/src/mozilla-central/media/libjpeg/jdsample.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdsample.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1991-1996, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
8 | | * Copyright (C) 2010, 2015-2016, D. R. Commander. |
9 | | * Copyright (C) 2014, MIPS Technologies, Inc., California. |
10 | | * Copyright (C) 2015, Google, Inc. |
11 | | * For conditions of distribution and use, see the accompanying README.ijg |
12 | | * file. |
13 | | * |
14 | | * This file contains upsampling routines. |
15 | | * |
16 | | * Upsampling input data is counted in "row groups". A row group |
17 | | * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
18 | | * sample rows of each component. Upsampling will normally produce |
19 | | * max_v_samp_factor pixel rows from each row group (but this could vary |
20 | | * if the upsampler is applying a scale factor of its own). |
21 | | * |
22 | | * An excellent reference for image resampling is |
23 | | * Digital Image Warping, George Wolberg, 1990. |
24 | | * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
25 | | */ |
26 | | |
27 | | #include "jinclude.h" |
28 | | #include "jdsample.h" |
29 | | #include "jsimd.h" |
30 | | #include "jpegcomp.h" |
31 | | |
32 | | |
33 | | |
34 | | /* |
35 | | * Initialize for an upsampling pass. |
36 | | */ |
37 | | |
38 | | METHODDEF(void) |
39 | | start_pass_upsample (j_decompress_ptr cinfo) |
40 | 0 | { |
41 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
42 | 0 |
|
43 | 0 | /* Mark the conversion buffer empty */ |
44 | 0 | upsample->next_row_out = cinfo->max_v_samp_factor; |
45 | 0 | /* Initialize total-height counter for detecting bottom of image */ |
46 | 0 | upsample->rows_to_go = cinfo->output_height; |
47 | 0 | } |
48 | | |
49 | | |
50 | | /* |
51 | | * Control routine to do upsampling (and color conversion). |
52 | | * |
53 | | * In this version we upsample each component independently. |
54 | | * We upsample one row group into the conversion buffer, then apply |
55 | | * color conversion a row at a time. |
56 | | */ |
57 | | |
58 | | METHODDEF(void) |
59 | | sep_upsample (j_decompress_ptr cinfo, |
60 | | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
61 | | JDIMENSION in_row_groups_avail, |
62 | | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
63 | | JDIMENSION out_rows_avail) |
64 | 0 | { |
65 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
66 | 0 | int ci; |
67 | 0 | jpeg_component_info *compptr; |
68 | 0 | JDIMENSION num_rows; |
69 | 0 |
|
70 | 0 | /* Fill the conversion buffer, if it's empty */ |
71 | 0 | if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
72 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
73 | 0 | ci++, compptr++) { |
74 | 0 | /* Invoke per-component upsample method. Notice we pass a POINTER |
75 | 0 | * to color_buf[ci], so that fullsize_upsample can change it. |
76 | 0 | */ |
77 | 0 | (*upsample->methods[ci]) (cinfo, compptr, |
78 | 0 | input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
79 | 0 | upsample->color_buf + ci); |
80 | 0 | } |
81 | 0 | upsample->next_row_out = 0; |
82 | 0 | } |
83 | 0 |
|
84 | 0 | /* Color-convert and emit rows */ |
85 | 0 |
|
86 | 0 | /* How many we have in the buffer: */ |
87 | 0 | num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); |
88 | 0 | /* Not more than the distance to the end of the image. Need this test |
89 | 0 | * in case the image height is not a multiple of max_v_samp_factor: |
90 | 0 | */ |
91 | 0 | if (num_rows > upsample->rows_to_go) |
92 | 0 | num_rows = upsample->rows_to_go; |
93 | 0 | /* And not more than what the client can accept: */ |
94 | 0 | out_rows_avail -= *out_row_ctr; |
95 | 0 | if (num_rows > out_rows_avail) |
96 | 0 | num_rows = out_rows_avail; |
97 | 0 |
|
98 | 0 | (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, |
99 | 0 | (JDIMENSION) upsample->next_row_out, |
100 | 0 | output_buf + *out_row_ctr, |
101 | 0 | (int) num_rows); |
102 | 0 |
|
103 | 0 | /* Adjust counts */ |
104 | 0 | *out_row_ctr += num_rows; |
105 | 0 | upsample->rows_to_go -= num_rows; |
106 | 0 | upsample->next_row_out += num_rows; |
107 | 0 | /* When the buffer is emptied, declare this input row group consumed */ |
