/src/mozilla-central/media/libjpeg/jchuff.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jchuff.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2009-2011, 2014-2016, D. R. Commander. |
8 | | * Copyright (C) 2015, Matthieu Darbois. |
9 | | * For conditions of distribution and use, see the accompanying README.ijg |
10 | | * file. |
11 | | * |
12 | | * This file contains Huffman entropy encoding routines. |
13 | | * |
14 | | * Much of the complexity here has to do with supporting output suspension. |
15 | | * If the data destination module demands suspension, we want to be able to |
16 | | * back up to the start of the current MCU. To do this, we copy state |
17 | | * variables into local working storage, and update them back to the |
18 | | * permanent JPEG objects only upon successful completion of an MCU. |
19 | | */ |
20 | | |
21 | | #define JPEG_INTERNALS |
22 | | #include "jinclude.h" |
23 | | #include "jpeglib.h" |
24 | | #include "jsimd.h" |
25 | | #include "jconfigint.h" |
26 | | #include <limits.h> |
27 | | |
28 | | /* |
29 | | * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be |
30 | | * used for bit counting rather than the lookup table. This will reduce the |
31 | | * memory footprint by 64k, which is important for some mobile applications |
32 | | * that create many isolated instances of libjpeg-turbo (web browsers, for |
33 | | * instance.) This may improve performance on some mobile platforms as well. |
34 | | * This feature is enabled by default only on ARM processors, because some x86 |
35 | | * chips have a slow implementation of bsr, and the use of clz/bsr cannot be |
36 | | * shown to have a significant performance impact even on the x86 chips that |
37 | | * have a fast implementation of it. When building for ARMv6, you can |
38 | | * explicitly disable the use of clz/bsr by adding -mthumb to the compiler |
39 | | * flags (this defines __thumb__). |
40 | | */ |
41 | | |
42 | | /* NOTE: Both GCC and Clang define __GNUC__ */ |
43 | | #if defined __GNUC__ && (defined __arm__ || defined __aarch64__) |
44 | | #if !defined __thumb__ || defined __thumb2__ |
45 | | #define USE_CLZ_INTRINSIC |
46 | | #endif |
47 | | #endif |
48 | | |
49 | | #ifdef USE_CLZ_INTRINSIC |
50 | | #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x)) |
51 | | #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0) |
52 | | #else |
53 | | #include "jpeg_nbits_table.h" |
54 | 0 | #define JPEG_NBITS(x) (jpeg_nbits_table[x]) |
55 | 0 | #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x) |
56 | | #endif |
57 | | |
58 | | #ifndef min |
59 | 0 | #define min(a,b) ((a)<(b)?(a):(b)) |
60 | | #endif |
61 | | |
62 | | |
63 | | /* Expanded entropy encoder object for Huffman encoding. |
64 | | * |
65 | | * The savable_state subrecord contains fields that change within an MCU, |
66 | | * but must not be updated permanently until we complete the MCU. |
67 | | */ |
68 | | |
69 | | typedef struct { |
70 | | size_t put_buffer; /* current bit-accumulation buffer */ |
71 | | int put_bits; /* # of bits now in it */ |
72 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
73 | | } savable_state; |
74 | | |
75 | | /* This macro is to work around compilers with missing or broken |
76 | | * structure assignment. You'll need to fix this code if you have |
77 | | * such a compiler and you change MAX_COMPS_IN_SCAN. |
78 | | */ |
79 | | |
80 | | #ifndef NO_STRUCT_ASSIGN |
81 | 0 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
82 | | #else |
83 | | #if MAX_COMPS_IN_SCAN == 4 |
84 | | #define ASSIGN_STATE(dest,src) \ |
85 | | ((dest).put_buffer = (src).put_buffer, \ |
86 | | (dest).put_bits = (src).put_bits, \ |
87 | | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
88 | | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
89 | | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
90 | | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
91 | | #endif |
92 | | #endif |
93 | | |
94 | | |
95 | | typedef struct { |
96 | | struct jpeg_entropy_encoder pub; /* public fields */ |
97 | | |
98 | | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
99 | | |
100 | | /* These fields are NOT loaded into local working state. */ |
101 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
102 | | int next_restart_num; /* next restart number to write (0-7) */ |
103 | | |
104 | | /* Pointers to derived tables (these workspaces have image lifespan) */ |
105 | | c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; |
106 | | c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; |
107 | | |
108 | | #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
109 | | long *dc_count_ptrs[NUM_HUFF_TBLS]; |
110 | | long *ac_count_ptrs[NUM_HUFF_TBLS]; |
111 | | #endif |
112 | | |
113 | | int simd; |
114 | | } huff_entropy_encoder; |
115 | | |
116 | | typedef huff_entropy_encoder *huff_entropy_ptr; |
117 | | |
118 | | /* Working state while writing an MCU. |
119 | | * This struct contains all the fields that are needed by subroutines. |
120 | | */ |
121 | | |
122 | | typedef struct { |
123 | | JOCTET *next_output_byte; /* => next byte to write in buffer */ |
124 | | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
125 | | savable_state cur; /* Current bit buffer & DC state */ |
126 | | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
