Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libjpeg/jcdctmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcdctmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
8
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
9
 * Copyright (C) 2011, 2014-2015, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the forward-DCT management logic.
14
 * This code selects a particular DCT implementation to be used,
15
 * and it performs related housekeeping chores including coefficient
16
 * quantization.
17
 */
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h"               /* Private declarations for DCT subsystem */
23
#include "jsimddct.h"
24
25
26
/* Private subobject for this module */
27
28
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
32
                                     JDIMENSION start_col,
33
                                     DCTELEM *workspace);
34
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
35
                                           JDIMENSION start_col,
36
                                           FAST_FLOAT *workspace);
37
38
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39
                                     DCTELEM *workspace);
40
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41
                                           FAST_FLOAT *divisors,
42
                                           FAST_FLOAT *workspace);
43
44
METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
45
46
typedef struct {
47
  struct jpeg_forward_dct pub;  /* public fields */
48
49
  /* Pointer to the DCT routine actually in use */
50
  forward_DCT_method_ptr dct;
51
  convsamp_method_ptr convsamp;
52
  quantize_method_ptr quantize;
53
54
  /* The actual post-DCT divisors --- not identical to the quant table
55
   * entries, because of scaling (especially for an unnormalized DCT).
56
   * Each table is given in normal array order.
57
   */
58
  DCTELEM *divisors[NUM_QUANT_TBLS];
59
60
  /* work area for FDCT subroutine */
61
  DCTELEM *workspace;
62
63
#ifdef DCT_FLOAT_SUPPORTED
64
  /* Same as above for the floating-point case. */
65
  float_DCT_method_ptr float_dct;
66
  float_convsamp_method_ptr float_convsamp;
67
  float_quantize_method_ptr float_quantize;
68
  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69
  FAST_FLOAT *float_workspace;
70
#endif
71
} my_fdct_controller;
72
73
typedef my_fdct_controller *my_fdct_ptr;
74
75
76
#if BITS_IN_JSAMPLE == 8
77
78
/*
79
 * Find the highest bit in an integer through binary search.
80
 */
81
82
LOCAL(int)
83
flss (UINT16 val)
84
0
{
85
0
  int bit;
86
0
87
0
  bit = 16;
88
0
89
0
  if (!val)
90
0
    return 0;
91
0
92
0
  if (!(val & 0xff00)) {
93
0
    bit -= 8;
94
0
    val <<= 8;
95
0
  }
96
0
  if (!(val & 0xf000)) {
97
0
    bit -= 4;
98
0
    val <<= 4;
99
0
  }
100
0
  if (!(val & 0xc000)) {
101
0
    bit -= 2;
102
0
    val <<= 2;
103
0
  }
104
0
  if (!(val & 0x8000)) {
105
0
    bit -= 1;
106
0
    val <<= 1;
107
0
  }
108
0
109
0
  return bit;
110
0
}
111
112
113
/*
114
 * Compute values to do a division using reciprocal.
115
 *
116
 * This implementation is based on an algorithm described in
117
 *   "How to optimize for the Pentium family of microprocessors"
118
 *   (http://www.agner.org/assem/).
119
 * More information about the basic algorithm can be found in
120
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
121
 *
122
 * The basic idea is to replace x/d by x * d^-1. In order to store
123
 * d^-1 with enough precision we shift it left a few places. It turns
124
 * out that this algoright gives just enough precision, and also fits
125
 * into DCTELEM:
126
 *
127
 *   b = (the number of significant bits in divisor) - 1
128
 *   r = (word size) + b
129
 *   f = 2^r / divisor
130
 *
131
 * f will not be an integer for most cases, so we need to compensate
132
 * for the rounding error introduced:
133
 *
134
 *   no fractional part:
135
 *
136
 *       result = input >> r
137
 *
138
 *   fractional part of f < 0.5:
139
 *
140
 *       round f down to nearest integer
141
 *       result = ((input + 1) * f) >> r
142
 *
143
 *   fractional part of f > 0.5:
144
 *
145
 *       round f up to nearest integer
146
 *       result = (input * f) >> r
147
 *
148
 * This is the original algorithm that gives truncated results. But we
149
 * want properly rounded results, so we replace "input" with
150
 * "input + divisor/2".
