/src/mozilla-central/media/libjpeg/jdhuff.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdhuff.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2009-2011, 2016, D. R. Commander. |
8 | | * For conditions of distribution and use, see the accompanying README.ijg |
9 | | * file. |
10 | | * |
11 | | * This file contains Huffman entropy decoding routines. |
12 | | * |
13 | | * Much of the complexity here has to do with supporting input suspension. |
14 | | * If the data source module demands suspension, we want to be able to back |
15 | | * up to the start of the current MCU. To do this, we copy state variables |
16 | | * into local working storage, and update them back to the permanent |
17 | | * storage only upon successful completion of an MCU. |
18 | | */ |
19 | | |
20 | | #define JPEG_INTERNALS |
21 | | #include "jinclude.h" |
22 | | #include "jpeglib.h" |
23 | | #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
24 | | #include "jpegcomp.h" |
25 | | #include "jstdhuff.c" |
26 | | |
27 | | |
28 | | /* |
29 | | * Expanded entropy decoder object for Huffman decoding. |
30 | | * |
31 | | * The savable_state subrecord contains fields that change within an MCU, |
32 | | * but must not be updated permanently until we complete the MCU. |
33 | | */ |
34 | | |
35 | | typedef struct { |
36 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
37 | | } savable_state; |
38 | | |
39 | | /* This macro is to work around compilers with missing or broken |
40 | | * structure assignment. You'll need to fix this code if you have |
41 | | * such a compiler and you change MAX_COMPS_IN_SCAN. |
42 | | */ |
43 | | |
44 | | #ifndef NO_STRUCT_ASSIGN |
45 | 0 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
46 | | #else |
47 | | #if MAX_COMPS_IN_SCAN == 4 |
48 | | #define ASSIGN_STATE(dest,src) \ |
49 | | ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
50 | | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
51 | | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
52 | | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
53 | | #endif |
54 | | #endif |
55 | | |
56 | | |
57 | | typedef struct { |
58 | | struct jpeg_entropy_decoder pub; /* public fields */ |
59 | | |
60 | | /* These fields are loaded into local variables at start of each MCU. |
61 | | * In case of suspension, we exit WITHOUT updating them. |
62 | | */ |
63 | | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
64 | | savable_state saved; /* Other state at start of MCU */ |
65 | | |
66 | | /* These fields are NOT loaded into local working state. */ |
67 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
68 | | |
69 | | /* Pointers to derived tables (these workspaces have image lifespan) */ |
70 | | d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; |
71 | | d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; |
72 | | |
73 | | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
74 | | |
75 | | /* Pointers to derived tables to be used for each block within an MCU */ |
76 | | d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
77 | | d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
78 | | /* Whether we care about the DC and AC coefficient values for each block */ |
79 | | boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
80 | | boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
81 | | } huff_entropy_decoder; |
82 | | |
83 | | typedef huff_entropy_decoder *huff_entropy_ptr; |
84 | | |
85 | | |
86 | | /* |
87 | | * Initialize for a Huffman-compressed scan. |
88 | | */ |
89 | | |
90 | | METHODDEF(void) |
91 | | start_pass_huff_decoder (j_decompress_ptr cinfo) |
92 | 0 | { |
93 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
94 | 0 | int ci, blkn, dctbl, actbl; |
95 | 0 | d_derived_tbl **pdtbl; |
96 | 0 | jpeg_component_info *compptr; |
97 | 0 |
|
98 | 0 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
99 | 0 | * This ought to be an error condition, but we make it a warning because |
