Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libjpeg/jdphuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdphuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1995-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015-2016, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains Huffman entropy decoding routines for progressive JPEG.
12
 *
13
 * Much of the complexity here has to do with supporting input suspension.
14
 * If the data source module demands suspension, we want to be able to back
15
 * up to the start of the current MCU.  To do this, we copy state variables
16
 * into local working storage, and update them back to the permanent
17
 * storage only upon successful completion of an MCU.
18
 */
19
20
#define JPEG_INTERNALS
21
#include "jinclude.h"
22
#include "jpeglib.h"
23
#include "jdhuff.h"             /* Declarations shared with jdhuff.c */
24
25
26
#ifdef D_PROGRESSIVE_SUPPORTED
27
28
/*
29
 * Expanded entropy decoder object for progressive Huffman decoding.
30
 *
31
 * The savable_state subrecord contains fields that change within an MCU,
32
 * but must not be updated permanently until we complete the MCU.
33
 */
34
35
typedef struct {
36
  unsigned int EOBRUN;                  /* remaining EOBs in EOBRUN */
37
  int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
38
} savable_state;
39
40
/* This macro is to work around compilers with missing or broken
41
 * structure assignment.  You'll need to fix this code if you have
42
 * such a compiler and you change MAX_COMPS_IN_SCAN.
43
 */
44
45
#ifndef NO_STRUCT_ASSIGN
46
0
#define ASSIGN_STATE(dest,src)  ((dest) = (src))
47
#else
48
#if MAX_COMPS_IN_SCAN == 4
49
#define ASSIGN_STATE(dest,src)  \
50
        ((dest).EOBRUN = (src).EOBRUN, \
51
         (dest).last_dc_val[0] = (src).last_dc_val[0], \
52
         (dest).last_dc_val[1] = (src).last_dc_val[1], \
53
         (dest).last_dc_val[2] = (src).last_dc_val[2], \
54
         (dest).last_dc_val[3] = (src).last_dc_val[3])
55
#endif
56
#endif
57
58
59
typedef struct {
60
  struct jpeg_entropy_decoder pub; /* public fields */
61
62
  /* These fields are loaded into local variables at start of each MCU.
63
   * In case of suspension, we exit WITHOUT updating them.
64
   */
65
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
66
  savable_state saved;          /* Other state at start of MCU */
67
68
  /* These fields are NOT loaded into local working state. */
69
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
70
71
  /* Pointers to derived tables (these workspaces have image lifespan) */
72
  d_derived_tbl *derived_tbls[NUM_HUFF_TBLS];
73
74
  d_derived_tbl *ac_derived_tbl; /* active table during an AC scan */
75
} phuff_entropy_decoder;
76
77
typedef phuff_entropy_decoder *phuff_entropy_ptr;
78
79
/* Forward declarations */
80
METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo,
81
                                        JBLOCKROW *MCU_data);
82
METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo,
83
                                        JBLOCKROW *MCU_data);
84
METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo,
85
                                         JBLOCKROW *MCU_data);
86
METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo,
87
                                         JBLOCKROW *MCU_data);
88
89
90
/*
91
 * Initialize for a Huffman-compressed scan.
92
 */
93
94
METHODDEF(void)
95
start_pass_phuff_decoder (j_decompress_ptr cinfo)
96
0
{
97
0
  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
98
0
  boolean is_DC_band, bad;
99
0
  int ci, coefi, tbl;
100
0
  d_derived_tbl **pdtbl;
101
0
  int *coef_bit_ptr;
102
0
  jpeg_component_info *compptr;
103
0
104
0
  is_DC_band = (cinfo->Ss == 0);
105
0
106
0
  /* Validate scan parameters */
107
0
  bad = FALSE;
108
0
  if (is_DC_band) {
109
0
    if (cinfo->Se != 0)
110
0
      bad = TRUE;
111
0
  } else {
112
0
    /* need not check Ss/Se < 0 since they came from unsigned bytes */
113
0
    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
114
0
      bad = TRUE;
115
0
    /* AC scans may have only one component */
116
0
    if (cinfo->comps_in_scan != 1)
117
0
      bad = TRUE;
118
0
  }
119
0
  if (cinfo->Ah != 0) {
120
0
    /* Successive approximation refinement scan: must have Al = Ah-1. */
121
0
    if (cinfo->Al != cinfo->Ah-1)
122
0
      bad = TRUE;
123
0
  }
124
0
  if (cinfo->Al > 13)           /* need not check for < 0 */
125
0
    bad = TRUE;
126
0
  /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
127
0
   * but the spec doesn't say so, and we try to be liberal about what we
128
0
   * accept.  Note: large Al values could result in out-of-range DC
129
0
   * coefficients during early scans, leading to bizarre displays due to
130
0
   * overflows in the IDCT math.  But we won't crash.