151
 *
152
 * In order to allow SIMD implementations we also tweak the values to
153
 * allow the same calculation to be made at all times:
154
 *
155
 *   dctbl[0] = f rounded to nearest integer
156
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157
 *   dctbl[2] = 1 << ((word size) * 2 - r)
158
 *   dctbl[3] = r - (word size)
159
 *
160
 * dctbl[2] is for stupid instruction sets where the shift operation
161
 * isn't member wise (e.g. MMX).
162
 *
163
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164
 * is that most SIMD implementations have a "multiply and store top
165
 * half" operation.
166
 *
167
 * Lastly, we store each of the values in their own table instead
168
 * of in a consecutive manner, yet again in order to allow SIMD
169
 * routines.
170
 */
171
172
LOCAL(int)
173
compute_reciprocal (UINT16 divisor, DCTELEM *dtbl)
174
0
{
175
0
  UDCTELEM2 fq, fr;
176
0
  UDCTELEM c;
177
0
  int b, r;
178
0
179
0
  if (divisor == 1) {
180
0
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
181
0
     * values will cause the C quantization algorithm to act like the
182
0
     * identity function.  Since only the C quantization algorithm is used in
183
0
     * these cases, the scale value is irrelevant.
184
0
     */
185
0
    dtbl[DCTSIZE2 * 0] = (DCTELEM) 1;                       /* reciprocal */
186
0
    dtbl[DCTSIZE2 * 1] = (DCTELEM) 0;                       /* correction */
187
0
    dtbl[DCTSIZE2 * 2] = (DCTELEM) 1;                       /* scale */
188
0
    dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8);  /* shift */
189
0
    return 0;
190
0
  }
191
0
192
0
  b = flss(divisor) - 1;
193
0
  r  = sizeof(DCTELEM) * 8 + b;
194
0
195
0
  fq = ((UDCTELEM2)1 << r) / divisor;
196
0
  fr = ((UDCTELEM2)1 << r) % divisor;
197
0
198
0
  c = divisor / 2; /* for rounding */
199
0
200
0
  if (fr == 0) { /* divisor is power of two */
201
0
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
202
0
    fq >>= 1;
203
0
    r--;
204
0
  } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
205
0
    c++;
206
0
  } else { /* fractional part is > 0.5 */
207
0
    fq++;
208
0
  }
209
0
210
0
  dtbl[DCTSIZE2 * 0] = (DCTELEM) fq;      /* reciprocal */
211
0
  dtbl[DCTSIZE2 * 1] = (DCTELEM) c;       /* correction + roundfactor */
212
0
#ifdef WITH_SIMD
213
0
  dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r));  /* scale */
214
#else
215
  dtbl[DCTSIZE2 * 2] = 1;
216
#endif
217
0
  dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
218
0
219
0
  if(r <= 16) return 0;
220
0
  else return 1;
221
0
}
222
223
#endif
224
225
226
/*
227
 * Initialize for a processing pass.
228
 * Verify that all referenced Q-tables are present, and set up
229
 * the divisor table for each one.
230
 * In the current implementation, DCT of all components is done during
231
 * the first pass, even if only some components will be output in the
232
 * first scan.  Hence all components should be examined here.
233
 */
234
235
METHODDEF(void)
236
start_pass_fdctmgr (j_compress_ptr cinfo)
237
0
{
238
0
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
239
0
  int ci, qtblno, i;
240
0
  jpeg_component_info *compptr;
241
0
  JQUANT_TBL *qtbl;
242
0
  DCTELEM *dtbl;
243
0
244
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
0
       ci++, compptr++) {
246
0
    qtblno = compptr->quant_tbl_no;
247
0
    /* Make sure specified quantization table is present */
248
0
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
0
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
0
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
0
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
0
    /* Compute divisors for this quant table */
253
0
    /* We may do this more than once for same table, but it's not a big deal */
254
0
    switch (cinfo->dct_method) {
255
0
#ifdef DCT_ISLOW_SUPPORTED
256
0
    case JDCT_ISLOW:
257
0
      /* For LL&M IDCT method, divisors are equal to raw quantization
258
0
       * coefficients multiplied by 8 (to counteract scaling).