100 | 0 | * there are some baseline files out there with all zeroes in these bytes. |
101 | 0 | */ |
102 | 0 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
103 | 0 | cinfo->Ah != 0 || cinfo->Al != 0) |
104 | 0 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
105 | 0 |
|
106 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
107 | 0 | compptr = cinfo->cur_comp_info[ci]; |
108 | 0 | dctbl = compptr->dc_tbl_no; |
109 | 0 | actbl = compptr->ac_tbl_no; |
110 | 0 | /* Compute derived values for Huffman tables */ |
111 | 0 | /* We may do this more than once for a table, but it's not expensive */ |
112 | 0 | pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl; |
113 | 0 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); |
114 | 0 | pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl; |
115 | 0 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); |
116 | 0 | /* Initialize DC predictions to 0 */ |
117 | 0 | entropy->saved.last_dc_val[ci] = 0; |
118 | 0 | } |
119 | 0 |
|
120 | 0 | /* Precalculate decoding info for each block in an MCU of this scan */ |
121 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
122 | 0 | ci = cinfo->MCU_membership[blkn]; |
123 | 0 | compptr = cinfo->cur_comp_info[ci]; |
124 | 0 | /* Precalculate which table to use for each block */ |
125 | 0 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
126 | 0 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
127 | 0 | /* Decide whether we really care about the coefficient values */ |
128 | 0 | if (compptr->component_needed) { |
129 | 0 | entropy->dc_needed[blkn] = TRUE; |
130 | 0 | /* we don't need the ACs if producing a 1/8th-size image */ |
131 | 0 | entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); |
132 | 0 | } else { |
133 | 0 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
134 | 0 | } |
135 | 0 | } |
136 | 0 |
|
137 | 0 | /* Initialize bitread state variables */ |
138 | 0 | entropy->bitstate.bits_left = 0; |
139 | 0 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
140 | 0 | entropy->pub.insufficient_data = FALSE; |
141 | 0 |
|
142 | 0 | /* Initialize restart counter */ |
143 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
144 | 0 | } |
145 | | |
146 | | |
147 | | /* |
148 | | * Compute the derived values for a Huffman table. |
149 | | * This routine also performs some validation checks on the table. |
150 | | * |
151 | | * Note this is also used by jdphuff.c. |
152 | | */ |
153 | | |
154 | | GLOBAL(void) |
155 | | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
156 | | d_derived_tbl **pdtbl) |
157 | 0 | { |
158 | 0 | JHUFF_TBL *htbl; |
159 | 0 | d_derived_tbl *dtbl; |
160 | 0 | int p, i, l, si, numsymbols; |
161 | 0 | int lookbits, ctr; |
162 | 0 | char huffsize[257]; |
163 | 0 | unsigned int huffcode[257]; |
164 | 0 | unsigned int code; |
165 | 0 |
|
166 | 0 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
167 | 0 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
168 | 0 | */ |
169 | 0 |
|
170 | 0 | /* Find the input Huffman table */ |
171 | 0 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
172 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
173 | 0 | htbl = |
174 | 0 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
175 | 0 | if (htbl == NULL) |
176 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
177 | 0 |
|
178 | 0 | /* Allocate a workspace if we haven't already done so. */ |
179 | 0 | if (*pdtbl == NULL) |
180 | 0 | *pdtbl = (d_derived_tbl *) |
181 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
182 | 0 | sizeof(d_derived_tbl)); |
183 | 0 | dtbl = *pdtbl; |
184 | 0 | dtbl->pub = htbl; /* fill in back link */ |
185 | 0 |
|
186 | 0 | /* Figure C.1: make table of Huffman code length for each symbol */ |
187 | 0 |
|
188 | 0 | p = 0; |
189 | 0 | for (l = 1; l <= 16; l++) { |
190 | 0 | i = (int) htbl->bits[l]; |
191 | 0 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
192 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