127 | | } working_state; |
128 | | |
129 | | |
130 | | /* Forward declarations */ |
131 | | METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data); |
132 | | METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo); |
133 | | #ifdef ENTROPY_OPT_SUPPORTED |
134 | | METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo, |
135 | | JBLOCKROW *MCU_data); |
136 | | METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo); |
137 | | #endif |
138 | | |
139 | | |
140 | | /* |
141 | | * Initialize for a Huffman-compressed scan. |
142 | | * If gather_statistics is TRUE, we do not output anything during the scan, |
143 | | * just count the Huffman symbols used and generate Huffman code tables. |
144 | | */ |
145 | | |
146 | | METHODDEF(void) |
147 | | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
148 | 0 | { |
149 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
150 | 0 | int ci, dctbl, actbl; |
151 | 0 | jpeg_component_info *compptr; |
152 | 0 |
|
153 | 0 | if (gather_statistics) { |
154 | 0 | #ifdef ENTROPY_OPT_SUPPORTED |
155 | 0 | entropy->pub.encode_mcu = encode_mcu_gather; |
156 | 0 | entropy->pub.finish_pass = finish_pass_gather; |
157 | | #else |
158 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
159 | | #endif |
160 | 0 | } else { |
161 | 0 | entropy->pub.encode_mcu = encode_mcu_huff; |
162 | 0 | entropy->pub.finish_pass = finish_pass_huff; |
163 | 0 | } |
164 | 0 |
|
165 | 0 | entropy->simd = jsimd_can_huff_encode_one_block(); |
166 | 0 |
|
167 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
168 | 0 | compptr = cinfo->cur_comp_info[ci]; |
169 | 0 | dctbl = compptr->dc_tbl_no; |
170 | 0 | actbl = compptr->ac_tbl_no; |
171 | 0 | if (gather_statistics) { |
172 | 0 | #ifdef ENTROPY_OPT_SUPPORTED |
173 | 0 | /* Check for invalid table indexes */ |
174 | 0 | /* (make_c_derived_tbl does this in the other path) */ |
175 | 0 | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
176 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
177 | 0 | if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
178 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
179 | 0 | /* Allocate and zero the statistics tables */ |
180 | 0 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
181 | 0 | if (entropy->dc_count_ptrs[dctbl] == NULL) |
182 | 0 | entropy->dc_count_ptrs[dctbl] = (long *) |
183 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
184 | 0 | 257 * sizeof(long)); |
185 | 0 | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long)); |
186 | 0 | if (entropy->ac_count_ptrs[actbl] == NULL) |
187 | 0 | entropy->ac_count_ptrs[actbl] = (long *) |
188 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
189 | 0 | 257 * sizeof(long)); |
190 | 0 | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long)); |
191 | 0 | #endif |
192 | 0 | } else { |
193 | 0 | /* Compute derived values for Huffman tables */ |
194 | 0 | /* We may do this more than once for a table, but it's not expensive */ |
195 | 0 | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
196 | 0 | & entropy->dc_derived_tbls[dctbl]); |
197 | 0 | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
198 | 0 | & entropy->ac_derived_tbls[actbl]); |
199 | 0 | } |
200 | 0 | /* Initialize DC predictions to 0 */ |
201 | 0 | entropy->saved.last_dc_val[ci] = 0; |
202 | 0 | } |
203 | 0 |
|
204 | 0 | /* Initialize bit buffer to empty */ |
205 | 0 | entropy->saved.put_buffer = 0; |
206 | 0 | entropy->saved.put_bits = 0; |
207 | 0 |
|
208 | 0 | /* Initialize restart stuff */ |
209 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
210 | 0 | entropy->next_restart_num = 0; |
211 | 0 | } |
212 | | |
213 | | |
214 | | /* |
215 | | * Compute the derived values for a Huffman table. |
216 | | * This routine also performs some validation checks on the table. |
217 | | * |
218 | | * Note this is also used by jcphuff.c. |
219 | | */ |
220 | | |
221 | | GLOBAL(void) |
222 | | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
223 | | c_derived_tbl **pdtbl) |
224 | 0 | { |
225 | 0 | JHUFF_TBL *htbl; |
226 | 0 | c_derived_tbl *dtbl; |
227 | 0 | int p, i, l, lastp, si, maxsymbol; |
228 | 0 | char huffsize[257]; |
229 | 0 | unsigned int huffcode[257]; |
230 | 0 | unsigned int code; |
231 | 0 |
|
232 | 0 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
233 | 0 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
234 | 0 | */ |
235 | 0 |
|
236 | 0 | /* Find the input Huffman table */ |
237 | 0 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
238 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
239 | 0 | htbl = |
240 | 0 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
241 | 0 | if (htbl == NULL) |
242 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
243 | 0 |
|
244 | 0 | /* Allocate a workspace if we haven't already done so. */ |
245 | 0 | if (*pdtbl == NULL) |
246 | 0 | *pdtbl = (c_derived_tbl *) |
247 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
248 | 0 | sizeof(c_derived_tbl)); |
249 | 0 | dtbl = *pdtbl; |
250 | 0 |
|
251 | 0 | /* Figure C.1: make table of Huffman code length for each symbol */ |
252 | 0 |
|
253 | 0 | p = 0; |
254 | 0 | for (l = 1; l <= 16; l++) { |
255 | 0 | i = (int) htbl->bits[l]; |
256 | 0 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