259
0
       */
260
0
      if (fdct->divisors[qtblno] == NULL) {
261
0
        fdct->divisors[qtblno] = (DCTELEM *)
262
0
          (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
263
0
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264
0
      }
265
0
      dtbl = fdct->divisors[qtblno];
266
0
      for (i = 0; i < DCTSIZE2; i++) {
267
0
#if BITS_IN_JSAMPLE == 8
268
0
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
269
0
            fdct->quantize == jsimd_quantize)
270
0
          fdct->quantize = quantize;
271
#else
272
        dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
273
#endif
274
      }
275
0
      break;
276
0
#endif
277
0
#ifdef DCT_IFAST_SUPPORTED
278
0
    case JDCT_IFAST:
279
0
      {
280
0
        /* For AA&N IDCT method, divisors are equal to quantization
281
0
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
282
0
         *   scalefactor[0] = 1
283
0
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
284
0
         * We apply a further scale factor of 8.
285
0
         */
286
0
#define CONST_BITS 14
287
0
        static const INT16 aanscales[DCTSIZE2] = {
288
0
          /* precomputed values scaled up by 14 bits */
289
0
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
290
0
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
291
0
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
292
0
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
293
0
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294
0
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
295
0
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
296
0
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
297
0
        };
298
0
        SHIFT_TEMPS
299
0
300
0
        if (fdct->divisors[qtblno] == NULL) {
301
0
          fdct->divisors[qtblno] = (DCTELEM *)
302
0
            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
303
0
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
304
0
        }
305
0
        dtbl = fdct->divisors[qtblno];
306
0
        for (i = 0; i < DCTSIZE2; i++) {
307
0
#if BITS_IN_JSAMPLE == 8
308
0
          if (!compute_reciprocal(
309
0
                DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
310
0
                                      (JLONG) aanscales[i]),
311
0
                        CONST_BITS-3), &dtbl[i]) &&
312
0
              fdct->quantize == jsimd_quantize)
313
0
            fdct->quantize = quantize;
314
#else
315
           dtbl[i] = (DCTELEM)
316
             DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
317
                                   (JLONG) aanscales[i]),
318
                     CONST_BITS-3);
319
#endif
320
        }
321
0
      }
322
0
      break;
323
0
#endif
324
0
#ifdef DCT_FLOAT_SUPPORTED
325
0
    case JDCT_FLOAT:
326
0
      {
327
0
        /* For float AA&N IDCT method, divisors are equal to quantization
328
0
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
329
0
         *   scalefactor[0] = 1
330
0
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
331
0
         * We apply a further scale factor of 8.
332
0
         * What's actually stored is 1/divisor so that the inner loop can
333
0
         * use a multiplication rather than a division.
334
0
         */
335
0
        FAST_FLOAT *fdtbl;
336
0
        int row, col;
337
0
        static const double aanscalefactor[DCTSIZE] = {
338
0
          1.0, 1.387039845, 1.306562965, 1.175875602,
339
0
          1.0, 0.785694958, 0.541196100, 0.275899379
340
0
        };
341
0
342
0
        if (fdct->float_divisors[qtblno] == NULL) {
343
0
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
344
0
            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
345
0
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
346
0
        }
347
0
        fdtbl = fdct->float_divisors[qtblno];
348
0
        i = 0;
349
0
        for (row = 0; row < DCTSIZE; row++) {
350
0
          for (col = 0; col < DCTSIZE; col++) {
351
0
            fdtbl[i] = (FAST_FLOAT)
352
0
              (1.0 / (((double) qtbl->quantval[i] *
353
0
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
354
0
            i++;
355
0
          }
356
0
        }
357
0
      }
358
0
      break;
359
0
#endif
360
0
    default:
361
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
362
0
      break;
363
0
    }
364
0
  }
365
0
}
366
367
368
/*
369
 * Load data into workspace, applying unsigned->signed conversion.
