/src/mozilla-central/media/libjpeg/jdmaster.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdmaster.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | | * Modified 2002-2009 by Guido Vollbeding. |
7 | | * libjpeg-turbo Modifications: |
8 | | * Copyright (C) 2009-2011, 2016, D. R. Commander. |
9 | | * Copyright (C) 2013, Linaro Limited. |
10 | | * Copyright (C) 2015, Google, Inc. |
11 | | * For conditions of distribution and use, see the accompanying README.ijg |
12 | | * file. |
13 | | * |
14 | | * This file contains master control logic for the JPEG decompressor. |
15 | | * These routines are concerned with selecting the modules to be executed |
16 | | * and with determining the number of passes and the work to be done in each |
17 | | * pass. |
18 | | */ |
19 | | |
20 | | #define JPEG_INTERNALS |
21 | | #include "jinclude.h" |
22 | | #include "jpeglib.h" |
23 | | #include "jpegcomp.h" |
24 | | #include "jdmaster.h" |
25 | | #include "jsimd.h" |
26 | | |
27 | | |
28 | | /* |
29 | | * Determine whether merged upsample/color conversion should be used. |
30 | | * CRUCIAL: this must match the actual capabilities of jdmerge.c! |
31 | | */ |
32 | | |
33 | | LOCAL(boolean) |
34 | | use_merged_upsample (j_decompress_ptr cinfo) |
35 | 0 | { |
36 | 0 | #ifdef UPSAMPLE_MERGING_SUPPORTED |
37 | 0 | /* Merging is the equivalent of plain box-filter upsampling */ |
38 | 0 | if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) |
39 | 0 | return FALSE; |
40 | 0 | /* jdmerge.c only supports YCC=>RGB and YCC=>RGB565 color conversion */ |
41 | 0 | if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || |
42 | 0 | (cinfo->out_color_space != JCS_RGB && |
43 | 0 | cinfo->out_color_space != JCS_RGB565 && |
44 | 0 | cinfo->out_color_space != JCS_EXT_RGB && |
45 | 0 | cinfo->out_color_space != JCS_EXT_RGBX && |
46 | 0 | cinfo->out_color_space != JCS_EXT_BGR && |
47 | 0 | cinfo->out_color_space != JCS_EXT_BGRX && |
48 | 0 | cinfo->out_color_space != JCS_EXT_XBGR && |
49 | 0 | cinfo->out_color_space != JCS_EXT_XRGB && |
50 | 0 | cinfo->out_color_space != JCS_EXT_RGBA && |
51 | 0 | cinfo->out_color_space != JCS_EXT_BGRA && |
52 | 0 | cinfo->out_color_space != JCS_EXT_ABGR && |
53 | 0 | cinfo->out_color_space != JCS_EXT_ARGB)) |
54 | 0 | return FALSE; |
55 | 0 | if ((cinfo->out_color_space == JCS_RGB565 && |
56 | 0 | cinfo->out_color_components != 3) || |
57 | 0 | (cinfo->out_color_space != JCS_RGB565 && |
58 | 0 | cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space])) |
59 | 0 | return FALSE; |
60 | 0 | /* and it only handles 2h1v or 2h2v sampling ratios */ |
61 | 0 | if (cinfo->comp_info[0].h_samp_factor != 2 || |
62 | 0 | cinfo->comp_info[1].h_samp_factor != 1 || |
63 | 0 | cinfo->comp_info[2].h_samp_factor != 1 || |
64 | 0 | cinfo->comp_info[0].v_samp_factor > 2 || |
65 | 0 | cinfo->comp_info[1].v_samp_factor != 1 || |
66 | 0 | cinfo->comp_info[2].v_samp_factor != 1) |
67 | 0 | return FALSE; |
68 | 0 | /* furthermore, it doesn't work if we've scaled the IDCTs differently */ |
69 | 0 | if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || |
70 | 0 | cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || |
71 | 0 | cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size) |
72 | 0 | return FALSE; |
73 | 0 | #ifdef WITH_SIMD |
74 | 0 | /* If YCbCr-to-RGB color conversion is SIMD-accelerated but merged upsampling |
75 | 0 | isn't, then disabling merged upsampling is likely to be faster when |
76 | 0 | decompressing YCbCr JPEG images. */ |
77 | 0 | if (!jsimd_can_h2v2_merged_upsample() && !jsimd_can_h2v1_merged_upsample() && |
78 | 0 | jsimd_can_ycc_rgb() && cinfo->jpeg_color_space == JCS_YCbCr && |
79 | 0 | (cinfo->out_color_space == JCS_RGB || |
80 | 0 | (cinfo->out_color_space >= JCS_EXT_RGB && |
81 | 0 | cinfo->out_color_space <= JCS_EXT_ARGB))) |
82 | 0 | return FALSE; |
83 | 0 | #endif |
84 | 0 | /* ??? also need to test for upsample-time rescaling, when & if supported */ |
85 | 0 | return TRUE; /* by golly, it'll work... */ |
86 | | #else |
87 | | return FALSE; |
88 | | #endif |
89 | | } |
90 | | |
91 | | |
92 | | /* |
93 | | * Compute output image dimensions and related values. |