131
0
   */
132
0
  if (bad)
133
0
    ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
134
0
             cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
135
0
  /* Update progression status, and verify that scan order is legal.
136
0
   * Note that inter-scan inconsistencies are treated as warnings
137
0
   * not fatal errors ... not clear if this is right way to behave.
138
0
   */
139
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
140
0
    int cindex = cinfo->cur_comp_info[ci]->component_index;
141
0
    coef_bit_ptr = & cinfo->coef_bits[cindex][0];
142
0
    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
143
0
      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
144
0
    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
145
0
      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
146
0
      if (cinfo->Ah != expected)
147
0
        WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
148
0
      coef_bit_ptr[coefi] = cinfo->Al;
149
0
    }
150
0
  }
151
0
152
0
  /* Select MCU decoding routine */
153
0
  if (cinfo->Ah == 0) {
154
0
    if (is_DC_band)
155
0
      entropy->pub.decode_mcu = decode_mcu_DC_first;
156
0
    else
157
0
      entropy->pub.decode_mcu = decode_mcu_AC_first;
158
0
  } else {
159
0
    if (is_DC_band)
160
0
      entropy->pub.decode_mcu = decode_mcu_DC_refine;
161
0
    else
162
0
      entropy->pub.decode_mcu = decode_mcu_AC_refine;
163
0
  }
164
0
165
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166
0
    compptr = cinfo->cur_comp_info[ci];
167
0
    /* Make sure requested tables are present, and compute derived tables.
168
0
     * We may build same derived table more than once, but it's not expensive.
169
0
     */
170
0
    if (is_DC_band) {
171
0
      if (cinfo->Ah == 0) {     /* DC refinement needs no table */
172
0
        tbl = compptr->dc_tbl_no;
173
0
        pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl;
174
0
        jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl);
175
0
      }
176
0
    } else {
177
0
      tbl = compptr->ac_tbl_no;
178
0
      pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl;
179
0
      jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl);
180
0
      /* remember the single active table */
181
0
      entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
182
0
    }
183
0
    /* Initialize DC predictions to 0 */
184
0
    entropy->saved.last_dc_val[ci] = 0;
185
0
  }
186
0
187
0
  /* Initialize bitread state variables */
188
0
  entropy->bitstate.bits_left = 0;
189
0
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
190
0
  entropy->pub.insufficient_data = FALSE;
191
0
192
0
  /* Initialize private state variables */
193
0
  entropy->saved.EOBRUN = 0;
194
0
195
0
  /* Initialize restart counter */
196
0
  entropy->restarts_to_go = cinfo->restart_interval;
197
0
}
198
199
200
/*
201
 * Figure F.12: extend sign bit.
202
 * On some machines, a shift and add will be faster than a table lookup.
203
 */
204
205
#define AVOID_TABLES
206
#ifdef AVOID_TABLES
207
208
0
#define NEG_1 ((unsigned)-1)
209
0
#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((NEG_1)<<(s)) + 1) : (x))
210
211
#else
212
213
#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
214
215
static const int extend_test[16] =   /* entry n is 2**(n-1) */
216
  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
217
    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
218
219
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
220
  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
221
    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
222
    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
223
    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
224
225
#endif /* AVOID_TABLES */
226
227
228
/*
229
 * Check for a restart marker & resynchronize decoder.
230
 * Returns FALSE if must suspend.