257 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
258 | 0 | while (i--) |
259 | 0 | huffsize[p++] = (char) l; |
260 | 0 | } |
261 | 0 | huffsize[p] = 0; |
262 | 0 | lastp = p; |
263 | 0 |
|
264 | 0 | /* Figure C.2: generate the codes themselves */ |
265 | 0 | /* We also validate that the counts represent a legal Huffman code tree. */ |
266 | 0 |
|
267 | 0 | code = 0; |
268 | 0 | si = huffsize[0]; |
269 | 0 | p = 0; |
270 | 0 | while (huffsize[p]) { |
271 | 0 | while (((int) huffsize[p]) == si) { |
272 | 0 | huffcode[p++] = code; |
273 | 0 | code++; |
274 | 0 | } |
275 | 0 | /* code is now 1 more than the last code used for codelength si; but |
276 | 0 | * it must still fit in si bits, since no code is allowed to be all ones. |
277 | 0 | */ |
278 | 0 | if (((JLONG) code) >= (((JLONG) 1) << si)) |
279 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
280 | 0 | code <<= 1; |
281 | 0 | si++; |
282 | 0 | } |
283 | 0 |
|
284 | 0 | /* Figure C.3: generate encoding tables */ |
285 | 0 | /* These are code and size indexed by symbol value */ |
286 | 0 |
|
287 | 0 | /* Set all codeless symbols to have code length 0; |
288 | 0 | * this lets us detect duplicate VAL entries here, and later |
289 | 0 | * allows emit_bits to detect any attempt to emit such symbols. |
290 | 0 | */ |
291 | 0 | MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi)); |
292 | 0 |
|
293 | 0 | /* This is also a convenient place to check for out-of-range |
294 | 0 | * and duplicated VAL entries. We allow 0..255 for AC symbols |
295 | 0 | * but only 0..15 for DC. (We could constrain them further |
296 | 0 | * based on data depth and mode, but this seems enough.) |
297 | 0 | */ |
298 | 0 | maxsymbol = isDC ? 15 : 255; |
299 | 0 |
|
300 | 0 | for (p = 0; p < lastp; p++) { |
301 | 0 | i = htbl->huffval[p]; |
302 | 0 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
303 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
304 | 0 | dtbl->ehufco[i] = huffcode[p]; |
305 | 0 | dtbl->ehufsi[i] = huffsize[p]; |
306 | 0 | } |
307 | 0 | } |
308 | | |
309 | | |
310 | | /* Outputting bytes to the file */ |
311 | | |
312 | | /* Emit a byte, taking 'action' if must suspend. */ |
313 | | #define emit_byte(state,val,action) \ |
314 | 0 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
315 | 0 | if (--(state)->free_in_buffer == 0) \ |
316 | 0 | if (! dump_buffer(state)) \ |
317 | 0 | { action; } } |
318 | | |
319 | | |
320 | | LOCAL(boolean) |
321 | | dump_buffer (working_state *state) |
322 | | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
323 | 0 | { |
324 | 0 | struct jpeg_destination_mgr *dest = state->cinfo->dest; |
325 | 0 |
|
326 | 0 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
327 | 0 | return FALSE; |
328 | 0 | /* After a successful buffer dump, must reset buffer pointers */ |
329 | 0 | state->next_output_byte = dest->next_output_byte; |
330 | 0 | state->free_in_buffer = dest->free_in_buffer; |
331 | 0 | return TRUE; |
332 | 0 | } |
333 | | |
334 | | |
335 | | /* Outputting bits to the file */ |
336 | | |
337 | | /* These macros perform the same task as the emit_bits() function in the |
338 | | * original libjpeg code. In addition to reducing overhead by explicitly |
339 | | * inlining the code, additional performance is achieved by taking into |
340 | | * account the size of the bit buffer and waiting until it is almost full |
341 | | * before emptying it. This mostly benefits 64-bit platforms, since 6 |
342 | | * bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
343 | | */ |
344 | | |
345 | 0 | #define EMIT_BYTE() { \ |
346 | 0 | JOCTET c; \ |
347 | 0 | put_bits -= 8; \ |
348 | 0 | c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \ |
349 | 0 | *buffer++ = c; \ |
350 | 0 | if (c == 0xFF) /* need to stuff a zero byte? */ \ |
351 | 0 | *buffer++ = 0; \ |
352 | 0 | } |
353 | | |
354 | 0 | #define PUT_BITS(code, size) { \ |
355 | 0 | put_bits += size; \ |
356 | 0 | put_buffer = (put_buffer << size) | code; \ |
357 | 0 | } |
358 | | |
359 | | #define CHECKBUF15() { \ |
360 | | if (put_bits > 15) { \ |
361 | | EMIT_BYTE() \ |
362 | | EMIT_BYTE() \ |
363 | | } \ |
364 | | } |
365 | | |
366 | 0 | #define CHECKBUF31() { \ |
367 | 0 | if (put_bits > 31) { \ |
368 | 0 | EMIT_BYTE() \ |
369 | 0 | EMIT_BYTE() \ |
370 | 0 | EMIT_BYTE() \ |
371 | 0 | EMIT_BYTE() \ |
372 | 0 | } \ |
373 | 0 | } |
374 | | |
375 | 0 | #define CHECKBUF47() { \ |
376 | 0 | if (put_bits > 47) { \ |
377 | 0 | EMIT_BYTE() \ |
378 | 0 | EMIT_BYTE() \ |
379 | 0 | EMIT_BYTE() \ |
380 | 0 | EMIT_BYTE() \ |
381 | 0 | EMIT_BYTE() \ |
382 | 0 | EMIT_BYTE() \ |
383 | 0 | } \ |
384 | 0 | } |
385 | | |
386 | | #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T) |
387 | | #error Cannot determine word size |
388 | | #endif |
389 | | |
390 | | #if SIZEOF_SIZE_T==8 || defined(_WIN64) |
391 | | |
392 | 0 | #define EMIT_BITS(code, size) { \ |
393 | 0 | CHECKBUF47() \ |
394 | 0 | PUT_BITS(code, size) \ |
395 | 0 | } |
396 | | |
397 | 0 | #define EMIT_CODE(code, size) { \ |
398 | 0 | temp2 &= (((JLONG) 1)<<nbits) - 1; \ |
399 | 0 | CHECKBUF31() \ |
400 | 0 | PUT_BITS(code, size) \ |
401 | 0 | PUT_BITS(temp2, nbits) \ |
402 | 0 | } |
403 | | |
404 | | #else |
405 | | |
406 | | #define EMIT_BITS(code, size) { \ |
407 | | PUT_BITS(code, size) \ |