193 | 0 | while (i--) |
194 | 0 | huffsize[p++] = (char) l; |
195 | 0 | } |
196 | 0 | huffsize[p] = 0; |
197 | 0 | numsymbols = p; |
198 | 0 |
|
199 | 0 | /* Figure C.2: generate the codes themselves */ |
200 | 0 | /* We also validate that the counts represent a legal Huffman code tree. */ |
201 | 0 |
|
202 | 0 | code = 0; |
203 | 0 | si = huffsize[0]; |
204 | 0 | p = 0; |
205 | 0 | while (huffsize[p]) { |
206 | 0 | while (((int) huffsize[p]) == si) { |
207 | 0 | huffcode[p++] = code; |
208 | 0 | code++; |
209 | 0 | } |
210 | 0 | /* code is now 1 more than the last code used for codelength si; but |
211 | 0 | * it must still fit in si bits, since no code is allowed to be all ones. |
212 | 0 | */ |
213 | 0 | if (((JLONG) code) >= (((JLONG) 1) << si)) |
214 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
215 | 0 | code <<= 1; |
216 | 0 | si++; |
217 | 0 | } |
218 | 0 |
|
219 | 0 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
220 | 0 |
|
221 | 0 | p = 0; |
222 | 0 | for (l = 1; l <= 16; l++) { |
223 | 0 | if (htbl->bits[l]) { |
224 | 0 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
225 | 0 | * minus the minimum code of length l |
226 | 0 | */ |
227 | 0 | dtbl->valoffset[l] = (JLONG) p - (JLONG) huffcode[p]; |
228 | 0 | p += htbl->bits[l]; |
229 | 0 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
230 | 0 | } else { |
231 | 0 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
232 | 0 | } |
233 | 0 | } |
234 | 0 | dtbl->valoffset[17] = 0; |
235 | 0 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
236 | 0 |
|
237 | 0 | /* Compute lookahead tables to speed up decoding. |
238 | 0 | * First we set all the table entries to 0, indicating "too long"; |
239 | 0 | * then we iterate through the Huffman codes that are short enough and |
240 | 0 | * fill in all the entries that correspond to bit sequences starting |
241 | 0 | * with that code. |
242 | 0 | */ |
243 | 0 |
|
244 | 0 | for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) |
245 | 0 | dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; |
246 | 0 |
|
247 | 0 | p = 0; |
248 | 0 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
249 | 0 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
250 | 0 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
251 | 0 | /* Generate left-justified code followed by all possible bit sequences */ |
252 | 0 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
253 | 0 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
254 | 0 | dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; |
255 | 0 | lookbits++; |
256 | 0 | } |
257 | 0 | } |
258 | 0 | } |
259 | 0 |
|
260 | 0 | /* Validate symbols as being reasonable. |
261 | 0 | * For AC tables, we make no check, but accept all byte values 0..255. |
262 | 0 | * For DC tables, we require the symbols to be in range 0..15. |
263 | 0 | * (Tighter bounds could be applied depending on the data depth and mode, |
264 | 0 | * but this is sufficient to ensure safe decoding.) |
265 | 0 | */ |
266 | 0 | if (isDC) { |
267 | 0 | for (i = 0; i < numsymbols; i++) { |
268 | 0 | int sym = htbl->huffval[i]; |
269 | 0 | if (sym < 0 || sym > 15) |
270 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
271 | 0 | } |
272 | 0 | } |
273 | 0 | } |
274 | | |
275 | | |
276 | | /* |
277 | | * Out-of-line code for bit fetching (shared with jdphuff.c). |
278 | | * See jdhuff.h for info about usage. |
279 | | * Note: current values of get_buffer and bits_left are passed as parameters, |
280 | | * but are returned in the corresponding fields of the state struct. |
281 | | * |
282 | | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
283 | | * of get_buffer to be used. (On machines with wider words, an even larger |
284 | | * buffer could be used.) However, on some machines 32-bit shifts are |
285 | | * quite slow and take time proportional to the number of places shifted. |
286 | | * (This is true with most PC compilers, for instance.) In this case it may |