94 | | * NOTE: this is exported for possible use by application. |
95 | | * Hence it mustn't do anything that can't be done twice. |
96 | | */ |
97 | | |
98 | | #if JPEG_LIB_VERSION >= 80 |
99 | | GLOBAL(void) |
100 | | #else |
101 | | LOCAL(void) |
102 | | #endif |
103 | | jpeg_core_output_dimensions (j_decompress_ptr cinfo) |
104 | | /* Do computations that are needed before master selection phase. |
105 | | * This function is used for transcoding and full decompression. |
106 | | */ |
107 | 0 | { |
108 | 0 | #ifdef IDCT_SCALING_SUPPORTED |
109 | 0 | int ci; |
110 | 0 | jpeg_component_info *compptr; |
111 | 0 |
|
112 | 0 | /* Compute actual output image dimensions and DCT scaling choices. */ |
113 | 0 | if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom) { |
114 | 0 | /* Provide 1/block_size scaling */ |
115 | 0 | cinfo->output_width = (JDIMENSION) |
116 | 0 | jdiv_round_up((long) cinfo->image_width, (long) DCTSIZE); |
117 | 0 | cinfo->output_height = (JDIMENSION) |
118 | 0 | jdiv_round_up((long) cinfo->image_height, (long) DCTSIZE); |
119 | 0 | cinfo->_min_DCT_h_scaled_size = 1; |
120 | 0 | cinfo->_min_DCT_v_scaled_size = 1; |
121 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 2) { |
122 | 0 | /* Provide 2/block_size scaling */ |
123 | 0 | cinfo->output_width = (JDIMENSION) |
124 | 0 | jdiv_round_up((long) cinfo->image_width * 2L, (long) DCTSIZE); |
125 | 0 | cinfo->output_height = (JDIMENSION) |
126 | 0 | jdiv_round_up((long) cinfo->image_height * 2L, (long) DCTSIZE); |
127 | 0 | cinfo->_min_DCT_h_scaled_size = 2; |
128 | 0 | cinfo->_min_DCT_v_scaled_size = 2; |
129 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 3) { |
130 | 0 | /* Provide 3/block_size scaling */ |
131 | 0 | cinfo->output_width = (JDIMENSION) |
132 | 0 | jdiv_round_up((long) cinfo->image_width * 3L, (long) DCTSIZE); |
133 | 0 | cinfo->output_height = (JDIMENSION) |
134 | 0 | jdiv_round_up((long) cinfo->image_height * 3L, (long) DCTSIZE); |
135 | 0 | cinfo->_min_DCT_h_scaled_size = 3; |
136 | 0 | cinfo->_min_DCT_v_scaled_size = 3; |
137 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 4) { |
138 | 0 | /* Provide 4/block_size scaling */ |
139 | 0 | cinfo->output_width = (JDIMENSION) |
140 | 0 | jdiv_round_up((long) cinfo->image_width * 4L, (long) DCTSIZE); |
141 | 0 | cinfo->output_height = (JDIMENSION) |
142 | 0 | jdiv_round_up((long) cinfo->image_height * 4L, (long) DCTSIZE); |
143 | 0 | cinfo->_min_DCT_h_scaled_size = 4; |
144 | 0 | cinfo->_min_DCT_v_scaled_size = 4; |
145 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 5) { |
146 | 0 | /* Provide 5/block_size scaling */ |
147 | 0 | cinfo->output_width = (JDIMENSION) |
148 | 0 | jdiv_round_up((long) cinfo->image_width * 5L, (long) DCTSIZE); |
149 | 0 | cinfo->output_height = (JDIMENSION) |
150 | 0 | jdiv_round_up((long) cinfo->image_height * 5L, (long) DCTSIZE); |
151 | 0 | cinfo->_min_DCT_h_scaled_size = 5; |
152 | 0 | cinfo->_min_DCT_v_scaled_size = 5; |
153 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 6) { |
154 | 0 | /* Provide 6/block_size scaling */ |
155 | 0 | cinfo->output_width = (JDIMENSION) |
156 | 0 | jdiv_round_up((long) cinfo->image_width * 6L, (long) DCTSIZE); |
157 | 0 | cinfo->output_height = (JDIMENSION) |
158 | 0 | jdiv_round_up((long) cinfo->image_height * 6L, (long) DCTSIZE); |
159 | 0 | cinfo->_min_DCT_h_scaled_size = 6; |
160 | 0 | cinfo->_min_DCT_v_scaled_size = 6; |
161 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 7) { |
162 | 0 | /* Provide 7/block_size scaling */ |
163 | 0 | cinfo->output_width = (JDIMENSION) |
164 | 0 | jdiv_round_up((long) cinfo->image_width * 7L, (long) DCTSIZE); |
165 | 0 | cinfo->output_height = (JDIMENSION) |
166 | 0 | jdiv_round_up((long) cinfo->image_height * 7L, (long) DCTSIZE); |
167 | 0 | cinfo->_min_DCT_h_scaled_size = 7; |
168 | 0 | cinfo->_min_DCT_v_scaled_size = 7; |
169 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 8) { |
170 | 0 | /* Provide 8/block_size scaling */ |
171 | 0 | cinfo->output_width = (JDIMENSION) |
172 | 0 | jdiv_round_up((long) cinfo->image_width * 8L, (long) DCTSIZE); |
173 | 0 | cinfo->output_height = (JDIMENSION) |
174 | 0 | jdiv_round_up((long) cinfo->image_height * 8L, (long) DCTSIZE); |