408 | | CHECKBUF15() \ |
409 | | } |
410 | | |
411 | | #define EMIT_CODE(code, size) { \ |
412 | | temp2 &= (((JLONG) 1)<<nbits) - 1; \ |
413 | | PUT_BITS(code, size) \ |
414 | | CHECKBUF15() \ |
415 | | PUT_BITS(temp2, nbits) \ |
416 | | CHECKBUF15() \ |
417 | | } |
418 | | |
419 | | #endif |
420 | | |
421 | | |
422 | | /* Although it is exceedingly rare, it is possible for a Huffman-encoded |
423 | | * coefficient block to be larger than the 128-byte unencoded block. For each |
424 | | * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can |
425 | | * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per |
426 | | * encoded block.) If, for instance, one artificially sets the AC |
427 | | * coefficients to alternating values of 32767 and -32768 (using the JPEG |
428 | | * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block |
429 | | * larger than 200 bytes. |
430 | | */ |
431 | 0 | #define BUFSIZE (DCTSIZE2 * 4) |
432 | | |
433 | 0 | #define LOAD_BUFFER() { \ |
434 | 0 | if (state->free_in_buffer < BUFSIZE) { \ |
435 | 0 | localbuf = 1; \ |
436 | 0 | buffer = _buffer; \ |
437 | 0 | } \ |
438 | 0 | else buffer = state->next_output_byte; \ |
439 | 0 | } |
440 | | |
441 | 0 | #define STORE_BUFFER() { \ |
442 | 0 | if (localbuf) { \ |
443 | 0 | bytes = buffer - _buffer; \ |
444 | 0 | buffer = _buffer; \ |
445 | 0 | while (bytes > 0) { \ |
446 | 0 | bytestocopy = min(bytes, state->free_in_buffer); \ |
447 | 0 | MEMCOPY(state->next_output_byte, buffer, bytestocopy); \ |
448 | 0 | state->next_output_byte += bytestocopy; \ |
449 | 0 | buffer += bytestocopy; \ |
450 | 0 | state->free_in_buffer -= bytestocopy; \ |
451 | 0 | if (state->free_in_buffer == 0) \ |
452 | 0 | if (! dump_buffer(state)) return FALSE; \ |
453 | 0 | bytes -= bytestocopy; \ |
454 | 0 | } \ |
455 | 0 | } \ |
456 | 0 | else { \ |
457 | 0 | state->free_in_buffer -= (buffer - state->next_output_byte); \ |
458 | 0 | state->next_output_byte = buffer; \ |
459 | 0 | } \ |
460 | 0 | } |
461 | | |
462 | | |
463 | | LOCAL(boolean) |
464 | | flush_bits (working_state *state) |
465 | 0 | { |
466 | 0 | JOCTET _buffer[BUFSIZE], *buffer; |
467 | 0 | size_t put_buffer; int put_bits; |
468 | 0 | size_t bytes, bytestocopy; int localbuf = 0; |
469 | 0 |
|
470 | 0 | put_buffer = state->cur.put_buffer; |
471 | 0 | put_bits = state->cur.put_bits; |
472 | 0 | LOAD_BUFFER() |
473 | 0 |
|
474 | 0 | /* fill any partial byte with ones */ |
475 | 0 | PUT_BITS(0x7F, 7) |
476 | 0 | while (put_bits >= 8) EMIT_BYTE() |
477 | 0 |
|
478 | 0 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
479 | 0 | state->cur.put_bits = 0; |
480 | 0 | STORE_BUFFER() |
481 | 0 |
|
482 | 0 | return TRUE; |
483 | 0 | } |
484 | | |
485 | | |
486 | | /* Encode a single block's worth of coefficients */ |
487 | | |
488 | | LOCAL(boolean) |
489 | | encode_one_block_simd (working_state *state, JCOEFPTR block, int last_dc_val, |
490 | | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
491 | 0 | { |
492 | 0 | JOCTET _buffer[BUFSIZE], *buffer; |
493 | 0 | size_t bytes, bytestocopy; int localbuf = 0; |
494 | 0 |
|
495 | 0 | LOAD_BUFFER() |
496 | 0 |
|
497 | 0 | buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val, |
498 | 0 | dctbl, actbl); |
499 | 0 |
|
500 | 0 | STORE_BUFFER() |
501 | 0 |
|
502 | 0 | return TRUE; |
503 | 0 | } |
504 | | |
505 | | LOCAL(boolean) |
506 | | encode_one_block (working_state *state, JCOEFPTR block, int last_dc_val, |
507 | | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
508 | 0 | { |
509 | 0 | int temp, temp2, temp3; |
510 | 0 | int nbits; |
511 | 0 | int r, code, size; |
512 | 0 | JOCTET _buffer[BUFSIZE], *buffer; |
513 | 0 | size_t put_buffer; int put_bits; |
514 | 0 | int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0]; |
515 | 0 | size_t bytes, bytestocopy; int localbuf = 0; |
516 | 0 |
|
517 | 0 | put_buffer = state->cur.put_buffer; |
518 | 0 | put_bits = state->cur.put_bits; |
519 | 0 | LOAD_BUFFER() |
520 | 0 |
|
521 | 0 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
522 | 0 |
|
523 | 0 | temp = temp2 = block[0] - last_dc_val; |
524 | 0 |
|
525 | 0 | /* This is a well-known technique for obtaining the absolute value without a |
526 | 0 | * branch. It is derived from an assembly language technique presented in |
527 | 0 | * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by |
528 | 0 | * Agner Fog. |
529 | 0 | */ |
530 | 0 | temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
531 | 0 | temp ^= temp3; |
532 | 0 | temp -= temp3; |
533 | 0 |
|
534 | 0 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
535 | 0 | /* This code assumes we are on a two's complement machine */ |
536 | 0 | temp2 += temp3; |
537 | 0 |
|
538 | 0 | /* Find the number of bits needed for the magnitude of the coefficient */ |
539 | 0 | nbits = JPEG_NBITS(temp); |
540 | 0 |
|
541 | 0 | /* Emit the Huffman-coded symbol for the number of bits */ |
542 | 0 | code = dctbl->ehufco[nbits]; |
543 | 0 | size = dctbl->ehufsi[nbits]; |
544 | 0 | EMIT_BITS(code, size) |
545 | 0 |
|
546 | 0 | /* Mask off any extra bits in code */ |
547 | 0 | temp2 &= (((JLONG) 1)<<nbits) - 1; |
548 | 0 |
|
549 | 0 | /* Emit that number of bits of the value, if positive, */ |
550 | 0 | /* or the complement of its magnitude, if negative. */ |