108 | 0 | if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
109 | 0 | (*in_row_group_ctr)++; |
110 | 0 | } |
111 | | |
112 | | |
113 | | /* |
114 | | * These are the routines invoked by sep_upsample to upsample pixel values |
115 | | * of a single component. One row group is processed per call. |
116 | | */ |
117 | | |
118 | | |
119 | | /* |
120 | | * For full-size components, we just make color_buf[ci] point at the |
121 | | * input buffer, and thus avoid copying any data. Note that this is |
122 | | * safe only because sep_upsample doesn't declare the input row group |
123 | | * "consumed" until we are done color converting and emitting it. |
124 | | */ |
125 | | |
126 | | METHODDEF(void) |
127 | | fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
128 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
129 | 0 | { |
130 | 0 | *output_data_ptr = input_data; |
131 | 0 | } |
132 | | |
133 | | |
134 | | /* |
135 | | * This is a no-op version used for "uninteresting" components. |
136 | | * These components will not be referenced by color conversion. |
137 | | */ |
138 | | |
139 | | METHODDEF(void) |
140 | | noop_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
141 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
142 | 0 | { |
143 | 0 | *output_data_ptr = NULL; /* safety check */ |
144 | 0 | } |
145 | | |
146 | | |
147 | | /* |
148 | | * This version handles any integral sampling ratios. |
149 | | * This is not used for typical JPEG files, so it need not be fast. |
150 | | * Nor, for that matter, is it particularly accurate: the algorithm is |
151 | | * simple replication of the input pixel onto the corresponding output |
152 | | * pixels. The hi-falutin sampling literature refers to this as a |
153 | | * "box filter". A box filter tends to introduce visible artifacts, |
154 | | * so if you are actually going to use 3:1 or 4:1 sampling ratios |
155 | | * you would be well advised to improve this code. |
156 | | */ |
157 | | |
158 | | METHODDEF(void) |
159 | | int_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
160 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
161 | 0 | { |
162 | 0 | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
163 | 0 | JSAMPARRAY output_data = *output_data_ptr; |
164 | 0 | register JSAMPROW inptr, outptr; |
165 | 0 | register JSAMPLE invalue; |
166 | 0 | register int h; |
167 | 0 | JSAMPROW outend; |
168 | 0 | int h_expand, v_expand; |
169 | 0 | int inrow, outrow; |
170 | 0 |
|
171 | 0 | h_expand = upsample->h_expand[compptr->component_index]; |
172 | 0 | v_expand = upsample->v_expand[compptr->component_index]; |
173 | 0 |
|
174 | 0 | inrow = outrow = 0; |
175 | 0 | while (outrow < cinfo->max_v_samp_factor) { |
176 | 0 | /* Generate one output row with proper horizontal expansion */ |
177 | 0 | inptr = input_data[inrow]; |
178 | 0 | outptr = output_data[outrow]; |
179 | 0 | outend = outptr + cinfo->output_width; |
180 | 0 | while (outptr < outend) { |
181 | 0 | invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
182 | 0 | for (h = h_expand; h > 0; h--) { |
183 | 0 | *outptr++ = invalue; |
184 | 0 | } |
185 | 0 | } |
186 | 0 | /* Generate any additional output rows by duplicating the first one */ |
187 | 0 | if (v_expand > 1) { |
188 | 0 | jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
189 | 0 | v_expand-1, cinfo->output_width); |
190 | 0 | } |
191 | 0 | inrow++; |
192 | 0 | outrow += v_expand; |
193 | 0 | } |
194 | 0 | } |
195 | | |
196 | | |
197 | | /* |
198 | | * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
199 | | * It's still a box filter. |
200 | | */ |
201 | | |
202 | | METHODDEF(void) |
203 | | h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
204 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
205 | 0 | { |
206 | 0 | JSAMPARRAY output_data = *output_data_ptr; |
207 | 0 | register JSAMPROW inptr, outptr; |
208 | 0 | register JSAMPLE invalue; |
209 | 0 | JSAMPROW outend; |
210 | 0 | int inrow; |
211 | 0 |
|
212 | 0 | for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
213 | 0 | inptr = input_data[inrow]; |
214 | 0 | outptr = output_data[inrow]; |
215 | 0 | outend = outptr + cinfo->output_width; |