231
 */
232
233
LOCAL(boolean)
234
process_restart (j_decompress_ptr cinfo)
235
0
{
236
0
  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
237
0
  int ci;
238
0
239
0
  /* Throw away any unused bits remaining in bit buffer; */
240
0
  /* include any full bytes in next_marker's count of discarded bytes */
241
0
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
242
0
  entropy->bitstate.bits_left = 0;
243
0
244
0
  /* Advance past the RSTn marker */
245
0
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
246
0
    return FALSE;
247
0
248
0
  /* Re-initialize DC predictions to 0 */
249
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
250
0
    entropy->saved.last_dc_val[ci] = 0;
251
0
  /* Re-init EOB run count, too */
252
0
  entropy->saved.EOBRUN = 0;
253
0
254
0
  /* Reset restart counter */
255
0
  entropy->restarts_to_go = cinfo->restart_interval;
256
0
257
0
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
258
0
   * against a marker.  In that case we will end up treating the next data
259
0
   * segment as empty, and we can avoid producing bogus output pixels by
260
0
   * leaving the flag set.
261
0
   */
262
0
  if (cinfo->unread_marker == 0)
263
0
    entropy->pub.insufficient_data = FALSE;
264
0
265
0
  return TRUE;
266
0
}
267
268
269
/*
270
 * Huffman MCU decoding.
271
 * Each of these routines decodes and returns one MCU's worth of
272
 * Huffman-compressed coefficients.
273
 * The coefficients are reordered from zigzag order into natural array order,
274
 * but are not dequantized.
275
 *
276
 * The i'th block of the MCU is stored into the block pointed to by
277
 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
278
 *
279
 * We return FALSE if data source requested suspension.  In that case no
280
 * changes have been made to permanent state.  (Exception: some output
281
 * coefficients may already have been assigned.  This is harmless for
282
 * spectral selection, since we'll just re-assign them on the next call.
283
 * Successive approximation AC refinement has to be more careful, however.)
284
 */
285
286
/*
287
 * MCU decoding for DC initial scan (either spectral selection,
288
 * or first pass of successive approximation).
289
 */
290
291
METHODDEF(boolean)
292
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
293
0
{
294
0
  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
295
0
  int Al = cinfo->Al;
296
0
  register int s, r;
297
0
  int blkn, ci;
298
0
  JBLOCKROW block;
299
0
  BITREAD_STATE_VARS;
300
0
  savable_state state;
301
0
  d_derived_tbl *tbl;
302
0
  jpeg_component_info *compptr;
303
0
304
0
  /* Process restart marker if needed; may have to suspend */
305
0
  if (cinfo->restart_interval) {
306
0
    if (entropy->restarts_to_go == 0)
307
0
      if (! process_restart(cinfo))
308
0
        return FALSE;
309
0
  }
310
0
311
0
  /* If we've run out of data, just leave the MCU set to zeroes.
312
0
   * This way, we return uniform gray for the remainder of the segment.
313
0
   */
314
0
  if (! entropy->pub.insufficient_data) {
315
0
316
0
    /* Load up working state */
317
0
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
318
0
    ASSIGN_STATE(state, entropy->saved);
319
0
320
0
    /* Outer loop handles each block in the MCU */
321
0
322
0
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
323
0
      block = MCU_data[blkn];
324
0
      ci = cinfo->MCU_membership[blkn];
325
0
      compptr = cinfo->cur_comp_info[ci];
326
0
      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
327
0
328
0
      /* Decode a single block's worth of coefficients */
329
0
330
0
      /* Section F.2.2.1: decode the DC coefficient difference */
331
0
      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
332
0
      if (s) {
333
0
        CHECK_BIT_BUFFER(br_state, s, return FALSE);
334
0
        r = GET_BITS(s);
335
0
        s = HUFF_EXTEND(r, s);
336
0
      }
337
0
338
0
      /* Convert DC difference to actual value, update last_dc_val */
339
0
      s += state.last_dc_val[ci];
340
0
      state.last_dc_val[ci] = s;
341
0
      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
342
0
      (*block)[0] = (JCOEF) LEFT_SHIFT(s, Al);
343
0
    }
344
0
345
0
    /* Completed MCU, so update state */
346
0
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
347
0
    ASSIGN_STATE(entropy->saved, state);
348
0
  }
349
0
350
0
  /* Account for restart interval (no-op if not using restarts) */
351
0
  entropy->restarts_to_go--;
352
0
353
0
  return TRUE;
354
0
}
355
356
357
/*
358
 * MCU decoding for AC initial scan (either spectral selection,
359
 * or first pass of successive approximation).