175 | 0 | cinfo->_min_DCT_h_scaled_size = 8; |
176 | 0 | cinfo->_min_DCT_v_scaled_size = 8; |
177 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 9) { |
178 | 0 | /* Provide 9/block_size scaling */ |
179 | 0 | cinfo->output_width = (JDIMENSION) |
180 | 0 | jdiv_round_up((long) cinfo->image_width * 9L, (long) DCTSIZE); |
181 | 0 | cinfo->output_height = (JDIMENSION) |
182 | 0 | jdiv_round_up((long) cinfo->image_height * 9L, (long) DCTSIZE); |
183 | 0 | cinfo->_min_DCT_h_scaled_size = 9; |
184 | 0 | cinfo->_min_DCT_v_scaled_size = 9; |
185 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 10) { |
186 | 0 | /* Provide 10/block_size scaling */ |
187 | 0 | cinfo->output_width = (JDIMENSION) |
188 | 0 | jdiv_round_up((long) cinfo->image_width * 10L, (long) DCTSIZE); |
189 | 0 | cinfo->output_height = (JDIMENSION) |
190 | 0 | jdiv_round_up((long) cinfo->image_height * 10L, (long) DCTSIZE); |
191 | 0 | cinfo->_min_DCT_h_scaled_size = 10; |
192 | 0 | cinfo->_min_DCT_v_scaled_size = 10; |
193 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 11) { |
194 | 0 | /* Provide 11/block_size scaling */ |
195 | 0 | cinfo->output_width = (JDIMENSION) |
196 | 0 | jdiv_round_up((long) cinfo->image_width * 11L, (long) DCTSIZE); |
197 | 0 | cinfo->output_height = (JDIMENSION) |
198 | 0 | jdiv_round_up((long) cinfo->image_height * 11L, (long) DCTSIZE); |
199 | 0 | cinfo->_min_DCT_h_scaled_size = 11; |
200 | 0 | cinfo->_min_DCT_v_scaled_size = 11; |
201 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 12) { |
202 | 0 | /* Provide 12/block_size scaling */ |
203 | 0 | cinfo->output_width = (JDIMENSION) |
204 | 0 | jdiv_round_up((long) cinfo->image_width * 12L, (long) DCTSIZE); |
205 | 0 | cinfo->output_height = (JDIMENSION) |
206 | 0 | jdiv_round_up((long) cinfo->image_height * 12L, (long) DCTSIZE); |
207 | 0 | cinfo->_min_DCT_h_scaled_size = 12; |
208 | 0 | cinfo->_min_DCT_v_scaled_size = 12; |
209 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 13) { |
210 | 0 | /* Provide 13/block_size scaling */ |
211 | 0 | cinfo->output_width = (JDIMENSION) |
212 | 0 | jdiv_round_up((long) cinfo->image_width * 13L, (long) DCTSIZE); |
213 | 0 | cinfo->output_height = (JDIMENSION) |
214 | 0 | jdiv_round_up((long) cinfo->image_height * 13L, (long) DCTSIZE); |
215 | 0 | cinfo->_min_DCT_h_scaled_size = 13; |
216 | 0 | cinfo->_min_DCT_v_scaled_size = 13; |
217 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 14) { |
218 | 0 | /* Provide 14/block_size scaling */ |
219 | 0 | cinfo->output_width = (JDIMENSION) |
220 | 0 | jdiv_round_up((long) cinfo->image_width * 14L, (long) DCTSIZE); |
221 | 0 | cinfo->output_height = (JDIMENSION) |
222 | 0 | jdiv_round_up((long) cinfo->image_height * 14L, (long) DCTSIZE); |
223 | 0 | cinfo->_min_DCT_h_scaled_size = 14; |
224 | 0 | cinfo->_min_DCT_v_scaled_size = 14; |
225 | 0 | } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 15) { |
226 | 0 | /* Provide 15/block_size scaling */ |
227 | 0 | cinfo->output_width = (JDIMENSION) |
228 | 0 | jdiv_round_up((long) cinfo->image_width * 15L, (long) DCTSIZE); |
229 | 0 | cinfo->output_height = (JDIMENSION) |
230 | 0 | jdiv_round_up((long) cinfo->image_height * 15L, (long) DCTSIZE); |
231 | 0 | cinfo->_min_DCT_h_scaled_size = 15; |
232 | 0 | cinfo->_min_DCT_v_scaled_size = 15; |
233 | 0 | } else { |
234 | 0 | /* Provide 16/block_size scaling */ |
235 | 0 | cinfo->output_width = (JDIMENSION) |
236 | 0 | jdiv_round_up((long) cinfo->image_width * 16L, (long) DCTSIZE); |
237 | 0 | cinfo->output_height = (JDIMENSION) |
238 | 0 | jdiv_round_up((long) cinfo->image_height * 16L, (long) DCTSIZE); |
239 | 0 | cinfo->_min_DCT_h_scaled_size = 16; |
240 | 0 | cinfo->_min_DCT_v_scaled_size = 16; |
241 | 0 | } |
242 | 0 |
|
243 | 0 | /* Recompute dimensions of components */ |
244 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
245 | 0 | ci++, compptr++) { |
246 | 0 | compptr->_DCT_h_scaled_size = cinfo->_min_DCT_h_scaled_size; |
247 | 0 | compptr->_DCT_v_scaled_size = cinfo->_min_DCT_v_scaled_size; |
248 | 0 | } |
249 | 0 |
|
250 | | #else /* !IDCT_SCALING_SUPPORTED */ |
251 | | |
252 | | /* Hardwire it to "no scaling" */ |
253 | | cinfo->output_width = cinfo->image_width; |