551 | 0 | EMIT_BITS(temp2, nbits) |
552 | 0 |
|
553 | 0 | /* Encode the AC coefficients per section F.1.2.2 */ |
554 | 0 |
|
555 | 0 | r = 0; /* r = run length of zeros */ |
556 | 0 |
|
557 | 0 | /* Manually unroll the k loop to eliminate the counter variable. This |
558 | 0 | * improves performance greatly on systems with a limited number of |
559 | 0 | * registers (such as x86.) |
560 | 0 | */ |
561 | 0 | #define kloop(jpeg_natural_order_of_k) { \ |
562 | 0 | if ((temp = block[jpeg_natural_order_of_k]) == 0) { \ |
563 | 0 | r++; \ |
564 | 0 | } else { \ |
565 | 0 | temp2 = temp; \ |
566 | 0 | /* Branch-less absolute value, bitwise complement, etc., same as above */ \ |
567 | 0 | temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \ |
568 | 0 | temp ^= temp3; \ |
569 | 0 | temp -= temp3; \ |
570 | 0 | temp2 += temp3; \ |
571 | 0 | nbits = JPEG_NBITS_NONZERO(temp); \ |
572 | 0 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ |
573 | 0 | while (r > 15) { \ |
574 | 0 | EMIT_BITS(code_0xf0, size_0xf0) \ |
575 | 0 | r -= 16; \ |
576 | 0 | } \ |
577 | 0 | /* Emit Huffman symbol for run length / number of bits */ \ |
578 | 0 | temp3 = (r << 4) + nbits; \ |
579 | 0 | code = actbl->ehufco[temp3]; \ |
580 | 0 | size = actbl->ehufsi[temp3]; \ |
581 | 0 | EMIT_CODE(code, size) \ |
582 | 0 | r = 0; \ |
583 | 0 | } \ |
584 | 0 | } |
585 | 0 |
|
586 | 0 | /* One iteration for each value in jpeg_natural_order[] */ |
587 | 0 | kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3); |
588 | 0 | kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18); |
589 | 0 | kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26); |
590 | 0 | kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27); |
591 | 0 | kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21); |
592 | 0 | kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57); |
593 | 0 | kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15); |
594 | 0 | kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58); |
595 | 0 | kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39); |
596 | 0 | kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47); |
597 | 0 | kloop(55); kloop(62); kloop(63); |
598 | 0 |
|
599 | 0 | /* If the last coef(s) were zero, emit an end-of-block code */ |
600 | 0 | if (r > 0) { |
601 | 0 | code = actbl->ehufco[0]; |
602 | 0 | size = actbl->ehufsi[0]; |
603 | 0 | EMIT_BITS(code, size) |
604 | 0 | } |
605 | 0 |
|
606 | 0 | state->cur.put_buffer = put_buffer; |
607 | 0 | state->cur.put_bits = put_bits; |
608 | 0 | STORE_BUFFER() |
609 | 0 |
|
610 | 0 | return TRUE; |
611 | 0 | } |
612 | | |
613 | | |
614 | | /* |
615 | | * Emit a restart marker & resynchronize predictions. |
616 | | */ |
617 | | |
618 | | LOCAL(boolean) |
619 | | emit_restart (working_state *state, int restart_num) |
620 | 0 | { |
621 | 0 | int ci; |
622 | 0 |
|
623 | 0 | if (! flush_bits(state)) |
624 | 0 | return FALSE; |
625 | 0 | |
626 | 0 | emit_byte(state, 0xFF, return FALSE); |
627 | 0 | emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
628 | 0 |
|
629 | 0 | /* Re-initialize DC predictions to 0 */ |
630 | 0 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
631 | 0 | state->cur.last_dc_val[ci] = 0; |
632 | 0 |
|
633 | 0 | /* The restart counter is not updated until we successfully write the MCU. */ |
634 | 0 |
|
635 | 0 | return TRUE; |
636 | 0 | } |
637 | | |
638 | | |
639 | | /* |
640 | | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
641 | | */ |
642 | | |
643 | | METHODDEF(boolean) |
644 | | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
645 | 0 | { |
646 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
647 | 0 | working_state state; |
648 | 0 | int blkn, ci; |
649 | 0 | jpeg_component_info *compptr; |
650 | 0 |
|
651 | 0 | /* Load up working state */ |
652 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
653 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
654 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
655 | 0 | state.cinfo = cinfo; |
656 | 0 |
|
657 | 0 | /* Emit restart marker if needed */ |
658 | 0 | if (cinfo->restart_interval) { |
659 | 0 | if (entropy->restarts_to_go == 0) |
660 | 0 | if (! emit_restart(&state, entropy->next_restart_num)) |
661 | 0 | return FALSE; |
662 | 0 | } |
663 | 0 | |
664 | 0 | /* Encode the MCU data blocks */ |
665 | 0 | if (entropy->simd) { |
666 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
667 | 0 | ci = cinfo->MCU_membership[blkn]; |
668 | 0 | compptr = cinfo->cur_comp_info[ci]; |
669 | 0 | if (! encode_one_block_simd(&state, |
670 | 0 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
671 | 0 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
672 | 0 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
673 | 0 | return FALSE; |
674 | 0 | /* Update last_dc_val */ |
675 | 0 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
676 | 0 | } |
677 | 0 | } else { |
678 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
679 | 0 | ci = cinfo->MCU_membership[blkn]; |
680 | 0 | compptr = cinfo->cur_comp_info[ci]; |
681 | 0 | if (! encode_one_block(&state, |
682 | 0 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
683 | 0 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
684 | 0 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