287 | | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
288 | | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
289 | | */ |
290 | | |
291 | | #ifdef SLOW_SHIFT_32 |
292 | | #define MIN_GET_BITS 15 /* minimum allowable value */ |
293 | | #else |
294 | 0 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
295 | | #endif |
296 | | |
297 | | |
298 | | GLOBAL(boolean) |
299 | | jpeg_fill_bit_buffer (bitread_working_state *state, |
300 | | register bit_buf_type get_buffer, register int bits_left, |
301 | | int nbits) |
302 | | /* Load up the bit buffer to a depth of at least nbits */ |
303 | 0 | { |
304 | 0 | /* Copy heavily used state fields into locals (hopefully registers) */ |
305 | 0 | register const JOCTET *next_input_byte = state->next_input_byte; |
306 | 0 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
307 | 0 | j_decompress_ptr cinfo = state->cinfo; |
308 | 0 |
|
309 | 0 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
310 | 0 | /* (It is assumed that no request will be for more than that many bits.) */ |
311 | 0 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
312 | 0 |
|
313 | 0 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
314 | 0 | while (bits_left < MIN_GET_BITS) { |
315 | 0 | register int c; |
316 | 0 |
|
317 | 0 | /* Attempt to read a byte */ |
318 | 0 | if (bytes_in_buffer == 0) { |
319 | 0 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
320 | 0 | return FALSE; |
321 | 0 | next_input_byte = cinfo->src->next_input_byte; |
322 | 0 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
323 | 0 | } |
324 | 0 | bytes_in_buffer--; |
325 | 0 | c = GETJOCTET(*next_input_byte++); |
326 | 0 |
|
327 | 0 | /* If it's 0xFF, check and discard stuffed zero byte */ |
328 | 0 | if (c == 0xFF) { |
329 | 0 | /* Loop here to discard any padding FF's on terminating marker, |
330 | 0 | * so that we can save a valid unread_marker value. NOTE: we will |
331 | 0 | * accept multiple FF's followed by a 0 as meaning a single FF data |
332 | 0 | * byte. This data pattern is not valid according to the standard. |
333 | 0 | */ |
334 | 0 | do { |
335 | 0 | if (bytes_in_buffer == 0) { |
336 | 0 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
337 | 0 | return FALSE; |
338 | 0 | next_input_byte = cinfo->src->next_input_byte; |
339 | 0 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
340 | 0 | } |
341 | 0 | bytes_in_buffer--; |
342 | 0 | c = GETJOCTET(*next_input_byte++); |
343 | 0 | } while (c == 0xFF); |
344 | 0 |
|
345 | 0 | if (c == 0) { |
346 | 0 | /* Found FF/00, which represents an FF data byte */ |
347 | 0 | c = 0xFF; |
348 | 0 | } else { |
349 | 0 | /* Oops, it's actually a marker indicating end of compressed data. |
350 | 0 | * Save the marker code for later use. |
351 | 0 | * Fine point: it might appear that we should save the marker into |
352 | 0 | * bitread working state, not straight into permanent state. But |
353 | 0 | * once we have hit a marker, we cannot need to suspend within the |
354 | 0 | * current MCU, because we will read no more bytes from the data |
355 | 0 | * source. So it is OK to update permanent state right away. |
356 | 0 | */ |
357 | 0 | cinfo->unread_marker = c; |
358 | 0 | /* See if we need to insert some fake zero bits. */ |
359 | 0 | goto no_more_bytes; |
360 | 0 | } |
361 | 0 | } |
362 | 0 | |
363 | 0 | /* OK, load c into get_buffer */ |
364 | 0 | get_buffer = (get_buffer << 8) | c; |
365 | 0 | bits_left += 8; |
366 | 0 | } /* end while */ |
367 | 0 | } else { |
368 | 0 | no_more_bytes: |
369 | 0 | /* We get here if we've read the marker that terminates the compressed |
370 | 0 | * data segment. There should be enough bits in the buffer register |
371 | 0 | * to satisfy the request; if so, no problem. |
372 | 0 | */ |
373 | 0 | if (nbits > bits_left) { |
374 | 0 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
375 | 0 | * the data stream, so that we can produce some kind of image. |