254 | | cinfo->output_height = cinfo->image_height; |
255 | | /* jdinput.c has already initialized DCT_scaled_size, |
256 | | * and has computed unscaled downsampled_width and downsampled_height. |
257 | | */ |
258 | | |
259 | | #endif /* IDCT_SCALING_SUPPORTED */ |
260 | | } |
261 | | |
262 | | |
263 | | /* |
264 | | * Compute output image dimensions and related values. |
265 | | * NOTE: this is exported for possible use by application. |
266 | | * Hence it mustn't do anything that can't be done twice. |
267 | | * Also note that it may be called before the master module is initialized! |
268 | | */ |
269 | | |
270 | | GLOBAL(void) |
271 | | jpeg_calc_output_dimensions (j_decompress_ptr cinfo) |
272 | | /* Do computations that are needed before master selection phase */ |
273 | 0 | { |
274 | 0 | #ifdef IDCT_SCALING_SUPPORTED |
275 | 0 | int ci; |
276 | 0 | jpeg_component_info *compptr; |
277 | 0 | #endif |
278 | 0 |
|
279 | 0 | /* Prevent application from calling me at wrong times */ |
280 | 0 | if (cinfo->global_state != DSTATE_READY) |
281 | 0 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
282 | 0 |
|
283 | 0 | /* Compute core output image dimensions and DCT scaling choices. */ |
284 | 0 | jpeg_core_output_dimensions(cinfo); |
285 | 0 |
|
286 | 0 | #ifdef IDCT_SCALING_SUPPORTED |
287 | 0 |
|
288 | 0 | /* In selecting the actual DCT scaling for each component, we try to |
289 | 0 | * scale up the chroma components via IDCT scaling rather than upsampling. |
290 | 0 | * This saves time if the upsampler gets to use 1:1 scaling. |
291 | 0 | * Note this code adapts subsampling ratios which are powers of 2. |
292 | 0 | */ |
293 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
294 | 0 | ci++, compptr++) { |
295 | 0 | int ssize = cinfo->_min_DCT_scaled_size; |
296 | 0 | while (ssize < DCTSIZE && |
297 | 0 | ((cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) % |
298 | 0 | (compptr->h_samp_factor * ssize * 2) == 0) && |
299 | 0 | ((cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size) % |
300 | 0 | (compptr->v_samp_factor * ssize * 2) == 0)) { |
301 | 0 | ssize = ssize * 2; |
302 | 0 | } |
303 | | #if JPEG_LIB_VERSION >= 70 |
304 | | compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize; |
305 | | #else |
306 | | compptr->DCT_scaled_size = ssize; |
307 | 0 | #endif |
308 | 0 | } |
309 | 0 |
|
310 | 0 | /* Recompute downsampled dimensions of components; |
311 | 0 | * application needs to know these if using raw downsampled data. |
312 | 0 | */ |
313 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
314 | 0 | ci++, compptr++) { |
315 | 0 | /* Size in samples, after IDCT scaling */ |
316 | 0 | compptr->downsampled_width = (JDIMENSION) |
317 | 0 | jdiv_round_up((long) cinfo->image_width * |
318 | 0 | (long) (compptr->h_samp_factor * compptr->_DCT_scaled_size), |
319 | 0 | (long) (cinfo->max_h_samp_factor * DCTSIZE)); |
320 | 0 | compptr->downsampled_height = (JDIMENSION) |
321 | 0 | jdiv_round_up((long) cinfo->image_height * |
322 | 0 | (long) (compptr->v_samp_factor * compptr->_DCT_scaled_size), |
323 | 0 | (long) (cinfo->max_v_samp_factor * DCTSIZE)); |
324 | 0 | } |
325 | 0 |
|
326 | | #else /* !IDCT_SCALING_SUPPORTED */ |
327 | | |
328 | | /* Hardwire it to "no scaling" */ |
329 | | cinfo->output_width = cinfo->image_width; |
330 | | cinfo->output_height = cinfo->image_height; |
331 | | /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, |
332 | | * and has computed unscaled downsampled_width and downsampled_height. |
333 | | */ |
334 | | |
335 | | #endif /* IDCT_SCALING_SUPPORTED */ |
336 | |
|
337 | 0 | /* Report number of components in selected colorspace. */ |
338 | 0 | /* Probably this should be in the color conversion module... */ |
339 | 0 | switch (cinfo->out_color_space) { |
340 | 0 | case JCS_GRAYSCALE: |
341 | 0 | cinfo->out_color_components = 1; |
342 | 0 | break; |
343 | 0 | case JCS_RGB: |
344 | 0 | case JCS_EXT_RGB: |
345 | 0 | case JCS_EXT_RGBX: |
346 | 0 | case JCS_EXT_BGR: |
347 | 0 | case JCS_EXT_BGRX: |
348 | 0 | case JCS_EXT_XBGR: |
349 | 0 | case JCS_EXT_XRGB: |
350 | 0 | case JCS_EXT_RGBA: |
351 | 0 | case JCS_EXT_BGRA: |
352 | 0 | case JCS_EXT_ABGR: |