216 | 0 | while (outptr < outend) { |
217 | 0 | invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
218 | 0 | *outptr++ = invalue; |
219 | 0 | *outptr++ = invalue; |
220 | 0 | } |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | | |
225 | | /* |
226 | | * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
227 | | * It's still a box filter. |
228 | | */ |
229 | | |
230 | | METHODDEF(void) |
231 | | h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
232 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
233 | 0 | { |
234 | 0 | JSAMPARRAY output_data = *output_data_ptr; |
235 | 0 | register JSAMPROW inptr, outptr; |
236 | 0 | register JSAMPLE invalue; |
237 | 0 | JSAMPROW outend; |
238 | 0 | int inrow, outrow; |
239 | 0 |
|
240 | 0 | inrow = outrow = 0; |
241 | 0 | while (outrow < cinfo->max_v_samp_factor) { |
242 | 0 | inptr = input_data[inrow]; |
243 | 0 | outptr = output_data[outrow]; |
244 | 0 | outend = outptr + cinfo->output_width; |
245 | 0 | while (outptr < outend) { |
246 | 0 | invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
247 | 0 | *outptr++ = invalue; |
248 | 0 | *outptr++ = invalue; |
249 | 0 | } |
250 | 0 | jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
251 | 0 | 1, cinfo->output_width); |
252 | 0 | inrow++; |
253 | 0 | outrow += 2; |
254 | 0 | } |
255 | 0 | } |
256 | | |
257 | | |
258 | | /* |
259 | | * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. |
260 | | * |
261 | | * The upsampling algorithm is linear interpolation between pixel centers, |
262 | | * also known as a "triangle filter". This is a good compromise between |
263 | | * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 |
264 | | * of the way between input pixel centers. |
265 | | * |
266 | | * A note about the "bias" calculations: when rounding fractional values to |
267 | | * integer, we do not want to always round 0.5 up to the next integer. |
268 | | * If we did that, we'd introduce a noticeable bias towards larger values. |
269 | | * Instead, this code is arranged so that 0.5 will be rounded up or down at |
270 | | * alternate pixel locations (a simple ordered dither pattern). |
271 | | */ |
272 | | |
273 | | METHODDEF(void) |
274 | | h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
275 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
276 | 0 | { |
277 | 0 | JSAMPARRAY output_data = *output_data_ptr; |
278 | 0 | register JSAMPROW inptr, outptr; |
279 | 0 | register int invalue; |
280 | 0 | register JDIMENSION colctr; |
281 | 0 | int inrow; |
282 | 0 |
|
283 | 0 | for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
284 | 0 | inptr = input_data[inrow]; |
285 | 0 | outptr = output_data[inrow]; |
286 | 0 | /* Special case for first column */ |
287 | 0 | invalue = GETJSAMPLE(*inptr++); |
288 | 0 | *outptr++ = (JSAMPLE) invalue; |
289 | 0 | *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); |
290 | 0 |
|
291 | 0 | for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
292 | 0 | /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ |
293 | 0 | invalue = GETJSAMPLE(*inptr++) * 3; |
294 | 0 | *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); |
295 | 0 | *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); |
296 | 0 | } |
297 | 0 |
|
298 | 0 | /* Special case for last column */ |
299 | 0 | invalue = GETJSAMPLE(*inptr); |
300 | 0 | *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); |
301 | 0 | *outptr++ = (JSAMPLE) invalue; |
302 | 0 | } |
303 | 0 | } |
304 | | |
305 | | |
306 | | /* |
307 | | * Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling). |
308 | | * |
309 | | * This is a less common case, but it can be encountered when losslessly |
310 | | * rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling. |
311 | | */ |
312 | | |
313 | | METHODDEF(void) |
314 | | h1v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
315 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
316 | 0 | { |
317 | 0 | JSAMPARRAY output_data = *output_data_ptr; |
318 | 0 | JSAMPROW inptr0, inptr1, outptr; |
319 | 0 | #if BITS_IN_JSAMPLE == 8 |
320 | 0 | int thiscolsum; |
321 | | #else |
322 | | JLONG thiscolsum; |
323 | | #endif |
324 | | JDIMENSION colctr; |
325 | 0 | int inrow, outrow, v; |