376 | 0 | * We use a nonvolatile flag to ensure that only one warning message |
377 | 0 | * appears per data segment. |
378 | 0 | */ |
379 | 0 | if (! cinfo->entropy->insufficient_data) { |
380 | 0 | WARNMS(cinfo, JWRN_HIT_MARKER); |
381 | 0 | cinfo->entropy->insufficient_data = TRUE; |
382 | 0 | } |
383 | 0 | /* Fill the buffer with zero bits */ |
384 | 0 | get_buffer <<= MIN_GET_BITS - bits_left; |
385 | 0 | bits_left = MIN_GET_BITS; |
386 | 0 | } |
387 | 0 | } |
388 | 0 |
|
389 | 0 | /* Unload the local registers */ |
390 | 0 | state->next_input_byte = next_input_byte; |
391 | 0 | state->bytes_in_buffer = bytes_in_buffer; |
392 | 0 | state->get_buffer = get_buffer; |
393 | 0 | state->bits_left = bits_left; |
394 | 0 |
|
395 | 0 | return TRUE; |
396 | 0 | } |
397 | | |
398 | | |
399 | | /* Macro version of the above, which performs much better but does not |
400 | | handle markers. We have to hand off any blocks with markers to the |
401 | | slower routines. */ |
402 | | |
403 | 0 | #define GET_BYTE \ |
404 | 0 | { \ |
405 | 0 | register int c0, c1; \ |
406 | 0 | c0 = GETJOCTET(*buffer++); \ |
407 | 0 | c1 = GETJOCTET(*buffer); \ |
408 | 0 | /* Pre-execute most common case */ \ |
409 | 0 | get_buffer = (get_buffer << 8) | c0; \ |
410 | 0 | bits_left += 8; \ |
411 | 0 | if (c0 == 0xFF) { \ |
412 | 0 | /* Pre-execute case of FF/00, which represents an FF data byte */ \ |
413 | 0 | buffer++; \ |
414 | 0 | if (c1 != 0) { \ |
415 | 0 | /* Oops, it's actually a marker indicating end of compressed data. */ \ |
416 | 0 | cinfo->unread_marker = c1; \ |
417 | 0 | /* Back out pre-execution and fill the buffer with zero bits */ \ |
418 | 0 | buffer -= 2; \ |
419 | 0 | get_buffer &= ~0xFF; \ |
420 | 0 | } \ |
421 | 0 | } \ |
422 | 0 | } |
423 | | |
424 | | #if SIZEOF_SIZE_T==8 || defined(_WIN64) |
425 | | |
426 | | /* Pre-fetch 48 bytes, because the holding register is 64-bit */ |
427 | | #define FILL_BIT_BUFFER_FAST \ |
428 | 0 | if (bits_left <= 16) { \ |
429 | 0 | GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ |
430 | 0 | } |
431 | | |
432 | | #else |
433 | | |
434 | | /* Pre-fetch 16 bytes, because the holding register is 32-bit */ |
435 | | #define FILL_BIT_BUFFER_FAST \ |
436 | | if (bits_left <= 16) { \ |
437 | | GET_BYTE GET_BYTE \ |
438 | | } |
439 | | |
440 | | #endif |
441 | | |
442 | | |
443 | | /* |
444 | | * Out-of-line code for Huffman code decoding. |
445 | | * See jdhuff.h for info about usage. |
446 | | */ |
447 | | |
448 | | GLOBAL(int) |
449 | | jpeg_huff_decode (bitread_working_state *state, |
450 | | register bit_buf_type get_buffer, register int bits_left, |
451 | | d_derived_tbl *htbl, int min_bits) |
452 | 0 | { |
453 | 0 | register int l = min_bits; |
454 | 0 | register JLONG code; |
455 | 0 |
|
456 | 0 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
457 | 0 | /* bits long, so fetch that many bits in one swoop. */ |
458 | 0 |
|
459 | 0 | CHECK_BIT_BUFFER(*state, l, return -1); |
460 | 0 | code = GET_BITS(l); |
461 | 0 |
|
462 | 0 | /* Collect the rest of the Huffman code one bit at a time. */ |
463 | 0 | /* This is per Figure F.16 in the JPEG spec. */ |
464 | 0 |
|
465 | 0 | while (code > htbl->maxcode[l]) { |
466 | 0 | code <<= 1; |
467 | 0 | CHECK_BIT_BUFFER(*state, 1, return -1); |
468 | 0 | code |= GET_BITS(1); |
469 | 0 | l++; |
470 | 0 | } |
471 | 0 |
|
472 | 0 | /* Unload the local registers */ |
473 | 0 | state->get_buffer = get_buffer; |
474 | 0 | state->bits_left = bits_left; |
475 | 0 |
|
476 | 0 | /* With garbage input we may reach the sentinel value l = 17. */ |
477 | 0 |
|
478 | 0 | if (l > 16) { |
479 | 0 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
480 | 0 | return 0; /* fake a zero as the safest result */ |
481 | 0 | } |
482 | 0 |
|
483 | 0 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
484 | 0 | } |
485 | | |
486 | | |
487 | | /* |
488 | | * Figure F.12: extend sign bit. |
489 | | * On some machines, a shift and add will be faster than a table lookup. |
