Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/kiss_fft/kiss_fft.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
Copyright (c) 2003-2010, Mark Borgerding
3
4
All rights reserved.
5
6
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
7
8
    * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
9
    * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
10
    * Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
11
12
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
13
*/
14
15
16
#include "_kiss_fft_guts.h"
17
/* The guts header contains all the multiplication and addition macros that are defined for
18
 fixed or floating point complex numbers.  It also delares the kf_ internal functions.
19
 */
20
21
static void kf_bfly2(
22
        kiss_fft_cpx * Fout,
23
        const size_t fstride,
24
        const kiss_fft_cfg st,
25
        int m
26
        )
27
0
{
28
0
    kiss_fft_cpx * Fout2;
29
0
    kiss_fft_cpx * tw1 = st->twiddles;
30
0
    kiss_fft_cpx t;
31
0
    Fout2 = Fout + m;
32
0
    do{
33
0
        C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
34
0
35
0
        C_MUL (t,  *Fout2 , *tw1);
36
0
        tw1 += fstride;
37
0
        C_SUB( *Fout2 ,  *Fout , t );
38
0
        C_ADDTO( *Fout ,  t );
39
0
        ++Fout2;
40
0
        ++Fout;
41
0
    }while (--m);
42
0
}
43
44
static void kf_bfly4(
45
        kiss_fft_cpx * Fout,
46
        const size_t fstride,
47
        const kiss_fft_cfg st,
48
        const size_t m
49
        )
50
0
{
51
0
    kiss_fft_cpx *tw1,*tw2,*tw3;
52
0
    kiss_fft_cpx scratch[6];
53
0
    size_t k=m;
54
0
    const size_t m2=2*m;
55
0
    const size_t m3=3*m;
56
0
57
0
58
0
    tw3 = tw2 = tw1 = st->twiddles;
59
0
60
0
    do {
61
0
        C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
62
0
63
0
        C_MUL(scratch[0],Fout[m] , *tw1 );
64
0
        C_MUL(scratch[1],Fout[m2] , *tw2 );
65
0
        C_MUL(scratch[2],Fout[m3] , *tw3 );
66
0
67
0
        C_SUB( scratch[5] , *Fout, scratch[1] );
68
0
        C_ADDTO(*Fout, scratch[1]);
69
0
        C_ADD( scratch[3] , scratch[0] , scratch[2] );
70
0
        C_SUB( scratch[4] , scratch[0] , scratch[2] );
71
0
        C_SUB( Fout[m2], *Fout, scratch[3] );
72
0
        tw1 += fstride;
73
0
        tw2 += fstride*2;
74
0
        tw3 += fstride*3;
75
0
        C_ADDTO( *Fout , scratch[3] );
76
0
77
0
        if(st->inverse) {
78
0
            Fout[m].r = scratch[5].r - scratch[4].i;
79
0
            Fout[m].i = scratch[5].i + scratch[4].r;
80
0
            Fout[m3].r = scratch[5].r + scratch[4].i;
81
0
            Fout[m3].i = scratch[5].i - scratch[4].r;
82
0
        }else{
83
0
            Fout[m].r = scratch[5].r + scratch[4].i;
84
0
            Fout[m].i = scratch[5].i - scratch[4].r;
85
0
            Fout[m3].r = scratch[5].r - scratch[4].i;
86
0
            Fout[m3].i = scratch[5].i + scratch[4].r;
87
0
        }
88
0
        ++Fout;
89
0
    }while(--k);
90
0
}
91
92
static void kf_bfly3(
93
         kiss_fft_cpx * Fout,
94
         const size_t fstride,
95
         const kiss_fft_cfg st,
96
         size_t m
97
         )
98
0
{
99
0
     size_t k=m;
100
0
     const size_t m2 = 2*m;
101
0
     kiss_fft_cpx *tw1,*tw2;
102
0
     kiss_fft_cpx scratch[5];
103
0
     kiss_fft_cpx epi3;
104
0
     epi3 = st->twiddles[fstride*m];
105
0
106
0
     tw1=tw2=st->twiddles;
107
0
108
0
     do{
109
0
         C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
110
0
111
0
         C_MUL(scratch[1],Fout[m] , *tw1);
112
0
         C_MUL(scratch[2],Fout[m2] , *tw2);
113
0
114
0
         C_ADD(scratch[3],scratch[1],scratch[2]);
115
0
         C_SUB(scratch[0],scratch[1],scratch[2]);
116
0
         tw1 += fstride;
117
0
         tw2 += fstride*2;
118
0
119
0
         Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
120
0
         Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
121
0
122
0
         C_MULBYSCALAR( scratch[0] , epi3.i );
123
0
124
0
         C_ADDTO(*Fout,scratch[3]);
125
0
126
0
         Fout[m2].r = Fout[m].r + scratch[0].i;
127
0
         Fout[m2].i = Fout[m].i - scratch[0].r;
128
0
129
0
         Fout[m].r -= scratch[0].i;
130
0
         Fout[m].i += scratch[0].r;
131
0
132
0
         ++Fout;
133
0
     }while(--k);
134
0
}
135
136
static void kf_bfly5(
137
        kiss_fft_cpx * Fout,
138
        const size_t fstride,
139
        const kiss_fft_cfg st,
140
        int m
141
        )
142
0
{
143
0
    kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