370
 */
371
372
METHODDEF(void)
373
convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
374
0
{
375
0
  register DCTELEM *workspaceptr;
376
0
  register JSAMPROW elemptr;
377
0
  register int elemr;
378
0
379
0
  workspaceptr = workspace;
380
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
381
0
    elemptr = sample_data[elemr] + start_col;
382
0
383
0
#if DCTSIZE == 8                /* unroll the inner loop */
384
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
385
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
386
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
387
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
388
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
389
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
390
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
391
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
392
#else
393
    {
394
      register int elemc;
395
      for (elemc = DCTSIZE; elemc > 0; elemc--)
396
        *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
397
    }
398
#endif
399
  }
400
0
}
401
402
403
/*
404
 * Quantize/descale the coefficients, and store into coef_blocks[].
405
 */
406
407
METHODDEF(void)
408
quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
409
0
{
410
0
  int i;
411
0
  DCTELEM temp;
412
0
  JCOEFPTR output_ptr = coef_block;
413
0
414
0
#if BITS_IN_JSAMPLE == 8
415
0
416
0
  UDCTELEM recip, corr;
417
0
  int shift;
418
0
  UDCTELEM2 product;
419
0
420
0
  for (i = 0; i < DCTSIZE2; i++) {
421
0
    temp = workspace[i];
422
0
    recip = divisors[i + DCTSIZE2 * 0];
423
0
    corr =  divisors[i + DCTSIZE2 * 1];
424
0
    shift = divisors[i + DCTSIZE2 * 3];
425
0
426
0
    if (temp < 0) {
427
0
      temp = -temp;
428
0
      product = (UDCTELEM2)(temp + corr) * recip;
429
0
      product >>= shift + sizeof(DCTELEM)*8;
430
0
      temp = (DCTELEM)product;
431
0
      temp = -temp;
432
0
    } else {
433
0
      product = (UDCTELEM2)(temp + corr) * recip;
434
0
      product >>= shift + sizeof(DCTELEM)*8;
435
0
      temp = (DCTELEM)product;
436
0
    }
437
0
    output_ptr[i] = (JCOEF) temp;
438
0
  }
439
0
440
#else
441
442
  register DCTELEM qval;
443
444
  for (i = 0; i < DCTSIZE2; i++) {
445
    qval = divisors[i];
446
    temp = workspace[i];
447
    /* Divide the coefficient value by qval, ensuring proper rounding.
448
     * Since C does not specify the direction of rounding for negative
449
     * quotients, we have to force the dividend positive for portability.
450
     *
451
     * In most files, at least half of the output values will be zero
452
     * (at default quantization settings, more like three-quarters...)
453
     * so we should ensure that this case is fast.  On many machines,
454
     * a comparison is enough cheaper than a divide to make a special test
455
     * a win.  Since both inputs will be nonnegative, we need only test
456
     * for a < b to discover whether a/b is 0.
457
     * If your machine's division is fast enough, define FAST_DIVIDE.
458
     */
459
#ifdef FAST_DIVIDE
460
#define DIVIDE_BY(a,b)  a /= b
461
#else
462
#define DIVIDE_BY(a,b)  if (a >= b) a /= b; else a = 0
463
#endif
464
    if (temp < 0) {
465
      temp = -temp;
466
      temp += qval>>1;  /* for rounding */
467
      DIVIDE_BY(temp, qval);
468
      temp = -temp;
469
    } else {
470
      temp += qval>>1;  /* for rounding */
471
      DIVIDE_BY(temp, qval);
472
    }
473
    output_ptr[i] = (JCOEF) temp;
474
  }
475
476
#endif
477
478
0
}
479
480
481
/*
482
 * Perform forward DCT on one or more blocks of a component.
483
 *
484
 * The input samples are taken from the sample_data[] array starting at
485
 * position start_row/start_col, and moving to the right for any additional
486
 * blocks. The quantized coefficients are returned in coef_blocks[].