685 | 0 | return FALSE; |
686 | 0 | /* Update last_dc_val */ |
687 | 0 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
688 | 0 | } |
689 | 0 | } |
690 | 0 |
|
691 | 0 | /* Completed MCU, so update state */ |
692 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
693 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
694 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
695 | 0 |
|
696 | 0 | /* Update restart-interval state too */ |
697 | 0 | if (cinfo->restart_interval) { |
698 | 0 | if (entropy->restarts_to_go == 0) { |
699 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
700 | 0 | entropy->next_restart_num++; |
701 | 0 | entropy->next_restart_num &= 7; |
702 | 0 | } |
703 | 0 | entropy->restarts_to_go--; |
704 | 0 | } |
705 | 0 |
|
706 | 0 | return TRUE; |
707 | 0 | } |
708 | | |
709 | | |
710 | | /* |
711 | | * Finish up at the end of a Huffman-compressed scan. |
712 | | */ |
713 | | |
714 | | METHODDEF(void) |
715 | | finish_pass_huff (j_compress_ptr cinfo) |
716 | 0 | { |
717 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
718 | 0 | working_state state; |
719 | 0 |
|
720 | 0 | /* Load up working state ... flush_bits needs it */ |
721 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
722 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
723 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
724 | 0 | state.cinfo = cinfo; |
725 | 0 |
|
726 | 0 | /* Flush out the last data */ |
727 | 0 | if (! flush_bits(&state)) |
728 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
729 | 0 |
|
730 | 0 | /* Update state */ |
731 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
732 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
733 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
734 | 0 | } |
735 | | |
736 | | |
737 | | /* |
738 | | * Huffman coding optimization. |
739 | | * |
740 | | * We first scan the supplied data and count the number of uses of each symbol |
741 | | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
742 | | * Then we build a Huffman coding tree for the observed counts. |
743 | | * Symbols which are not needed at all for the particular image are not |
744 | | * assigned any code, which saves space in the DHT marker as well as in |
745 | | * the compressed data. |
746 | | */ |
747 | | |
748 | | #ifdef ENTROPY_OPT_SUPPORTED |
749 | | |
750 | | |
751 | | /* Process a single block's worth of coefficients */ |
752 | | |
753 | | LOCAL(void) |
754 | | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
755 | | long dc_counts[], long ac_counts[]) |
756 | 0 | { |
757 | 0 | register int temp; |
758 | 0 | register int nbits; |
759 | 0 | register int k, r; |
760 | 0 |
|
761 | 0 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
762 | 0 |
|
763 | 0 | temp = block[0] - last_dc_val; |
764 | 0 | if (temp < 0) |
765 | 0 | temp = -temp; |
766 | 0 |
|
767 | 0 | /* Find the number of bits needed for the magnitude of the coefficient */ |
768 | 0 | nbits = 0; |
769 | 0 | while (temp) { |
770 | 0 | nbits++; |
771 | 0 | temp >>= 1; |
772 | 0 | } |
773 | 0 | /* Check for out-of-range coefficient values. |
774 | 0 | * Since we're encoding a difference, the range limit is twice as much. |
775 | 0 | */ |
776 | 0 | if (nbits > MAX_COEF_BITS+1) |
777 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
778 | 0 |
|
779 | 0 | /* Count the Huffman symbol for the number of bits */ |
780 | 0 | dc_counts[nbits]++; |
781 | 0 |
|
782 | 0 | /* Encode the AC coefficients per section F.1.2.2 */ |
783 | 0 |
|
784 | 0 | r = 0; /* r = run length of zeros */ |
785 | 0 |
|
786 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
787 | 0 | if ((temp = block[jpeg_natural_order[k]]) == 0) { |
788 | 0 | r++; |
789 | 0 | } else { |
790 | 0 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
791 | 0 | while (r > 15) { |
792 | 0 | ac_counts[0xF0]++; |
793 | 0 | r -= 16; |
794 | 0 | } |
795 | 0 |
|
796 | 0 | /* Find the number of bits needed for the magnitude of the coefficient */ |
797 | 0 | if (temp < 0) |
798 | 0 | temp = -temp; |
799 | 0 |
|
800 | 0 | /* Find the number of bits needed for the magnitude of the coefficient */ |
801 | 0 | nbits = 1; /* there must be at least one 1 bit */ |
802 | 0 | while ((temp >>= 1)) |
803 | 0 | nbits++; |
804 | 0 | /* Check for out-of-range coefficient values */ |
805 | 0 | if (nbits > MAX_COEF_BITS) |
806 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
807 | 0 |
|
808 | 0 | /* Count Huffman symbol for run length / number of bits */ |
809 | 0 | ac_counts[(r << 4) + nbits]++; |
810 | 0 |
|
811 | 0 | r = 0; |
812 | 0 | } |
813 | 0 | } |
814 | 0 |
|
815 | 0 | /* If the last coef(s) were zero, emit an end-of-block code */ |
816 | 0 | if (r > 0) |
817 | 0 | ac_counts[0]++; |
818 | 0 | } |
819 | | |
820 | | |
821 | | /* |
822 | | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
823 | | * No data is actually output, so no suspension return is possible. |
824 | | */ |
825 | | |
826 | | METHODDEF(boolean) |
827 | | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
828 | 0 | { |
829 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
830 | 0 | int blkn, ci; |
831 | 0 | jpeg_component_info *compptr; |
832 | 0 |
|
833 | 0 | /* Take care of restart intervals if needed */ |
834 | 0 | if (cinfo->restart_interval) { |
