 | /* Now, compute Y scale and normalize 2nd local. */ |
1280 | 0 | aScale.y = local[1].Length(); |
1281 | 0 | local[1] /= aScale.y; |
1282 | 0 | aShear[ShearType::XYSHEAR] /= aScale.y; |
1283 | 0 |
|
1284 | 0 | /* Compute XZ and YZ shears, make 3rd local orthogonal */ |
1285 | 0 | aShear[ShearType::XZSHEAR] = local[0].DotProduct(local[2]); |
1286 | 0 | local[2] -= local[0] * aShear[ShearType::XZSHEAR]; |
1287 | 0 | aShear[ShearType::YZSHEAR] = local[1].DotProduct(local[2]); |
1288 | 0 | local[2] -= local[1] * aShear[ShearType::YZSHEAR]; |
1289 | 0 |
|
1290 | 0 | /* Next, get Z scale and normalize 3rd local. */ |
1291 | 0 | aScale.z = local[2].Length(); |
1292 | 0 | local[2] /= aScale.z; |
1293 | 0 |
|
1294 | 0 | aShear[ShearType::XZSHEAR] /= aScale.z; |
1295 | 0 | aShear[ShearType::YZSHEAR] /= aScale.z; |
1296 | 0 |
|
1297 | 0 | /** |
1298 | 0 | * At this point, the matrix (in locals) is orthonormal. |
1299 | 0 | * Check for a coordinate system flip. If the determinant |
1300 | 0 | * is -1, then negate the matrix and the scaling factors. |
1301 | 0 | */ |
1302 | 0 | if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) { |
1303 | 0 | aScale *= -1; |
1304 | 0 | for (int i = 0; i < 3; i++) { |
1305 | 0 | local[i] *= -1; |
1306 | 0 | } |
1307 | 0 | } |
1308 | 0 |
|
1309 | 0 | /* Now, get the rotations out */ |
1310 | 0 | aRotate = gfxQuaternion(local); |
1311 | 0 |
|
1312 | 0 | return true; |
1313 | 0 | } |
1314 | | |
1315 | | Matrix |
1316 | | CSSValueArrayTo2DMatrix(nsCSSValue::Array* aArray) |
1317 | 0 | { |
1318 | 0 | MOZ_ASSERT(aArray && |
1319 | 0 | TransformFunctionOf(aArray) == eCSSKeyword_matrix && |
1320 | 0 | aArray->Count() == 7); |
1321 | 0 | Matrix m(aArray->Item(1).GetFloatValue(), |
1322 | 0 | aArray->Item(2).GetFloatValue(), |
1323 | 0 | aArray->Item(3).GetFloatValue(), |
1324 | 0 | aArray->Item(4).GetFloatValue(), |
1325 | 0 | aArray->Item(5).GetFloatValue(), |
1326 | 0 | aArray->Item(6).GetFloatValue()); |
1327 | 0 | return m; |
1328 | 0 | } |
1329 | | |
1330 | | Matrix4x4 |
1331 | | CSSValueArrayTo3DMatrix(nsCSSValue::Array* aArray) |
1332 | 0 | { |
1333 | 0 | MOZ_ASSERT(aArray && |
1334 | 0 | TransformFunctionOf(aArray) == eCSSKeyword_matrix3d && |
1335 | 0 | aArray->Count() == 17); |
1336 | 0 | gfx::Float array[16]; |
1337 | 0 | for (size_t i = 0; i < 16; ++i) { |
1338 | 0 | array[i] = aArray->Item(i+1).GetFloatValue(); |
1339 | 0 | } |
1340 | 0 | Matrix4x4 m(array); |
1341 | 0 | return m; |
1342 | 0 | } |
1343 | | |
1344 | | Size |
1345 | | GetScaleValue(const nsCSSValueSharedList* aList, |
1346 | | const nsIFrame* aForFrame) |
1347 | 0 | { |
1348 | 0 | MOZ_ASSERT(aList && aList->mHead); |
1349 | 0 | MOZ_ASSERT(aForFrame); |
1350 | 0 |
|
1351 | 0 | bool dontCareBool; |
1352 | 0 | TransformReferenceBox refBox(aForFrame); |
1353 | 0 | Matrix4x4 transform = ReadTransforms( |
1354 | 0 | aList->mHead, |
1355 | 0 | refBox, |
1356 | 0 | aForFrame->PresContext()->AppUnitsPerDevPixel(), |
1357 | 0 | &dontCareBool); |
1358 | 0 | Matrix transform2d; |
1359 | 0 | bool canDraw2D = transform.CanDraw2D(&transform2d); |
1360 | 0 | if (!canDraw2D) { |
1361 | 0 | return Size(); |
1362 | 0 | } |
1363 | 0 | |
1364 | 0 | return transform2d.ScaleFactors(true); |
1365 | 0 | } |
1366 | | |
1367 | | } // namespace nsStyleTransformMatrix |