487
 */
488
489
METHODDEF(void)
490
forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr,
491
             JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
492
             JDIMENSION start_row, JDIMENSION start_col,
493
             JDIMENSION num_blocks)
494
/* This version is used for integer DCT implementations. */
495
0
{
496
0
  /* This routine is heavily used, so it's worth coding it tightly. */
497
0
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
498
0
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
499
0
  DCTELEM *workspace;
500
0
  JDIMENSION bi;
501
0
502
0
  /* Make sure the compiler doesn't look up these every pass */
503
0
  forward_DCT_method_ptr do_dct = fdct->dct;
504
0
  convsamp_method_ptr do_convsamp = fdct->convsamp;
505
0
  quantize_method_ptr do_quantize = fdct->quantize;
506
0
  workspace = fdct->workspace;
507
0
508
0
  sample_data += start_row;     /* fold in the vertical offset once */
509
0
510
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
511
0
    /* Load data into workspace, applying unsigned->signed conversion */
512
0
    (*do_convsamp) (sample_data, start_col, workspace);
513
0
514
0
    /* Perform the DCT */
515
0
    (*do_dct) (workspace);
516
0
517
0
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
518
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
519
0
  }
520
0
}
521
522
523
#ifdef DCT_FLOAT_SUPPORTED
524
525
526
METHODDEF(void)
527
convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace)
528
0
{
529
0
  register FAST_FLOAT *workspaceptr;
530
0
  register JSAMPROW elemptr;
531
0
  register int elemr;
532
0
533
0
  workspaceptr = workspace;
534
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
535
0
    elemptr = sample_data[elemr] + start_col;
536
0
#if DCTSIZE == 8                /* unroll the inner loop */
537
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
538
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
539
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
540
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
541
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
542
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
543
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
544
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
545
#else
546
    {
547
      register int elemc;
548
      for (elemc = DCTSIZE; elemc > 0; elemc--)
549
        *workspaceptr++ = (FAST_FLOAT)
550
                          (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
551
    }
552
#endif
553
  }
554
0
}
555
556
557
METHODDEF(void)
558
quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace)
559
0
{
560
0
  register FAST_FLOAT temp;
561
0
  register int i;
562
0
  register JCOEFPTR output_ptr = coef_block;
563
0
564
0
  for (i = 0; i < DCTSIZE2; i++) {
565
0
    /* Apply the quantization and scaling factor */
566
0
    temp = workspace[i] * divisors[i];
567
0
568
0
    /* Round to nearest integer.
569
0
     * Since C does not specify the direction of rounding for negative
570
0
     * quotients, we have to force the dividend positive for portability.
571
0
     * The maximum coefficient size is +-16K (for 12-bit data), so this
572
0
     * code should work for either 16-bit or 32-bit ints.
573
0
     */
574
0
    output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
575
0
  }
576
0
}
577
578
579
METHODDEF(void)
580
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr,
581
                   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
582
                   JDIMENSION start_row, JDIMENSION start_col,
583
                   JDIMENSION num_blocks)
584
/* This version is used for floating-point DCT implementations. */
585
0
{
586
0
  /* This routine is heavily used, so it's worth coding it tightly. */
587
0
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
588
0
  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
589
0
  FAST_FLOAT *workspace;
590
0
  JDIMENSION bi;
591
0
592
0
593
0
  /* Make sure the compiler doesn't look up these every pass */
594
0
  float_DCT_method_ptr do_dct = fdct->float_dct;
595
0
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
596
0
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
597
0
  workspace = fdct->float_workspace;
598
0
599
0
  sample_data += start_row;     /* fold in the vertical offset once */
600
0
601
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
602
0
    /* Load data into workspace, applying unsigned->signed conversion */
603
0
    (*do_convsamp) (sample_data, start_col, workspace);
604
0
605
0
    /* Perform the DCT */
606
0
    (*do_dct) (workspace);
607
0
608
0
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
609
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
610
0
  }
611
0
}
612
613
#endif /* DCT_FLOAT_SUPPORTED */
614
615
616
/*
617
 * Initialize FDCT manager.