360
 */
361
362
METHODDEF(boolean)
363
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
364
0
{
365
0
  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
366
0
  int Se = cinfo->Se;
367
0
  int Al = cinfo->Al;
368
0
  register int s, k, r;
369
0
  unsigned int EOBRUN;
370
0
  JBLOCKROW block;
371
0
  BITREAD_STATE_VARS;
372
0
  d_derived_tbl *tbl;
373
0
374
0
  /* Process restart marker if needed; may have to suspend */
375
0
  if (cinfo->restart_interval) {
376
0
    if (entropy->restarts_to_go == 0)
377
0
      if (! process_restart(cinfo))
378
0
        return FALSE;
379
0
  }
380
0
381
0
  /* If we've run out of data, just leave the MCU set to zeroes.
382
0
   * This way, we return uniform gray for the remainder of the segment.
383
0
   */
384
0
  if (! entropy->pub.insufficient_data) {
385
0
386
0
    /* Load up working state.
387
0
     * We can avoid loading/saving bitread state if in an EOB run.
388
0
     */
389
0
    EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
390
0
391
0
    /* There is always only one block per MCU */
392
0
393
0
    if (EOBRUN > 0)             /* if it's a band of zeroes... */
394
0
      EOBRUN--;                 /* ...process it now (we do nothing) */
395
0
    else {
396
0
      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
397
0
      block = MCU_data[0];
398
0
      tbl = entropy->ac_derived_tbl;
399
0
400
0
      for (k = cinfo->Ss; k <= Se; k++) {
401
0
        HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
402
0
        r = s >> 4;
403
0
        s &= 15;
404
0
        if (s) {
405
0
          k += r;
406
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
407
0
          r = GET_BITS(s);
408
0
          s = HUFF_EXTEND(r, s);
409
0
          /* Scale and output coefficient in natural (dezigzagged) order */
410
0
          (*block)[jpeg_natural_order[k]] = (JCOEF) LEFT_SHIFT(s, Al);
411
0
        } else {
412
0
          if (r == 15) {        /* ZRL */
413
0
            k += 15;            /* skip 15 zeroes in band */
414
0
          } else {              /* EOBr, run length is 2^r + appended bits */
415
0
            EOBRUN = 1 << r;
416
0
            if (r) {            /* EOBr, r > 0 */
417
0
              CHECK_BIT_BUFFER(br_state, r, return FALSE);
418
0
              r = GET_BITS(r);
419
0
              EOBRUN += r;
420
0
            }
421
0
            EOBRUN--;           /* this band is processed at this moment */
422
0
            break;              /* force end-of-band */
423
0
          }
424
0
        }
425
0
      }
426
0
427
0
      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
428
0
    }
429
0
430
0
    /* Completed MCU, so update state */
431
0
    entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
432
0
  }
433
0
434
0
  /* Account for restart interval (no-op if not using restarts) */
435
0
  entropy->restarts_to_go--;
436
0
437
0
  return TRUE;
438
0
}
439
440
441
/*
442
 * MCU decoding for DC successive approximation refinement scan.
443
 * Note: we assume such scans can be multi-component, although the spec
444
 * is not very clear on the point.
445
 */
446
447
METHODDEF(boolean)
448
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
449
0
{
450
0
  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
451
0
  int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
452
0
  int blkn;
453
0
  JBLOCKROW block;
454
0
  BITREAD_STATE_VARS;
455
0
456
0
  /* Process restart marker if needed; may have to suspend */
457
0
  if (cinfo->restart_interval) {
458
0
    if (entropy->restarts_to_go == 0)
459
0
      if (! process_restart(cinfo))
460
0
        return FALSE;
461
0
  }
462
0
463
0
  /* Not worth the cycles to check insufficient_data here,
464
0
   * since we will not change the data anyway if we read zeroes.