353 | 0 | case JCS_EXT_ARGB: |
354 | 0 | cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; |
355 | 0 | break; |
356 | 0 | case JCS_YCbCr: |
357 | 0 | case JCS_RGB565: |
358 | 0 | cinfo->out_color_components = 3; |
359 | 0 | break; |
360 | 0 | case JCS_CMYK: |
361 | 0 | case JCS_YCCK: |
362 | 0 | cinfo->out_color_components = 4; |
363 | 0 | break; |
364 | 0 | default: /* else must be same colorspace as in file */ |
365 | 0 | cinfo->out_color_components = cinfo->num_components; |
366 | 0 | break; |
367 | 0 | } |
368 | 0 | cinfo->output_components = (cinfo->quantize_colors ? 1 : |
369 | 0 | cinfo->out_color_components); |
370 | 0 |
|
371 | 0 | /* See if upsampler will want to emit more than one row at a time */ |
372 | 0 | if (use_merged_upsample(cinfo)) |
373 | 0 | cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; |
374 | 0 | else |
375 | 0 | cinfo->rec_outbuf_height = 1; |
376 | 0 | } |
377 | | |
378 | | |
379 | | /* |
380 | | * Several decompression processes need to range-limit values to the range |
381 | | * 0..MAXJSAMPLE; the input value may fall somewhat outside this range |
382 | | * due to noise introduced by quantization, roundoff error, etc. These |
383 | | * processes are inner loops and need to be as fast as possible. On most |
384 | | * machines, particularly CPUs with pipelines or instruction prefetch, |
385 | | * a (subscript-check-less) C table lookup |
386 | | * x = sample_range_limit[x]; |
387 | | * is faster than explicit tests |
388 | | * if (x < 0) x = 0; |
389 | | * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; |
390 | | * These processes all use a common table prepared by the routine below. |
391 | | * |
392 | | * For most steps we can mathematically guarantee that the initial value |
393 | | * of x is within MAXJSAMPLE+1 of the legal range, so a table running from |
394 | | * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial |
395 | | * limiting step (just after the IDCT), a wildly out-of-range value is |
396 | | * possible if the input data is corrupt. To avoid any chance of indexing |
397 | | * off the end of memory and getting a bad-pointer trap, we perform the |
398 | | * post-IDCT limiting thus: |
399 | | * x = range_limit[x & MASK]; |
400 | | * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit |
401 | | * samples. Under normal circumstances this is more than enough range and |
402 | | * a correct output will be generated; with bogus input data the mask will |
403 | | * cause wraparound, and we will safely generate a bogus-but-in-range output. |
404 | | * For the post-IDCT step, we want to convert the data from signed to unsigned |
405 | | * representation by adding CENTERJSAMPLE at the same time that we limit it. |
406 | | * So the post-IDCT limiting table ends up looking like this: |
407 | | * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, |
408 | | * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), |
409 | | * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), |
410 | | * 0,1,...,CENTERJSAMPLE-1 |
411 | | * Negative inputs select values from the upper half of the table after |
412 | | * masking. |
413 | | * |
414 | | * We can save some space by overlapping the start of the post-IDCT table |
415 | | * with the simpler range limiting table. The post-IDCT table begins at |
416 | | * sample_range_limit + CENTERJSAMPLE. |
417 | | */ |
418 | | |
419 | | LOCAL(void) |
420 | | prepare_range_limit_table (j_decompress_ptr cinfo) |
421 | | /* Allocate and fill in the sample_range_limit table */ |
422 | 0 | { |
423 | 0 | JSAMPLE *table; |
424 | 0 | int i; |
425 | 0 |
|
426 | 0 | table = (JSAMPLE *) |
427 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
428 | 0 | (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE)); |
429 | 0 | table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ |
430 | 0 | cinfo->sample_range_limit = table; |
431 | 0 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ |
432 | 0 | MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * sizeof(JSAMPLE)); |
433 | 0 | /* Main part of "simple" table: limit[x] = x */ |
434 | 0 | for (i = 0; i <= MAXJSAMPLE; i++) |
435 | 0 | table[i] = (JSAMPLE) i; |