326 | 0 |
|
327 | 0 | inrow = outrow = 0; |
328 | 0 | while (outrow < cinfo->max_v_samp_factor) { |
329 | 0 | for (v = 0; v < 2; v++) { |
330 | 0 | /* inptr0 points to nearest input row, inptr1 points to next nearest */ |
331 | 0 | inptr0 = input_data[inrow]; |
332 | 0 | if (v == 0) /* next nearest is row above */ |
333 | 0 | inptr1 = input_data[inrow-1]; |
334 | 0 | else /* next nearest is row below */ |
335 | 0 | inptr1 = input_data[inrow+1]; |
336 | 0 | outptr = output_data[outrow++]; |
337 | 0 |
|
338 | 0 | for(colctr = 0; colctr < compptr->downsampled_width; colctr++) { |
339 | 0 | thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
340 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum + 1) >> 2); |
341 | 0 | } |
342 | 0 | } |
343 | 0 | inrow++; |
344 | 0 | } |
345 | 0 | } |
346 | | |
347 | | |
348 | | /* |
349 | | * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. |
350 | | * Again a triangle filter; see comments for h2v1 case, above. |
351 | | * |
352 | | * It is OK for us to reference the adjacent input rows because we demanded |
353 | | * context from the main buffer controller (see initialization code). |
354 | | */ |
355 | | |
356 | | METHODDEF(void) |
357 | | h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
358 | | JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) |
359 | 0 | { |
360 | 0 | JSAMPARRAY output_data = *output_data_ptr; |
361 | 0 | register JSAMPROW inptr0, inptr1, outptr; |
362 | 0 | #if BITS_IN_JSAMPLE == 8 |
363 | 0 | register int thiscolsum, lastcolsum, nextcolsum; |
364 | | #else |
365 | | register JLONG thiscolsum, lastcolsum, nextcolsum; |
366 | | #endif |
367 | | register JDIMENSION colctr; |
368 | 0 | int inrow, outrow, v; |
369 | 0 |
|
370 | 0 | inrow = outrow = 0; |
371 | 0 | while (outrow < cinfo->max_v_samp_factor) { |
372 | 0 | for (v = 0; v < 2; v++) { |
373 | 0 | /* inptr0 points to nearest input row, inptr1 points to next nearest */ |
374 | 0 | inptr0 = input_data[inrow]; |
375 | 0 | if (v == 0) /* next nearest is row above */ |
376 | 0 | inptr1 = input_data[inrow-1]; |
377 | 0 | else /* next nearest is row below */ |
378 | 0 | inptr1 = input_data[inrow+1]; |
379 | 0 | outptr = output_data[outrow++]; |
380 | 0 |
|
381 | 0 | /* Special case for first column */ |
382 | 0 | thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
383 | 0 | nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
384 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); |
385 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
386 | 0 | lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
387 | 0 |
|
388 | 0 | for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
389 | 0 | /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ |
390 | 0 | /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ |
391 | 0 | nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
392 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
393 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
394 | 0 | lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
395 | 0 | } |
396 | 0 |
|
397 | 0 | /* Special case for last column */ |
398 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
399 | 0 | *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); |
400 | 0 | } |
401 | 0 | inrow++; |
402 | 0 | } |
403 | 0 | } |
404 | | |
405 | | |
406 | | /* |
407 | | * Module initialization routine for upsampling. |
408 | | */ |
409 | | |
410 | | GLOBAL(void) |
411 | | jinit_upsampler (j_decompress_ptr cinfo) |
412 | 0 | { |
413 | 0 | my_upsample_ptr upsample; |
414 | 0 | int ci; |
415 | 0 | jpeg_component_info *compptr; |
416 | 0 | boolean need_buffer, do_fancy; |
417 | 0 | int h_in_group, v_in_group, h_out_group, v_out_group; |
418 | 0 |
|
419 | 0 | if (!cinfo->master->jinit_upsampler_no_alloc) { |
420 | 0 | upsample = (my_upsample_ptr) |
421 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
422 | 0 | sizeof(my_upsampler)); |
423 | 0 | cinfo->upsample = (struct jpeg_upsampler *) upsample; |
424 | 0 | upsample->pub.start_pass = start_pass_upsample; |
425 | 0 | upsample->pub.upsample = sep_upsample; |
426 | 0 | upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
427 | 0 | } else |