835 | 0 | if (entropy->restarts_to_go == 0) { |
836 | 0 | /* Re-initialize DC predictions to 0 */ |
837 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
838 | 0 | entropy->saved.last_dc_val[ci] = 0; |
839 | 0 | /* Update restart state */ |
840 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
841 | 0 | } |
842 | 0 | entropy->restarts_to_go--; |
843 | 0 | } |
844 | 0 |
|
845 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
846 | 0 | ci = cinfo->MCU_membership[blkn]; |
847 | 0 | compptr = cinfo->cur_comp_info[ci]; |
848 | 0 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
849 | 0 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
850 | 0 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
851 | 0 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
852 | 0 | } |
853 | 0 |
|
854 | 0 | return TRUE; |
855 | 0 | } |
856 | | |
857 | | |
858 | | /* |
859 | | * Generate the best Huffman code table for the given counts, fill htbl. |
860 | | * Note this is also used by jcphuff.c. |
861 | | * |
862 | | * The JPEG standard requires that no symbol be assigned a codeword of all |
863 | | * one bits (so that padding bits added at the end of a compressed segment |
864 | | * can't look like a valid code). Because of the canonical ordering of |
865 | | * codewords, this just means that there must be an unused slot in the |
866 | | * longest codeword length category. Section K.2 of the JPEG spec suggests |
867 | | * reserving such a slot by pretending that symbol 256 is a valid symbol |
868 | | * with count 1. In theory that's not optimal; giving it count zero but |
869 | | * including it in the symbol set anyway should give a better Huffman code. |
870 | | * But the theoretically better code actually seems to come out worse in |
871 | | * practice, because it produces more all-ones bytes (which incur stuffed |
872 | | * zero bytes in the final file). In any case the difference is tiny. |
873 | | * |
874 | | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
875 | | * If some symbols have a very small but nonzero probability, the Huffman tree |
876 | | * must be adjusted to meet the code length restriction. We currently use |
877 | | * the adjustment method suggested in JPEG section K.2. This method is *not* |
878 | | * optimal; it may not choose the best possible limited-length code. But |
879 | | * typically only very-low-frequency symbols will be given less-than-optimal |
880 | | * lengths, so the code is almost optimal. Experimental comparisons against |
881 | | * an optimal limited-length-code algorithm indicate that the difference is |
882 | | * microscopic --- usually less than a hundredth of a percent of total size. |
883 | | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
884 | | */ |
885 | | |
886 | | GLOBAL(void) |
887 | | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[]) |
888 | 0 | { |
889 | 0 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
890 | 0 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
891 | 0 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
892 | 0 | int others[257]; /* next symbol in current branch of tree */ |
893 | 0 | int c1, c2; |
894 | 0 | int p, i, j; |
895 | 0 | long v; |
896 | 0 |
|
897 | 0 | /* This algorithm is explained in section K.2 of the JPEG standard */ |
898 | 0 |
|
899 | 0 | MEMZERO(bits, sizeof(bits)); |
900 | 0 | MEMZERO(codesize, sizeof(codesize)); |
901 | 0 | for (i = 0; i < 257; i++) |
902 | 0 | others[i] = -1; /* init links to empty */ |
903 | 0 |
|
904 | 0 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
905 | 0 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
906 | 0 | * that no real symbol is given code-value of all ones, because 256 |
907 | 0 | * will be placed last in the largest codeword category. |
908 | 0 | */ |
909 | 0 |
|
910 | 0 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
911 | 0 |
|
912 | 0 | for (;;) { |
913 | 0 | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
914 | 0 | /* In case of ties, take the larger symbol number */ |
915 | 0 | c1 = -1; |
916 | 0 | v = 1000000000L; |
917 | 0 | for (i = 0; i <= 256; i++) { |
918 | 0 | if (freq[i] && freq[i] <= v) { |
919 | 0 | v = freq[i]; |
920 | 0 | c1 = i; |
921 | 0 | } |
922 | 0 | } |
923 | 0 |
|
924 | 0 | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
925 | 0 | /* In case of ties, take the larger symbol number */ |
926 | 0 | c2 = -1; |
927 | 0 | v = 1000000000L; |
928 | 0 | for (i = 0; i <= 256; i++) { |
929 | 0 | if (freq[i] && freq[i] <= v && i != c1) { |
930 | 0 | v = freq[i]; |
931 | 0 | c2 = i; |
932 | 0 | } |
933 | 0 | } |
934 | 0 |
|
935 | 0 | /* Done if we've merged everything into one frequency */ |
936 | 0 | if (c2 < 0) |
937 | 0 | break; |
938 | 0 | |
939 | 0 | /* Else merge the two counts/trees */ |
940 | 0 | freq[c1] += freq[c2]; |
941 | 0 | freq[c2] = 0; |
942 | 0 |
|
943 | 0 | /* Increment the codesize of everything in c1's tree branch */ |
944 | 0 | codesize[c1]++; |
945 | 0 | while (others[c1] >= 0) { |
946 | 0 | c1 = others[c1]; |
947 | 0 | codesize[c1]++; |
948 | 0 | } |
949 | 0 |
|
950 | 0 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
951 | 0 |
|
952 | 0 | /* Increment the codesize of everything in c2's tree branch */ |
953 | 0 | codesize[c2]++; |
954 | 0 | while (others[c2] >= 0) { |