465
0
   */
466
0
467
0
  /* Load up working state */
468
0
  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
469
0
470
0
  /* Outer loop handles each block in the MCU */
471
0
472
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
473
0
    block = MCU_data[blkn];
474
0
475
0
    /* Encoded data is simply the next bit of the two's-complement DC value */
476
0
    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
477
0
    if (GET_BITS(1))
478
0
      (*block)[0] |= p1;
479
0
    /* Note: since we use |=, repeating the assignment later is safe */
480
0
  }
481
0
482
0
  /* Completed MCU, so update state */
483
0
  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
484
0
485
0
  /* Account for restart interval (no-op if not using restarts) */
486
0
  entropy->restarts_to_go--;
487
0
488
0
  return TRUE;
489
0
}
490
491
492
/*
493
 * MCU decoding for AC successive approximation refinement scan.
494
 */
495
496
METHODDEF(boolean)
497
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
498
0
{
499
0
  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
500
0
  int Se = cinfo->Se;
501
0
  int p1 = 1 << cinfo->Al;        /* 1 in the bit position being coded */
502
0
  int m1 = (NEG_1) << cinfo->Al;  /* -1 in the bit position being coded */
503
0
  register int s, k, r;
504
0
  unsigned int EOBRUN;
505
0
  JBLOCKROW block;
506
0
  JCOEFPTR thiscoef;
507
0
  BITREAD_STATE_VARS;
508
0
  d_derived_tbl *tbl;
509
0
  int num_newnz;
510
0
  int newnz_pos[DCTSIZE2];
511
0
512
0
  /* Process restart marker if needed; may have to suspend */
513
0
  if (cinfo->restart_interval) {
514
0
    if (entropy->restarts_to_go == 0)
515
0
      if (! process_restart(cinfo))
516
0
        return FALSE;
517
0
  }
518
0
519
0
  /* If we've run out of data, don't modify the MCU.
520
0
   */
521
0
  if (! entropy->pub.insufficient_data) {
522
0
523
0
    /* Load up working state */
524
0
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
525
0
    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
526
0
527
0
    /* There is always only one block per MCU */
528
0
    block = MCU_data[0];
529
0
    tbl = entropy->ac_derived_tbl;
530
0
531
0
    /* If we are forced to suspend, we must undo the assignments to any newly
532
0
     * nonzero coefficients in the block, because otherwise we'd get confused
533
0
     * next time about which coefficients were already nonzero.
534
0
     * But we need not undo addition of bits to already-nonzero coefficients;
535
0
     * instead, we can test the current bit to see if we already did it.
536
0
     */
537
0
    num_newnz = 0;
538
0
539
0
    /* initialize coefficient loop counter to start of band */
540
0
    k = cinfo->Ss;
541
0
542
0
    if (EOBRUN == 0) {
543
0
      for (; k <= Se; k++) {
544
0
        HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
545
0
        r = s >> 4;
546
0
        s &= 15;
547
0
        if (s) {
548
0
          if (s != 1)           /* size of new coef should always be 1 */
549
0
            WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
550
0
          CHECK_BIT_BUFFER(br_state, 1, goto undoit);
551
0
          if (GET_BITS(1))
552
0
            s = p1;             /* newly nonzero coef is positive */
553
0
          else
554
0
            s = m1;             /* newly nonzero coef is negative */
555
0
        } else {
556
0
          if (r != 15) {
557
0
            EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
558
0
            if (r) {
559
0
              CHECK_BIT_BUFFER(br_state, r, goto undoit);
560
0
              r = GET_BITS(r);
561
0
              EOBRUN += r;
562
0
            }
563
0
            break;              /* rest of block is handled by EOB logic */
564
0
          }
565
0
          /* note s = 0 for processing ZRL */
566
0
        }
567
0
        /* Advance over already-nonzero coefs and r still-zero coefs,
568
0
         * appending correction bits to the nonzeroes.  A correction bit is 1
569
0
         * if the absolute value of the coefficient must be increased.