490 | | */ |
491 | | |
492 | | #define AVOID_TABLES |
493 | | #ifdef AVOID_TABLES |
494 | | |
495 | 0 | #define NEG_1 ((unsigned int)-1) |
496 | 0 | #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1))) |
497 | | |
498 | | #else |
499 | | |
500 | | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
501 | | |
502 | | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
503 | | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
504 | | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
505 | | |
506 | | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
507 | | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
508 | | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
509 | | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
510 | | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
511 | | |
512 | | #endif /* AVOID_TABLES */ |
513 | | |
514 | | |
515 | | /* |
516 | | * Check for a restart marker & resynchronize decoder. |
517 | | * Returns FALSE if must suspend. |
518 | | */ |
519 | | |
520 | | LOCAL(boolean) |
521 | | process_restart (j_decompress_ptr cinfo) |
522 | 0 | { |
523 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
524 | 0 | int ci; |
525 | 0 |
|
526 | 0 | /* Throw away any unused bits remaining in bit buffer; */ |
527 | 0 | /* include any full bytes in next_marker's count of discarded bytes */ |
528 | 0 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
529 | 0 | entropy->bitstate.bits_left = 0; |
530 | 0 |
|
531 | 0 | /* Advance past the RSTn marker */ |
532 | 0 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
533 | 0 | return FALSE; |
534 | 0 | |
535 | 0 | /* Re-initialize DC predictions to 0 */ |
536 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
537 | 0 | entropy->saved.last_dc_val[ci] = 0; |
538 | 0 |
|
539 | 0 | /* Reset restart counter */ |
540 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
541 | 0 |
|
542 | 0 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
543 | 0 | * against a marker. In that case we will end up treating the next data |
544 | 0 | * segment as empty, and we can avoid producing bogus output pixels by |
545 | 0 | * leaving the flag set. |
546 | 0 | */ |
547 | 0 | if (cinfo->unread_marker == 0) |
548 | 0 | entropy->pub.insufficient_data = FALSE; |
549 | 0 |
|
550 | 0 | return TRUE; |
551 | 0 | } |
552 | | |
553 | | |
554 | | LOCAL(boolean) |
555 | | decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
556 | 0 | { |
557 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
558 | 0 | BITREAD_STATE_VARS; |
559 | 0 | int blkn; |
560 | 0 | savable_state state; |
561 | 0 | /* Outer loop handles each block in the MCU */ |
562 | 0 |
|
563 | 0 | /* Load up working state */ |
564 | 0 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
565 | 0 | ASSIGN_STATE(state, entropy->saved); |
566 | 0 |
|
567 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
568 | 0 | JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
569 | 0 | d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
570 | 0 | d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
571 | 0 | register int s, k, r; |
572 | 0 |
|
573 | 0 | /* Decode a single block's worth of coefficients */ |
574 | 0 |
|
575 | 0 | /* Section F.2.2.1: decode the DC coefficient difference */ |
576 | 0 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
577 | 0 | if (s) { |
578 | 0 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
579 | 0 | r = GET_BITS(s); |
580 | 0 | s = HUFF_EXTEND(r, s); |
581 | 0 | } |
582 | 0 |
|
583 | 0 | if (entropy->dc_needed[blkn]) { |
584 | 0 | /* Convert DC difference to actual value, update last_dc_val */ |
585 | 0 | int ci = cinfo->MCU_membership[blkn]; |
586 | 0 | s += state.last_dc_val[ci]; |
587 | 0 | state.last_dc_val[ci] = s; |
588 | 0 | if (block) { |
589 | 0 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
590 | 0 | (*block)[0] = (JCOEF) s; |
591 | 0 | } |
592 | 0 | } |
593 | 0 |
|