144
0
    int u;
145
0
    kiss_fft_cpx scratch[13];
146
0
    kiss_fft_cpx * twiddles = st->twiddles;
147
0
    kiss_fft_cpx *tw;
148
0
    kiss_fft_cpx ya,yb;
149
0
    ya = twiddles[fstride*m];
150
0
    yb = twiddles[fstride*2*m];
151
0
152
0
    Fout0=Fout;
153
0
    Fout1=Fout0+m;
154
0
    Fout2=Fout0+2*m;
155
0
    Fout3=Fout0+3*m;
156
0
    Fout4=Fout0+4*m;
157
0
158
0
    tw=st->twiddles;
159
0
    for ( u=0; u<m; ++u ) {
160
0
        C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
161
0
        scratch[0] = *Fout0;
162
0
163
0
        C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
164
0
        C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
165
0
        C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
166
0
        C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
167
0
168
0
        C_ADD( scratch[7],scratch[1],scratch[4]);
169
0
        C_SUB( scratch[10],scratch[1],scratch[4]);
170
0
        C_ADD( scratch[8],scratch[2],scratch[3]);
171
0
        C_SUB( scratch[9],scratch[2],scratch[3]);
172
0
173
0
        Fout0->r += scratch[7].r + scratch[8].r;
174
0
        Fout0->i += scratch[7].i + scratch[8].i;
175
0
176
0
        scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
177
0
        scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
178
0
179
0
        scratch[6].r =  S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
180
0
        scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
181
0
182
0
        C_SUB(*Fout1,scratch[5],scratch[6]);
183
0
        C_ADD(*Fout4,scratch[5],scratch[6]);
184
0
185
0
        scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
186
0
        scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
187
0
        scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
188
0
        scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
189
0
190
0
        C_ADD(*Fout2,scratch[11],scratch[12]);
191
0
        C_SUB(*Fout3,scratch[11],scratch[12]);
192
0
193
0
        ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
194
0
    }
195
0
}
196
197
/* perform the butterfly for one stage of a mixed radix FFT */
198
static void kf_bfly_generic(
199
        kiss_fft_cpx * Fout,
200
        const size_t fstride,
201
        const kiss_fft_cfg st,
202
        int m,
203
        int p
204
        )
205
0
{
206
0
    int u,k,q1,q;
207
0
    kiss_fft_cpx * twiddles = st->twiddles;
208
0
    kiss_fft_cpx t;
209
0
    int Norig = st->nfft;
210
0
211
0
    kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
212
0
213
0
    for ( u=0; u<m; ++u ) {
214
0
        k=u;
215
0
        for ( q1=0 ; q1<p ; ++q1 ) {
216
0
            scratch[q1] = Fout[ k  ];
217
0
            C_FIXDIV(scratch[q1],p);
218
0
            k += m;
219
0
        }
220
0
221
0
        k=u;
222
0
        for ( q1=0 ; q1<p ; ++q1 ) {
223
0
            int twidx=0;
224
0
            Fout[ k ] = scratch[0];
225
0
            for (q=1;q<p;++q ) {
226
0
                twidx += fstride * k;
227
0
                if (twidx>=Norig) twidx-=Norig;
228
0
                C_MUL(t,scratch[q] , twiddles[twidx] );
229
0
                C_ADDTO( Fout[ k ] ,t);
230
0
            }
231
0
            k += m;
232
0
        }
233
0
    }
234
0
    KISS_FFT_TMP_FREE(scratch);
235
0
}
236
237
static
238
void kf_work(
239
        kiss_fft_cpx * Fout,
240
        const kiss_fft_cpx * f,
241
        const size_t fstride,
242
        int in_stride,
243
        int * factors,
244
        const kiss_fft_cfg st
245
        )
246
0
{
247
0
    kiss_fft_cpx * Fout_beg=Fout;
248
0
    const int p=*factors++; /* the radix  */
249
0
    const int m=*factors++; /* stage's fft length/p */
250
0
    const kiss_fft_cpx * Fout_end = Fout + p*m;
251
0
252
#ifdef _OPENMP
253
    // use openmp extensions at the 
254
    // top-level (not recursive)
255
    if (fstride==1 && p<=5)
256
    {
257
        int k;
258
259
        // execute the p different work units in different threads
260
#       pragma omp parallel for
261
        for (k=0;k<p;++k) 
262
            kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
263
        // all threads have joined by this point
264
265
        switch (p) {
266
            case 2: kf_bfly2(Fout,fstride,st,m); break;
267
            case 3: kf_bfly3(Fout,fstride,st,m); break; 
268
            case 4: kf_bfly4(Fout,fstride,st,m); break;
269
            case 5: kf_bfly5(Fout,fstride,st,m); break; 
270