618
 */
619
620
GLOBAL(void)
621
jinit_forward_dct (j_compress_ptr cinfo)
622
0
{
623
0
  my_fdct_ptr fdct;
624
0
  int i;
625
0
626
0
  fdct = (my_fdct_ptr)
627
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
628
0
                                sizeof(my_fdct_controller));
629
0
  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
630
0
  fdct->pub.start_pass = start_pass_fdctmgr;
631
0
632
0
  /* First determine the DCT... */
633
0
  switch (cinfo->dct_method) {
634
0
#ifdef DCT_ISLOW_SUPPORTED
635
0
  case JDCT_ISLOW:
636
0
    fdct->pub.forward_DCT = forward_DCT;
637
0
    if (jsimd_can_fdct_islow())
638
0
      fdct->dct = jsimd_fdct_islow;
639
0
    else
640
0
      fdct->dct = jpeg_fdct_islow;
641
0
    break;
642
0
#endif
643
0
#ifdef DCT_IFAST_SUPPORTED
644
0
  case JDCT_IFAST:
645
0
    fdct->pub.forward_DCT = forward_DCT;
646
0
    if (jsimd_can_fdct_ifast())
647
0
      fdct->dct = jsimd_fdct_ifast;
648
0
    else
649
0
      fdct->dct = jpeg_fdct_ifast;
650
0
    break;
651
0
#endif
652
0
#ifdef DCT_FLOAT_SUPPORTED
653
0
  case JDCT_FLOAT:
654
0
    fdct->pub.forward_DCT = forward_DCT_float;
655
0
    if (jsimd_can_fdct_float())
656
0
      fdct->float_dct = jsimd_fdct_float;
657
0
    else
658
0
      fdct->float_dct = jpeg_fdct_float;
659
0
    break;
660
0
#endif
661
0
  default:
662
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
663
0
    break;
664
0
  }
665
0
666
0
  /* ...then the supporting stages. */
667
0
  switch (cinfo->dct_method) {
668
0
#ifdef DCT_ISLOW_SUPPORTED
669
0
  case JDCT_ISLOW:
670
0
#endif
671
0
#ifdef DCT_IFAST_SUPPORTED
672
0
  case JDCT_IFAST:
673
0
#endif
674
0
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
675
0
    if (jsimd_can_convsamp())
676
0
      fdct->convsamp = jsimd_convsamp;
677
0
    else
678
0
      fdct->convsamp = convsamp;
679
0
    if (jsimd_can_quantize())
680
0
      fdct->quantize = jsimd_quantize;
681
0
    else
682
0
      fdct->quantize = quantize;
683
0
    break;
684
0
#endif
685
0
#ifdef DCT_FLOAT_SUPPORTED
686
0
  case JDCT_FLOAT:
687
0
    if (jsimd_can_convsamp_float())
688
0
      fdct->float_convsamp = jsimd_convsamp_float;
689
0
    else
690
0
      fdct->float_convsamp = convsamp_float;
691
0
    if (jsimd_can_quantize_float())
692
0
      fdct->float_quantize = jsimd_quantize_float;
693
0
    else
694
0
      fdct->float_quantize = quantize_float;
695
0
    break;
696
0
#endif
697
0
  default:
698
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
699
0
    break;
700
0
  }
701
0
702
0
  /* Allocate workspace memory */
703
0
#ifdef DCT_FLOAT_SUPPORTED
704
0
  if (cinfo->dct_method == JDCT_FLOAT)
705
0
    fdct->float_workspace = (FAST_FLOAT *)
706
0
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
707
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
708
0
  else
709
0
#endif
710
0
    fdct->workspace = (DCTELEM *)
711
0
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
712
0
                                  sizeof(DCTELEM) * DCTSIZE2);
713
0
714
0
  /* Mark divisor tables unallocated */
715
0
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
716
0
    fdct->divisors[i] = NULL;
717
0
#ifdef DCT_FLOAT_SUPPORTED
718
0
    fdct->float_divisors[i] = NULL;
719
0
#endif
720
0
  }
721
0
}