955 | 0 | c2 = others[c2]; |
956 | 0 | codesize[c2]++; |
957 | 0 | } |
958 | 0 | } |
959 | 0 |
|
960 | 0 | /* Now count the number of symbols of each code length */ |
961 | 0 | for (i = 0; i <= 256; i++) { |
962 | 0 | if (codesize[i]) { |
963 | 0 | /* The JPEG standard seems to think that this can't happen, */ |
964 | 0 | /* but I'm paranoid... */ |
965 | 0 | if (codesize[i] > MAX_CLEN) |
966 | 0 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
967 | 0 |
|
968 | 0 | bits[codesize[i]]++; |
969 | 0 | } |
970 | 0 | } |
971 | 0 |
|
972 | 0 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
973 | 0 | * Huffman procedure assigned any such lengths, we must adjust the coding. |
974 | 0 | * Here is what the JPEG spec says about how this next bit works: |
975 | 0 | * Since symbols are paired for the longest Huffman code, the symbols are |
976 | 0 | * removed from this length category two at a time. The prefix for the pair |
977 | 0 | * (which is one bit shorter) is allocated to one of the pair; then, |
978 | 0 | * skipping the BITS entry for that prefix length, a code word from the next |
979 | 0 | * shortest nonzero BITS entry is converted into a prefix for two code words |
980 | 0 | * one bit longer. |
981 | 0 | */ |
982 | 0 |
|
983 | 0 | for (i = MAX_CLEN; i > 16; i--) { |
984 | 0 | while (bits[i] > 0) { |
985 | 0 | j = i - 2; /* find length of new prefix to be used */ |
986 | 0 | while (bits[j] == 0) |
987 | 0 | j--; |
988 | 0 |
|
989 | 0 | bits[i] -= 2; /* remove two symbols */ |
990 | 0 | bits[i-1]++; /* one goes in this length */ |
991 | 0 | bits[j+1] += 2; /* two new symbols in this length */ |
992 | 0 | bits[j]--; /* symbol of this length is now a prefix */ |
993 | 0 | } |
994 | 0 | } |
995 | 0 |
|
996 | 0 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
997 | 0 | while (bits[i] == 0) /* find largest codelength still in use */ |
998 | 0 | i--; |
999 | 0 | bits[i]--; |
1000 | 0 |
|
1001 | 0 | /* Return final symbol counts (only for lengths 0..16) */ |
1002 | 0 | MEMCOPY(htbl->bits, bits, sizeof(htbl->bits)); |
1003 | 0 |
|
1004 | 0 | /* Return a list of the symbols sorted by code length */ |
1005 | 0 | /* It's not real clear to me why we don't need to consider the codelength |
1006 | 0 | * changes made above, but the JPEG spec seems to think this works. |
1007 | 0 | */ |
1008 | 0 | p = 0; |
1009 | 0 | for (i = 1; i <= MAX_CLEN; i++) { |
1010 | 0 | for (j = 0; j <= 255; j++) { |
1011 | 0 | if (codesize[j] == i) { |
1012 | 0 | htbl->huffval[p] = (UINT8) j; |
1013 | 0 | p++; |
1014 | 0 | } |
1015 | 0 | } |
1016 | 0 | } |
1017 | 0 |
|
1018 | 0 | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
1019 | 0 | htbl->sent_table = FALSE; |
1020 | 0 | } |
1021 | | |
1022 | | |
1023 | | /* |
1024 | | * Finish up a statistics-gathering pass and create the new Huffman tables. |
1025 | | */ |
1026 | | |
1027 | | METHODDEF(void) |
1028 | | finish_pass_gather (j_compress_ptr cinfo) |
1029 | 0 | { |
1030 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1031 | 0 | int ci, dctbl, actbl; |
1032 | 0 | jpeg_component_info *compptr; |
1033 | 0 | JHUFF_TBL **htblptr; |
1034 | 0 | boolean did_dc[NUM_HUFF_TBLS]; |
1035 | 0 | boolean did_ac[NUM_HUFF_TBLS]; |
1036 | 0 |
|
1037 | 0 | /* It's important not to apply jpeg_gen_optimal_table more than once |
1038 | 0 | * per table, because it clobbers the input frequency counts! |
1039 | 0 | */ |
1040 | 0 | MEMZERO(did_dc, sizeof(did_dc)); |
1041 | 0 | MEMZERO(did_ac, sizeof(did_ac)); |
1042 | 0 |
|
1043 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1044 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1045 | 0 | dctbl = compptr->dc_tbl_no; |
1046 | 0 | actbl = compptr->ac_tbl_no; |
1047 | 0 | if (! did_dc[dctbl]) { |
1048 | 0 | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
1049 | 0 | if (*htblptr == NULL) |
1050 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
1051 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
1052 | 0 | did_dc[dctbl] = TRUE; |
1053 | 0 | } |
1054 | 0 | if (! did_ac[actbl]) { |
1055 | 0 | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
1056 | 0 | if (*htblptr == NULL) |
1057 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
1058 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
1059 | 0 | did_ac[actbl] = TRUE; |
1060 | 0 | } |
1061 | 0 | } |
1062 | 0 | } |
1063 | | |
1064 | | |
1065 | | #endif /* ENTROPY_OPT_SUPPORTED */ |
1066 | | |
1067 | | |
1068 | | /* |
1069 | | * Module initialization routine for Huffman entropy encoding. |
1070 | | */ |
1071 | | |
1072 | | GLOBAL(void) |
1073 | | jinit_huff_encoder (j_compress_ptr cinfo) |
1074 | 0 | { |
1075 | 0 | huff_entropy_ptr entropy; |
1076 | 0 | int i; |
1077 | 0 |
|
1078 | 0 | entropy = (huff_entropy_ptr) |
1079 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1080 | 0 | sizeof(huff_entropy_encoder)); |
1081 | 0 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
1082 | 0 | entropy->pub.start_pass = start_pass_huff; |
1083 | 0 |
|
1084 | 0 | /* Mark tables unallocated */ |
1085 | 0 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1086 | 0 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
1087 | 0 | #ifdef ENTROPY_OPT_SUPPORTED |
1088 | 0 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
1089 | 0 | #endif |
1090 | 0 | } |
1091 | 0 | } |