436 | 0 | table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ |
437 | 0 | /* End of simple table, rest of first half of post-IDCT table */ |
438 | 0 | for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) |
439 | 0 | table[i] = MAXJSAMPLE; |
440 | 0 | /* Second half of post-IDCT table */ |
441 | 0 | MEMZERO(table + (2 * (MAXJSAMPLE+1)), |
442 | 0 | (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE)); |
443 | 0 | MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), |
444 | 0 | cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE)); |
445 | 0 | } |
446 | | |
447 | | |
448 | | /* |
449 | | * Master selection of decompression modules. |
450 | | * This is done once at jpeg_start_decompress time. We determine |
451 | | * which modules will be used and give them appropriate initialization calls. |
452 | | * We also initialize the decompressor input side to begin consuming data. |
453 | | * |
454 | | * Since jpeg_read_header has finished, we know what is in the SOF |
455 | | * and (first) SOS markers. We also have all the application parameter |
456 | | * settings. |
457 | | */ |
458 | | |
459 | | LOCAL(void) |
460 | | master_selection (j_decompress_ptr cinfo) |
461 | 0 | { |
462 | 0 | my_master_ptr master = (my_master_ptr) cinfo->master; |
463 | 0 | boolean use_c_buffer; |
464 | 0 | long samplesperrow; |
465 | 0 | JDIMENSION jd_samplesperrow; |
466 | 0 |
|
467 | 0 | /* Initialize dimensions and other stuff */ |
468 | 0 | jpeg_calc_output_dimensions(cinfo); |
469 | 0 | prepare_range_limit_table(cinfo); |
470 | 0 |
|
471 | 0 | /* Width of an output scanline must be representable as JDIMENSION. */ |
472 | 0 | samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; |
473 | 0 | jd_samplesperrow = (JDIMENSION) samplesperrow; |
474 | 0 | if ((long) jd_samplesperrow != samplesperrow) |
475 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
476 | 0 |
|
477 | 0 | /* Initialize my private state */ |
478 | 0 | master->pass_number = 0; |
479 | 0 | master->using_merged_upsample = use_merged_upsample(cinfo); |
480 | 0 |
|
481 | 0 | /* Color quantizer selection */ |
482 | 0 | master->quantizer_1pass = NULL; |
483 | 0 | master->quantizer_2pass = NULL; |
484 | 0 | /* No mode changes if not using buffered-image mode. */ |
485 | 0 | if (! cinfo->quantize_colors || ! cinfo->buffered_image) { |
486 | 0 | cinfo->enable_1pass_quant = FALSE; |
487 | 0 | cinfo->enable_external_quant = FALSE; |
488 | 0 | cinfo->enable_2pass_quant = FALSE; |
489 | 0 | } |
490 | 0 | if (cinfo->quantize_colors) { |
491 | 0 | if (cinfo->raw_data_out) |
492 | 0 | ERREXIT(cinfo, JERR_NOTIMPL); |
493 | 0 | /* 2-pass quantizer only works in 3-component color space. */ |
494 | 0 | if (cinfo->out_color_components != 3) { |
495 | 0 | cinfo->enable_1pass_quant = TRUE; |
496 | 0 | cinfo->enable_external_quant = FALSE; |
497 | 0 | cinfo->enable_2pass_quant = FALSE; |
498 | 0 | cinfo->colormap = NULL; |
499 | 0 | } else if (cinfo->colormap != NULL) { |
500 | 0 | cinfo->enable_external_quant = TRUE; |
501 | 0 | } else if (cinfo->two_pass_quantize) { |
502 | 0 | cinfo->enable_2pass_quant = TRUE; |
503 | 0 | } else { |
504 | 0 | cinfo->enable_1pass_quant = TRUE; |
505 | 0 | } |
506 | 0 |
|
507 | 0 | if (cinfo->enable_1pass_quant) { |
508 | 0 | #ifdef QUANT_1PASS_SUPPORTED |
509 | 0 | jinit_1pass_quantizer(cinfo); |
510 | 0 | master->quantizer_1pass = cinfo->cquantize; |
511 | | #else |
512 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
513 | | #endif |
514 | | } |
515 | 0 |
|
516 | 0 | /* We use the 2-pass code to map to external colormaps. */ |
517 | 0 | if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { |
518 | 0 | #ifdef QUANT_2PASS_SUPPORTED |
519 | 0 | jinit_2pass_quantizer(cinfo); |
520 | 0 | master->quantizer_2pass = cinfo->cquantize; |
521 | | #else |
522 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
523 | | #endif |
524 | | } |
525 | 0 | /* If both quantizers are initialized, the 2-pass one is left active; |
526 | 0 | * this is necessary for starting with quantization to an external map. |
527 | 0 | */ |
528 | 0 | } |
529 | 0 |
|
530 | 0 | /* Post-processing: in particular, color conversion first */ |
531 | 0 | if (! cinfo->raw_data_out) { |