570
0
         */
571
0
        do {
572
0
          thiscoef = *block + jpeg_natural_order[k];
573
0
          if (*thiscoef != 0) {
574
0
            CHECK_BIT_BUFFER(br_state, 1, goto undoit);
575
0
            if (GET_BITS(1)) {
576
0
              if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
577
0
                if (*thiscoef >= 0)
578
0
                  *thiscoef += p1;
579
0
                else
580
0
                  *thiscoef += m1;
581
0
              }
582
0
            }
583
0
          } else {
584
0
            if (--r < 0)
585
0
              break;            /* reached target zero coefficient */
586
0
          }
587
0
          k++;
588
0
        } while (k <= Se);
589
0
        if (s) {
590
0
          int pos = jpeg_natural_order[k];
591
0
          /* Output newly nonzero coefficient */
592
0
          (*block)[pos] = (JCOEF) s;
593
0
          /* Remember its position in case we have to suspend */
594
0
          newnz_pos[num_newnz++] = pos;
595
0
        }
596
0
      }
597
0
    }
598
0
599
0
    if (EOBRUN > 0) {
600
0
      /* Scan any remaining coefficient positions after the end-of-band
601
0
       * (the last newly nonzero coefficient, if any).  Append a correction
602
0
       * bit to each already-nonzero coefficient.  A correction bit is 1
603
0
       * if the absolute value of the coefficient must be increased.
604
0
       */
605
0
      for (; k <= Se; k++) {
606
0
        thiscoef = *block + jpeg_natural_order[k];
607
0
        if (*thiscoef != 0) {
608
0
          CHECK_BIT_BUFFER(br_state, 1, goto undoit);
609
0
          if (GET_BITS(1)) {
610
0
            if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
611
0
              if (*thiscoef >= 0)
612
0
                *thiscoef += p1;
613
0
              else
614
0
                *thiscoef += m1;
615
0
            }
616
0
          }
617
0
        }
618
0
      }
619
0
      /* Count one block completed in EOB run */
620
0
      EOBRUN--;
621
0
    }
622
0
623
0
    /* Completed MCU, so update state */
624
0
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
625
0
    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
626
0
  }
627
0
628
0
  /* Account for restart interval (no-op if not using restarts) */
629
0
  entropy->restarts_to_go--;
630
0
631
0
  return TRUE;
632
0
633
0
undoit:
634
0
  /* Re-zero any output coefficients that we made newly nonzero */
635
0
  while (num_newnz > 0)
636
0
    (*block)[newnz_pos[--num_newnz]] = 0;
637
0
638
0
  return FALSE;
639
0
}
640
641
642
/*
643
 * Module initialization routine for progressive Huffman entropy decoding.
644
 */
645
646
GLOBAL(void)
647
jinit_phuff_decoder (j_decompress_ptr cinfo)
648
0
{
649
0
  phuff_entropy_ptr entropy;
650
0
  int *coef_bit_ptr;
651
0
  int ci, i;
652
0
653
0
  entropy = (phuff_entropy_ptr)
654
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
655
0
                                sizeof(phuff_entropy_decoder));
656
0
  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
657
0
  entropy->pub.start_pass = start_pass_phuff_decoder;
658
0
659
0
  /* Mark derived tables unallocated */
660
0
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
661
0
    entropy->derived_tbls[i] = NULL;
662
0
  }
663
0
664
0
  /* Create progression status table */
665
0
  cinfo->coef_bits = (int (*)[DCTSIZE2])
666
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
667
0
                                cinfo->num_components*DCTSIZE2*sizeof(int));
668
0
  coef_bit_ptr = & cinfo->coef_bits[0][0];
669
0
  for (ci = 0; ci < cinfo->num_components; ci++)
670
0
    for (i = 0; i < DCTSIZE2; i++)
671
0
      *coef_bit_ptr++ = -1;
672
0
}
673
674
#endif /* D_PROGRESSIVE_SUPPORTED */