428 | 0 | upsample = (my_upsample_ptr) cinfo->upsample; |
429 | 0 |
|
430 | 0 | if (cinfo->CCIR601_sampling) /* this isn't supported */ |
431 | 0 | ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
432 | 0 |
|
433 | 0 | /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, |
434 | 0 | * so don't ask for it. |
435 | 0 | */ |
436 | 0 | do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1; |
437 | 0 |
|
438 | 0 | /* Verify we can handle the sampling factors, select per-component methods, |
439 | 0 | * and create storage as needed. |
440 | 0 | */ |
441 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
442 | 0 | ci++, compptr++) { |
443 | 0 | /* Compute size of an "input group" after IDCT scaling. This many samples |
444 | 0 | * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
445 | 0 | */ |
446 | 0 | h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) / |
447 | 0 | cinfo->_min_DCT_scaled_size; |
448 | 0 | v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / |
449 | 0 | cinfo->_min_DCT_scaled_size; |
450 | 0 | h_out_group = cinfo->max_h_samp_factor; |
451 | 0 | v_out_group = cinfo->max_v_samp_factor; |
452 | 0 | upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
453 | 0 | need_buffer = TRUE; |
454 | 0 | if (! compptr->component_needed) { |
455 | 0 | /* Don't bother to upsample an uninteresting component. */ |
456 | 0 | upsample->methods[ci] = noop_upsample; |
457 | 0 | need_buffer = FALSE; |
458 | 0 | } else if (h_in_group == h_out_group && v_in_group == v_out_group) { |
459 | 0 | /* Fullsize components can be processed without any work. */ |
460 | 0 | upsample->methods[ci] = fullsize_upsample; |
461 | 0 | need_buffer = FALSE; |
462 | 0 | } else if (h_in_group * 2 == h_out_group && |
463 | 0 | v_in_group == v_out_group) { |
464 | 0 | /* Special cases for 2h1v upsampling */ |
465 | 0 | if (do_fancy && compptr->downsampled_width > 2) { |
466 | 0 | if (jsimd_can_h2v1_fancy_upsample()) |
467 | 0 | upsample->methods[ci] = jsimd_h2v1_fancy_upsample; |
468 | 0 | else |
469 | 0 | upsample->methods[ci] = h2v1_fancy_upsample; |
470 | 0 | } else { |
471 | 0 | if (jsimd_can_h2v1_upsample()) |
472 | 0 | upsample->methods[ci] = jsimd_h2v1_upsample; |
473 | 0 | else |
474 | 0 | upsample->methods[ci] = h2v1_upsample; |
475 | 0 | } |
476 | 0 | } else if (h_in_group == h_out_group && |
477 | 0 | v_in_group * 2 == v_out_group && do_fancy) { |
478 | 0 | /* Non-fancy upsampling is handled by the generic method */ |
479 | 0 | upsample->methods[ci] = h1v2_fancy_upsample; |
480 | 0 | upsample->pub.need_context_rows = TRUE; |
481 | 0 | } else if (h_in_group * 2 == h_out_group && |
482 | 0 | v_in_group * 2 == v_out_group) { |
483 | 0 | /* Special cases for 2h2v upsampling */ |
484 | 0 | if (do_fancy && compptr->downsampled_width > 2) { |
485 | 0 | if (jsimd_can_h2v2_fancy_upsample()) |
486 | 0 | upsample->methods[ci] = jsimd_h2v2_fancy_upsample; |
487 | 0 | else |
488 | 0 | upsample->methods[ci] = h2v2_fancy_upsample; |
489 | 0 | upsample->pub.need_context_rows = TRUE; |
490 | 0 | } else { |
491 | 0 | if (jsimd_can_h2v2_upsample()) |
492 | 0 | upsample->methods[ci] = jsimd_h2v2_upsample; |
493 | 0 | else |
494 | 0 | upsample->methods[ci] = h2v2_upsample; |
495 | 0 | } |
496 | 0 | } else if ((h_out_group % h_in_group) == 0 && |
497 | 0 | (v_out_group % v_in_group) == 0) { |
498 | 0 | /* Generic integral-factors upsampling method */ |
499 | | #if defined(__mips__) |
500 | | if (jsimd_can_int_upsample()) |
501 | | upsample->methods[ci] = jsimd_int_upsample; |
502 | | else |
503 | | #endif |
504 | | upsample->methods[ci] = int_upsample; |
505 | 0 | upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); |
506 | 0 | upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); |
507 | 0 | } else |
508 | 0 | ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
509 | 0 | if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) { |
510 | 0 | upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
511 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
512 | 0 | (JDIMENSION) jround_up((long) cinfo->output_width, |
513 | 0 | (long) cinfo->max_h_samp_factor), |
514 | 0 | (JDIMENSION) cinfo->max_v_samp_factor); |
515 | 0 | } |
516 | 0 | } |
517 | 0 | } |