532 | 0 | if (master->using_merged_upsample) { |
533 | 0 | #ifdef UPSAMPLE_MERGING_SUPPORTED |
534 | 0 | jinit_merged_upsampler(cinfo); /* does color conversion too */ |
535 | | #else |
536 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
537 | | #endif |
538 | 0 | } else { |
539 | 0 | jinit_color_deconverter(cinfo); |
540 | 0 | jinit_upsampler(cinfo); |
541 | 0 | } |
542 | 0 | jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); |
543 | 0 | } |
544 | 0 | /* Inverse DCT */ |
545 | 0 | jinit_inverse_dct(cinfo); |
546 | 0 | /* Entropy decoding: either Huffman or arithmetic coding. */ |
547 | 0 | if (cinfo->arith_code) { |
548 | | #ifdef D_ARITH_CODING_SUPPORTED |
549 | | jinit_arith_decoder(cinfo); |
550 | | #else |
551 | 0 | ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
552 | 0 | #endif |
553 | 0 | } else { |
554 | 0 | if (cinfo->progressive_mode) { |
555 | 0 | #ifdef D_PROGRESSIVE_SUPPORTED |
556 | 0 | jinit_phuff_decoder(cinfo); |
557 | | #else |
558 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
559 | | #endif |
560 | | } else |
561 | 0 | jinit_huff_decoder(cinfo); |
562 | 0 | } |
563 | 0 |
|
564 | 0 | /* Initialize principal buffer controllers. */ |
565 | 0 | use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; |
566 | 0 | jinit_d_coef_controller(cinfo, use_c_buffer); |
567 | 0 |
|
568 | 0 | if (! cinfo->raw_data_out) |
569 | 0 | jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); |
570 | 0 |
|
571 | 0 | /* We can now tell the memory manager to allocate virtual arrays. */ |
572 | 0 | (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); |
573 | 0 |
|
574 | 0 | /* Initialize input side of decompressor to consume first scan. */ |
575 | 0 | (*cinfo->inputctl->start_input_pass) (cinfo); |
576 | 0 |
|
577 | 0 | /* Set the first and last iMCU columns to decompress from single-scan images. |
578 | 0 | * By default, decompress all of the iMCU columns. |
579 | 0 | */ |
580 | 0 | cinfo->master->first_iMCU_col = 0; |
581 | 0 | cinfo->master->last_iMCU_col = cinfo->MCUs_per_row - 1; |
582 | 0 |
|
583 | 0 | #ifdef D_MULTISCAN_FILES_SUPPORTED |
584 | 0 | /* If jpeg_start_decompress will read the whole file, initialize |
585 | 0 | * progress monitoring appropriately. The input step is counted |
586 | 0 | * as one pass. |
587 | 0 | */ |
588 | 0 | if (cinfo->progress != NULL && ! cinfo->buffered_image && |
589 | 0 | cinfo->inputctl->has_multiple_scans) { |
590 | 0 | int nscans; |
591 | 0 | /* Estimate number of scans to set pass_limit. */ |
592 | 0 | if (cinfo->progressive_mode) { |
593 | 0 | /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ |
594 | 0 | nscans = 2 + 3 * cinfo->num_components; |
595 | 0 | } else { |
596 | 0 | /* For a nonprogressive multiscan file, estimate 1 scan per component. */ |
597 | 0 | nscans = cinfo->num_components; |
598 | 0 | } |
599 | 0 | cinfo->progress->pass_counter = 0L; |
600 | 0 | cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; |
601 | 0 | cinfo->progress->completed_passes = 0; |
602 | 0 | cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); |
603 | 0 | /* Count the input pass as done */ |
604 | 0 | master->pass_number++; |
605 | 0 | } |
606 | 0 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
607 | 0 | } |
608 | | |
609 | | |
610 | | /* |
611 | | * Per-pass setup. |
612 | | * This is called at the beginning of each output pass. We determine which |
613 | | * modules will be active during this pass and give them appropriate |
614 | | * start_pass calls. We also set is_dummy_pass to indicate whether this |
615 | | * is a "real" output pass or a dummy pass for color quantization. |
616 | | * (In the latter case, jdapistd.c will crank the pass to completion.) |
617 | | */ |
618 | | |
619 | | METHODDEF(void) |
620 | | prepare_for_output_pass (j_decompress_ptr cinfo) |
621 | 0 | { |
622 | 0 | my_master_ptr master = (my_master_ptr) cinfo->master; |
623 | 0 |
|
624 | 0 | if (master->pub.is_dummy_pass) { |
625 | 0 | #ifdef QUANT_2PASS_SUPPORTED |
626 | 0 | /* Final pass of 2-pass quantization */ |
627 | 0 | master->pub.is_dummy_pass = FALSE; |
628 | 0 | (*cinfo->cquantize->start_pass) (cinfo, FALSE); |
629 | 0 | (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); |