            default: kf_bfly_generic(Fout,fstride,st,m,p); break;
271
        }
272
        return;
273
    }
274
#endif
275
276
0
    if (m==1) {
277
0
        do{
278
0
            *Fout = *f;
279
0
            f += fstride*in_stride;
280
0
        }while(++Fout != Fout_end );
281
0
    }else{
282
0
        do{
283
0
            // recursive call:
284
0
            // DFT of size m*p performed by doing
285
0
            // p instances of smaller DFTs of size m, 
286
0
            // each one takes a decimated version of the input
287
0
            kf_work( Fout , f, fstride*p, in_stride, factors,st);
288
0
            f += fstride*in_stride;
289
0
        }while( (Fout += m) != Fout_end );
290
0
    }
291
0
292
0
    Fout=Fout_beg;
293
0
294
0
    // recombine the p smaller DFTs 
295
0
    switch (p) {
296
0
        case 2: kf_bfly2(Fout,fstride,st,m); break;
297
0
        case 3: kf_bfly3(Fout,fstride,st,m); break; 
298
0
        case 4: kf_bfly4(Fout,fstride,st,m); break;
299
0
        case 5: kf_bfly5(Fout,fstride,st,m); break; 
300
0
        default: kf_bfly_generic(Fout,fstride,st,m,p); break;
301
0
    }
302
0
}
303
304
/*  facbuf is populated by p1,m1,p2,m2, ...
305
    where 
306
    p[i] * m[i] = m[i-1]
307
    m0 = n                  */
308
static 
309
void kf_factor(int n,int * facbuf)
310
0
{
311
0
    int p=4;
312
0
    double floor_sqrt;
313
0
    floor_sqrt = floor( sqrt((double)n) );
314
0
315
0
    /*factor out powers of 4, powers of 2, then any remaining primes */
316
0
    do {
317
0
        while (n % p) {
318
0
            switch (p) {
319
0
                case 4: p = 2; break;
320
0
                case 2: p = 3; break;
321
0
                default: p += 2; break;
322
0
            }
323
0
            if (p > floor_sqrt)
324
0
                p = n;          /* no more factors, skip to end */
325
0
        }
326
0
        n /= p;
327
0
        *facbuf++ = p;
328
0
        *facbuf++ = n;
329
0
    } while (n > 1);
330
0
}
331
332
/*
333
 *
334
 * User-callable function to allocate all necessary storage space for the fft.
335
 *
336
 * The return value is a contiguous block of memory, allocated with malloc.  As such,
337
 * It can be freed with free(), rather than a kiss_fft-specific function.
338
 * */
339
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
340
0
{
341
0
    kiss_fft_cfg st=NULL;
342
0
    size_t memneeded = sizeof(struct kiss_fft_state)
343
0
        + sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/
344
0
345
0
    if ( lenmem==NULL ) {
346
0
        st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
347
0
    }else{
348
0
        if (mem != NULL && *lenmem >= memneeded)
349
0
            st = (kiss_fft_cfg)mem;
350
0
        *lenmem = memneeded;
351
0
    }
352
0
    if (st) {
353
0
        int i;
354
0
        st->nfft=nfft;
355
0
        st->inverse = inverse_fft;
356
0
357
0
        for (i=0;i<nfft;++i) {
358
0
            const double pi=3.141592653589793238462643383279502884197169399375105820974944;
359
0
            double phase = -2*pi*i / nfft;
360
0
            if (st->inverse)
361
0
                phase *= -1;
362
0
            kf_cexp(st->twiddles+i, phase );
363
0
        }
364
0
365
0
        kf_factor(nfft,st->factors);
366
0
    }
367
0
    return st;
368
0
}
369
370
371
void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
372
0
{
373
0
    if (fin == fout) {
374
0
        //NOTE: this is not really an in-place FFT algorithm.
375
0
        //It just performs an out-of-place FFT into a temp buffer
376
0
        kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
377
0
        kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
378
0
        memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
379
0
        KISS_FFT_TMP_FREE(tmpbuf);
380
0
    }else{
381
0
        kf_work( fout, fin, 1,in_stride, st->factors,st );
382
0
    }
383
0
}
384
385
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
386
0
{
387
0
    kiss_fft_stride(cfg,fin,fout,1);
388
0
}
389
390
391
void kiss_fft_cleanup(void)
392
0
{
393
0
    // nothing needed any more
394
0
}
395
396
int kiss_fft_next_fast_size(int n)
397
0
{
398
0
    while(1) {
399
0
        int m=n;
400
0
        while ( (m%2) == 0 ) m/=2;
401
0
        while ( (m%3) == 0 ) m/=3;
402
0
        while ( (m%5) == 0 ) m/=5;
403
0
        if (m<=1)
404
0
            break; /* n is completely factorable by twos, threes, and fives */
405
0
        n++;
406
0
    }
407
0
    return n;
408
0
}