594 | 0 | if (entropy->ac_needed[blkn] && block) { |
595 | 0 |
|
596 | 0 | /* Section F.2.2.2: decode the AC coefficients */ |
597 | 0 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
598 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
599 | 0 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
600 | 0 |
|
601 | 0 | r = s >> 4; |
602 | 0 | s &= 15; |
603 | 0 |
|
604 | 0 | if (s) { |
605 | 0 | k += r; |
606 | 0 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
607 | 0 | r = GET_BITS(s); |
608 | 0 | s = HUFF_EXTEND(r, s); |
609 | 0 | /* Output coefficient in natural (dezigzagged) order. |
610 | 0 | * Note: the extra entries in jpeg_natural_order[] will save us |
611 | 0 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
612 | 0 | */ |
613 | 0 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
614 | 0 | } else { |
615 | 0 | if (r != 15) |
616 | 0 | break; |
617 | 0 | k += 15; |
618 | 0 | } |
619 | 0 | } |
620 | 0 |
|
621 | 0 | } else { |
622 | 0 |
|
623 | 0 | /* Section F.2.2.2: decode the AC coefficients */ |
624 | 0 | /* In this path we just discard the values */ |
625 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
626 | 0 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
627 | 0 |
|
628 | 0 | r = s >> 4; |
629 | 0 | s &= 15; |
630 | 0 |
|
631 | 0 | if (s) { |
632 | 0 | k += r; |
633 | 0 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
634 | 0 | DROP_BITS(s); |
635 | 0 | } else { |
636 | 0 | if (r != 15) |
637 | 0 | break; |
638 | 0 | k += 15; |
639 | 0 | } |
640 | 0 | } |
641 | 0 | } |
642 | 0 | } |
643 | 0 |
|
644 | 0 | /* Completed MCU, so update state */ |
645 | 0 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
646 | 0 | ASSIGN_STATE(entropy->saved, state); |
647 | 0 | return TRUE; |
648 | 0 | } |
649 | | |
650 | | |
651 | | LOCAL(boolean) |
652 | | decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
653 | 0 | { |
654 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
655 | 0 | BITREAD_STATE_VARS; |
656 | 0 | JOCTET *buffer; |
657 | 0 | int blkn; |
658 | 0 | savable_state state; |
659 | 0 | /* Outer loop handles each block in the MCU */ |
660 | 0 |
|
661 | 0 | /* Load up working state */ |
662 | 0 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
663 | 0 | buffer = (JOCTET *) br_state.next_input_byte; |
664 | 0 | ASSIGN_STATE(state, entropy->saved); |
665 | 0 |
|
666 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
667 | 0 | JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
668 | 0 | d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
669 | 0 | d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
670 | 0 | register int s, k, r, l; |
671 | 0 |
|
672 | 0 | HUFF_DECODE_FAST(s, l, dctbl, slow_decode_mcu); |
673 | 0 | if (s) { |
674 | 0 | FILL_BIT_BUFFER_FAST |
675 | 0 | r = GET_BITS(s); |
676 | 0 | s = HUFF_EXTEND(r, s); |
677 | 0 | } |
678 | 0 |
|
679 | 0 | if (entropy->dc_needed[blkn]) { |
680 | 0 | int ci = cinfo->MCU_membership[blkn]; |
681 | 0 | s += state.last_dc_val[ci]; |
682 | 0 | state.last_dc_val[ci] = s; |
683 | 0 | if (block) |
684 | 0 | (*block)[0] = (JCOEF) s; |
685 | 0 | } |
686 | 0 |
|
687 | 0 | if (entropy->ac_needed[blkn] && block) { |
688 | 0 |
|
689 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
690 | 0 | HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu); |
691 | 0 | r = s >> 4; |
692 | 0 | s &= 15; |
693 | 0 |
|
694 | 0 | if (s) { |
695 | 0 | k += r; |
696 | 0 | FILL_BIT_BUFFER_FAST |
697 | 0 | r = GET_BITS(s); |
698 | 0 | s = HUFF_EXTEND(r, s); |
699 | 0 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
700 | 0 | } else { |
701 | 0 | if (r != 15) break; |
702 | 0 | k += 15; |
703 | 0 | } |
704 | 0 | } |
705 | 0 |
|
706 | 0 | } else { |
707 | 0 |
|
708 | 0 | for (k = 1; k < DCTSIZE2; k++) { |
709 | 0 | HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu); |
710 | 0 | r = s >> 4; |
711 | 0 | s &= 15; |
712 | 0 |
|
713 | 0 | if (s) { |
714 | 0 | k += r; |
715 | 0 | FILL_BIT_BUFFER_FAST |