630 | 0 | (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); |
631 | | #else |
632 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
633 | | #endif /* QUANT_2PASS_SUPPORTED */ |
634 | 0 | } else { |
635 | 0 | if (cinfo->quantize_colors && cinfo->colormap == NULL) { |
636 | 0 | /* Select new quantization method */ |
637 | 0 | if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { |
638 | 0 | cinfo->cquantize = master->quantizer_2pass; |
639 | 0 | master->pub.is_dummy_pass = TRUE; |
640 | 0 | } else if (cinfo->enable_1pass_quant) { |
641 | 0 | cinfo->cquantize = master->quantizer_1pass; |
642 | 0 | } else { |
643 | 0 | ERREXIT(cinfo, JERR_MODE_CHANGE); |
644 | 0 | } |
645 | 0 | } |
646 | 0 | (*cinfo->idct->start_pass) (cinfo); |
647 | 0 | (*cinfo->coef->start_output_pass) (cinfo); |
648 | 0 | if (! cinfo->raw_data_out) { |
649 | 0 | if (! master->using_merged_upsample) |
650 | 0 | (*cinfo->cconvert->start_pass) (cinfo); |
651 | 0 | (*cinfo->upsample->start_pass) (cinfo); |
652 | 0 | if (cinfo->quantize_colors) |
653 | 0 | (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); |
654 | 0 | (*cinfo->post->start_pass) (cinfo, |
655 | 0 | (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
656 | 0 | (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
657 | 0 | } |
658 | 0 | } |
659 | 0 |
|
660 | 0 | /* Set up progress monitor's pass info if present */ |
661 | 0 | if (cinfo->progress != NULL) { |
662 | 0 | cinfo->progress->completed_passes = master->pass_number; |
663 | 0 | cinfo->progress->total_passes = master->pass_number + |
664 | 0 | (master->pub.is_dummy_pass ? 2 : 1); |
665 | 0 | /* In buffered-image mode, we assume one more output pass if EOI not |
666 | 0 | * yet reached, but no more passes if EOI has been reached. |
667 | 0 | */ |
668 | 0 | if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { |
669 | 0 | cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); |
670 | 0 | } |
671 | 0 | } |
672 | 0 | } |
673 | | |
674 | | |
675 | | /* |
676 | | * Finish up at end of an output pass. |
677 | | */ |
678 | | |
679 | | METHODDEF(void) |
680 | | finish_output_pass (j_decompress_ptr cinfo) |
681 | 0 | { |
682 | 0 | my_master_ptr master = (my_master_ptr) cinfo->master; |
683 | 0 |
|
684 | 0 | if (cinfo->quantize_colors) |
685 | 0 | (*cinfo->cquantize->finish_pass) (cinfo); |
686 | 0 | master->pass_number++; |
687 | 0 | } |
688 | | |
689 | | |
690 | | #ifdef D_MULTISCAN_FILES_SUPPORTED |
691 | | |
692 | | /* |
693 | | * Switch to a new external colormap between output passes. |
694 | | */ |
695 | | |
696 | | GLOBAL(void) |
697 | | jpeg_new_colormap (j_decompress_ptr cinfo) |
698 | 0 | { |
699 | 0 | my_master_ptr master = (my_master_ptr) cinfo->master; |
700 | 0 |
|
701 | 0 | /* Prevent application from calling me at wrong times */ |
702 | 0 | if (cinfo->global_state != DSTATE_BUFIMAGE) |
703 | 0 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
704 | 0 |
|
705 | 0 | if (cinfo->quantize_colors && cinfo->enable_external_quant && |
706 | 0 | cinfo->colormap != NULL) { |
707 | 0 | /* Select 2-pass quantizer for external colormap use */ |
708 | 0 | cinfo->cquantize = master->quantizer_2pass; |
709 | 0 | /* Notify quantizer of colormap change */ |
710 | 0 | (*cinfo->cquantize->new_color_map) (cinfo); |
711 | 0 | master->pub.is_dummy_pass = FALSE; /* just in case */ |
712 | 0 | } else |
713 | 0 | ERREXIT(cinfo, JERR_MODE_CHANGE); |
714 | 0 | } |
715 | | |
716 | | #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
717 | | |
718 | | |
719 | | /* |
720 | | * Initialize master decompression control and select active modules. |
721 | | * This is performed at the start of jpeg_start_decompress. |
722 | | */ |
723 | | |
724 | | GLOBAL(void) |
725 | | jinit_master_decompress (j_decompress_ptr cinfo) |
726 | 0 | { |
727 | 0 | my_master_ptr master = (my_master_ptr) cinfo->master; |
728 | 0 |
|
729 | 0 | master->pub.prepare_for_output_pass = prepare_for_output_pass; |
730 | 0 | master->pub.finish_output_pass = finish_output_pass; |
731 | 0 |
|
732 | 0 | master->pub.is_dummy_pass = FALSE; |
733 | 0 | master->pub.jinit_upsampler_no_alloc = FALSE; |
734 | 0 |
|
735 | 0 | master_selection(cinfo); |
736 | 0 | } |