716 | 0 | DROP_BITS(s); |
717 | 0 | } else { |
718 | 0 | if (r != 15) break; |
719 | 0 | k += 15; |
720 | 0 | } |
721 | 0 | } |
722 | 0 | } |
723 | 0 | } |
724 | 0 |
|
725 | 0 | if (cinfo->unread_marker != 0) { |
726 | 0 | slow_decode_mcu: |
727 | 0 | cinfo->unread_marker = 0; |
728 | 0 | return FALSE; |
729 | 0 | } |
730 | 0 | |
731 | 0 | br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); |
732 | 0 | br_state.next_input_byte = buffer; |
733 | 0 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
734 | 0 | ASSIGN_STATE(entropy->saved, state); |
735 | 0 | return TRUE; |
736 | 0 | } |
737 | | |
738 | | |
739 | | /* |
740 | | * Decode and return one MCU's worth of Huffman-compressed coefficients. |
741 | | * The coefficients are reordered from zigzag order into natural array order, |
742 | | * but are not dequantized. |
743 | | * |
744 | | * The i'th block of the MCU is stored into the block pointed to by |
745 | | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
746 | | * (Wholesale zeroing is usually a little faster than retail...) |
747 | | * |
748 | | * Returns FALSE if data source requested suspension. In that case no |
749 | | * changes have been made to permanent state. (Exception: some output |
750 | | * coefficients may already have been assigned. This is harmless for |
751 | | * this module, since we'll just re-assign them on the next call.) |
752 | | */ |
753 | | |
754 | 0 | #define BUFSIZE (DCTSIZE2 * 8) |
755 | | |
756 | | METHODDEF(boolean) |
757 | | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
758 | 0 | { |
759 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
760 | 0 | int usefast = 1; |
761 | 0 |
|
762 | 0 | /* Process restart marker if needed; may have to suspend */ |
763 | 0 | if (cinfo->restart_interval) { |
764 | 0 | if (entropy->restarts_to_go == 0) |
765 | 0 | if (! process_restart(cinfo)) |
766 | 0 | return FALSE; |
767 | 0 | usefast = 0; |
768 | 0 | } |
769 | 0 |
|
770 | 0 | if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU |
771 | 0 | || cinfo->unread_marker != 0) |
772 | 0 | usefast = 0; |
773 | 0 |
|
774 | 0 | /* If we've run out of data, just leave the MCU set to zeroes. |
775 | 0 | * This way, we return uniform gray for the remainder of the segment. |
776 | 0 | */ |
777 | 0 | if (! entropy->pub.insufficient_data) { |
778 | 0 |
|
779 | 0 | if (usefast) { |
780 | 0 | if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; |
781 | 0 | } |
782 | 0 | else { |
783 | 0 | use_slow: |
784 | 0 | if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; |
785 | 0 | } |
786 | 0 | |
787 | 0 | } |
788 | 0 | |
789 | 0 | /* Account for restart interval (no-op if not using restarts) */ |
790 | 0 | entropy->restarts_to_go--; |
791 | 0 |
|
792 | 0 | return TRUE; |
793 | 0 | } |
794 | | |
795 | | |
796 | | /* |
797 | | * Module initialization routine for Huffman entropy decoding. |
798 | | */ |
799 | | |
800 | | GLOBAL(void) |
801 | | jinit_huff_decoder (j_decompress_ptr cinfo) |
802 | 0 | { |
803 | 0 | huff_entropy_ptr entropy; |
804 | 0 | int i; |
805 | 0 |
|
806 | 0 | /* Motion JPEG frames typically do not include the Huffman tables if they |
807 | 0 | are the default tables. Thus, if the tables are not set by the time |
808 | 0 | the Huffman decoder is initialized (usually within the body of |
809 | 0 | jpeg_start_decompress()), we set them to default values. */ |
810 | 0 | std_huff_tables((j_common_ptr) cinfo); |
811 | 0 |
|
812 | 0 | entropy = (huff_entropy_ptr) |
813 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
814 | 0 | sizeof(huff_entropy_decoder)); |
815 | 0 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
816 | 0 | entropy->pub.start_pass = start_pass_huff_decoder; |
817 | 0 | entropy->pub.decode_mcu = decode_mcu; |
818 | 0 |
|
819 | 0 | /* Mark tables unallocated */ |
820 | 0 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
821 | 0 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
822 | 0 | } |
823 | 0 | } |